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Abstract. A generalized Papoulis-Gerchberg (PG) algorithm for signal extrapolation based on the
wavelet representation has been recently proposed by Xia, Kuo and Zhang. In this research, we examine
the convergence property and the convergence rate of several signal extrapolation algorithms in wavelet
subspaces. We first show that the generalized PG algorithm converges to the minimum norm solution
when the wavelet bases are semi-orthogonal (or known as the prewavelet). However, the generalized
PG algorithm converges slowly in numerical implementation. To accelerate the convergence rate,
we formulate the discrete signal extrapolation problem as a two-step process and apply the steepest
descent and conjugate gradient methods for its solution. Numerical experiments are given to illustrate
the performance of the proposed algorithms.
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1. Introduction. Extrapolating a band-limited signal f(t) from its values in a finite interval
[-T,T) is a fundamental problem in signal reconstruction. Possible applications of signal extrapolation
include spectrum estimation, synthetic aperture radar, limited-angle tomography, beamforming and
high resolution image restoration. In 70’s, Papoulis [13] and Gerchberg [8] proposed an iterative
procedure for band-limited signal extrapolation. Numerous techniques to extend the interpolation
scheme have been proposed, including the minimum norm least square (MNLS) solution [9], the discrete
prolate spheroidal sequence (DPSS) expansion [16], [17], and the weighted norm least square solution
[1], (2], [14]. However, all of them were derived from the Fourier transform viewpoint.

More recently, multiresolution wavelet bases with a nice time-frequency localization property have
been extensively studied (3], [6], [7], [12] and a generalized PG algorithm based on the wavelet represen-
tation has been proposed by Xia, Kuo and Zhang [19). Instead of using the band-limited signal model,
Xia et al. considered a general class of scale-limited signal contained in a certain wavelet subspace.
One potential advantage of the generalized PG algorithm is that it provides a more general class of
bases for signal modeling. The time-localized wavelet basis should be more suitable than the Fourier
basis in modeling signals with interesting transient information such as those arising from the electro-
cardiogram and radar applications. Furthermore, the band-limited PG algorithm is very sensitive to
noise even in the case where only a small amount of extrapolated data are desired [15]. In contrast,
noise in the generalized PG algorithm can be detected via the time-localization property of wavelet
bases and can be more easily removed [10}.

In implementing an iterative extrapolation algorithm, it is natural to ask two basic questions:
whether the algorithm converges and what is the converged result. In [19], the convergence of the
generalized PG algorithm with orthogonal wavelets were examined. The convergence proof given
there only applies to a subset of orthogonal wavelets which excludes some popular bases such as the
Daubechies bases. In this work, we provide more complete answers to the above questions. We give
a convergence proof for the generalized PG algorithm with semi-orthogonal wavelets, which include
all orthogonal wavelets as a subset and are known as the prewavelets, by utilizing the alternating
projection theorem. The convergence of the generalized PG algorithm with biorthogonal wavelet bases
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however does not hold in general. Furthermore, we show that the generalized PG algorithm converges
to the minimum norm solution of the extrapolation problem.

The generalized PG algorithm converges slowly for the ill-conditioned problem in numerical imple-
mentation. To accelerate the convergence rate, we formulate the discrete signal extrapolation problem
as a two-step process and apply the steepest descent and conjugate gradient methods for the solution.
As a result, we obtain two new iterative algorithms with a better convergence performance for discrete
signal extrapolation. The convergence rate of these algorithms is analyzed. Numerical experiments are
also given to illustrate the performance of the proposed algorithms.

This paper is organized as follows. We briefly review some basic results of wavelet theory in §2. In
§3, a new signal model based on the wavelet representation is presented and used to derive a signal
extrapolation algorithm called the generalized PG algorithm (or the scale-time limited extrapolation).
Then, we investigate the convergence of the generalized PG algorithm for semi-orthogonal wavelets.
Two new iterative algorithms with faster convergence rates are proposed and some convergence analysis
is presented in §4. Numerical experiments are given in §5 to show the convergence behavior of the
proposed algorithms. Concluding remarks and possible extensions are given in §6.

2. Results from wavelet theory. We review some basic results of biorthogonal wavelet theory
below, and refer interesting readers to [4], [5], [7] for more detailed discussion. Let ¢(t) be a biorthogonal
scaling function and #(t) and P; be its associated wavelet function and multiresolution analysis (MRA),
respectively. We also use ¢(t), ¥(t) and P; to denote their duals. Then,

-CPoCPLCP--

with

Ur=12®)., P;=10},
J J

and
f(t) € P; if and only if f(2t) € Pj41,
and for a fixed integer 7, ¢;x(t) 2 29/2¢(2/t — k), j € Z, form a biorthogonal basis of P; as

(¢j"l’ ajkl) = 6‘“*:)

where 8x,x, = 1 when k; = k; and 0 otherwise. If we let ;i (t) = 27/2¢(27t — k), then

(Viskss Viaka) = Okykabisja-

When #(t) = (t), the wavelet basis is orthogonal. A wavelet basis is called semi-orthogonal (or known
as the prewavelet), if the wavelet basis function only satisfies

(¢jlkl ) "’j:kz) =0, for ji ¢ J2.

Clearly, the set of prewavelet includes the set of orthogonal wavelets as a subset, and the relationship
P; = P; holds for both cases. For more details, see [4], [5].
Any f(t) € L?(R) can be decomposed by

(2.1) =3 D biavi(®).

j=~00 k==00

For any f(t) € Py, we have

00

(2:2) fO= Y caxdn®=3 Y biavir(t),

k=—o00 j<I k==
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where bj . £ (f, ¥;x) and cj 2(f, ;). The bj in (2.1) are called the wavelet series transform (WST)
coefficients of f(t), and (2.1) provides the inverse wavelet series transform of b;s. Multiresolution
analysis leads naturally to a hierarchical and fast scheme for the computation of wavelet coefficients
bjx with § < J which can be obtained from coefficients ¢4 by the recursive formulas:

2.3 Ci-1k = ‘/izn;i"'z"cjr“’
(2.3) biae = ﬁzngn-ucj,m

for j = J,J —1,J —2,.--. The synthesis formula which compute coefficients ¢ from cy,x and b
with Jo<j< Jis

(2.4) Ci¢ln = \/é (Z hn-gij,k + Zgn-ﬂcb',k) y for j = Jo, Jo + l, e, J-1.
k k

In practice, c;,» can be viewed as a sequence of z[n), sampled of a signal f(n/2”). Then (2.3) and (2.4)
are called the discrete wavelet transform (DWT) and the inverse discrete wavelet transform (IDWT),
respectively.

3. Scale-time limited signal extrapolation. A new signal modeling scheme based on wavelet
representation is described and applied to the signal extrapolation problem in this section.

3.1. Scale-time limited signals. We represent f(t) with the wavelet basis ;x in (2.1). Let
us assume that ¥(t) is centered around 0 in time and £, in frequency and is well localized in both
time and frequency domains. Then, by using the scaling property, ¥;x(t) is localized around 27k in
the time domain and 27§ in the frequency domain. Thus, we may interpret the wavelet coefficient
bjx =< f,¥;x > as the “information content” of f near 2=k in time and %27¢; in frequency. This
concept is illustrated in Fig. 1, where the dot (j, k) in the upper plot denotes the time and scale indices
of a certain wavelet coefficient while the dots in the lower plot denote its influence in the time and
frequency domains. Now, suppose that the energy of f(t) is well concentrated in two rectangle regions
as shown in Fig. 1, i.e.

(31) ["%’ Tb] X [(-2J£0) _'210&1) U (2‘,0{0’ 2.’&0)]’

in the sense that we can find a small ¢ so that

/ |7 12 de> (1- ISIP,
270£0<1€1<27¢0

and
/ | £ 1 dz > (1 - ISP
|=|<To

Then, only the wavelet coefficients bj x, (5, k) € D, where
D={(jk)€Z?: Jo<j<Jand 27 |k |< To +¢)}

is the set of dyadic points enclosed by the solid rectangle in Fig. 1 and ¢, is a constant, are needed for
a good approximation of f(t). We refer to [7] for a more detailed discussion of this approximation.

It is easy to see from Fig. 1 that the wavelet representation gives a higher resolution to sharp varying
components than smooth components. This feature is ideal for signals composed of high frequency
variations in short duration and low frequency variations in long duration. This kind of signals occurs
frequently in practice. Let K = {k : |k| < K = 2/(Ty +t.)}. We have from the above analysis that

= Y D biavik(t).

JoLjLI kex
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Fi1a. 1. Lattice structure of the wavelet coefficients.

Thus, the following space

(3.2) Vieax ={ft): FO = D Y bjavin(®)}.

Jo<i<T kek

provides a good model for signals concentrated in (3.1).
Assume that f(t) € Vy, 4k and csx = [ o) f()sx(t)dt. Then, the DWT coefficients of ¢;x are
bjx for Jo < j < J and k € K, and 0 otherwise. In other words, for z[k] = ¢k, it satisfies

zlk] = (D3, ;TsxDss2)k], ke€Z,
where Djol, ; and Dy, s are, respectively, the DWT and IDWT operators and Ty is the following
projection operator

ifh<ji<Jkek,

.y = ujtk’
Toxujx = { 0, otherwise.

In general, since the behavior of ¢(t) is like a low pass filter, csx & 277/2f(4y). By setting 2[k] =
2-9/2 (), we have
z[k] % (D3, Tsx D, s2)[k].

We conclude from the above discussion that the signal set
(3.3) Suosk = {z[k]: z[k] = (D3, ;TsxDss2)lk), k €2}

provides a good approximation model for discrete-time signals with energy concentrated in (3.1).
Let x denote the vector of the sequence z[k]. We call z{k) a (Jo, J; K) scale-time limited sequence if

(3.4) z[k] = D3}, TsxDys2lk], or x= D3}, TsxDy, ix,
4



where D-!, D and Tsx in the second expression are all matrices of dimension co x 0o. Let

LEIKI-(J-do+1),
which is the number of possible non-zero wavelet transform coefficients of x[k]. Then, without loss of
generality, we can express T x as
T;x = UTU,
where U = {u;;} is a L X 0o matrix operator
wes = 1, ifi=j and1<i,j <L,
7 | 0, otherwise.
3.2. Generalized PG algorithm. The generalized PG algorithms for continuous- and discrete-
time proposed by Xia, Kuo and Zhang in [19] are summarized below.
We first examine the continuous-time case. Let Py, Pr,QJ, Qr denote the projection operators
which project functions onto the subspaces Py, Pr, P+ ,and Pj, respectively, where P is the wavelet

subspace as defined in §2 and Pr a set consisting of all functions f() € L3(R) with f(t) = 0 outside
[=T,T). We see from the representations (2.1)-(2.2) that for any f € L?(R)

00

Pifit)= ) cordam(t) =) i bjk¥ik(t),

k==-00 J<Jk==00
and

[eaed
Qi f(t) = Z E bix¥in(t).
2 k=-co0
Now, given a scale-limited function f(t) € V, 4k, the generalized PG algorithm recovers f(t) from
its segment g(t) = Pz f(t) with T < Tp via the following iteration:
FO) g(t),

(1) = QrPufO+ 5O, 1=0,1,2,--.
In [19], the following result on the convergence of the generalized PG algorithm was obtained for

orthogonal wavelets.
PROPOSITION 1. Let ¢(t) be an orthogonal scaling function. If

(3.6) Qus(s,) £ S dun(s)bun(t).
k

(3-5)

is continuous and positive definite in the region [-T,T] x [-T, T] and moreover ¢(t) can be uniquely
determined in V; by any one of its segments $(t), t € [-2/T—k,2/T~k}, k € Z, then then ||fO) - f|| =
0 asl — oo.

The proof was based on theory of adjoint operators corresponding to symmetric kernels Q(s,t).
It is in general not easy to check the convergence condition of this proposition for a given arbitrary
orthogonal wavelet. Some non-trivial orthogonal wavelet bases were verified to satisfy the convergence
condition [19]. However, the convergence condition described only applies to a subset of orthogonal
wavelets which excludes some popular bases such as the Daubechies bases.

Next, we examine the discrete-time case. Let

Tyz[n] = { zg:], : ;x:

be the projection operator and 7 be the identity operator. Given a segment Ty z[n], n € N, of a scale-
limited sequence z[n] € Sy, x, the discrete generalized PG algorithm determines z[n] with n ¢ N
and can be stated as:

zO[n) = Tyzn],
z4[n] = Twz[n]+(I-Tx)D;) ;TixDyspszOn], 1=0,1,2,---,

A condition for the convergence of the above iterative procedure was also provided in [19].

5
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3.3. Convergence of the Generalized PG algorithm. We will provide a more general con-
vergence condition of the generalized PG algorithm, and examine the uniqueness of the corresponding
extrapolated signal for semi-orthogonal wavelet bases in this subsection.

For the continuous-time case, we have the following convergence theorem.

THEOREM 1. Let 4(t) be a semi-orthogonal scaling function and ) (t) be the sequence of functions
generated via iteration (3.5) with f € P; for a certain J > 0. Then, whenl — oo, f)(t) converges to
the minimum norm solution f! satisfying

fleP;, and |f||=min{||h||: b € Ps,Prh =g}.
Proof. Any f(t) € P; and g(t) = Prf(t) can be written as
(3.8) £6) =g+,
where
geEPr, and h €Pt.
Since hy = Qrf and f = P, f, we can rewrite (3.8) as
f=9+QrPi(g+h).

By substituting A, with QrP,f and decomposing f into g + hy repeatedly, we have

! 9+QrPsg+(QrPs)’g---+(QrPs) 9+ (QrPJ) 'k
= f(‘) + (QTPJ)‘QTf’ l = 00,

where the last equality is due to (3.5). By the definition of semi-orthogonal wavelets, the operator P s
is an orthogonal projection. The operator Qp is also clearly an orthogonal projection. By using the
Alternating Projection Theorem (Theorem 13.7 in [18]), we have

Jim (QrP,J)Qrf = Gf,

where G is the orthogonal projection operator onto Py NP3, which is a linear subspace of L?(R).
Therefore, the generalized PG algorithm converges to

ft=lim, e fY = f - Gf.

This proves the convergence. Due to the orthogonality of G, we get

If - Gsll= I - Al

heran r*

For any h € Py and Prh = Prf = g, f—h € Ps(\P. Then, since [|f1]| = [|f -GSl < I)f - (F =Bl =
[i2ll, £ is the minimum norm solution. D

With this theorem, we have the following straightforward corollary.

COROLLARY 1. If P; NP3 = {0}, f)(t) converges to f(t) in L*(R) as l — oo.
If the semi-orthogonal scaling function ¢(t) is band-limited, all signals in P are band-limited and
therefore analytic. For this case, the condition in Corollary 1 is satisfied, and another corollary follows.

COROLLARY 2. If the scaling function is semi-orthogonal and band-limited, f()(t) converges to f(t)
in L*(R) asl — oo.
Note also that since all Meyer wavelets satisfy Corollary 2, Theorem 4 in [19] is in fact a special case
of the result derived above.

Next, we will examine the discrete-time case. When the wavelet basis is orthogonal, D7} 7in (3.7)is
the transpose of Dy, 7. Thus, the operator D7 JTJ xDy, s is an orthogonal projection. By applying
the Alternating Projection Theorem to (3.7), we can prove the convergence of the iterative procedure

6



(3.7). However, the operator D JTJ )cDJo J may not be an orthogonal projection when the wavelet
basis is non-orthogonal. This is stated in the following theorem

THEOREM 2. For any fized Jy, J and K the operator D7 7o JT; xDj,,s is an orthogonal projection
if and only if the wavelet basis is orthogonal

Proof. Slnce the sufficient part is straightforward, we only show the necessary part, i.e, to prove
that if D} JTJ xDy,,s is an orthogonal pwjectlon for any fixed Jo, J and K, the wavelet basis is
orthogonal. This is equivalent to prove that D7} Jo,s 18 €qual to the transpose D7 o g Of Dag,y for any
fixed Jo and J.

Recall (3.2) that we use Vo, to denote the set of all (Jo,J;K) scale-time limited sequences.
Then, the operator D7/ JTJ xDJo,J is an orthogonal projection onto V, yx. Thus, any z € I can
be decomposed as

z=z1+22, Where =z = D.',':. sTixy, and z3 = D;:,J(ll - Tsxy)
for certain y € 2. By using the orthogonality of the operator Dj:_ 7T sxDyy g, we have
(z1,22) =0, foranyyel®

Let b;; denote the (i, j) element of the matrix D} .7+ Let us partition all integers into two nonoverlap-
ping groups N} and N>, i.e. Z =N UNz and M "N N2 = 0. Then, this leads to

35 bl D bisaylial =0,

i J1€EM J2€EN,
or

> 2 (Z "i:'nbija) ylirlulia] = 0.

J1EN) §2€N,

This equality implies
(3.9) Y bijbij, =0, for ji #j2, 1,02 € Z,
i

since y can be any element in {2 and N can be any subset of Z. As a direct consequence of (3.9),
Dy,,s is orthogonal. (]

For a general biorthogonal wavelet basis, the projection P in algorithm (3.5) or (3.7) is a nonorthog-
onal projection. The generalized PG algorithm in both continuous- and discrete-time cases assume the
form

O =f-(TP)f, 1=0,1,2,-,

where T is a truncation operator and P is a nonorthogonal projection. To check the convergence of
the above iterative procedure, it is important to examine the norm of the operator TP as stated in
the following proposition.

PROPOSITION 2. If the operator P is a nonorthogonal projection, there is a truncation operator T
such that ||TP|| > 1.

Proof: We only have to prove that there is a nonzero signal z such that ||Pz|| > ||z||. Since P is a
nonorthogonal projection, we can find an z = Pz + y with (Pz,y) < 0 such that 2(Pz,y) + ||y||* < 0.
Then,

lzll* = IP=)i® + lIvll® + 2(Pz, ) < |IP=|I?,

and the proposition is proved. o

Because of Proposition 2, we do not expect the convergence of the generalized PG algorithm for
continuous-time signal extrapolation with biorthogonal wavelet bases. Furthermore, because of The-
orem 2 and Proposition 2, we do not expect the convergence of the generalized PG algorithm for
discrete-time signal extrapolation with nonorthogonal (including biorthogonal and semi-orthogonal)
wavelet bases.

7



4. Iterative algorithms for discrete signal extrapolation. In this section, we formulate the
discrete-time extrapolation problem as a two-step process and apply more efficient numerical algorithms

such as the steepest descent and conjugate gradient methods to improve the convergence rate of the
iteration.

4.1. Problem formulation. Let y = Txx be a given segement of x. According to the discus-
sion in §3.1, we have

y = TMDJ,,I,JTJ,K:DJ.,,JX
T~D;},UTUD,, sx,

which is to be solved for x with a given y. Let p = UD,, sx be a vector consisting of L wavelet

coefficients of x, and W = D'ol, ;UT. We can rewrite the above equation as

y= T;va.
By multipling both sides with (T»'W)7, we obtain the normal equation
(4.1) WTy = WITyWp,

where the equlalities Ty =y and (Tx)TTx = Tx are used to simplify the result. Furthmore, note
that since x is a scale-time limited sequence, i.e.

x= D:;:.JTJ.KDJO,JX = D;ol'JUTUDJD.Jx
we can obtain x from p via
(4.2) x = Wp.

Therefore, we can divide the solution procedure of determining x into two steps: first solving the

normal equation for p and then determining x from p as described by (4.1) and (4.2), respectively.
In the following discussion, we assume that the L x L matrix W7 T W is of full rank and that the

wavelet basis under considertation is orthogonal. Some useful properties of the operators in (4.1)-(4.2)

are summarized below:;

Property 1. For the orthogonal wavelet bases, D}ol' 7= Dfo' s 8o that the scale-time limited sequence

x can be written as

(4.3) x = D3!,UTUD . sx = WWTx.
Property 2. From the definition of W, we have
(4.4) WTW = UD,,,D;},uT =uuT =1,

where Iz is an identity matrix of dimension L x L.

Property 3: The operator WT Ty W is symmetric positive definite. The symmetric semipositive
definiteness of WTT y'W can be easily seen. The positiveness is due to the assumption that WP Ty W
is of full rank.

Property §: Let Amax(WT T W) denote the largest eigenvalue of W7 Ty W. Then,

(4.5) Amax(WTTHyW) < 1.
This can be proved by noting that

T = max Z) W Ty Wz
Amax (W Ty W) = max @z

and
(z*)TWT Ty Wz = (z*)TUDy, s T¥D3} ;U2 < (2*)TUD 44D} ,UTz = (5°)TUUTz = (2°)7a.

There are two reasons to avoid solving (4.1) and (4.2) with direct methods. First, direct computation
of the matrix W is expensive. Second, if the matrix is ill-conditioned, the direct method is usually
unstable. Therefore, we consider the solution of (4.1) and (4.2) with iterative algorithms.

8



4.2. Steepest descent method. The iterative process based on the steepest descent method
to solve (4.1)-(4.2) can be stated as: with any given xo, we perform the following iteration:

(4.6) Xp41 = X — apri, for £=0,1,2,---,
where
4.7) r = WWT (Tyx: — y)
and
T
- rk ) ¢
(4.8) ag = —_rZ'Tyr;. .

We show below how the algorithm given by (4.6)-(4.8) is directly related to the well-known steepest
descent method. The application of the steepest descent method [11, pp215] to the solution of the
normal equation

WTy = WITyWp

is equivalent to the minimization of the cost functional
/() = 3pT(WT{W)p ~ pT(WTy).
The result can be written as
(4.9) Pi+1 = Pk — axdy,
where the vector
dy = WITyWp, — WTy,

is the gradient direction of the cost functional at point p, and

d;’;dk

(4.10) ag = m

is determined by min, f(px + adi). Premultiplying both side of (4.9) with W and applying (4.2), we
have

(4.11) Xk41 = Xk — akWWT(T,vxk +y).
Thus, we can justify (4.7). Furthermore, due to WTW =1 (Property 2), we have

dfdy = (WTTuxi - WTy)T(WTW)(WT Tyx, — WTy)
= (WWT(Tyxi —y)T(WTW(Tyxi —y))
= TiTk,
and
dTWT Ty Wd, (WTTyx, — WTy)T (WTTAy W) WTTyx, - WTy)

(WWT(Taxi — ¥))TTH(WWT (Taxi — y))
rf'l‘,vrk,

so that (4.8) can also be justified.

The discrete generalized PG algorithm discribed in §3.2 is in fact a special case of the steepest
descent algorithm by choosing ax = 1. To see this, let ax = 1 in (4.7), then we have the iterative
process:

Xk41 = Xk — WWTTyx, + WWTy.
9



Since x; is a scale-time limited sequence, the above iteration is equivalent to

{ Xepr = Xk=Taxe+y
wwTx

’
Xk = ™

As a consequence, we have
Xp41 = (I- TH)WWTx, +y

This is exactly the discrete generalized PG algorithm. Although both the discrete generalized PG
algorithm (3.6) and the steepest descent method (4.6) search along the gradient direction of the cost
functional, the steepest descent method adjusts the step size ayx at each iteration for minimization so
that the convergence rate can be improved. This is confirmed by numerical experiments as given in §5.

4.3. Conjugate gradient method. It is well known that the convergence rate of the steepest
descent method can be further improved by that of the conjugate gradient method.
We summarize the conjugate gradient method for solving the system Qz = b, where @ is symmetric
positive definite below [11, pp244). Given any 2o and dp = b— Q3,, we perform the following iteration
fork=0,1, 2,--=

g = Qz-b
Zi4p1 = Bk +agdg
81 g«
digy1 = —Bk41+ Prde
B = 8{+11‘8k+1 )
81 Bk

We can derive the conjugate gradient method by setting 2 =p, Q = WTTNW, and b= WTy. Since
the derivation is straightforward, we simply summarize the result below.

Initialization:
xo=0, do=WWTy, g;=-~dy,
Fork=0,1, 2,---,
Xkp41 = Xk + akdy
Qr = —b_.. érgk..
dZT,vdk
Bren = WWT (Tuxeqn —y)
des1 = Brdi — Brega
_ BEn@en
B = —=7=z
8 Bk

4.4. Convergent rate analysis. To simplify the discussion, we use the notation:
Q=WTTyW and b=WTy,

Let us first examine the convergence rate of the discrete generalized PG algorithm. To solve Qp = b
is equivalent to

min %pTQx -p’b,
which is again equivalent to

(412) min E(p) = min 3(p ~ T QP - B),
10



where p be the solution vector Qp = b. It is easier to analyze the convergent rate for (4.12). The
gradient of E is d = Qp — b. Since the discrete generalized PG which can be regarded as the special
case of the steepest descent with ax = 1, we have from (4.9)

Pk+1 = Pk — dx.
By direct computation, we have

E(pk) —~ E(pr+1) _ 2d7 Qu, - dfQd,
E(px) ul Qu, ’

where ux = px — p. By defining the convergent rate

4 E(pe41)

"= "Elpy)

and using the equality dx = Quy, we have
= uf Qu, - 2u] Q%u; + uf Q%u,
ui Qu, .

Since Q is symmetric, it is unitarily diagonalizable with ordered digonals denoted by Amin = A1 <
A2 - - € Ag = Amax, which are also eigenvalues of Q. Therefore, we have

r = T hui-25E Mul+ 35 Al
:f:l 1\.'“?
Zf:l Mu(1-X)2

Ef:l A"uc?

L
> opi(1= )2,

i=1

where

4\.’“?

M T

so that Zf;l pi = 1. Consequently, the convergent rate r can be bounded by

r< n;g.x(l - X)? = (1= Amin)?

For the convergence rate results of the steepest descent and conjugate gradient method, we can
take them directly from [11]. They are listed below for comparison. The rate of the steepest descent
is bounded by

('\max - /\min )2
(Amux + l\min )2 ’

where Apax and Ay is the maximum and minimum eigenvalues of . The conjugate gradient method
converges in at most L steps, where L is the rank of the matrix Q,

r(steepest descent) <

5. Experimental results. Numerical examples are given in this section to illustrate the conver-
gence performance of the three iterative signal extrapolation algorithms. We use the orthogonal and
compact coiflet basis of order N = 10 [7] in our experiments. The basis function is nearly symmetric
around the y-axis so that the filter bank implementation consists of almost linear-phase filters. The
high order of vanishing moments (i.e. 10) implies its smoothness, and the compact support property
makes its implementation easy. Since the convergence behavior heavily depends on the minimum and
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TaBLE 1
The marimum and minimum eigenvalues and the convergence rate bounds for Test Problem 1.

Amin Amaz Tapg sd
M =15 | 0.0000081 0.6263491 0.9999838 0.9999482
M =50 | 0.2212905 0.9985423 0.6063885 0.4059970

TABLE 2
The mazimum and minimum eigenvalues and the convergence rate bounds of the Test problem 2.

Amin Amd_aL Targ Tad
M =25 | 0.0000033 0.8854048 1.0 1.0
M =55 | 0.2092635 0.9991635 0.6252642 0.4272709

maximum eigenvalues of the matrix Q = WTTxW, we consider two test problems with different
eigenvalue distributions of Q.

Test problem 1: Consider a scale-time limited sequence z[n] which is generated by randomly choosing
the wavelet coefficients b;x with j = 1 and —3 < k < 4 (while other wavelet coefficients are set to
zero) for the coiflet basis functions and observed at the scale J, = 4. The synthesized signal is plotted
in Fig. 2 (a). For signal modeling, we assume that the scale-time limited information is available to
us, i.e. only bjx with j = 1 and -3 < k < 4 are nonzeros. Consequently, the degree of the freedom of
the problem is L = 8.

We observe (2M + 1) data points z[n] with |n] < M, and want to extrapolate the values of z[n]
for |n| > M. By calculating the matrix @ explicitly, we can determine the maximum and minimum
eigenvalues of @ and calculate the bounds on the convergence rate of the generalized PG and the
steepest descent methods. These values are given in Table 1 with M = 15 and 50. It is clear from
the table that if we observe more data points, the condition number of the matrix @ becomes smaller
and both the generalized PG and the steepest descent methods have faster convergence rates. The
improvement of the convergence rate is more significant in the steepest descent case.

The convergence histories of three signal extrapolation algorithms with 31 and 101 (ie. M =15

and 50) observations are shown in Figs. 3(a) and (b), respectively. For the case M = 15, the matrix
has a small minimum eigenvalue and a large condition number as indicated in Table 1, the convergence
performance of the steepest descent is as poor as that of generalized PG algorithm. In contrast, the
conjugate gradient method has a much better convergence performance. For M = 50, we see from
Fig. 3(b) that the steepest descent method converges more rapidly for this case where the matrix @
has a smaller condition number. It performs better than the generalized PG method as expected from
Table 1 and converges almost as fast as the conjugate gradient method. Generally speaking, matrix
Q has an decreasing condition number as the number of observations increases, and the convergence
rate improvement of the steepest descent and the conjugate gradient methods over the generalized PG
method becomes more obvious.
Test problem 2: In this problem, we use the same wavelet basis as in Test Problem 1, but increase the
number of nonzero wavelet coefficients so that the degree of freedom of this problem is L = 12. The
test signal z[n) is generated by randomly choosing the wavelet coefficients b;x with Jo =0,/ =1 and
-3 < k < 4 (while other wavelet coefficients are set to zero) and observed at the scale J, = 4 as plotted
in Fig. 2 (b). The maximum and minimum eigenvalues of Q and the bounds on the convergence rate of
the generalized PG and the steepest descent methods for M = 25 and 55 are given in Table 2. Finally,
the convergence histories of the three methods are given in Fig. 4. We see from Fig. 4(a) that the
conjugate gradient method converges much faster than the generalized PG and the steepest descent
methods which have about the same convergence rate for small value of M. For M = 55, the steepest
descent and the conjugate gradient methods have a very similar performance while the generalized PG
works poorly as shown in Fig. 4(b).

We may conclude from the two test problems that the conjugate gradient method performs the
best among the three methods, the steepest descent method has a good performance when we have
more observed data points, and the generalized PG algorithm in general converges very slowly. This
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(b)

F1G. 2. The original signals in (a) Test Problem 1 and (b) Test Problem 2.
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FiG. 3. Convergence history of three iterative algorithms for Test Problem 1 with (a) M = 15 and
(b) M = 50, where the number of observed data points is 2M + 1.
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F1G. 4. Convergence history of three iterative algorithms for Test Problem 2 with (a) M = 25 and
(b) M = 55, where the number of observed data points is 2M + 1.
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observation is consistent with the theoretical derivation given in $4.

6. Conclusions and extensions. This research examined signal extrapolation schemes based
on the wavelet model of scale-time limited signals. We showed that the generalized PG algorithm
converges for semi-orthogonal wavelets in both continue-time and discrete-time cases and the solution
can be viewed as a minimum norm solution. Practically, the discrete-time implementation is needed,
and two new effective algorithms have been proposed and studied. There are several interesting topics
worth further study. For example, it is important to compare the performance of different wavelet
bases, and study the optimal basis for some particular applications. Besides, we assume that the J
and K values of the scale-time limited sequence are known a priori. However, they are usually not
available and have to be estimated in practice.
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