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1 Introduction

Signal interpolation and extrapolation are two important problems in signal reconstruction.
The interpolation problem is to reconstruct the continuous-time signal f(t) based on its
discrete samples f(nAt) while the extrapolation problem is to reconstruct a signal f(t) based
on some segment of f(¢), say, ¢t € [-T,T]. The Shannon sampling theorem is well known
for band-limited signal interpolation, whereas the Papoulis-Gerchberg (PG) algorithm is
popular in the context of band-limited signal extrapolation. The sampling theorem has
been extended to signals in wavelet subspaces by Walter [15). In our recent work [19],
we derived a generalized PG algorithm which extrapolates signals in wavelet subspaces.
One potential advantage of the proposed new scheme is that it provides many attractive
multiresolution wavelet bases for signal modelling and, as a consequence, the difficulty
arising in band-limited extrapolation, i.e. the ill-conditioning of the problem due to the
smoothness and the lack of time localization of the Fourier basis, can be overcome with the
choice of appropriate wavelet bases.

The discrete-time signal extrapolation problem is important in practical applications,
since only discrete samples of a signal can be computed numerically. For discrete-time band-
limited signal extrapolation, the discretized PG algorithm [11], (13}, [21], [19] is well studied.
It has been proved that the discretized PG algorithm converges to its continuous counterpart
[13], [21] as the sampling rate goes to infinity. The convergence of the generalized PG
algorithm in wavelet subspaces for both continuous-time and discrete-time signals and the
uniqueness of the extrapolation were examined in [19]. In this paper, we investigate the
relationship between the continuous-time and discrete-time signal extrapolation problems
in wavelet subspaces. We provide sufficient conditions on signals and wavelet bases so that
the discrete-time problem converges to the continuous one.

This paper is organized as follows. In §2, we briefly review the generalized PG algorithm
for both conitinuous-time and discrete-time signal extrapolation. In §3, we state and prove
a main theorem on the convergence of the discrete-time problem to the continuous-time
one. Concluding remarks are given §4. The following notation will be used throughout the
paper. The L?(R) denotes all real square integrable functions (or signals) defined on R.
For D > 0, the L*[— D, D] denotes all signals f(t) defined on [-D, D] satisfying

D
/ |f(@)|2dt < oo.
-D



Let <, > and || - || denote the inner product and the norm on L%(R), i.e.

oo

<f9>= [ fDa(dr, where f(),9(1) € L*(R),

and ||f||2 =< f, f >. Similarly, we use <, >p and || - ||p denote the inner product and the
norm on L3[-D, D). For f(t) € L*(R), we define

fw= [ soeia,

to be the Fourier transform of f(t).

2 Review of Signal Extrapolation in Wavelet Subspaces
For completeness of presentation, we review basic results given in [19] in this section.

2.1 Orthogonal Wavelet Bases

We only consider real wavelets in this work, and refer to [2], (3], [4] for more detailed
discussion. Let ¢(t) be a scaling function such that, for a fixed arbitrary integer j,

{$ix(t)lrez> where  @ix(t) = 29/%¢(27t - k),

is an orthonormal basis of the wavelet subspace Vj, and {V;},¢z is a multiresolution approx-
imation of L?(R), i.e. V; C V41 and UJ; Vj = L*(R). The wavelet function corresponding
to ¢(t) is denoted by ¥(t) and 1;i(t) = 2//29(2t — k). The associated quadrature mirror

filters can be expressed as
Hw)= the'ik“, and G(w)= nge""‘", (2.1)
k k
where g = (—l)kkl_k and

$(2w) = Hw)Pw), and $(2w) = G(w)d(w).

Then, we have

f@®) = i i b; k¥ik(t), (2:2)
J=—00 k=~00
for any f(t) € L%(R) and
= i IO EDY f: bj xtik(t), (2.3)
k=—00 i<J k=-o0



for any f(t) € Vj, where bjx =< f,¥jx > and cjx =< f,¢sx >. The bji in (2.2) are
called the wavelet series transform (WST) coefficients of f(t), and (2.2) provides the inverse
wavelet series transform (IWST) of b; . On one hand, the WST coefficients b;x with j < J
can be obtained from coefficients ¢ by the recursive formulas:
Ci—1,k = \/52,. hn—chj.m (2.4)
bj-l.k = ﬁzn In-2kCjn,
for j =J,J —1,J = 2,---. On the other hand, we have the following synthesis formula to
compute coefficients cjx from cj, x and b;, with Jo < j < J via

Cis1n = V2 (Z hn—2kcik + Zgn-%b'.k) ) (2.5)
% %

for j = Jo,Jo+1,---,J — 1. By viewing ¢j as a sequence z[n], we call (2.4) the discrete
wavelet transform (DWT) with parameters Jo and J or simply DWT of the sequence z(n]
and (2.5) the inverse discrete wavelet transform (IDWT) with parameters Jo and J or

simply IDWT of coefficients cj, x and b;x.
2.2 Signal Extrapolation

2.2.1 Continuous-time Case

Let f(t) € Vj for a fixed integer J. Given the value of f(t) for |t < T (T > 0), we are
concerned with the determination of the value f(t) for |t| > T. We propose the following

generalized PG algorithm for extrapolation:
Generalized PG (GPG) Algorithm:

FOt) = Prf(2). (26)

For=0,1,2, -
a0 = 3 < D65 > dnl2), (2.7)
@) = I:rf(t) +(I - Pr)g“(p). (2.8)

When the scaling function ¢(t) is the sinc function, that is, #(t) = %, the GPG algorithm
(2.6) - (2.8) reduces to the PG algorithm with Q = 277 [19].



2.2.2 Discrete-time Case

In practice, we only have discrete values of f(t) in (T, T]. Therefore, the GPG algorithm
needs to be discretized for discrete-time signals. Recall that the DWT of a sequence ¢, =
z[n] can be implemented via (2.4) for a certain integer J. The discrete sequence ¢;,, is said
to be (J, K) scale-time limited for certain integers J and K > 0 if its DWT coefficients (with
lowest resolution Jo) satisfies that coefficients cj, x and b;; may take nonzero values only
when |k| < K and Jp < j < J. When J and K are sufficiently large, the (J, K) scale-time
limited sequence provides a practical discrete-time signal model.

Let z[n] be a (J, K) scale-time limited sequence. The values of z[n], n € N, are given,
where the cardinality |A| = N is finite. The extrapolation problem is to recover z[n] for
n & N. Let Py and Py be the following operators:

Pyyln] = { ”E}fl’ Zgﬁ:

and
dik, |K|<Kand Jo<j<J,

Poxdip = { 0, otherwise

Let I be the identity operator and D,y and Djol. 7 be the DWT and IDWT operators with
parameters Jo and J as defined in §2.1. The discrete GPG algorithm can be stated as
follows.

The Discrete GPG (DGPG) Algorithm:

z[n] = Pyz[n], (2.9)
Forl=0,1,2,---
20)(n] = Pyzln] + (I - Pw)D32 Pk Dip, sz n). (2.10)
2.3 Uniqueness and Convergence Results

We summarize results on the uniqueness of extrapolation and the convergence of the GPG
and DGPG algorithms below.

2.3.1 Continuous-time Case

Let us define "
Q)2 S ¢s—k)d(t-k), (s)€R? (2.11)

k==00



and

Qi(s,1) a 2‘,Q(2Js, 2Jt) = f: S3k(3)dai(t). (2.12)

k=—00

When the decay of ¢(t) satisfies |¢(¢)| < O(1 + [¢]%5+¢)~! for some € > 0, Q(s,?) in (2.11)
is finite almost surely for s,¢ € R. For a kernal K(s,?) satisfying K(s,t) = K(¢,s) and

N N
D) aaiK(ti,t;) > 0, (2.13)

i=1 j=1

where the bar denotes the complex conjugate, for any integer N > 0, any N points
t; € [-T,T) and any N numbers a;, we say K(s,t) to be symmetric nonnegative defi-
nite in [—T, T)?. If the inequality in (2.13) is strictly great than 0 when there is at least one
a; # 0, we say that K (s,t) is symmetric positive definite in [-T,T]2. Obviously, Q(s,t) is
symmetric nonnegative definite in [T, T]2. We say that a signal f(¢) can be uniquely deter-
mined in a signal set S from its segment f(¢) defined on interval [4, B), if any f(2),g(t) € S
with f(2) = g(t) for t € [A, B], implies f(t) = g(¢) for t € R.

The first convergence result is stated as follows.

Proposition 1 If Q;(s,t) is continuous and positive definite in [-T, T]? and f(t) is uniquely
determined in Vy by f(t), t € [-T,T), then || f¥ — f|| = 0 when ! — oo, where fU)(2) is
obtained from the GPG algorithm (2.6) -(2.8).

Proof. See the Proof of Theorem 1 in [19). o

Proposition 1 tells us that if @ (s, t) is continuous and positive definite in [—7', T]?, the
uniqueness of extrapolation in V7 implies the convergence of the GPG algorithm. Instead
of checking the uniqueness of extrapolation for various functions f(t) of interest in Vj;
individually, the following Proposition says that it is sufficient to check that for the scaling
function ¢(t) only.

Proposition 2 If Q;(s,t) is continuous and positive definite in [-T,T]* and the scaling
Junction ¢(t) is uniquely determined in V; by any one of its segments ¢(t), t € [-2'T -
k,2'T - k], k € Z, then ||f¥ = f|| = 0 as I — co where f()(t) is obtained from the GPG
algorithm (2.6) -(2.8).

Proof. See the Proof of Theorem 2 in [19]. o
The conditions in Proposition 2 on a scaling function ¢(t) are sufficient conditions for
the uniqueness of the extrapolation and the convergence of the GPG algorithm. As a direct

consequence of Proposition 2, we have the following corollary.
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Corollary 1 Under the same conditions as stated in Proposition 2, if f(t) € V;, then f(t)
is uniquely determined in V; by its segment f(t), t € [-T,T).

2.3.2 Discrete-time Case

We introduce two operators H and G related to the quadrature mirror filters H(w) and
G(w) in (2.1) as follows:

Hylk) & V23 ho-nylnl, and  GylH £ V2Y ga-arin).
n n
Let H* and G* be their duals, respectively, i.e.
H*y[n] 2 V2 zk: hn—ary[k], and G y[n] 2 V2 ; In-2kY[k].
Then, from (2.5), we have
z[n] = ((H‘)"""“c;o'k + (H*)Y P 1G4+ H*G"bj_o i + G-b,_l,,,) [n].
We can rewrite the above equation as
z[n) = wap, ne€Z, (2.14)

where p and w,, are, respectively, column and row vectors of length (2K + 1)(J - Jo + 1)

of the form
P = (cJo’ bJo,bJo-l-l 1 " bJ-l)T '
w, = ((Ht)i-—.’o, ((Ht)J—Jo-th)n Jeee, (H'G‘)n, G;) ,
and where
Cio = (Cao,-K1Cdo,—K+1:"*"sClo.K) >
bj = (bj-k,bj—k+1," "1bjK),
G; = \/i (g—K—2n7 g-K+1-2ny"""» gK—Zn) y
(H‘G.)n = 2 (Z hn; -2ngd-K-2n; E hn; =2nd-K+1-2n35° " "y 2 hm -2n9K—2n1) ’
ni ni ny
((H')jG‘) = (‘/§)j+l Z Z vt E hn,‘ —2nhn,~_1 -2n; *°** hn; —2n29-K-2n;»
n n n2 n;
Z 2 e E hnj-2nbn;_y=2n; ** * Bny—2np §—K41-2n; 5
ny n2 n;



.
k]

Z E e E hnj—2nfin;_y—2n; * hn, -2ﬂ29K'2"1) ’

ny n2 n,'

@y = 2" (ZZ-.- 3" hagctnbng_y—2ny c hay—2nghoK-2ny

n] n2 Nyr_y
Z Z ree E hn,:-znth:_l —2ng """ hfu —2na h—K+1—2n1 ’
ny n2 nyr_q

cvy

E Z o E hay—anbingy_y=2n5 ***Rny—2n, hK-an) ’

ny n2 Ngr_y

for1<j<J-Jo—1and J' = J— Jo. Now, by letting
N ={my,mg,---,mn: M <mg <---< MmN},
we obtain the following linear system
x = Wp, (2.15)

where

x = (alma], almg], - -a[mn])?, and W= (wZ,wl,,..,wl),
are known. If p can be uniquely solved from (2.15), then z[n] with n ¢ A" can be extrapo-
lated from z[n] with n € N. For p, we have (2K +1}(J - Jo+1) & yo unknowns. Therefore,
to uniquely determine z[n], it is required that N > ro and that the rank of W has to be

ro. The above arguments prove the following Proposition.

Proposition 3 Let z[n] be a (J, K) scale-time limited sequence. Then, z[n] can be uniquely
determined from z[n], n € N, if and only if the rank of W is ro = (2K + 1)(J — Jo + 1).

To extrapolate z[r] outside N via the discrete GPG algorithm is equivalent to the solution
of (2.15) for p. There are two reasons to avoid solving (2.15) directly. One is that the direct
computation of W is expensive. The other is that, even though W is known, to solve the
linear system (2.15) is also expensive. We now go back to the convergence of the discrete
GPG algorithm.



Proposition 4 Let z[n] be a (J, K) scale-time limited sequence. If the rank of W is rq =
(2K + 1)(J - Jo+ 1), then

f: |zO[n] - 2[n]* -0, asl— co. (2.16)

n==00

On the other hand, if (2.16) is true for all (J, K) scale-time limited sequences, then the rank

of the matriz W is ro.

Proof. See the Proof of Theorem 4 in [19]. 0

3 Connection between the Continuous- and Discrete-time
Signal Extrapolation

In this section, we investigate the connection between continuous- and discrete-time signal

extrapolation described in §2.

3.1 Importance of the Problem

Consider continuous-time signals in the wavelet subspace V;, where each f(t) € V; has the

form
o0 o0

f@ = 3 cadn(t)= Y carbnr®)+ Y i b; x¥;k(t).

=—00 =—00 Jo<ji<J k=-00
In practice, f(t) is small for large |¢| so that cj, x and b;x are also small for large |k|. Thus,

it is important to consider signals in the following subspace of Vj,

K K
VJ’K é {f(t) : f(t) = Z CJo'k¢Jok(t) + E Z: b,-,kquk(t)for some consta.rltSCJo,k,b,-,k} .

k==K Jo<Li<J k==K
We call signals in V; x as (J, K) scale-time limited. For f(t) € V;x, we have
K K
fO) = cadn(t) = Y canndnr®+ Y. D bixti(t),
k k=—K Jo<j<Jd k=—K

where
cir =< fidak >y Chok =< [y00k >, bix =< fi Y5 > .

Since ¢(t) behaves like a lowpass filter, csy is close to 2~7/2f(k/27) (6], (8], [17] for suffi-
ciently large J. Therefore, we may replace cgx or z{k] with samples 2-9/2f(k/27) and use
the discrete-time GPG algorithm to provide an approximation for continuous-time signal

8



extrapolation. More generally, even if J is not large enough so that ¢z cannot be well ap-
proximated by 2~7/2 f(k/27), we can still use 2=1/2 f(k/2%1) to approximate ¢, x = z7,[n]
with appropriate scale parameter J; > J. The question is that, when the sampling rate in
[-T,T) goes to infinity (or J; goes to infinity), if the extrapolated sequence z , [n] converges

to f(¢) in a certain sense.

3.2 Main Result

In what follows, we consider f(t) € Vjx where the scale and time parameters J and K are
arbitrary but fixed. Without loss of generality, we assume that samples f(k/27) are known
in the interval [-T,T] = [-1,1] with J; > J. Since f(t) € V3x C Vy, x,

F(2) =Y cnpbae(t). (3.1)
k

Let
Ny, 2 {n: -2" <n<2h},

and
n
zy[n] = 272 f(53), n € N,

The DGPG algorithm (2.9)-(2.10) can be rewritten in the current setting as:

25)n] = P, =44 [n), (3.2)
and for/ =0,1,2,---,
- 1
z.(}:l)[n] = PNJl zp(n]+ (I - PNJ, )DJol,J, P1xDyy1 z.(ll)[n] (33)

Therefore, from the samples f(k/271), k € NJ,, we obtain a discrete-time signal :cf,? [n],

n € Z. With a:.(,? [n], we form a continuous-time signal via
Saa(t) = =5 Kéae(t), t € R. (34)
k

Our main result is on the convergence of f, 1(t) to f(2),

Before stating the main convergence theorem, let us examine equations analogous to
(2.14) and (2.15) in the current context. Let Zj,[n] = ¢j, n, n € Z. Then, similar to (2.14)
for z[n], we have

Ep[n] =wa()p, nE€Z, (3.5)



where
wa(h) = ((H)E=%, ((HY=0H16) o (7Y 67) ),

and p, ((H*)¥), and ((H*)'G*), are the same as before. It is clear that w,(J;) = w, when
Ji=J. Let
%y, = (8,[-2"1), 85 [-2" +1),-- -, 35 [27))7,
and
W(h) = (W_gn (1) Wz 41(D1), -+, Wann (1)) - (3.6)

Then,
%5, = W(J1)p. (3.7)

Let o 2 (2K + 1)(J — Jo + 1) which is the same as in §2.3.2 and r(J;) be the rank of
the matrix W(J;). We see that the matrix W(J;) only depends on the quadrature mirror
filters H and G of a wavelet basis. We are now ready to state the convergence result.

Theorem 1 Let f(t) € Vjx for certain integer K > 0. If the scaling function ¢(t) satisfies
that $(w) € LI(R) is continuous at w = 0 with $(0) = 1 and there is an integer J, with
Jy > J such that the rank r(Jy) of the matriz W(Jy) in (3.6) isrg = (2K + 1)(J - Jo + 1),
then

‘]-_iglo J}jgloo "leJ -fll =0, (3.8)
where fj, 1(t) is defined by (3.4).

Proof. See §3.3. (]
It is clear that the condition in Proposition 4 also gurantees the convergence (3.8).

3.3 Proof of the Main Result
Let Ay (J1), A2(J1),+++, Agn 414, (1) be the eigenvalues of W(J; ) (W(J;))T with

For J, > Jy, W(J1) is a submatrix of W(J2) with the same number 7p of columns. There-

fore, we have (see [14] )
Ai(J2) 2 Aj(dh), 1<ji< 24, (3.9)

In what follows, we assume that r(J;) = ro. This implies that the rank of W(J;)}(W(J2))T
is rg for all J5 > J;.

10



Recall Z5,[n] = cj,.n. Let us apply the DGPG algorithm to Z; [n] with n € A, to

reconstruct £, [n] for n € Z, i.e.

:E.(I(:) [n] = PNJ, 4, [n], (3.10)
and for/ =10,1,2,--
25 n) = Py, 8, (0] + (I = Pa, YD30s, Py, 25 In]. (3.11)

Then, we have the following lemma.

Lemmal
2
3 [0 = g [ < AP (1 = Arg(I0)) (3.12)

Proof. Let q; be the eigenvector of W(J;}(W(J1))T corresponding to Ai(J1), i.e.
W) (W) i = Aigiy i =1,2,--,241 1, (3.13)
where
A(J1) 2 A2(J1) 2 -+ 2 Arg(1) > Arpi1(1) = -+ = Mgy (1) = 0. (3.14)

Thus, q; forms an orthonormal basis of C2"**'+1, where C denotes the set of complex

numbers. Let

(¥Y1,¥2,° "1 ¥ro) & (W) (1,92, > Gro)-

Since q;, 1 < i < rg, are linearly independent and the matrix (W(J/;))7 has rank ro, we
can choose y; with 1 < i < r¢ to be an orthonormal basis in C™. Therefore, there are rp

constants a; such that
ro
p=Yav. (3.15)

i=1

and

ro K K
SlalP=lpl>= > X bislP+ Do lensl® = I3 (3.16)

i=1 Jo<i<J k=—-K =-K
From (3.13), only q;[»] with n € A, are known. For 1 < i < 1o, we extend q;[n] from
n € N, to all integers via

&in] = -,\i(l—Jl)w,,(J,)(W(Jl))Tq.-, neZ. (3.17)

11



By (3.5), (3.15) and (3.17), we have

To T0 7o
Z5,[n] = Wa(J)P = Wa(J1) D aiyi = Y aiwa(J))(W(N)) ai = Y a:di(N1)iln]-

=1 =1 =1

' ' ' (3.18)
We now prove that A;(J;) €1 for 1 < ¢ < ro. Since

Gl = 5 Kl = s 3 (WO Ta?

(W) qil? = (W())Tadll?

o evead
Sy P P 8l = 1P,

1
PYEn

IA

LT
eYE
where the property that both D, j, and D7}, preserve the total energy is used, we conclude
011 Jo,J1
that A,(Jl) <lfor1<i<ry.

Next, we use induction to prove

3y, [n) - £§)[n) = (I - Pay, )Zo aiXi(J1)(1 = X)) &iln]. (3.19)

i=1
When [ = 0, (3.19) is trivial by (3.10) and (3.18). Assume that (3.19) holds for the ith

iteration. Then,

54,[n] — #5V[n]
= (I- P, D3} PrxDass (Ba,n] - zJ,’[nn

(I = Pny, D3, Pax Do (I - PNJ,)ZGJ\ (J1)(1 = X)) &iln])

-

i=1
= (I-Pn,) i & 2i(J1)(1 = Mi(N)) (@ln] — D3} 5, Prx D0 Pary &iln))
i=1
L (I-Py,) rzo & Xi(J1)(1 = (1) (@ln] = wa( YW (1)) qilr])
i=1

fleo

(I = Py, ) 35 adi(d)(1 = X)) adal,

=1
where step 1 is from the induction assumption, step 2 is from the definitions of w,(J;) and
W(J;) and step 3 is from (3.17). This proves (3.19) is true for all { = 0, 1,2, - - -. Therefore,

Y 1&g, [n] - 2P < z | Z aiMi(D1)(1 = Ai(dh)) iln]P?

i=1

12



> i |ail? i(l - X)) f: |A:(J1)a:[n]|?

<
n i=1 i=1 =1

2 2

< IAIPro(2 = Ang () 30 D X1 )ailm)l?
=1 n
70

= [ APro(1 = Arg(11))* 303 [Wa(J1)(W (1)) ail?
=1 n
o

< IPro(1 = Arg(J))* Y ID5 5 (W) aill®
=1
ro

= fIPro(1 = Arg(31))* 30 MW () asll?
=1
o

< Ilf'l2r0(1 - ’\'o(Jl))2l E 2 PNJ, 65"2
=1
ro

= [1APro(1 = Arg(F1))* 3 I Pw, &l
£
.ro

= "f"2r0(1 - '\ro(Jl))m E "qi"2
=1

= AIPr3(1 = A (J1)),

where step 4 is from (3.14), (3.16) and 0 < A{(J1) < 1. This proves Lemma 1. 0

We next estimate ||xf,? - :Ef,? || in the following lemma.

Lemma 2
! {1
=P — 2PN < (1 + (a5,

where

2 2 1P, Gl = SaliDF = 3 lenlel 2ol =0, asdi =0 (320
neE N

Proof. By the definitions of zj, [r] and Z,(n],

271

1Pw,, (e o) = B[P = X 127872 (57) - caal® (3:21)

n=-2"
We can rewrite the expression of the right-hand-side of (3.21) and obtain (see [18] for
detailed derivation)

2% 9~
1PN, @nlnl - 24D = X oo

n=~2"1

[ oxbi - nertal . @)

13



Let
w(Jy) &

Hge) -

we[- 2.’1/2 211[2]

By the assumption of ¢(w) being continuous at w = 0, we have that
i J 0. 3.23
Jim_ () ©2)

Let
a(J1) & min {29/2, (w(A))™1/?}.

Then, limy, o a(J;) = c0. Since $(w) € L}(R), $(w) = H(£)G(¥) and |G(w)| < 1, we
have $(w) € L}(R). Therefore, f(t) € Vjx implies that f(t) € L!(R). That is, if we let

= [ - P, (3.24)

then,
65, =0, when J; — oo. (3.25)

By the orthonormality of the wavelet basis, we have

Y ldw+ 2% =1, VweR,
k

so that
|fw)] <1, VYweR. (3.26)

By using (3.26), we can simplify the right-hand-side of (3.22) as,

|/;°° f(—w)(fi;(% _ l)e_;ku,h,,dwlz

(J) 2 - ) ,
: (—a( 1)|f = “’)( ¥m ’1)|dw) +8(/.N(I"P°“")'f (“’)ld“’)
2 2
< 4an||f] (J)|¢(2Jl -1| dw + 863,
< 8|l £l a(dr)w(J) + 863,
< 8|l fIP(w(J1))/? + 863,

Therefore, by (3.22),

4+2- 4+2'

83,.

——— AP (w())* +

Ay, = 1Py, (z1,n] = &[] <
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Thus, by (3.23) and (3.25), we have proved (3.20). From (3.2)-(3.3) and (3.10)-(3.11), the
difference a:f,? [n)— 5:?,?[11] is resulted from the difference Py, (z4,[n] - 24, [n]). Furthermore,

it is straightforward by induction to prove
l ‘ 1/2
n = -
5 - 251l = (Z 2 52n) - zS,’[nJP) <+ 1A
n

Thus, Lemma 2 is proved. n]
We are now ready to prove the main result (3.8). By (3.1), (3.4), (3.20), Lemmas 1 and

2, we have

1/2
Vni=fl = (le‘},’[nl—ch,m)
" 1/2 1/2
(E |2[n] - ch?lan) + (Z: 1D (n] - 24, [n]l’)

< (4 1))+ rollfI(1 = Arg(J1)).

IN

Since the rank r(J;) = 7, Ar,(J1) > 0. By the property (3.9) and Lemma 2, (3.8) is proved.
This completes the proof of Theorem 1.

4 Conclusion

In this paper, we proved that, under certain conditions, the discrete-time signal extrapola-
tion problem converges to its continuous-time counterpart as the sampling rate in the known
interval goes to infinity. This work solves one of the open problems stated in [19]. The con-
vergence result obtained in this paper also provides a practical scheme for continuous-time
signal extrapolation in a certain wavelet subspace when only discrete samples in an interval

are given.
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