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Abstract

Impulsive noise bursts in communications systems are traditionally handled by incorporating
in the receiver a limiter which clips the received signal before integration. An empirical jus-
tification for this procedure is that it generally causes the signal-to-noise ratio to increase.
Recently, very accurate models of impulsive noise were presented, based on the theory of sym-
metric a-stable probability density functions. In this paper, we examine the performance of
optimum receivers, designed to detect signals embedded in impulsive noise which is modeled as
an infinite variance symmetric alpha-stable process, and compare it against the performance of
several suboptimum receivers. As a measure of receiver performance, we compute an asymp-
totic expression for the probability of error for each receiver and compare it to the probability
of error calculated by extensive Monte-Carlo simulations.
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1. INTRODUCTION

There exist several communication links for which the conventional additive Gaussian noise as-
sumption is quite inadequate and the dominant source of interference contains a significant noise
component that is termed “impulsive” to indicate the probability of large interference levels. The
sources of impulsive noise may be either natural or man made and may include atmospheric noise in
radio links, ambient acoustic noise due to ice cracking in the arctic region in underwater sonar and
submarine communications, and lightning, switching transients, and accidental hits in telephone
lines [1]. The effects of impulsive noise in the operation of conventional communication systems,
which are built upon the assumption of additive Gaussian noise, are drastic, significantly degrading
the overall performance of the system, and giving rise to the need for redesigning communication
systems to effectively filter out the impulsive interference.

For this purpose, a quantitative description of impulsive noise is needed. Towards this goal,
several models of non-Gaussian random processes have been considered (for example, see (2, 3, 4, 5,
6, 7, 8,9, 10] and references therein). On many occasions [1], the empirical data indicate that the
probability density functions (pdfs) of the associated noise processes maintain a similarity to the
Gaussian pdf, being bell-shaped, smooth, and symmetric, but at the same time have significantly
heavier tails. For example, atmospheric noise may be considered as arising from a superposition of
many statistically independent sources so that central limit theorems are applicable in the evaluation
of its pdf. The empirical fact [1] of algebraic (inverse power) tails in the pdf of atmospheric noise
naturally leads to the assumption of a stable pdf. On the other hand, a certain class of non-
Gaussian pdfs was considered in [11}, which was parameterized in such a way that the Gaussian pdf
was obtained at a certain limit. A similar parameterization of the class of stable random processes,
in the characteristic function domain, is possible [12] in a manner that the Gaussian pdf is again
included as a certain special case. The above evidence, combined with a recent, increasing interest in
the application of the theory of stable random variables and processes in statistical signal processing
[13, 14], clearly suggests that possible quite accurate models for large classes of impulsive noise in
communication links may be the stable pdfs [15]. In fact, the Cauchy distribution, which belongs
to the class of stable distributions, has already been studied as a model for severe impulsive noise.

In particular, the form and the performance of optimum receivers designed to operate in Cauchy



distributed noise environments has been investigated in [16]. Also, it was empirically found by Stuck
and Kleiner [17] that the noise over certain telephone lines was best described by almost Gaussian
stable pdfs. Very recently, it was also theoretically shown that, under general assumptions, a broad
class of impulsive noise, including Poisson models and generalized Gaussian models, has, indeed, a
stable pdf [15].

On the hand of handling impulsive noise, communication receivers traditionally consist of a
limiting device, which limits the amplitude of the incoming signal plus noise, followed by a linear
receiver (integrator). The justification for this structure is that it results in an increased signal-
to-noise ratio at the input of the linear receiver, thus reducing the probability of error of the
overall detector. At the same time, no excessive computational or economic cost is added to the
operation of the receiver. Certainly, the assumption is intuitively valid; however, it is not based
on any optimality criterion and there is no rigorous guarantee of best performance in any sense
1. Moreover, the limiter may introduce undesirable distortion to the signal of interest [19]. With
today’s availability of inexpensive computer hardware and software, the trend has become not to
sacrifice performance over simplicity and ease of implementation of the mathematical models and
the corresponding algorithms employed in the processing of signals [20] and it is now possible to
economically and efficiently build receivers of more complex structure, the performance of which is
optimum or, at least, very close to optimum.

In this paper, we examine the structure and the performance of optimum receivers designed
to operate in environments of impulsive noise modeled as a stable random process. As a criterion
of performance, we compute and plot an asymptotic expression for the probability of erroneous
decision as a function of the dispersion of the noise for various values of the characteristic exponent
« of the interfering noise. Then, we compare this probability of error to the error rate obtained
via extensive Monte-Carlo simulation. We compare the performance of the optimum receiver to
that of the conventional linear (Gaussian) receiver appropriate for detection of signals in additive
Gaussian noise; to the performance of the traditional receiver consisting of a limiter followed by an
integrator; and to the performance of the Cauchy receiver appropriate for detection of signals in

Cauchy noise. The paper is organized as follows: In section 2, we present the basic definitions and

1Except that this receiver is the local minimax robust receiver for detection of a weak signal of known shape in
additive noise modeled as a mixture of a Gaussian and a heavily tailed process [18].



properties of the symmetric alpha-stable (SaS) random variables and processes. We also discuss
methods for computation of a SaS pdf in real time and ways to generate SaS pseudorandom
deviates. In section 3, we analyze theoretically the performance of four types of receivers: (i) the
maximum likelihood (ML) receiver for detecting signals embedded in independent SaS noise, (ii) the
conventional linear receiver (integrator), optimum for detecting signals embedded in white Gaussian
noise, (iii) a limiter followed by the linear receiver, and (iv) the Cauchy receiver. In section 4, we
present plots of the theoretical expressions of section 3 for a range of values of the characteristic
exponent and the dispersion of the interefering SaS noise, as well plots of the observed performance
of the various receivers in extensive Monte—Carlo simulations. Finally, in section 5 we summarize
the key observations of this paper and suggest possible related research topics to be addressed in

the future.

2. SaS DISTRIBUTIONS, RANDOM VARIABLES, AND PROCESSES
2.1 The class of SaS pdfs
A SaS pdf fa(7,6;") is best defined [12] via its corresponding characteristic function as

Fol1:856) = o [ explib = rful*)e do, (2-1)

where the characteristic ezponent « is restricted to the values 0 < a < 2. In this equation, &
(—o0 < 6§ < 00) is the location parameter and v (y > 0) is the dispersion of the SaS pdf. When
1 < a £ 2, the location parameter § corresponds to the mean of the SaS pdf, while for 0 < a <1,
when the SaS pdf does not have a finite mean, 6 corresponds to its median. The dispersion
parameter v is a measure of the spread of the pdf around its location parameter &, similar to the
variance of a Gaussian pdf. From now on, unless explicitly stated otherwise, we are going to assume
that § = 0. This assumption does not restrict the generality of our results and is similar to the usual
zero mean assumption for Gaussian pdfs. Two well known classes of SaS pdfs are the Gaussian
distribution with mean § and variance 27, arising from Eq.(2-1) when a = 2, and the Cauchy

distribution with dispersion v and median é, corresponding to a = 1:

fn5i6) = el 820 (22)
H(1,8;8) = i'y?_+_(g—_6)2 (2-3)
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No closed form expressions exist for SaS pdfs other than the Gaussian and the Cauchy; however,
asymptotic expansions for all SaS pdfs are known, valid for either small (i.e., |§ — §] — 0) or large
(i.e., |€ — 8] = o0) argument £. In particular [21]):

ol 556) = 2 ul€ = 8" + O — 8™), (2-4)
as |6 — 8| = 0, and
10550 = 3 G + O = 8, (2-5)
as |¢ — §| — 00.? In the above Eqs.(2-4) and (2-5), we have
b = —i kl) +*T(ak + 1) sin(FT 7). (2-7)

If the asymptotic series (2-4) or (2-5) are to be computed for a large number n of terms, inaccuracies
may arise from the computation for large argument of the gamma functions appearing in Egs.(2-6)
and (2-7). These difficulties can be minimized, however, by the following procedure. We observe

that:
T(%H) (¢ - 6)?

—_ 52k — _ _ f\2(k=1) — _
ax(€ — 6) [ak-1(€ — 8) ]I‘(”ﬁT-‘)%(zk—l)’ k=1,2,3,... (2-8)
with
1 _ 1
a0 =——7 %r(;). (2-9)
For large k, we have [22, p. 257]
1‘(%‘}2) 2ka 1 lat2

which, if substituted back in Eq.(2-8), gives a recursive formula for the accurate evaluation of the

asymptotic series (2-4). Similarly, we use the formulae
br = br—1 ](ak +1)* sin(%2) .
(¢ —O)E—sl=* (€ — )| — 871 kf¢ — 8] sin({Eflm=)

poet) 1 1ale=a+1)Ga+4),
2 ak+1 24 (ak +1)2 ’

k=2,3,4,... (2-11)

2Eq.(2-4) is an asymptotic expansion for all 0 < a < 2, [€—5| — 0, and becomes a convergent series for 1 < a < 2.
Eq.(2-5) is an asymptotic expansion for all 0 < a < 2, |§ — §| — 0o, and becomes a convergent series for 0 < a < 1.
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with
by _ 19l(a +1)sin(%F)
(E-08)e—8l = ((£-8)-é* "’

to recursively compute the asymptotic series (2-5).

(2-12)

The SaS pdfs present several similarities to the Gaussian pdfs, such as the stability property and
a generalized form of the central limit theorem; however, they also differ from the Gaussian pdfs
in many ways. For example, the SaS pdfs have maxima more peaked than those of the Gaussian
pdfs and algebraic (inverse power) tails in opposition to the exponential tails of the Gaussian pdfs.
As a result, the pth order moments of SaS pdfs are finite only for 0 < p < a. These properties
of the SaS pdfs have allowed more accurate modeling of certain economical, physical, biological,
and hydrological phenomena and may also indicate applications in statistical signal processing
and communications [13]. For illustration purposes, we show in Fig. 1 plots of the SaS pdfs for
location parameter § = 0 and for characteristic exponents a = 0.5,1,1.5,1.99, and 2. The curves
in Fig. 1 have been produced by calculation of the inverse Fourier transform integral in Eq.(2-1).
This procedure is quite accurate for computation of SaS pdfs; however, it is not readily applicable
for real time calculations because of the extensive numerical integrations it requires. Therefore,
alternative expressions need to be used for real time computation of a SaS pdf. As a first try, we
use the asymptotic series in Eqs.(2-4) and (2-5). In particular, Eq.(2-4) is expected to give a good
approximation to a SaS pdf f.(v,6;) as long as its argument is small, while Eq.(2-5) will give a
good approximation to f,(7, ;) for large argument. We have found, however, that there exists an
interval of values of the argument of f,(v,§;+) for which none of the asymptotic series in Eqs.(2-4)
and (2-5) is sufficiently accurate. This is clearly illustrated in Fig. 2, where we show plots of the
S(a = 1.5)S pdf (with § = 0 and « = 1) obtained with the following three different methods: (i) by
numerical computation of the inverse Fourier transform in Eq.(2-1), (ii) via the asymptotic series
expansions in Eqs.(2-4) and (2-5), in which the first n = 100 terms of the Taylor series expansion
have been computed for || < 3 and the first n = 9 terms of the asymptotic expansion have
been computed for || > 3, and (iii)} by the method described in the next paragraph. Clearly, the
asymptotic series approximation of Eq.(2-4) is accurate only for very small values of the argument
of the pdf and deteriorates very fast for larger values. On the other hand, the asymptotic series of

Eq.(2-5) is not accurate for sufficiently small arguments for which the series (2-4) is not valid.



The method we found very accurate and very efficient to implement relies on the fact [23] that
the SaS pdfs are entire analytic functions, thus having bounded derivatives of all orders. Our
approach, therefore, for the real time computation of a SaS pdf f, consists of three steps: (i) choice
of a cutoff argument, such that the pdf at larger values can be accurately computed via the first
few terms of Eq.(2-5), (ii) evaluation of the pdf at a number of points in the interval (0, cutoff) via
numerical computation of the Fourier integral in Eq.(2-1), and (iii) evaluation of the coefficients of
an interpolating polynomial of small degree from the values of the pdf at the selected points of the
previous step. This method is, indeed, very accurate and is illustrated in Fig. 2, for the computation
of the S(a = 1.5)S pdf with ¥ =1 and § = 0. We have performed this procedure for the SaS pdfs
withy =1,6 =0, 3 and a = 0.5,1.5, and 1.99 and interpolating polynomials of appropriate degree
and asymptotic series of appropriate number of terms. The resulting coefficients in the asymptotic

series and in the interpolating polynomials are shown in Table 1:

[ - Computation of SaS pdfs

a=|f,(1,0;z) =
—0.32382° + 1.7166z* — 3.6100z3 + 3.8470z2 — 2.2125z + 0.6709 if|[z] <15
0.5
_.0_:3032 _ 95223;0-" + 0:)2439 _ 01592 + 0;,9?5 if I-'”l > 1.5
0.0001z° — 0.0008z3 + 0.0048z7 — 0.0125z° + 0.0083z°
+40.0196z* + 0.00072 — 0.1058z2 + 0.00162 + 0.2874 if |z £3
1.5
1.4323.104 4 81448, 10-% __ 0.0531.10* _ 0.0160.10* _ 0.0026.10%
4.8 7 213 ' z11.5 . 8. 14:9 10_5 z8-5 .
1028: 1077 oooozsw oooin a0t 4 if |z| >3
1.442 -107%z" —8.171 -10772° 4 1.778 - 10~52° — 0.0002z® + 0.0013z7
—0.0046z% 4 0.0070z° + 0.0011z* + 0.0049z> — 0.0725z% + 0.0014z
+0.2821 if |z| <6
1.99
12 12 12 7 . .
109441012 |, 002471072 00%)3‘691.0 + 16546 10 + 503111"29305 + 1.721’3?9‘104
+6" 5207+ 8253 + 1.7011 + 0;1634 + 3299 if le > 6.

SWe need only obtain an expression for fa(v = 1,8 = 0;£) since fa(7,6;€) = v~ % fa(1,0; €- 6)1"5), as can be
seen from Eq.(2-1).



2.2 Generation of SaS random deviates

The lack of a closed form expression for the general SaS pdf and, in particular, for the inverse of the
corresponding cumulative distribution function (cdf) renders the usual transformation method [24,
chapter 7] inappropriate for the generation of pseudorandom SaS deviates. Fortunately, alternative
procedures have been devised, originally restricted to certain values of the characteristic exponent
a and later extended to arbitrary a € (0,2). Without getting into the details of the method, we
present the result and refer the reader to [25] and [23, pp. 248-251] for its derivation and further
details.

Let U be uniform in (—%, %) and E standard exponential (see for example [24, chapter 7] for

definitions and algorithms that can generate these deviates). Then, the random variables:

iU) = tan(U) (2-13)
sin(al) cos[(1 — a)U], 2=
L) = e ), 0<as2, a#l (2-14)

are Cauchy and S(a # 1)S distributed, respectively.

For illustration and comparison purposes, we show in Figs. 3 SaS deviates generated with this
method. In particular, we draw the reader’s attention to Figs. 3a and 3b, where independent
Gaussian and independent S(a = 1.99)S noise are shown. Clearly, several outliers can be observed
in the second case, despite the fact that the characteristic exponent a = 1.99 is so close to the
Gaussian value @ = 2. As the characteristic exponent gets smaller, both the number and the
strength of the outliers increase, resulting to the extremely impulsive process of Figs. 3e and 3f in

the case of a = 0.5.

3. ASYMPTOTIC PROBABILITY OF ERROR FOR FoUR CLASSES
OF RECEIVERS IN INDEPENDENT SaS NOISE

In this paper, we examine the performance of coherent receivers in independent SaS noise. For
simplicity, we restrict the presentation to binary signaling; however, the generalization to arbitrary
M-ary signaling and to incoherent reception is straightforward and the findings of this paper will

also hold for those cases.



Our mathematical model is, therefore, the following hypothesis testing problem:

Ho:z(k) = so(k)+n.(k), k=12,...,N
H,:z(k) = si(k)+nq.(k), kE=12,...,N,

where s;(-), ¢ = 0,1, is one of two possible transmitted signals and n,(-) is a realization of a
sequence of N independent, identically distributed SaS random variables of characteristic exponent
a (0 < a £ 2) and dispersion 7. The receiver needs to make a decision on which hypothesis
is true (i.e., which signal s;(-) was sent) on the basis of the observed data z(-). We will assume
that s,(k) = —so(k), £ = 1,2,..., N (antipodal signaling), as is for example the case of a BPSK
communications system. The following analysis is, however, valid for arbitrary signaling waveforms

and is, thus, applicable to all the communications systems in use.

3.1 Optimum Receiver

To decide between the two hypotheses Hp and H,, the optimum (in the maximum likelihood (ML)

sense) receiver computes the test statistic

ey falz(k) — So(k)]}
k= falz(k) — s1(k)]

N z — %
= - e o

and compares it to a preset threshold 5. When A > 7, the receiver decides that so(-) was sent,

A = log{

otherwise that s,(-) was sent. We are going to assume that = 0, a threshold setting which
minimizes the probability of error. The following analysis is valid, however, for arbitrary threshold
7.

Clearly, the test statistic A is a random variable with finite mean and variance, even when the
noise process n, is a SaS process with infinite variance [16).* The mean of the test statistic A,

assuming so(+) was sent, can then be computed as
Bo = 8{/\'30(') sent}

= 5 % (e — so(k) log (L2l = 2e(B)]
= 3 [ fale — solk)) log{ = i

4One way to understand this assertion is to consider the asymptotic behavior of the integrands in Egs.(3-2) and
(3-3) as § — oo.




_ o fal®)
- Z/ fa(E)l g{fa[£+2 (k)]}d£

= —£{A]si(") sent} = (3-2)
and its finite variance as
ot = var{Also() or i() sent]
= 3 [ peogtt e - U/ eost ey der. 59

The test statistic A being a superposition of N independent random variables satisfying the as-
sumptions of the Central Limit Theorem, its asymptotic (for large N) distribution is Gaussian with
mean and variance given by Eqs.(3-2) and (3-3), respectively. Assuming that the signals so(-) and
s1() are sent with equal probability (equal to 1), the average probability of an erroneous decision
will be

P, = Pr{A < 0|so(-) sent} = %erfc( \/’;"_2),
g

where erfc is the complimentary error function: erfc(z) = 72; e det.

3-4)

3.2 Linear (Gaussian) Receiver

The linear receiver is derived by assuming the characteristic exponent of the noise pdf f,(-) in the
test statistic A of Eq.(3-1) to equal & = 2. Thus the linear receiver is the optimum receiver in the
ML sense when the interfering noise is Gaussian. We will now examine its performance when the
incoming signal is corrupted by SaS noise of characteristic exponent o not necessarily equal to 2 and
compare it to the performance of the corresponding optimum receiver of the previous subsection.
After setting & = 2 and carrying out the algebra in Eq.(3-1), we end up with the expression
1 N
A= =) z(k)so(k) (3-15)
T k=1
for the test statistic of the linear receiver. In Eq.(3-5) above, v is the dispersion in the interfering
SaS noise. Since the test statistic A; is a linear superposition of N independent SaS random
variables, it is itself a SaS random variable. Its location parameter, assuming sq(-) was sent, is

= E so(k) = (3-6)

Y=
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and its dispersion

N
=" 1;1 |so(k)|®. B-7

Thus, assuming again equiprobable signals so(-) and s,(-), the average probability of erroneous

decision at the linear receiver becomes

0
P! =Pr{A < Ofso(") sent} = [ falm, 80i€) dt, (3-8)
where f,(71,80;) is the SaS pdf with location parameter 6, and dispersion ;.

3.3 Limiter plus Integrator

Let us consider a limiting device with input-output characteristic

0, otherwise.

Let the input to this limiter be a random variable z of pdf fi,(-) and cumulative distribution
function Fi,(-). At the output of the limiter, a random variable y will then be observed with pdf
[26, pp. 123-124]

fout(§) = [1 = Fin(x)]6(¢ — £) + Fin(—£)6(¢ + £) + I(—x,0)(€) fin(€), 3-9)

where [(_..)(£) = 1, when |€] < , and zero, otherwise.

In our case, let y(-) be the output of the limiter when the data z(-) is observed, i.e., y(k) =
glz(k)), k = 1,2,...,N. Then, y(-) is a sequence of independent, identically distributed random
variables, each having a pdf given by Eq.(3-9) above with f,(-) (Fin(-)) being a SaS pdf fa(v,8i;°)
(cumulative distribution function F,(7, §;;-)) of dispersion 7 and location parameter §;. Here, : = 0
or 1, depending on whether so(+) or s;(-) was sent. The receiver bases its decision on the test

statistic

At = 3 u(R)solk) (3—10)

k=1
and decides that so(-) was sent if Ap; > 0, otherwise s;(-) was sent. Assuming that sp(-) was sent,

the test statistic has mean

#orr = E{ALi|so(-) sent}
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N
= Y so(k)e{y(k)|so(-) sent}

k=1
= —&{AL1]|s1(-) sent}

—p1 Lt (3-11)

and finite variance
o}; = var{Aps|so(:) or s1(-) sent}

= é |so(k)|? var{y(k)|so(-) or s;(-) sent}.
B (3-12)

The expected mean and expected variance, £{y(k)|so(:) sent} and var{y(k)|so(-) or s;(-) sent}, can
be directly computed using Eq.(3-9) as

E{y(Blso) seat} = [ fuelonl) sent)de = - [ Fulmsalkyi€)de  (3-13)

var{y(R)lsol’) or s1(") sent} = [~ € fouElsn(-) sent) d — E2{y(k)lso(-) sent}
= =2 [ eF(r, 50k €) & — E{y(R)lsa() sent}. (3-14)

Substituting Eqgs.(3-13) and (3-14) into Eqs.(3-11) and (3-12), we get

N 5
pour = Lsolbls= [ Fulr,solh);)de (3-15)
N "
“21 = kZ |~90("’)|2["c2 - 2/_~ EFa(7, so(k); €) dé] -I‘g,u- (3-16)
=1

Assuming again equiprobable signals so(+) and s;(-), the asymptotic (for large N) probability of
error for this receiver will be

PH = erfe(LOLL). (3-17)

V20,
3.4 Cauchy Receiver

By Cauchy receiver we mean the receiver that employs as a test the statistic Ac derived from
Eq.(3-1) under the assumption that a = 1 (Cauchy noise). Given this definition and the expression

in Eq.(2-3) for the Ca.uchy distribution, we get

Si[z(k) — so(k)] 22 + [z(k) + so(E)]? B
AC‘,§'°g{flx(k) 0 = kz_:;l 8 o0 =B (3—18)
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The performance of the Cauchy receiver can be analyzed following similar steps to those followed
in the analysis of the optimum receiver. In fact, the same approach can be taken to analyze the
performance of a general Sa$S receiver constructed with a characteristic exponent mismatched to the
actual characteristic exponent of the interfering noise. Following steps similar to those of section

3.1, we end up with the expression for the probability of error of the Cauchy receiver:

1 Ho,
PP = cerfe( \/;%), (3 -19)
where
fi(6) _
oo = ; [ @ oty e (3~ 20)
and

f(§) *° h(€) 2 _
2 [ Jelertog™ (e zllj_wfa(e)log{flkHSO(,C)]}dc]. (3—21)

3.5 A Note on the Exact Computation of the Probability of Error

With the exception of the linear receiver of section 3.2, the expressions for the probability of error
that we derived in this section of the paper are only asymptotically valid, i.e., they hold true only
when the length N of the data sequence is large enough for the true distribution of the several
test statistics to be well approximated by a Gaussian distribution. Thus a minimum number N of
data samples may be needed for the expressions in Eqs.(3-4), (3-17), and (3-19) to be meaningful
(see for example [26, pp. 266-268] for an illustration of the convergence rate of the central limit
theorem). In general, we expect an error in the predicted values for the probabilities of error of
the different receivers to arise from the sensitivity of these probabilities to the far tails of the true
pdf of the corresponding test statistics, which are only poorly approximated by the Gaussian pdf
[27]. A better estimate of the probabilities of error of the several receivers can be obtained either
by performing extensive Monte-Carlo simulations or by the characteristic function based method
that we describe next (see also [28] for similar computations).

Let t be any test statistic of the set {A,A;,AL;,Ac}. Since t is a nonlinear transformation of
the random vector z(:) of independent components, its corresponding characteristic function will

then be

e ao() sent} = [ ... [ ot [] fo(r,solR)i6] .. des = T(@).  (3-22)

k=1
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In general, the characteristic function T'(-) can be computed numerically for a large number of
values of the parameter w and stored. After this task has been completed, the probability of error,

when one uses the statistic ¢, is computed, again via numerical integration, as [29]:
1 1 rodw
¢ _ i t=___/ w 3-23
P, = Pr{t < 0|so() sent} 5= h o S{T(w)}, ( )

where & denotes the imaginary part. This procedure is extremely computer intensive, requiring
extensive numerical integrations, and we have chosen not to follow it. Instead, we performed
comprehensive Monte-Carlo simulations of all the receivers in various SaS noise environments and

we discuss our findings in the following section.

4. Performance Evaluation

We have evaluated the expressions in Eqs.(3-4), (3-8), (3-17) and (3-19) for the probability of
erroneous decision for so(+) a square pulse of unit height (so(k) = 1, £ = 1,2,...,N) and for
different values of the characteristic exponent o and the dispersion v in the pdf of the additive SaS
noise. In particular, we examined the cases of @ = 0.5,1,1.5,1.99, and 2 and of v = 1,2,...,10.
We have assumed that the decision is based on N = 10 samples of the incoming signal plus noise,
a value which is high enough for validity of the asymptotic probabilities of error of the different
receivers. The choice of an appropriate threshold for the limiter is not entirely straightforward. If
this threshold is set to a very high value, then the limiter may not clip enough noise, especially in
situations of very impulsive noise of high level, leading to a poor performance. On the other hand,
if this threshold is set to a very low value, the limiter may over-distort the signal, especially in
situations of high signal-to-noise ratio, leading again to poor performance. Thus, an optimization
procedure has to be followed, in which threshold is found which minimizes the average probability
of error of the receiver. The value of this “optimum” threshold will depend significantly on the
impulsiveness of the additive noise, the signal-to-noise ratio, and the transmitted pulse shape. In
our simulations, the threshold of the limiter was set to £ = 1, under the rationale that the signal
does not exceed this value and is, therefore, not distorted as it goes through clipping.® In Figs. 4,

we show the performance of the optimum, the linear, the limiter plus integrator, and the Cauchy

8A similar limited study of the selection of the limiter threshold, based on the processing of real data, can be
found in (30).
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receiver for the above values of a and 4. Clearly, the optimum receiver outperforms the other
three types of receivers in providing a minimum probability of error for all different values of the
parameters o and v of the interfering noise. This result is, of course, compatible with the well
known fact [31) that the ML receiver also minimizes the probability of erroneous decision. The
limiter plus integrator receiver provides an improvement over the linear receiver; however, it is not
an optimum receiver.

To verify the accuracy and the validity of the asymptotic expressions, we ran extensive Monte-
Carlo simulations of all receivers for all the previous values of the parameters a and 4 of the
interfering noise. In particular, random sequences of transmitted symbols of total length of 20000
were generated, with each symbol in the sequence being with the same probability (3) equal to one of
two possibilities. For each symbol transmitted, the corresponding pulse so(-) or s,(-) was generated
and independent Sa$ stable noise, generated with the techniques of section 2.2, was added to it. The
output of the several receivers was then computed and, finally, the number of erroneous decisions
for each receiver were counted to obtain an estimate of the performance of the receivers. Because a
large number (20000) of different symbols were employed, the estimates of the average probabilities
of error are quite reliable. In fact, a comparison of the theoretical probability of error of the linear
receiver, the corresponding expression of which (Eq.(3-8)) is exact, with the estimated probability
of error obtained via Monte—Carlo simulation demonstrates excellent agreement. In Figs. 5, we
compare the performance of the optimum, the linear, the limiter plus integrator, and the Cauchy
receivers operating in independent SaS noise with characteristic exponent a and dispersion 7 as
in the previous paragraph. To facilitate the comparison of the relative performance of the various
receivers, we give in Figs. 6 plots of the average probability of error of all receivers in SaS noise

environments of various values of the parameters a and +.

5. Conclusions and Future Research

We examined the performance of four different classes of receivers in the presence of impulsive noise
modeled as a SaS random process. As measure of performance, we employed the average probability
of erroneous decision as computed theoretically in the limit of a large number of samples of the

incoming signal and also as obtained via extensive Monte-Carlo simulations. We found that, as
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expected, the optimum receiver outperforms the linear, the limiter plus integrator, and the Cauchy
receiver in all cases in that it provides the lowest probability of error. The traditionally employed
limiter plus integrator receiver was found to often perform below the Cauchy receiver or even
the linear receiver in cases of very impulsive (i.e., of small characteristic exponent) noise of large
dispersion. The Cauchy receiver was found to perform quite closely to, eventhough below, the
optimum receiver for a wide range of characteristic exponents a and dispersion «.

In the future, it seems interesting to examine the structure of detectors which are used for the
detection of impulsive stochastic transients in a background of Gaussian noise. It is also interesting
to examine the possibility of constructing non-parametric receivers for robust detection in stable
noise of unknown characteristic exponent and/or dispersion. Such and related research is currently

underway and the results of it are expected to be published in the near future.
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Fig. 5c: Limiter plus Integrator
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