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Abstract

The minimum mean-squared error (MMSE) estimator has been used to reconstruct a band-
limited signal from its finite samples in a bounded interval and shown to have many nice prop-
erties. In this research, we consider a special class of band-limited 1-D and 2-D signals which
have a multiband structure in the frequency domain, and propose a new reconstruction algo-
rithm to exploit the multiband feature of the underlying signals. The concept of the critical
value and region is introduced to measure the performance of a reconstruction algorithm. We
show analytically that the new algorithm performs better than the MMSE estimator for band-
limited/multiband signals in terms of the critical value and region measure. Finally, numerical
examples of 1-D and 2-D signal reconstruction are given for performance comparison of various
methods.

1 Introduction

Band-limited signal reconstruction from observed samples in a bounded interval is important in
many signal and image processing and communication applications. It has been extensively studied
by many researchers, say, [2]-[8], [10]-[15], [17]-[22], [25]-[29]. This problem can be generally stated
as: given a band-limited signal f(t) with bandwidth Q, i.e. f(w) = 0 for [w| > Q, we want to recover
the singal f(t) based on a limited number of samples f(¢;), ¢ = 1,2,---, N. The performance of
existing reconstruction methods usually depends on the bandwidth Q of f(t). That is, algorithms
perform poorlier when the bandwidth © becomes larger. However, it occurs in some applications
that the spectrum of the signal f(¢) does not fill the whole bandwidth [-£2, ] but has a multiband
structure in [—£2, Q) as shown in Fig. 1. One such an example is signal transmission via frequency
modulation with several carrier frequencies. Then, it is natural to seek an effective algorithm which

reconstructs the signal by taking advantage of the multiband feature.
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The multiband signal sampling problem has been recently addressed by Vaughan, Scott and
White [24] and Beaty and Dodson [1]. An interesting result obtained is that it is possible to
uniformly sample a multiband signal with a rate lower than the Nyquist rate based on the bandwidth
Q2 for its perfect reconstruction. The following reconstruction problem is studied in this research.
Let f(t) be a multiband signal with its Fourier spectrum as shown in Figure 1, where we assume
that the bandwidth B, and the center position Cj of each band indexed by —m < k < m are
known. Now, given a finite known samples f(t;), t; € [-T,T] for certain T > 0,i = 1,2,---,m, we
want to find an approximation f(t) of f(t) with ¢ € [-7,7] where 7 > T.

In this work, we propose a new reconstruction algorithm for the above problem. To measure the
performance of different methods, we introduce the concept of the critical region and the critical
value. Roughly speaking, by the critical region, we mean the area that the reconstructed signal f(t)
provides a good approximation of the true signal f(t). Then, we use the critical value to characterize
the length or the area of the critical region for 1-D and 2-D signals, respectively. We obtain an
explicit expression for the critical value of the new algorithm, and show that it is better than the
one of the MMSE estimator where the multiband structure is not exploited. For modulated real
signals, we can improve the reconstruction method furthermore so that its critical value is almost
twice as large as the one applicable to general complex multiband signals with Fourier spectrum
shown in Fig. 1. We also consider the extension of the new algorithm to 2-D multiband signals
which has applications in image processing. Numerical examples in both 1-D and 2-D cases are
given for performance comparison of various methods.

This paper is organized as follows. The MMSE estimator for band-limited signal signal re-
construction is briefly reviewed, and the concept of the critical value and region is introduced in
Section 2. We study the 1-D and 2-D multiband signal reconstruction problems in Sections 3 and
4, respectively. We use some numerical examples to demonstrate the performance of the proposed

algorithm in Section 5, and concluding remarks are given in Section 6.

2 Critical Regions and Values for Band-limited Signal Recon-
struction

This section reviews some basic results of band-limited signal reconstruction [5], [12], [15], [25)-
The main objective is to introduce the concept of critical region and its associated critical value
for a given interpolant. We will examine both 1-D and 2-D cases.

Let f(t) be an Q band-limited (or simply QBLS) signal and f(¢;), ¢ = 1,2,---,m, be given



samples of f(t). Then, the MMSE estimator for f(t) is of the form (see Chen and Allebach [5]):

= sin Q¢ - tg)

q)m(t) = z ax T . (2.1)
k=1 =k
where coefficients a,, a5, ..., a;, are determined by solving the linear system
m »
Zakw =f(t,), n=12,..,m (2.2)

k=1 t" —tk

It was proved in [5] that the MMSE estimator ®,,(t) is identical to the minimum energy band-
limited interpolant.
There are many ways to construct approximations of f(t) from its samples f(t;) with1 < i < m.

Let
Nmf(t) = (f(tl)vf(t2)7 vy f(tm))a

denote a mapping from the set Bg of all Q band-limited signals to the m-D complex Euclidean
space C™. Then, an interpolant ¥,,(t) is a function-valued mapping defined on the space of Ny, f
with f € Bq. Micchelli and Rivlin [15] proved that

sup sup [f(t) —Pn(t)| < sup  sup |f(t) — ¥n(t)l, (2.3)
tg[~7,7] f€Bqa.e te[~r,7] fE€Bq,E

where Bq g denotes the set of all Q band-limited signals with energy less than or equal to 1, ®,,(t)
is the MMSE estimator in (2.1) and 7 is an positive number such that |¢;| < 7 for ¢ = 1,2,---,m.
The MMSE estimator is sometimes called the pointwise minimum-error estimator in the worst case
due to the property (2.3).

Furthermore, we have the following error estimate for the MMSE estimator ®,,(t) (see (13) in
Kowalski [12])

1/2
1£0) ~ Bm(®)] < OV BN V€[], (24)

where O = e~1/12(27)1/2, g =

samples and the bandwidth Q of f(t), we can determine the condition on 7 so that the error bound

2;9 and E(f) is the energy of f. Thus, given the number m of

is small in the interval [-7,7]. It is clear from (2.4) that we need

me > 1 or 7T —=
! 2eQ’

and a larger mk (or a smaller 7) implies a smaller error bound. The ratio

Am

Fom = 350

(2.5)

is called the critical value for the interpolant ®,,(t) and the interval [-Tg,,,s,,) is called the

critical region. We conclude that the ®,,(t) is a good approximation of f(t) if |t| belongs to the

3



critical region as shown in Fig. 2 (a). Different interpolants may have different critical regions,
and we can use the critical value as one performance measure. In this paper, when we say that an

interpolant W, (t) is better than another one W¥5(t), it is meant that
Fgy, 2 Iy,.

That is, ®,(¢) can approximate f(t) better in a larger interval.

The MMSE estimator can also be extended to the 2-D case (see Chen and Allebach [5] for more
details). Let f(s,t) be (€1, Q) band-limited, that is, f(wy,wz) = 0 when jwy| > @) or jwe| > 2
so that

flwr,w2) = /00 /w f(s,t)e~ s tten) dsdt
= / f(s t)e ilewittun)gsdy,

Let f(siy2ti,), 01 = 1,2,+--,my, i2 = 1,2, -+, my, be given samples of f(s,t). Then, the MMSE

estimator of f(s,t) from these samples is

ol o2 sin Q; (s — s;, ) sin Qo (t — ¢;
‘Dmlmz(sv t) = z Z @iyi si — u) t _(t. 12)’ (2.6)
f1=1iz=1 ) 2
where coefficients a;,;, satisfy
my; ma . .
sin 3 (8n, — 8i,) sin Qa(tn, — &
Z Z @iy iy = l( =L “) - 2( = '2) = f(snntnz)’ (2‘7)
f1=11ix=1 Smy — Siy tnz - t":

forny =1,2,---,m; and ny = 1,2,---,ms. For the error estimation, Xia et al. [25] extended the

error bound (2.4) and obtained the following results.

Proposition 1 Let f(s,t) be (1, 92) band-limited. If f(s,t) € L'(R?), that is,

/Rz If (s, £)|dsdt < oo,

then,
1f(s,t) - ® (st)|<0( 1 1 ) Vsl <, el < 7 (2.8)
! mima T "\m(mis)™ | ma(maky)™ /) == '
where v
82 , 1 1
O;_—e Q;Qg‘/zU(s,t)ldsdt, and n,_m, =1,2.

and |s;,| < 1y and |t;,] < 72 for all possible i) and iy with arbitrarily given values of 7\ and 7.



Proposition 2 Let f(s,t) be (Q,Q;) band-limited. If its Fourier spectrum f(w;,wz) is second-
order differentiable, then

1 1
my(mK)™  ma(makz)™2

|£(8,2) = ®pmyms (5,8)] < O2 ( ) y Vis| <, ftf £ 72, (2.9)

where

2v2 _1

Te 120,05 Z |bu1n2| <00, and kK=

ni,n2

O, = l=1,2. (2.10)

2eniy’

and |s;,| < 7y and |t;,| < T2 for all possible iy and iz with arbitrarily given values of 7y and 72. The

values b, n, in (2.9) are Fourier coefficients of flwr,ws) in [y, 2] X [-, Q).

Although the constants O, and O; are different in error bounds (2.8) and (2.9), they have
the same main term. Similar to the 1-D case, we can also determine the critical region for the

interpolant @y, m,. To have myk; > 1,1 = 1,2, we require
my
—_—=Ts,., {=1,2,
< 2eY &m,

which is the critical region of ®,,,;n,. We plot the critical region in Fig. 2(b) as a square enclosed
by the solid line, in which ®,,,m,(s,t) provides a good approximation for f(s,t). Furthermore, we

choose
A Mmp

= m = qumlI‘q;wz (2.11)

I‘°"‘l m2

to be the critical value corresponding to the area of a quarter of the critical region (i.e. the dark
region in Fig. 2(b)). Thus, we can also measure the performance of an 2-D interpolant with its

critical value.

3 1-D Multiband Signal Reconstruction
3.1 General Multiband Signals

We consider the reconstruction of a 1-D multiband signal f(t) with its Fourier spectrum shown in
Figure 1, where B > 0 and Cj, with |k| < K, are known a priori and Cy — Cx—y 2 Bx+ Bx—;. The
f(t) can be represented as .
J= 3 fe s, (3.1
k=—-K
where fi(¢) is By band-limited. Since the bandwidth £ of f(t) is often much larger than each B;
of fi(t), the critical value of the MMSE estimator for f(t) is much smaller than that for fi(¢). This

observation motivates us to use the MMSE estimator of fi(¢) with |k| < K for the reconstruction

of f(t).



Let S & {t1,t2,-++,tm} C [-T,T] for certain T > 0 be the set of selected sampling points,
and Si & {tk1,tk2s s tem, } C [=T, T) be the set of arbitrarily fixed m; distinct points, where m;

satisfies
K

Then, a new reconstruction interpolant can be obtained via

sin Br(t -t ;
- 3 Pttt e, @2
k=-K i=1 = ki
where coefficients a;; satisfy the following system

sin Bk(tn ) e=itnCr _ _ o
.-_;Kg - tk - f(tﬂ)’ n= 1!21 y M. (3.3)

Note that the points #;; in Si are arbitrarily chosen in [-T,T] and may not be related to the
sampling points in S.
It is clear from (2.5) that, to keep the critical value constant, the larger the bandwidth By of
the kth signal fi(¢) the more points m; we need in Sk so that
2k sin By (t - ti)
Y e ————
i=1 k7%

approximates fi(t) well. Thus, we impose the size m; of set S; by the constraint
—=r, k=-K,-K+1,-.-,K, (3.4)

where r is a positive constant. With (3.4) we have

Thek ME =M _ m
S R— (3.5)
Y _xB Lk=-K Bk

The following theorem gives an error bound for the reconstruction interpolant ¥,,(t) given by (3.2).

r=

Theorem 1 Let f(t) be a multiband signal with parameters as stated before. If the coefficient

matriz for unknowns ay; in (3.8) is of full rank, then

K 2er\ ™
) = Tn()] <Or 3 (——) . forte[-r7], (3.6)

k==K r

where 7 > T, r is defined in (3.5) and O is a positive constant.

The proof of Theorem 1 is given in Appendix. The coefficient matrix in (3.3) often has a full rank.

If not, one can adjust the points in Sy to make it a full rank matrix.



Based on the error bound (3.6), the critical value I'y,, for the interpolant ¥, (t) can be defined

r r m Q
Um =52 = =
2¢e 2 ZkK=—K B;, Ef:—l\’ By

We see that the critical value I'y,, is reciprocally related to the total size of occupied bands, i.e.

T'e (3.1

m

2 Ef=_ x Bi. Furthermore, since Z{,(:_ k Br £, we have
Iy, 2Te,,. (3.8)

This means that the length of the critical interval of the interpolant ¥,, given by (3.2) for an
band-limited signal with a multiband structure is always greater than or equal to that of its MMSE
estimator ®,, without exploiting the multiband feature. In addition, when the multiband signal
f(t) does not fully occupy the band [-£,€)], the critical value I'y,, of our proposed method is
strictly greater than the critical value I'g,, of the MMSE estimator. We call

A Q

© Tieex By

the gain factor. When the band [—-Q, Q] is fully occupied, the gain factor is 1 (no gain).

>

"

When all By are equal, the error bound in (3.6) can be simplified.

Corollary 1 Let f(t) be a multiband signal with parameters as before and By = B for all k. If the

coefficient matriz for unknowns ay; in (3.3) is of full rank, then

m/(2K+1)
1£(8) = ¥ (8)] < O2K + )r (2%’) . forte[-m 1, (3.9)
where
,= m
T (2K +1)B’

3.2 Real Multiband Signals

As a special case of multiband signals f(t) in (3.1), we assume all f(t) and f(t) to be real in this

subsection. The signal f(t) can be represented as

K
f(t) =Y fi(t) cos(Cit), (3.10)

k=0
where fi(t) is real By band-limited for ¥ =0,1,2,---, K. A typical Fourier spectrum for this class
of signals is shown in Fig. 3, where B_; = B;.

For f(t) given by (3.10), we can use another interpolant instead of the one in (3.2)-(3.3), i.e.

K my .
- n B (L — t ed
() = 3 3 a2 ) oo ),

k=0i=1



where #3; with i = 1,2, - - -, m; are arbitrarily fixed distinct points in [-T, T} for each &, Ef:o my =

m and ai; are obtained via solving the system

K m; .

3 -ty
Zzak"SIn Bk(tn k') COS(thn) = f(tn), n = 1’2’.-.’m.
k=0i=1 tn = thi

We can derive an error bound for W, (¢) similar to that given in Theorem 1 as

K my
10 -t <0ry (B)™, et

k=0

where O is as before and
m

Ef:o Bk .

In particular, if B, = B for k =0,1,2,---, K, we have a result similar to Corollary 1, that is,

r=

26T)m/(l(+l)

5® - Em@ <0F ()7, tel-nl

The critical value for this case is

K K
m Zk:-K By ( Zk:l Bk)
Fg = = Ty, = |1+ &57— | Ty,n- 3.11
Um = 2e K oBr YK oB: YK o Bx (3.1)

Combining (3.8) and (3.11), we obtain

I‘\i,m>I‘.;.m2[‘¢m for K > 0.

Besides, it is straightforward to derive that

F\i:m = 72P¢mv
where
7 £ L
2= g
EkK=O Bk

is the gain factor of W,, with the MMSE estimate ®,, as the reference. It is interesting to point
out that v, is always greater than 1 if K > 0. When the bandwidth Bg of the base band is small

with
Ef:o Bk

we can simplify (3.11) to be

g =~2Ty, 2 2l

so that the gain factor ¥, ~ 2. This implies that the interpolant ¥, for modulated real signals
performs almost twice as well as the MMSE estimator I'p,,. This point will be demonstrated in

numerical examples in Section 5.



4 2-D Multiband Signal Reconstruction
4.1 General Multiband Signals

Now, let us consider 2-D multiband signals f(s,¢) with 2K 4 1 nonoverlaping multibands bounded
by [-€4, 1] x [-2, Q] as shown in Fig. 4, where each band with index —K < k £ K has the
center frequencies Cx and Cyx and bandwidths B, and By along the frequency axes w; and wy,

respectively. We assume that these multiband parameters are known a priori. It is clear that

K
Y BuBa < Q. (4.1)
k=-K

The 2-D multiband signal f(s,t) can be represented by

K
Fs,8) = Y fuls, t)e (sCrttCar), (4.2)
k=-K

where fi(s,t) is (B, Bax) band-limited while f(s,t) is (€),€22) band-limited. The reconstruction
problem is to recover f(s,t) from its samples f(s;,,¢;,), 4 = 1,2,--+,my, | = 1,2, where the
sampling points are selected from [-Ty,T}] x [-T3, T») for some T}, T > 0.

Let

Sk = {(skiutkig) € [_Tlle] X [_T2’ T2] : il = ls2s Py Mg, I = 1, 2}! Ikl < I(a

be a set of arbitrarily fixed m;pmo; distinct points, where

K
E myMar = MyMma. (4.3)
k=-K

Similar to the interpolant ¥,,,(t) in the 1-D case, we have the following ¥, m, (s, ¢) for the recon-
struction of f(s,t):
Myk Mok

K . .
sin By (s — sk, ) sin Bop (2 — tri,) _;
Uy mg(8,8) = Z Z z Ckiviy 1k : u) : (t : !2)6 J(301k+302k), (4.4)
k==K i1=1i2=1 s= Sk” = Yhiz

where a;;,;, satisfy the following system

K mum  Sin Byi(sa, — Skiy) Sin Bak(tny = thi) _;
E Z Gki;igsm 14(8n, — Ski,) sin Bog(tn, klz)e-J(anlclk‘f‘tu,C:k)=f(3“”t“2)’ (4.5)

k==K §1=113=1 Sny — Skiy tﬂz - tkl'z

forn;=1,2,---,myand I =1, 2.
We next estimate the error bound and analyze the critical region of W, m, (s,t). Similar to the
assumption (3.4) in the 1-D case, we assume that

mi

Fo=m 1=1,2 and k=—K,-K+1,-K, (4.6)
tk



where r; and r; are constants. Thus, by (4.3), we have

K K
rirg D, BuBa = Y mumar = myma,
k==K k=-K
and, therefore,
myma

mMro = (4.7)

Yh_x BiBa

Then, we have the following theorem on the error bound of ¥, m, ().

Theorem 2 Consider a function f(s, t) of the form (4.2). Forallk=-K,-K +1,.---, K, if
(i) fr(s,t) € L*(R), or
(ii) fk(wl,wg) is second-order differentiable in [— By, B1x] X [— B2, B2i),

and the coefficient matriz for unknowns ayi i, in (4.5) is of full rank, then

1£(518) = Yy (5,8)] < okf,_K ((B2)™+ (22)™), orlsismild<m @8

LS | ra

where 1y > T} for 1 = 1,2, O is a positive constant and ry,r, are as in (4.6).

Since the proof of Theorem 2 is similar to that of Theorem 1, it is omitted. In the uniform multiband

case, the estimate in (4.8) can be simplified further.

Corollary 2 If the same conditions stated in Theorem 2 are satisfied and if By, = By, for |k| < K
andl = 1,2, then

2en 2em;

riBy r2B;
If(s,t) - ‘I’m1m2(31 t)l S O ((—rl_-) + ("—) ) 1 fOT Isl S T1, |t| S T2. (4'9)

r2

Based on error bounds (4.8) and (4.9), the critical value for ¥,,, ,n, is
Popmym, = rira/(4€?).

By using (2.11) and (4.7), we can relate this critical value to that of the MMSE estimator ®y,m,

in (2.6) as
mym; QIQ2

T m, = =
™™ 42K kBB Yie-x BuBa

so that the gain factor is

F‘bml m2)

0,9,
2{'{::—1( BlkB2k )
It is clear from (4.1) that y3 > 1. Moreover, if the band [-£;,Q;] X [-Q2, Q] is not fully occupied,

e

Y3

the gain factor 43 > 1. Thus, we conclude the new algorithm is better than the MMSE estimator

for (€2;, ;) band-limited signals with a multiband structure.

10



4.2 Real Multiband Signals

When fi(s,t) and f(s,t) in (4.2) are real signals, we can find a more efficient reconstruction

algorithm. The f(s,t) can be represented as

K
f(s,t) = E Ji(s, t) cos(sChx + tCox).
k=0

Note that its spectrum f(wl,wz) has the symmetry with respect to the origin, i.e
flwr,wa) = f(—wy, —wy).

For k=0,1,--., K, we use Si to denote the set of auxiliary sampling points and

K
E MMk = M1My.
k=0
Then, we can use the following interpolant as an approximation for the real multiband signal f(s,?):

K mix max

- i — 835, ) si t -ty
Unma (88) = 3. D 3 akiyi sin Bug(s — skiy) sin Bax(t — thiy) cos(sCi + tCox),

k=0iy=1i=1 § = Skiy =t

where coefficients ay;, i, satisfy the following system

Mk M2k .
sin Bk (Sn, — Ski, ) sin Bag(tn, — ki
> 5 3 ok ”“ oo = 96} 0 Bl = bia) o 5, i+ 1y Cok) = (5t
k=0i1=112=1 = Skiy na kiz

for n;=1,2,---,m; and I = 1,2. The error bound on the interpolant ‘i’m,m, (s,t) is

2ery \ ™1k 2emy \ ™2k
1608 = o0 <O S (B2)™ + (22)™), or ol s sl <7

k=0
where 77 > T} for I = 1,2, O the same as in (4.8) and

mymy
fyife = . (4.10
Y2 ¥ BiBa )

By using (2.11), (4.7) and (4.10), we can compute the critical value for this case as

= = = = K
- _ rirq _ riro riry _ Zk:—l\’ B[szk v _ 9192 F@
Ymima = de? T rirpde? T TILoBuBa '™ YLieoBuBa ™

Therefore, we have the gain factor

9192
Zi‘:o By By, '
If the bandwidth By of the baseband is small, we have

Y _k BuBak 0
Zf:o BlkBZk

Y4 =

11



Consequently, I‘@mlmz R 2y my 2 2T 0m,m, 20d 74 2 2. Note also that if the signal has symmet-

ric spectrum with respect to both w; and w; axes, it can be expressed as

K
f(s,t) = E Jr(s,t) cos(sCyy) cos(tCax).

k=0

It is possible to modify the above algorithm so that it achieves a gain factor 5 > 4.

5 Numerical Experiments

We use numerical examples to demonstrate the performance the proposed algorithms.
Test Problem 1: 1-D multiband signal.

The test signal is chosen to be the modulated real signals

f(@) = fo(t) + 0.5/1(t) cos(Cr2),

with the Fourier spectrum
¢ oy = ) wsin(ailw]), | < By
frlw) = { 0 lw| > Bk,
where k = —1,0,1, and oy and By are positive constants. Since f(t) is real, fy(—w) = fi(w). In
the experiment, we choose
Qg = 471', ) = 67",

and
T

Q = 4m, Bo=§, C,=Q- By,

where B; be a parameter ranging from 0 to 317/16. Note that, when By = 317 /16, Bg + 2B, = Q2
so that the band [-%, Q)] is fully occupied. We observe the function f(t) at uniformly sampled
points ¢t = n/10 with n = —10,-9,---,9 so that the total number of sampling points is 20. The
auxiliary sampling point sets are chosen as subsets of § with S; U S2 = S.

We compute ¥,, for the reconstruction of f(t). The critical value for this case is

[ = 20 _ 10
W20 2€(Bo+ Bl) - e(1r/8+ Bl)'

which is a function of B;. The curve of I'y, via By is shown in Fig. 5. The critical point for the

MMSE estimator is
20 5

P20 = m-) = Py
which corrresponds to the constant line as shown in Fig. 5. We can clearly see the improvement
of our proposed algorithm when the bandwidth B; becomes smaller and the band [-Q, Q] is less
fully utilized.

12



To give a more clear performance comparison of various methods, we applied the MMSE esti-
mator ®y(t) and the interpolant Wyo(t) to two test signals with By = n/8 and By = 31x/16 and
plotted the results in Figs. 6-9. In all these figures, we show the true signal f(t) in (a), its Fourier
spectrum f(w) in (b), the reconstructed function (¥2o(t) or ®20(t)) in (c) and the corresponding
error (|®20(t) — f(t)| or [®20(t) = £(¢)]) in (d). In subplot (d), we also indicate the critical region
by labeling its two boundary points as “critical point”. When B, = «/8, the signal f(t) consists of
three narrow bands. When B; = 317 /16, the signal f(t) is in fact a full-band signal. By comparing
the results in Figs. 6 and 7 and those in Figs. 8 and 9, we can clearly see that the proposed method
with lilgo(t) performs much better than the MMSE estimator ‘i’go(t) in both cases. Besides, the
proposed algorithm performs better when the bandwidth is not fully occupied.

Test Problem 2: 2-D multiband signal.
The 2-D test signal is a (47, 47) band-limited real signal of the form

f(s,t) = fo(s,t) +0.25 f1(s,t) cos(Cy18 + Ciat),

where fi(s,t) are (Bix, Bax) band-limited with Byx = By = n/4 for k = 0,1, Cyy = Cy2 =
4r — w/4 = 157 /4. The contour plot of the Fourier spectrum f(w;,ws) is given in Fig. 10(a) and
the original signal f(s,t) is shown in Fig. 10(b). We choose my = my = 20, mjo = my; = 10
and mgg = mg; = 20. The sampling point set is S = {(»,/10, »2/10) : for n; = -10,-9,---,9
for i = 1,2 }, which is concentrated in [-1,1] x [-1,1). The auxiliary sampling point sets Sp
and S) are also chosen as subsets of S. The reconstruction ®3920(s,t) from the MMSE estimator
and the reconstruction W2920(s,t) from our proposed method are shown in Figs. 11 (a) and (b),
respectively. We can clearly see that the new method gives a more accurate result over a larger
domain. We also show the absolute error of these two methods in Figs. 12 and 13 with both surface

and contour plots. The improvement is clear from these plots.

6 Conclusions

We proposed a new reconstruction algorithm for a band-limited signal with a multiband structure
from its finite samples. The concept of critical regions and values for a reconstruction algorithm
was introduced for the performance measure. Based on this criterion, we can clearly see the
improvement of our new algorithm for band-limited/multiband signals over the MMSE estimator
for general band-limited signals. We also gave numerical experiments to support the theoretical

derivation.
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Appendix: Proof of Theorem 1

Let a denote the solution vector for the system (3.3), and A be the coefficient matrix. Let f be the

constant vector with components f(t,) in (3.3). Then, we can write (3.3) as
Aa=f. (A.1)

Let a(®) be the Tikhonov regularization solution of the system (A.1) with parameter «, i.e.,

Af
al®) = —— —
A*A +al’ (A-2)
where A is the complex conjugate of the matrix A and I is the m X m identity matrix. Then, see
(27], [29),

lla - al®|| < O\, (A.3)

where O, is a constant which only depends on the signal f. For each &k with —K < k < K, let by;

satisfy the following system

Zb sin Bk tk’ tki) = fk(tk[), forl{ = 1, 2, ©c vy M. (A’4)
= bkt — ki

Let b denote the vector with components by; for all possible k,i. From b we have the MMSE

estimator

Bi(t — ty;
B, (t) = Zb ‘s'“_’“?’ﬂ‘

i=1

Then, by applying the error estimate (2.4) to the kth B; band-limited signal fix(t) of f(t),

1t) = @y 0] < OYEG (22) ™, for e [-m,1), (A5)

where 7 > T and r is defined in (3.4). Since ¢, € [-T,T], we have
2
i) = By ta)] < OYEGr (25) ™ forn=1,2,...m.

Therefore,
K -
[(Ab)(n) = f(ta)] = | D Pmy(ta)e™"C* — f(ta)]
k==K
K
< Z |‘I>mk (tn) - fk(tn)l
k==K
K 72¢T\™*
< Or Z (—) , forn=1,2,...m, (A.6)
r
k=-K
where O is as before. Let
pla s _A'db
A*A+al’
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Then,
Ib - b < Ozv/a, (A7)

where O3 is a positive constant which only depends on the signal f. By (A.1), (A.6) and (A.7),

A*f A*Ab
(@) _plo) = -
1=l = et ~ F Aot
K mi
< Zlaub-ni< 2 Y (2)
k=-k > T
Therefore,
la=bll < [la-al®|+|a® - bl +||b - bl
2mr & mi
< (O1+0Wa+ =" Y (ﬂ)
k=-k T
Setting
2/3
a_m(,~ 3 (ﬂ)"‘*)
= - ,
k==K
we have 13
K my
la~bll < OV ( > (%) ) - (A9)
k=-K

We are now ready to estimate the error of the new algorithm ¥,,.

K K
Ont) = O < W) = D Bmy () O +] 3 m, ()™ — f(1)]

k=-K k=-K

|3 3w - b T BR ) i S 1B (®) - (0l

k=-K i=1 k==K

IA

By (A.5) and (A.8),fort € [-7,7] with 7 > T,

U (t) = F(t)] < Ormar ( f (Efrz>mk) |/3+02r f: (Q%T)m".

k==K k==K
When 7 is significantly larger than T,

n(®) - FOI<Or 3 (=)™,

k=K N T

where O is a constant which only depends on the signal f.
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Figure Captions

Fourier spectrum of a multiband signal.
Critical points in (a) 1-D and (b) 2-D cases.
Fourier spectrum of a modulated real signal.

Occupied bands in the frequency domain of 2-D multiband signals.

The critical value curves via B, for the algorithm W50 and the MMSE estimator ®40.
Results with ®24(t) for B, = n/8.

Results with ¥50(t) for B; = n/8.

Results with ®4(t) for B; = 317/16.

Results with W0(t) for By = 317/16.

(a) The contour plot of f(w;,ws) and (b) the surface plot of the exact f(s,¢).

The reconstructions: (a) ®20,20(s,¢) and (b) ¥0.20(s, ).

The error erry = |®20,20(5,t) — f(3,¢t)]: (a) the surface plot and (b) the contour plot.

The error erry = [¥20.20(s,t) — f(5,t)]: (a) the surface plot and (b) the contour plot.
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Figure 1: Fourier spectrum of a multiband signal.
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Figure 2: Critical points in (a) 1-D and (b) 2-D cases.
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Figure 4: Occupied bands in the frequency domain of 2-D multiband signals.
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Figure 5: The critical value curves via By for the \i!go and the MMSE estimator ®40.
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Figure 6: Results with ®,9(t) for B, = /8.
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Figure 8: Results with ®30(t) for B; = 31x/16.
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Figure 9: Results with ‘i’zo(t) for By = 31x/16.
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Figure 10: (a) The contour plot of f(w:,wz) and (b) the surface plot of the exact f(s,t).
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Figure 11: The reconstructions: (a) ®20,20(s,t) and (b) 'ilgo,go(s,t).
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Figure 12: The error erry = |®30,20(s,t) — f(s,t)]: (a) the surface plot and (b) the contour plot.
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Figure 13: The error erry = |W30,20(8,¢) — f(3,1)]: (a) the surface plot and (b) the contour plot.
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