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Abstract

The main motivation of using higher-order-statistics in signal processing applications has been their
insensitivity to additive colored Gaussian noise. The main objection to those methods is their possible
vulnerability to non-Gaussian noise. In this paper, we investigate the effects of non-Gaussian ambient
noise on cumulant-based direction-finding systems using the interpretation for the information provided
by cumulants for array processing applications described in the companion report [4]. We first demon-
strate the suppression of uncorrelated non-Gaussian noise that has spatially-varying statistics. Then, we
indicate methods to suppress spatially colored non-Gaussian noise using cumulants and an additional
sensor whose measurement noise component is independent of the noise components of the original ar-
ray measurements. In addition, we propose a method that combines second-and fourth-order statistics
together in order to suppress spatially-colored non-Gaussian noise. We also illustrate how to suppress
spatially colored non-Gaussian noise when the additional sensor measurement is not available, We finally
indicate the noise suppression properties of the virtual-ESPRIT algorithm proposed in [4]. Simulations

are presented to verify our results.



1 Introduction

Over the last decade, many algorithms have been developed that utilize higher-order statistics, which address only
Gaussian noise suppression, and, for the most part, repeat the work accomplished when using second-order statis-
tics [7, 6]. A major objection to these algorithms is their sensitivity to additive non-Gaussian noise. In this paper,
we address the effects of non-Gaussian noise on high-resolution direction-finding problems. We establish methods
to suppress non-Gaussian noise by adding just one new sensor to an array. Our algorithms depend on a new inter-
pretation of cumulants in array processing problems proposed in the companion report [4], one that focuses on the
information embedded in the multiple arguments of cumulants.

In [4], we proposed a cumulant-based approach to increase the effective aperture of antenna arrays by substituting
cumulants for the cross-correlations between actual and so-called virtual sensors, to form a virtual covariance matrix
which resembles the array covariance matrix, as if the measurements from the virtual sensors were available. We call
this approach a virtual cross-correlation computer (VC3 ). We demonstrate in Section 2 that this approach can also
be used to suppress additive uncorrelated non-Gaussian noise, whose statistics vary from sensor to sensor.

The VC3 can be used to calibrate arbitrary antenna arrays using only a sensor doublet (4]. The calibration
problem is solved by computing the cross-correlations between the actual array and its virtual copy, using the
cumulants of measurements and applying the ESPRIT algorithm [9]. We refer to this result as a virtual-ESPRIT
algorithm (VESPA) [4). Extensive simulations are provided in [4] which compare the performances of VESPA and
ESPRIT in direction-finding and signal recovery applications.

In array processing, it is commonly assumed that the measurements are corrupted by additive Gaussian noise
which is independent from sensor to sensor. In addition, measurement noise power is assumed to be identical for
each sensor. Then, it is possible to separate signal and noise subspaces, and estimate the source directions and the
noise power using the eigendecomposition of the source covariance matrix. If the ambient noise is spatially colored
but its covariance matrix is known to within a scale factor, then prewhitening can be applied to the received signals,
which in turn enables the separation of signal and noise subspaces. The problem of identifying the signal subspace is
impossible to solve if one models the noise covariance matrix as a completely unknown Hermitian matrix; however,
if the additive noise is Gaussian, then its covariance structure is not needed for the cumulant-based methods. The
higher-order statistics based methods mentioned above assume the hypothetical case, when there is Gaussian noise

present in the measurements.



In this paper, we investigate the possibility of combating the effects of non-Gaussian noise using cuamulants. Using
the geometric interpretation of cumulants explained in [4], we describe, in Section 2, a way to suppress spatially
independent non-Gaussian sensor noise whose statistics vary from sensor to sensor. The conditions necessary to
suppress the effects of noise in more general situations are described in Section 3, where it is shown that using
an additional sensor whose noise component is independent from the noise components of the measurements from
the main array it is possible to suppress non-Gaussian noise. Noise suppression properties of the virtual-ESPRIT
algorithm are described in Section 4. Finally, we propose a hybrid method, in Section 5, which combines second-and
fourth-order statistics, to achieve even better results. We also propose a way to suppress spatially colored non-
Gaussian noise, when an additional sensor measurement is not available. We demonstrate our theoretical results by

simulations in Section 6. Final observations and future directions are given in Section 7.

2 Non-Gaussian Noise Suppression (Uncorrelated Noises)

Theorem 1: Consider an array of isolropic sensors, which is illuminated by statistically independent non-Gaussian
sources. Furthermore, assume that measurements are contaminated by additive non-Gaussian sensor noise, which
is independent from sensor lo sensor, and whose noise components can have varying power and kurtosis over the

aperture. If one uses cumulants, it is possible to:

1. identify the signal subspace, although noise statistics vary from sensor to sensor; this implies the directions of

far-field sources can be estimated using subspace techniques; and,
2. extend the aperture regardless of the sensor noise.

Proof: Since the far-field sources are assumed to be independent, we can consider the presence of a single source

without loss of generality. Consider Figure 1, which illustrates an array of three sensors. Since noise components
are independent from sensor to sensor, statistical expressions such as E{r*(t)z(t)} or cum(r*(t), z(t), »*(t), r(t)) are
not affected by the noise. Noise affects the computation of variance at a sensor, e.g., if r(t) = s(t) + n.(t), then
E{r*(t)r(t)} = 02 + 02_# o2 whereas E{r*(t)z(t)} = o? exp(=jk - d;).

When noise power changes from sensor to sensor in an unknown way, it is not possible to remove its effects by
an eigenanalysis of the sample covariance matrix, since the diagonal terms of the covariance matrix are corrupted by

unknown (not necessarily identical) positive numbers; however, if one uses cumulants to compute correlations, then
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Figure 1: The sensors that measure r(t), z(t), y(t) are actual sensors, whereas v(t) is a virtual-process
measured by a virtual-sensor.

it is possible to exploit the sensor-to-sensor independence of noise, i.e.,

o2
‘YTS. cum(r* (¢), z(t), 2°(t), r(¢)) 'with non-Gaussian noise = E{s*(t)s(t)} = E{r"(t)r(t)} Ino noise (1)

The left-hand side of (1) (to within the scale factor o2 /v4,,) is computed in the actual scenario where additive non-
Gaussian noise is present. To derive (1), let r(t) = s(t) + n,(t) and z(t) = s(t) exp(~jk - dz) + nz(t). Then, because

the noise components n,(t) and n.(t) are independent of the signal component s(t), it follows that

cum(r* (£), (¢), 2°(t), r(¢) = cum(s" (1), s(t)e™IF %, 5" ()T %, 5(1)) +eum(n; (1), me(8), m2 (1), (1)) (2)

v

Yd.o

Since the noise components are independent of each other, the second term cum(n; (¢), n-(t), nk(t), n.(t)) is equal to
zero [6]). Scaling (2) by ¢2/vs, gives the left equality in (1), because E{s*(t)s(t)} = o2. If there is no noise, i.e.,
n.(t) = 0, then r(t) = s(t), which results in the right equality in (1).

The right-hand side of (1) can only be computed in the hypothetical case where there is no measurement noise,
in which case r(t) = s(t); however, when noise is present, E{r*(t)r(t)} # E{s*(t)s(t)}, but E{s*(t)s(t)} is still equal

to cum(r*(t), z(t), r*(t)r(t)) to within the scale factor 3, = 02 /74,5 since the noise contributions in r(t) and z(t) are



independent. The scale factor 02 /v, , does not cause a problem, because if all the required covariances are computed
through cumulants, then the resulting covariance matrix will correspond to the case in which source powers are scaled
by these unknown (but non-zero) factors, which preserves the signal subspace. We refer the reader to [4) for further
discussion on scaling. For example, (with proof similar to that of (1))

cum(r®(2), z(t), r" (1), r(t)) |with non-Gaussian noise = % E{r (t)=(1)} |no noise (3)

In the case of P non-Gaussian sources with cumulants {y44}£_,, and powers {¢f}{_,, if one constructs a matrix
of covariances, computed by using cumulants, through relations such as (1) and (3), and ignores the scale factors
Br = ~a,x /0, then the resulting matrix will be identical to the covariance matrix in which the source powers (o’s) are
scaled by fi’s. This matrix takes the form AlssA#, where I'ss is a diagonal matrix that contains the fourth-order
cumulants of sources, and has a rank that is equal to the number of sources, i.e., the noise subspace will be spanned
by the eigenvectors that have zero eigenvalue; therefore, the signal subspace can be identified as the eigenvectors of
this cumulant matrix that have non-zero (but, perhaps negative, since scale factors may be negative) eigenvalues.
This proves part 1 of Theorem 1.

Virtual aperture extension is the term coined in [4] to explain how cumulants increase the aperture of antenna
arrays. Aperture extension is accomplished by using the cumulants of received signals to compute the cross-correlation
between actual and virtual elements (e.g., see Figure 1, where d=d. + ci'y) From our interpretation, this can be
viewed as reaching a virtual location by adding two non-zero vectors (otherwise we can not reach a virtual location)
that extend between actual array elements. A non-zero vector implies that its tail and head do not coincide, i.e.,
in the cumulant expression to compute the virtual cross-correlation, at least one of the four components must be

different than the other components; for example, (see Figure 1)

Y4,s

cum(r* (t), =(t), r*(t), y(t)) |with non-Gaussian noise = T}E{r‘(t)”(t)} |no noise (4)

The derivation of (4) can be done by observing similar results in [4]. E{r*(t)v()} is not computable since we do
not have access to v(t) (a virtual sensor); however, we have r(t) and z(t), and the noise in these two channels are
independent; hence, equality in (4). We have therefore shown that E{r*(t)v()} (virtual statistic) can be computed

using cumulants by processing the measured signals #(1) and z(t), even in the presence of non-Gaussian noise. This



proves the second part of Theorem 1. O

Comments:

o The convention established in (1) will be used throughout this paper. It is important to note that (1) is valid only
for ensemble averages. With finite samples, the standard deviations of the two sides will be different. In addition,
there may be a bias due to finite sample size.

¢ The geometric interpretation of (1) is: with cumulants, we move from one sensor to another one (which has non-
Gaussian but independent noise), and come back to the starting point using the same path. This approach is in
fact an interpretation of the technique proposed by Cardoso [1] for accomplishing non-Gaussian noise insensitivity
by removing the diagonal elements of quadricovariance steering matrices.

o The primary limitation of the proposed approach comes from the assumption about the sensor-to-sensor indepen-

dence of the non-Gaussian noise. In addition, we used the far-field assumption and independence of sources.

3 Non-Gaussian Noise Suppression (Correlated Noises)

Theorem 2: Consider an array of arbitrary sensors which is illuminated by linearly-correlated non-Gaussian sources.
Assume that array measurements are contaminated by non-Gaussian sensor noise of arbitrary cross-statistics. Then,
it is possible to identify the signal subspace to estimate the DOA parameters by subspace techniques if there is a single
sensor whose measurements are contaminated by non-Gaussian noise which is independent of the noise component

of other sensors. Furthermore, there is no need to store the spatial response of that sensor.

Proof: To begin, we assume the sources are independent. Later we consider linearly-correlated sources. Consider
Figure 2, in which there is an array of M sensors which measure {zx(t)}2L, and there is another sensor that measures
9(t) where

9(t) = g7s(t) + ng(2) (5)

whereas the main array measurements take the form

x(t) = As(t) + nx(?) (6)
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Figure 2: Non-Gaussian noise suppression for correlated noises in the main array that measures {zx(¢)}},.
An arbitrary array of M sensors whose measurements are corrupted by colored non-Gaussian noise can
still be used for direction-finding if the noise in g(t) is independent of the noise present in the rest of the
array elements. Such a unit can be imposed in the field to correct the performance of existing systems
which suffer from colored noise.

We assume the noise component ny(t) in g(t) is independent of the noise component nx(t) in the main array. The
satellite sensor, g(t), can be used to compute the second-order statistics by using cumulants (assume a single source

for the moment), because:

2
cum(zj(¢), 9(t), 97 (¢), zx (1)) lwith non-Gaussian noise = Zﬂ%é‘h—l E{zj(t)zx(t)} Ino noise (7)

8

where g, is the response of the satellite sensor to the source wavefront. The derivation of (7) is similar to that of
(1). In this way, the following noise-free array covariance matrix can be constructed using cumulants to replace the

second-order statistics (using (7)), where we assume multiple independent sources and that superposition holds:
C = AraAf (8)

where A is the steering matrix for M sensors (except the satellite sensor), I' is a diagonal matrix whose kth diagonal
entry is v4.x|gx|?, and gx is the response of the satellite sensor to the kth source (the vector g is the collection of such
responses). Equation (8) follows from the fact that in the absence of noise the array covariance matrix takes the

form A Bgs A, where Bgs is a diagonal matrix that contains source powers. When cumulants are used to compute



the cross-correlations, we obtain a covariance matrix for the case in which source powers are scaled by unknown
constants, Bk = va,x|9k|?/o?, which yields (8).

Any subspace method can be applied to C in (8), whose elements are computed using (7). There is no need
to know the response of the satellite sensor to the far-field sources (i.e., g in (5)); but, the elements of g must be
nonzero in order to make I' a nonsingular matrix. We just need the time series recorded by the satellite sensor to
actually compute the left-hand side of (7).

Next, consider the source signals s(t) correlated in the following way:
s(t) = Qu() (9)

where Q is non-singular (but arbitrary), and components of u(t) are independent. Then the observation equations
(5) and (6) change to

g(t) = hTu(t) + ny(t) (10)

x(t) = Bu(t) + nx(t)
where B £ AQand h? = g” Q. Since the components of u(t) are independent, they can be viewed as the actual
source waveforms of (5) and (6) with an effective steering matrix B, and a response vector h. The cumulant matrix

C, computed as described in (7) for the independent sources scenario, now takes the form
C =BIB# (11)

which was obtained by substituting B for A and h for g in (8). In (11), I' is defined as the diagonal matrix whose
kth diagonal entry is 74 x|hx|? and 4 x is the fourth-order cumulant of uy(t). Note that Q r QH is full-rank, so that
C, expressed as

c=a(qfQ")a”, (12)

maintains all the requirements for subspace algorithms like MUSIC and ESPRIT for direction-finding, even in the
presence of correlated sources, correlated non-Gaussian noise, and arbitrary array characteristics. It is also important
to note that we do not need to know the response of the satellite sensor to the waveforms (i.e., g), as long as the

components of h (h7 = g7 Q) are non-zero. This completes the proof of Theorem 2. O



Comments:
o This method can be interpreted as follows: consider a totally different problem in which the sensors {z;}}, are
viewed as mobile communication antennas which suffer from interference effects, so that they can not communicate
directly. It is necessary to use a satellite transponder (g(f)) to maintain communications among sensors. From the
results in [4], we know that communication between sensors means implementing cross-covariance. Here we can not
do that because of non-Gaussian sensor noise of arbitrary statistics; however, the satellite sensor, g(t), can be used
to make that communication possible: to implement E{z(t)zx(t)} first move from z;(t) to the satellite sensor g(t),
then let the satellite distribute the message; i.e., move from g(t) to zx(t).
¢ A similar technique was developed in [13] as a covariance-based approach; however, it requires a second array
of sensors whose noise component is independent of the noise in the existing array. Consequently, [13] ends up
doubling the number of sensors for direction-finding. We have accomplished noise reduction by using only one extra
sensor. This gain on the number of required sensors is similar to the gain observed in the virtual-ESPRIT algorithm
(VESPA) [4] (which is described briefly in the next section) as compared with covariance-ESPRIT. The reason for
this difference is that cumulants, unlike cross-correlation, have an array of arguments. Based on this observation, we
have also developed algorithms for single sensor detection/classification of multiple sources, and two-sensor multiple
source non-parametric time-delay estimation [3].
o If the original array is linear and consists of uniformly spaced sensors of identical response, then it is possible to
apply the spatial-smoothing algorithm of [11] to the covariance matrix in (12) to estimate the parameters of coherent
sources (i.e., when Q is singular). Simulations in Section 6 investigate the coherent sources in non-Gaussian noise
scenario. In addition, an approach that applies spatial smoothing to the generalized steering vectors estimated by
VESPA is proposed in [5]. This approach can estimate more sources than sensors even in the coherent sources case,
and it can utilize sensors that are non-uniformly spaced with different responses.

o Virtual aperture extension using Theorem 2 is also possible: it requires fixing one of the four arguments of the
cumulant to be g(t). Consequently, this problem is similar to aperture extension using third-order cumulants, since
we now only have three free camulant arguments with which to extend the aperture. This issue is described in detail

in [3].



4 Virtual-ESPRIT and Non-Gaussian Noise

The virtual-ESPRIT algorithm (VESPA) calibrates arbitrary arrays using a single doublet and fourth-order cumu-
lants [4). Consider an M element arbitrary array that measures {ry(t), r2(t),...,ras(t)} (see Figure 4 in [4]). Let
the first two sensors be identical and denote the vector between them by A. In addition, let {v(t), va(2), ..., var(t)}
denote the mesurements from a virtual array. The virtual array is a copy of the original array, which is displaced
by A; therefore, from geometry, we have vy (t) = ro(t) in the absence of noise. The actual sensors form the actual
subarray, and the virtual sensors form the virtual subarray.

In order to use the ESPRIT algorithm to jointly estimate the DOA parameters of multiple sources and the
associated steering vectors, we need to compute the cross-correlations between subarrays. We observe that all
vectors joining two sensors in separate subarrays can be decomposed as the addition of two vectors, one in the
actual subarray, and the other one being the displacement vector. Therefore, by using fourth-order cumulants, and
assuming that only one doublet {r1(t),r2()} is available, we can compute the cross-correlations between subarray
elements, e.g.,

2
aum(r (1), ra), (@), (1) = 229 i eyun) (13)

3
Use of fourth-order cumulants provides the necessary cross-correlations between actual and virtual sensors so that
the ESPRIT cross-correlation matrix can be generated. Similarly, the cross-correlation of actual sensors can be
computed by cumulants, e.g.,
2
- » a *
aum(r(0) 0,720, i) = 221E Bz ) (14
L]
In this way, (13) and (14) can be used to form the covariance matrix of ESPRIT [9]. For obvious reasons, we call the
single pair of sensors that form the doublet “guiding sensors”, and the resulting method “virtual-ESPRIT algorithm”.

For additional details about VESPA, as well as simulation results, see [4]. Next, we discuss the properties of VESPA

in non-Gaussian noise.

Theorem 3: Assume independent non-Gaussian sources illuminate an array of arbitrary sensors whose measure-
ments are corrupted by non-Gaussian noise of unknown statistics. Joint array calibration and direction-finding is

possible, if we have a doublet and at least one of the doublet element’s measurement noise component is independent

10



of the noise components measured by the rest of the sensors.

Proof. We apply Theorem 2 to VESPA (see Figure 4 in [4]). Let us assume that the noise component of the second
sensor measurement (r(t)) is independent of the rest of the sensors, and consider a single wavefront. Let a, denote
the response of this sensor to the single wavefront. We choose the second sensor as the “satellite” sensor, i.e.,
g(t) = r2(t). Since the responses of the first two sensors are identical, the response of the first sensor to the wavefront
is also a,.

ESPRIT autocorrelations for the measurements {r,,(t)}}:‘=l can now be generated using cumulants as

2
cum(g* (¢), 9(t), ric(2), u(t)) Inon-Gaussian noise = j%?L E{ri(t)n(1)} Ino noise (18)

where 1 < k,1 < M. This is in fact the idea presented for Theorem 2: we first move to the satellite sensor g(t) and
then come back. A slight modification of this idea can be used to compute the ESPRIT cross-correlations virtually,

as:

_ T, |as |2

cum(r (2), g(t), ri(2), m(2) ) |non-Gaussian noise = o2 E{ri(u(t)} Ino noise (16)

although v(t) is not physically available. For multiple independent sources, the superposition property of cumulants
holds.

The cross-correlations between virtual sensors are identical to those between actual sensors (e.g., E{vi(t)u ()} =
E{r;(t)ri(t)}); therefore, (15) can also be used to compute cross-correlations between virtual sensors. This completes

the proof of Theorem 3. O

5 Combining Second-and Fourth-Order Statistics

We have shown several ways to use higher-order statistics to suppress non-Gaussian noise. In this section, we
investigate possible use of second-order statistics along with fourth-order cumulants. We show that the results from
Theorem 2 can be improved by using second-order statistics. We also propose a cumulant-based method to generate

a vector that can be used to estimate source bearings when an additional sensor is not available.

11



Consider the cross-correlation vector d, defined as

d2 E{x(t)g" ()} (17)

where x(t) denotes the measurements of the main array and g(t) is the measurement of the satellite sensor (see
Figure 2). Since the noise component of x(t) is independent of the noise component in g(t), d is free of the effects of
noise (only when the ensemble average is considered). If A is the steering matrix for the main array, and the sources
are linearly correlated (8(¢) = Qu(t); see (9)), then, since the noise components ng4(t) and nx(t) are independent,

we can consider only the signal components of measurements to obtain
d = E{x(t)g()} = E{A Qu(t)u” ()Q"g*} = AQ %.. Q" g" 2 Az (18)

where Tyy 2 E{u(t)u¥(t)}. If none of the components of z are zero, then d is a superposition of steering vectors
from the sources, and leads to an algorithm that we describe next to estimate the directions-of-arrival.

With finite samples, we estimate the noise-free vector d as

R 1 &
ay =5 Y x(tls () (19)
t=1

If the received signal vectors are independent and identically distributed, with finite moments up to order eight, then

dy is an asymptotically normal sequence of random vectors [2), i.e.,
VN (dy — d) - N(0, ) (20)
where the (m, n)th entry of  can be expressed as
Sma £ lim_ N(E{(dn(m) — dm)(dn(n) = d)"} = E{a)Prm(@ra()} - dim)d(), (1)

which is derived in the Appendix.

Since the estimation errors are asymptotically Gaussian, we can use the following cost function to estimate the

12



parameters of interest [15):

6 = argmin J(0) 2 arg min [|S1/2 (dy - A(9)z) |I° (22)
It is possible to eliminate z in the optimization procedure, since given the optimal estimates for 8, namely 5, Z can

be estimated as

2= (AH(@G)ZAG) ' AH(B)= %Ay (23)

Substituting (23) into (22), we obtain
i= argmin [|[ 1- A(6) (AF (@) A(0)" AT (8) 1= AN (24)

Since the true covariance matrix X is not available, we may estimate it from data using fourth-order statistics of the
received signals. Alternatively, we may take a suboptimal approach by letting = I in which case, the contents of
§ are the least-squares estimates of source bearings.

The direction estimation from (24) requires a P dimensional search procedure (P is the number of sources).
This search is quite complex unless we have good initial estimates. We use the estimates provided by the method
described in Theorem 2 for initialization. The minimization in (24) can be performed by the alternating projection
(AP) method, as suggested by Ziskind and Wax for the cost function associated with the deterministic maximum-
likelihood method for direction-finding [15]. We refer the reader to {15] for the implementation of the AP algorithm.

Since this approach of suppressing non-Gaussian noise uses second-and fourth-order statistics together, we call
it the SFS method. Simulations presented in Section 6 indicate that the SFS method can decrease the variance of
the estimates from the cumulant-based approach, which would now only be used for initialization purposes.

If a satellite sensor is not available, cumulants can still be used to obtain a cumulant vector in which the
contribution of noise is significantly reduced; then, this vector can be used to estimate source bearings. Specifically,
consider the following simple scenario in which there are only two identically distributed and independent non-

Gaussian processes, {u; (), u2(f)}, with variance o2 and fourth-order cumulant 4, i.e.,

r(t) = aju;(t) + azuz2(t) + n(t) (25)

13



where n(?) is Gaussian noise, and the second non-Gaussian component, uy(t), is also treated as noise. Suppose that
we preprocess the measurements with a weight-vector w to obtain g(f) = w#r(t). The selection of w depends on
the a-priori information on the source bearings, i.e., w is selected in a way to not only pass the signal u,(t) relatively
undistorted, but to also considerably suppress the second non-Gaussian component, uz(t). Let the beamformer

weights be designed so that wHa, = g, (91| = 1) and w” a3 = g, 8 where |8| < 1. Then, the cumulant vector

(e)x £ cum(g® (2), 9(1), 9" (1), 7s(t)) 1S k<M (26)

can be expressed as

¢ = 1al91% 9181 + 14918179} B a2 (27)

This implies that if the second source is scaled by a factor 8 during the beamforming step (that uses w) to form the
satellite sensor measurement, then its contribution to c is scaled by |3|28°; therefore, the ratio of contributions of the
non-Gaussian noise to non-Gaussian desired source in the expression for ¢ will be |8]>8°, which is small enough to
ignore provided that }3| is small enough. If we can ignore the non-Gaussian noise component in ¢ due to this scaling,
we can use c in place of the second-order statistics vector d for DOA estimation. For the multiple sources/multiple

non-Gaussian noises scenario, the superposition property of cumulants ((CP3] in [4]) applies to yield a similar result.

6 Simulations

In this section, we provide simulations that demonstrate the paper’s non-Gaussian noise-insensitive direction-finding
methods. Our first simulation experiment illustrates virtual aperture extension in the presence of spatially non-
stationary but independent non-Gaussian sensor noise. Our second simulation compares cumulant and covariance
based algorithms in the presence of correlated non-Gaussian noise. Our third simulation investigates direction-finding
for coherent sources in non-Gaussian colored noise; it also investigates the performance improvement obtained by
using both second-and fourth-order statistics. Our final simulation illustrates the non-Gaussian noise suppression

properties of VESPA.
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6.1 Experiment 1: Virtual Aperture Extension in Non-Gaussian Noise

In this experiment, we consider a two-element linear array illuminated by two equal-power, independent non-Gaussian
sources from 70 and 110 degrees measured from the array axis (90° is the broadside). We assume the sensors are

isotropic and separated by a half-wavelength. The signal model is as follows:

ri(t) 1 1 81(t) 1 0 ny(t)
= B+ (28)
ra (t) eiw cos(70°) eju- cos(110°) 32(0 0 2 nz(t)
The statistically independent signal components {s1(t), s2(t)} are zero-mean and non-Gaussian with unity variance.
The noise components are generated as a mixture of non-Gaussian and Gaussian components as follows:

1

n(t) = 7

(nk,l(t) + nk_z(t)) k=12, (29)

where ng () is circular Gaussian and ng 2(t) is non-Gaussian and represents the contribution of 4-QAM commu-
nication signals. The noise components {n, (), n1,2(t), n2,1(t), n2,2(t)} are zero-mean, have unity variance and are
statistically independent; therefore, n;(t) and ny(t) are statistically independent as well. The SNR is defined as
20log,4(8).

Using cumulants, it is possible to extend the aperture to 3 sensors. Since the noise components in the actual
sensor measurements, {n;(¢), n2(t)}, are independent, it is possible to apply Theorem 1 to construct a 3x3 matrix
which is blind to the presence of non-Gaussian noise, as data length grows to infinity. It is therefore possible to
estimate the autocorrelation at a sensor uniquely, and, the cross-correlation between the two actual sensors in two
different ways, using cumulants (see [4] for additional discussions on this issue). The cumulant statistics are placed
in a 3 x 3 matrix that plays the role of the array covariance matrix, as if there were three actual sensors. The MUSIC
algorithm was then applied to this 3 x 3 matrix to estimate the bearings of two sources. If we are constrained to
use only second-order statistics, we can not identify the bearings of the sources, since the number of actual sensors
(two) is not larger than the number of sources (two).

We present the mean and standard deviation of the estimates for various data lengths and SNR levels, for two
different source distributions: for the first case we let the sources be BPSK and for the second case we let the sources

be 4-QAM. The first case has a greater cumulant-to-power ratio!, and hence we expect the results for BPSK sources

'For a BPSK signal with variance o2, the fourth-order cumulant is —2(03)®. For a 4-QAM signal with variance o3, the
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Mean vs. SNR for 100 Snapshots
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Figure 3: The mean of estimates for BPSK and 4-QAM sources for 100 snapshots. True bearings are 70
and 110 degrees. Each estimate is obtained from 100 independent realizations. Mean of estimates are
satisfactory except in the low-SNR region.

to be better that those for 4-QAM sources. Figure 3 depicts the means obtained from 100 snapshots for BPSK and
4-QAM sources for varying SNR’s. BPSK sources yielded slightly better results in terms of mean. Figure 4 illustrates
the standard deviation versus SNR for data lengths of 100, 500, 1000, and 2000 snapshots. Observe that the bearing
estimates for BPSK sources have less estimation error than that of 4-QAM sources. At high SNR’s, performance is
limited by presence of cross-terms in the 3 x 3 cumulant matrix, between the independent waveforms in the cumulant
expressions (these components should converge to zero in theory). At low-SNR’s, performance is limited by the

estimation errors due to the presence of high levels of noise which dominate the presence of cross-terms.

6.2 Experiment 2: Incoherent Sources in Non-Gaussian Noise

Here we estimate the bearings of two far-field sources which illuminate a uniformly spaced linear array of five

sensors from {85°,95°}. The bearings are measured from the axis of the linear array. Both sources broadcast BPSK

fourth-order cumulant is —(o3)?.
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Standard Deviation vs. SNR for 100 and 500 Snapshots
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Figure 4: Standard deviation of estimates versus SNR for different data lengths and source distributions:
(a) 100 and 500 snapshots; (b) 1000 and 2000 snapshots. Each estimate is obtained from 100 independent
realizations. Standard deviations of bearing estimates for BPSK sources are always lower than those for

4-QAM sources. The results are given for the source from 70°.
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waveforms of unity variance. The signal model for the experiment is as follows:

™ (t) 1 1 ny (t)
rz(i) ™ cos(85°) ei® cos(95°) 5 (t) nz(t)
= . _ B+L (30)
N . S2 (t) .
rs(t) il c03(85°) PAEL] cos(95°) ns (t)

The signal components {s,(t), s2()} are zero-mean, non-Gaussian with unity variance. The independent noise
components {nx(t)}3_, are generated as a mixture of circular Gaussian and 4-QAM non-Gaussian processes as in
(29), and they have unity variance. The SNR is defined as 20log,,(5).

The matrix L represents the spatial color of the noise in the linear array. It is obtained as the Cholesky
decomposition of a noise covariance matrix that corresponds to major noise contribution from the range [50°,70°).
More specifically, we summed the rank-one matrices a(@)a” (9) in the range [50°, 70°) at increments of 1°, and scaled
the result by a; so that it has a trace equal to 5 (the number of elements), to obtain a3 Z;(:soo a(8)a” (8), and then
to this we added the identity matrix that represents the spatially white part of the measurement noise, scaled by

0.2, so that the directional part is stronger in power than the white part. The resulting noise covariance matrix is

70°

Rp = 55( - ,§,, a(0)af (8) + 0.21) (31)

where the factor 1/1.2is included to make the trace of Rn be equal to 5. Then, we determined L so that Rp = LLA.
The spatial spectrum of this measurement noise, as measured by an MVDR beamformer is illustrated in Figure 5, i.e.,
for each source bearing, we constructed an MVDR beamformer that passes the noise component from that particular
direction undistorted, and minimizes the contributions of noise from other directions.

In this experiment, we do not assume the availability of a satellite sensor. Instead, we process the measurements
to obtain one such signal without an additional sensor. Using the a-priori information that the sources are close to

broadside (90°), we utilize the conventional beamformer with a look direction of 90°, to obtain g(t) as
g(t) = a¥(90°) x(2) (32)
Since the far-field sources are close to 90°, they pass through the conventional beamformer almost undistorted,
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Neise Spalial Spectrum Measured by MVDR beamformer
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Figure 5: Spatial spectrum of the noise as measured by an MVDR beamformer. The two circles indicate
the source bearings.

whereas the noise, with its principal component in the range [50°, 70°], is attenuated severely.

We construct the cumulant matrix,

(Cm,n = cum(g”(2), g(t), rm (t), 7 (2)) (33)
which takes the form:
2 5
C = vxlaf (90°)a(d:)*a(8x)a™ (B) + 3 vanila (90°)|"Lekif (34)
k=1 k=1

where 4, is the fourth-order cumulant of the noise component ny(t) in (30), and I is the kth column of L.
To derive (34), we first assume a single source, so that C = y4|g(0)[*a(f)a” (0), where g(f) L af (90°)a(f). We
consider the columns of L as steering vectors for the non-Gaussian noise sources and use the superposition property of
cumulants to obtain the final result. Since the directional noise illuminates the array from directions that correspond
to sidelobes of the conventional beamformer weight-vector, we have |a” (90°)a(6:)[? >> |a® (90°)1x|?, which implies
noise suppression, i.e., we can ignore the second sum Y h—1(-) in (34). Algorithms such as MUSIC or ESPRIT can

be used to process C to estimate source bearings.
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We performed experiments to compare the proposed method that uses ESPRIT on the cumulant matrix C
(defined in (33)) versus covariance-based ESPRIT that uses the array covariance matrix. We varied SNR (defined
after (30)) from -10dB to 20dB in 1dB steps, and estimated the directions of arrival for data lengths of 500, 1000,
2000, and 5000 snapshots. For each experiment (with data length and SNR fixed) we performed 100 independent
trials to estimate the directions of arrival. Since the bearing estimates from cumulant and covariance-based methods
are expected to be biased due to the presence of colored non-Gaussian noise (the cumulant-based method does not
use a true satellite sensor measurement whose noise component is statistically independent of the noise component

in the main array measurements), we used the following performance criterion (RMSE) to compare the results,

RMSE 2 V E{(6 - 0yrue)?}

The RMSE results are shown in Figure 6 for the two sources. At low-SNR’s, the performance of both methods
are similar: the covariance-ESPRIT is biased by the colored noise (see Figure 7 for the mean of estimates), and
the cumulant-based ESPRIT has high RMSE and bias due to high level of noise; however, the effects of colored
noise decrease sharply for the cumulant-based approach, e.g., for 500 snapshots, the RMSE drops to an acceptable
level of 1°, at an SNR of 0dB, due still to estimation errors in cumulant estimates, but not due to bias (see also
Figure 7). On the other hand, for the same data length, covariance-ESPRIT achieves the same RMSE performance
at an SNR of 11dB. As the data length increases, the gap between cumulant and covariance-based results increases,
since the covariance-based ESPRIT is limited by the bias in covariance estimates (not the variance of estimates) and
its performance does not vary with data length (see Figure 7). For this reason, increasing data length does not effect
the RMSE from covariance-based ESPRIT for SNR’s below 10dB, since the algorithm is SNR limited in this range.
For SNR’s larger than 10dB, bias gradually decreases, and estimation errors in finite-sample covariance estimates
become visible (i.e., observe in Figure 6 that the performance shifts down slightly with increasing data length);
however, the performance of covariance-based ESPRIT is always worse than that of cumulant-ESPRIT (even when

the former uses 5000 snapshots and the latter uses 500 snapshots) for all SNR levels.
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RMSE vs. SNR for the first source (from 85 degrees)
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Figure 6: Performance comparisons for covariance-ESPRIT and cumulant-based ESPRIT that uses a
preprocessed sensor measurement for noise suppression: (a) RMSE for the first source; (b) RMSE for the
second source. For each SNR level, we used four different data lengths of 500,1000,2000,5000 snapshots,
and performed each experiment 100 times to obtain the results. Performance of the cumulant-based
approach improves with increasing data length for all SNR’s, whereas only high-SNR results improve for
the covariance-ESPRIT.
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Figure 7: Mean of estimates for 500 snapshots: cumulant-based ESPRIT recovers from colored noise effects
much faster than does the covariance-ESPRIT. The actual sources are located at 85 and 95 degrees.

6.3 Experiment 3: Coherent Sources in Non-Gaussian Noise

In this experiment, we show how to incorporate a satellite sensor measurement into an array processing scenario which
requires spatial smoothing, i.e., into a linear array. To compare the performance of the covariance-and cumulant-
based algorithms for the case of coherent sources, we used a uniform linear array with eight sensors in order to
improve resolution and enable spatial smoothing [11]). The uniform spacing between sensors is half-wavelength.

First we investigate the case of spatially-white non-Gaussian noise. We consider a BPSK source which illuminates
the array from 85°, and, due to multipath, a perfectly coherent equal-power replica illuminates the array from 95°.
We use an additional sensor in order to apply the method described in Theorem 2. This sensor is located 10
wavelengths to the left of the first element of the linear array. A covariance-based MUSIC algorithm can not
incorporate this measurement in the present case of coherent sources, because the resulting array manifold does
not possess a VanderMonde structure which is required by the spatial smoothing algorithm [11] to decorrelate the
sources.

The noise components are assumed to originate from 4-QAM communications equipment, i.e., they are not a
mixture of Gaussian and noun-Gaussian components as we have considered in the previous experiments. This is

done to introduce more problems to the cumulant-based approach: from cumulant properties, it is well-known that
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Covariance-based spatial smoothing
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Figure 8: Covariance-based MUSIC algorithm is unable to resolve the sources in general. Even when
resolution is possible, the estimates are biased. The vertical lines indicate true source locations.
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Figure 9: Cumulant-based algorithm which uses an extra (satellite) sensor successfully resolves the sources
and estimates the directions without bias. The vertical lines indicate true source locations.
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cov algorithm in colored-noise after smoothing
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Figure 10: Covariance-based MUSIC algorithm (cov) is unable to resolve the sources when the non-Gaussian
noise is colored. The vertical lines indicate true source locations.

CBMA in colored-noise after smoothing

35

Spatial Spectrum (dB)
-t -t n N
(=] [4;] (=] [4]]

[4,]

% 70 80 80 100 110 120
Direction of anival (degrees)

Figure 11: Cumulant-based algorithm which uses an extra (satellite) sensor successfully resolves the sources
in colored non-Gaussian noise. The estimates can be fine-tuned by the SFS algorithm which uses CBMA
estimates for initialization. The vertical lines indicate true source locations.
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cumulants can suppress additive Gaussian noise (in theory), but not non-Gaussian noise. We assume the noise power
is identical (unity variance) at all sensors including the satellite sensor, and that the signal power is equal to the
noise power (0 dB). We used the MUSIC algorithm (cov) after one-level of spatial-smoothing to obtain a 7 x 7
matrix from the original 8 x 8 array covariance matrix [11], to investigate the performance of signal coherence on
second-order statistics based direction-finding. Similarly, we applied the MUSIC algorithm to the spatially smoothed
array cumulant matrix defined in (7) and (8) to investigate the performance of the cumulant-based MUSIC algorithm
(CBMA). We used 1000 snapshots to estimate the required statistics and display spatial spectra in Figure 8 for 50
independent realizations. Observe that, in many realizations cov is unable to resolve the sources in a satisfactory
way. In addition, the estimates are biased whenever cov can resolve the sources (indicated by the two vertical lines).
In this case, CBMA is able to resolve the sources, as illustrated in Figure 9.

Next, we investigate the effects of colored non-Gaussian noise on the direction-finding methods. To make matters
even worse, we assume the two coherent wavefronts are closer to each other: the bearings are now {87.5%,92.5°}. The
noise covariance matrix for the main array takes the form: Rp = a(90°)a® (90°) + 0.011 where a(90°) is the steering
vector that corresponds to 90°, i.e., a(90°) = [1,1,...,1]T. Ry represents an ambient noise structure whose major
component illuminates the array from 90° (broadside) and shadows the presence of sources. The noise power at the
satellite sensor remains at unity, and the signal power remains at 0dB. Figure 10 illustrates the results from the
covariance-based MUSIC algorithm in this scenario: sources are never resolved since the processor confuses the noise
with a signal that arrives from the noise direction of 90°. On the other hand, the cumulant-based MUSIC algorithm
(see Figure 11) successfully resolves the two sources and suppresses the noise; however, CBMA estimates are slightly
biased, because the sample size (1000 snapshots) is not large enough to suppress the effects of the high-power noise
source from 0°, which leaks into the spatial smoothing algorithm and pulls the estimates towards 0°. This observation
is in accordance with the results of Xu and Buckley [14], who indicate that as the correlation increases between closely
separated sources, bias plays an increasingly important role.

Finally, we illustrate the improvement provided by the SFS algorithm of Section 5. We initialized the search
required by SFS using the results of CBMA. We display the estimates provided by CBMA and the suboptimal SFS
algorithm (in which ¥ is replaced by I in (24)) for 50 trials in Figure 12. Observe that suboptimal-SFS significantly

reduces the variation and bias in the estimates.

25



CBMA and SFS estimates for ccherent sources in colored non-Gaussian noise
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Figure 12: SFS and CBMA performance comparison: SFS decreases the variation and the bias (due to
finite number of samples) of CBMA estimates, since it uses second-order statistics for estimation and
fourth-order statistics for initialization. The mean of CBMA estimates are {87.680,92.280} whereas the
mean of SFS estimates are {87.482,92.536}.

6.4 Experiment 4: Virtual-ESPRIT and Non-Gaussian Noise

In this experiment, we used the 8 element linear array of Experiment 3 with the same noise correlation structure
and strength. Two equal power, independent signals illuminate the array from {87.5% 92.5°}. Non-Gaussian noise
suppression can be achieved by VESPA in two ways: (1) Use one new sensor that is a copy of an existing sensor, but
whose additive noise is independent of noises in the other sensors; or (2) Use a doublet located sufficiently far away
from the original array so that the noise contribution of the doublet measurements are independent of the noises in
the original array. The first method applies only when one of the responses of the main array elements is known.
This is the major reason for using the second approach. In addition, the second method can be made insensitive to
the noise correlation structure between the two guiding sensors if we only create a copy of the original array; i.e.,
an 8 x 8 cross-correlation matrix between the original array and its virtual copy, rather than a 10 x 10 matrix (see
the description of VESPA in [4]). Consequently, we used two guiding sensors separated by A/2. The guiding sensors
are located on the axis of the main array, the first one of which is 10\ to the left of the leftmost element of the
main array. The noise power at the guiding sensors is identical to the noise level at the satellite sensor of the third

experiment (unity power). The signals are at 0dB with respect to noise at the guiding sensor.
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Bearing Estimates from virtual-ESPRIT
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Figure 13: Virtual-ESPRIT algorithm can estimate the source bearings in the presence of non-Gaussian
noise. The graph indicates that the sources are resolved successfully. The mean of the estimates are
{87.5852, 92.4206}.

We performed 1000 independent experiments to estimate source directions using virtual-ESPRIT. The distribu-
tion of estimates is given in Figure 13. VESPA resolves the sources as does the cumulant-based MUSIC algorithm

(CBMA) described in Experiment 3. The bias in the estimates is less than that of the CBMA algorithm, since

sources are independent for this experiment.

7 Conclusions

We have developed algorithms which are capable of suppressing the effects of non-Gaussian noise in array processing
problems. We accomplished this by using the geometric interpretation of cumulants for array processing problems
developed in the companion report [4]. We first showed how to suppress statistically independent non-Gaussian noise
that has different statistics at each sensor. Then, we generalized this method to suppress correlated non-Gaussian
noise by using an additional sensor which is remotely located to the main array and whose noise component is
uncorrelated with that of the main array. We also showed that it is possible to improve cumulant-based results
by using second-order statistics. Our simulations indicated that doing this significantly improves the bias and
standard deviation in the estimates over a camulant-based algorithm. In addition, we demonstrated noise suppression

capabilities of the virtual-ESPRIT algorithm proposed in [4].
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Our overall conclusions are:

o The richness of fourth-order cumulants over second-order statistics in terms of arguments, provides ways to
increase the effective aperture of antenna arrays and reduce the adverse effects of additive correlated non-

Gaussian noise.

o Combining second and higher-order statistics provides better results than the results obtained using only

cumulants.

o Suppressing correlated measurement noise requires the use of an additional sensor that is located far-away
from the main array, so that its noise component is not correlated with those of the main array; however, it is
also possible to suppress non-Gaussian noise by using the received signals from the main array using cumulants

and a-priori information about the sources of interest, without using an additional sensor.

e ESPRIT can be implemented in a practical manner using cumulants. Doing this saves hardware costs and
achieves non-Gaussian as well as Gaussian noise suppression. This implementation is extended to the case of

coherent sources in [5).
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Appendix

Here we derive the asymptotic covariance, given in {21}, of the estimation error associated with dy, defined in (19).

From (19),
N
dn(m) = 3 39" Orm(0); (35)
t=1
hence,
A L. s 5 . . 1 & . .
Zmn = Jim NE{(dy(m) —d(m))(dn(n) —d(n))"} = lim E{5 > 8" (t)rm(t1)g(t2)rn (82)}

ty,ta=1
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N N
- B{d*(n) Yo" (t)rm(t2)} = E{d(m) ) glta)rs(t2)} + Nd(m)d" (n) (36)

ty=1 t1=1

Using the definition of d in (17), we observe E{g*(t1)rm(t1)} = d(m), and we are able to reexpress (36) as

N N
Zma = Jim & Y Ells@Pralirn@}+ 5 X Ele 0)rm() Elslt)ra(t)) - Nd(m)d'(n) (37)

ti=ta=t=1 ty#ta=1

The first summation has N identical terms, and the second summation has (N2 — N) identical terms. Using the

definition of d(m), we can express (37) as
Zma = Jim E{|g(t)’rm(t)r5(8)} - d(m)d"(n) = Elg(t)*rm(t)rs(t)} — d(m)d" (n) (38)

which is the result stated in (21).
To gain more insight into the asymptotic covariance matrix of the vector dy, we first reexpress (38) in terms of

cumulants as

Zimn = cum(g® (¢), 9(t), 75 (), rm (1)) + E{lg() P} E{rm ()5 (1)} + E{g1()rm ()} E{gi (t)ra(t)} (39)

The last term vanishes for measurements that are circularly symmetric. Next, assume that there exist P far-field
sources, with powers {0} }F_,, fourth-order cumulants {vs,x}f_,, and steering vectors {a}{_,. If the noise covariance
matrix for the main array is denoted as Ry, the response of the satellite sensor to the kth source as gi, and the

variance of noise in g(t) is o3 ,, then the matrix form of (39) is:

P P P
= yaxlolacafl + 0k, + D oflocl®) (O okarai + Rn) (40)
k=1 k=1 k=1
which can be simplified to
P
=Y (ol + acdasall +aRn (41)
k=1

where a £ (o2, + Ele o?|gk[?). Observe that ¥ (covariance matrix of a second-order statistics vector) depends
only on the second-order statistics of the noise components; it does not depend on the higher-order statistics of the

noise components.
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