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Abstract

In this paper we develop a general structure of a fuzzy logic (FL) classifier that is capable of
using both numerical data and linguistic information. By using fuzzy inference, we are able to
handle numerical data and linguistic information in a unified framework. We show that the FL
classifier includes the Bayes classifier as a special case. Qur experimental results show that the
FL classifier, when using linguistic information, can perform better than probabilistic classifiers

that do not use linguistic information.

1 Introduction

In many classification applications we want to design classifiers by using numerical prototypes
as well as linguistic knowledge. Conventional classification schemes do not provide a systematic
method to utilize linguistic knowledge; in contrast, fuzzy logic provides us with a framework for
effective management of uncertainty, and is therefore suitable to deal with this problem. Most

of the existing supervised fuzzy classification methods are fuzzified versions of crisp classification



methads, e.g., the fuzzy perceptron [5] and fuzzy K-nearest-neighbor [6]; hence, they may not lead
to substantially different results than their crisp counterparts.

In this paper, we develop a general structure for a classifier that is capable of combining numer-
ical data and linguistic knowledge in a natural manner. Qur basic idea is to design a classifier using
the principle of fuzzy inference, which has been known to be an effective approximate reasoning
technique that deals with vague propositions or statements. By means of fuzzy inference, we are
able to handle both numerical data and linguistic knowledge in a unified framework.

In Section 2 we propose a general structure for a Fuzzy Logic (FL) classifier. In Section 3 we
investigate the relation of the proposed FL classifier and the Bayes minimum-error classifier. In
Section 4 we discuss training methods. Examples are given in Section 5. Conclusions are drawn in

Section 6.

2 Constructing Fuzzy Logic Classifiers By Fuzzy Inference

The problem of classification is to categorize a set of objects, which are usually represented by
vectors in a feature space. One way to represent a pattern classifier is in terms of a set of dis-
criminant functions, {gi(x), i =1,2,---,c}, where c is the number of classes (categories), and x is
a feature vector. The classifier assigns x to class i if gi(x) > g;(x), Vj # ¢. The feature space is
therefore partitioned into c disjoint regions, I'y, T, - -+, .. These regions can be represented by ¢
characteristic functions defined on the feature space, as follows:

1 ifxel;
pilx) = i=1,2,---,c (1)

0 otherwise
A classifier can be viewed as a system with input x and a vector output y = col (Y1, Y2, * 2 Ye)s
where y; = ur,(x). A labeled numerical prototype xi in class ¢ corresponds to an input-output
pair, (X, y), where the ith element of y is 1, and all other elements are 0.

In our scheme of classification, we generalize the pr, (x)’s into fuzzy membership functions. The



oulputs, 7;’s, of the aforementioned system can then assume any value in [0,1]. A classification
problem is thus translated into the problem of approximating the functions describing the system.
Our approach to this approximation problem is to use a multi-output FFuzzy Logic System (I'LS),
since I'LS’s have been shown [14] to be effective tools to approximate nonlinear functions. IFigure |

shows the configuration of the proposed FL classifier.

2.1 Fuzzy Logic System: A Brief Description

Let U be a universe of discourse. A fuzzy set A over U is characterized by a membership function
pa(u) with v € U. A linguistic variable X takes a fuzzy set as its value.

The FLS used in our FL classifier consists of four parts: a fuzzifier, a fuzzy inference engine, 2
fuzzy rule base, and a defuzzifier. We assume singleton fuzzification is used. The fuzzy rule base

consists of a set of IF-THEN rules in the form of:

IF X is A, THEN Y is B, @)

where X and Y are linguistic variables, and A and B are fuzzy sets over universe of discourses U

and V, respectively. A typical form of fuzzy inference is:

Premise I X is A

o~
w
——

Premise 2 If X is A, ThenY is B

Conclusion Y is B'.

In this way, the inference engine matches an input with a fuzzy rule to find the conclusion B’. The

compositional rule of fuzzy inference [15] states that
pe(v) = Slelg{#A'(“) * t(a=B)(w,0)}, (4)

where % is an arbitrary T-norm [9] (e.g., minimum or product), and (A — B) is a fuzzy implication.



There are many ways to define a fuzzy implication {9]. In FLS’s, T-norm implication is often used,
i.c.,

1ta-y {1, v) = pa(u) x pp(v) (5)

Usually we deal with FLS’s with vector input and scalar output. For notational clarity we use
x and g, instead of % and v, to represent the input and output variables. In the fuzzy logic system’s

literature, (e.g., [12]), multi-antecedent fuzzy rules are often used, such as:

If Xy is Ay, and X3 is Ag, - -+, and X4 is Ag,

Then Y is B, (6)

where d is the dimension of x. T-norms are used to combine the antecedents:

B(a, ,Ag,...,Ad)(xh Toy.. ey Bd) = BA, (T1) % pray (Z2) %+ % pay (z4) (7

Note that we can use the rule in (2) to represent the multi-antecedent rule, by defining the mem-
bership function of A as

1A(X) = B(A;,A2,...44) (T1: T2, - - 1 Td). (8)

When there are N IF-THEN rules in the fuzzy rule base, such as

IfX is A\, ThenY is B',i=1,2,---,N, 9)

we will obtain N inferred fuzzy sets from fuzzy inference. Let B’ denote the inferred fuzzy set
from the i rule. A T-conorm, denoted by @, (e.g., maximum or bounded sum) is often used to

combine the B"’s to get the overall output fuzzy set, B, i.e.,

B=B"¢B%®---&B'N. (10)



Il A" is a singleton at x' (as in singleton fuzzification). i.c., jear(x) is unity at x’ and zero

clsewhere, then (4) becomes
ppe(y) = 1 paspy (X y) = pa(x’) * us(y) (11)

The fuzzy inference engine and fuzzy rule base described above determine a mapping {rom a
point x’ Lo a fuzzy set B’. The defuzzifier maps B’ to a crisp value, §. In our FL classifier, we use

the Centroid of Area (COA) defuzzifier [9], i.e.,

_ 2 up(v)y
= S um(y)” (12)

where the summation is over the universe of discourse, and, if the universe of discourse is continuous,
the summation is replaced with an integral.

For a multi-output FLS with n outputs, fuzzy rules, such as

Ifx is A,

Then y; is By, y2 is Ba, - -+, and yy, is By, (13)

have multiple consequents, and we can decompose them into the following n single-consequent

rules: If x is A, Then y; is Bj, j = 1,2,---,n. In this way, we can treat the FLS as n parallel

single-output FLS’s.

2.2 Representing Linguistic Knowledge By Fuzzy Rules

Fuzzy rules are suitable to represent linguistic knowledge (16). In order to use an FLS to approxi-

mate the functions, y; = pr, (x), we need fuzzy rules in the following form:

IFX is A, THENY, s B;, i = 1,2,---,¢, (14)

<



where X is a linguistic variable that represents a feature of the object, Y; is a linguistic variable that
represents the approximate value of g, (x) (i.e., the membership grade of the object in class i),
A is a fuzzy sct on the feature space, and B;’s are fuzzy numbers on [0,1]. We use an example
to illustrate the meaning of A and B;. Consider the problem of classifying grape fruits (51} and
oranges (S2) by comparing their radii (12). We know that grape fruils are bigger than oranges.
This knowledge is converted into the following fuzzy IF-THEN rule: “IF R s BIG, THEN Y, is
LARGE and Y, is SMALL,” where R represents the approximate value of the radius of the object,
Y, and Y, represent the similarity of the object to grape fruits and oranges respectively, BIG is a
fuzzy set in feature space (see Figure 2a), and, LARGE and SMALL are fuzzy sets in output space

(see Figure 2b). In our FL classifier, we assume that the following L linguistic rules are available:

IFx is A,

THEN y, is B, and -+, and y. is B, (15)

for j=1,2,---,L.

2.3 Extracting Fuzzy Rules From Numerical Data

Here we describe two methods for extracting fuzzy rules from numerical data.

A) Direct Method

Let {x;:'),k =1,2,---,N;} be a set of prototypes for class i, i = 1,2,---,¢. Our principle of rule
extraction is that a point x near xf) probably belongs to the same class, numbered i. We first
construct a fuzzy set, F(k|), to represent the “neighborhood” of xg). Naturally, rxji)(x) should
peak at x = xf:) , and decrease as some distance measure between x and xg) increases. Let us
use the Mahalanobis distance with positive definite matrix Q; for class i; then, pp(xy)(x) can be

written as

ey () = 3(lx = xPllg.), (16)



in which,

e = xllg, = v/(x - x)Q7 (x - x{?) (1)

and ¢(e) is a function that satisfies: (1) $(0) = 1, and (2) ¢(z;) > d(z2) i |z4] < |z2]. A direct
rule-extraction method is to generate a fuzzy rule (hereafter called a numerical rule) from each

prototype in the following way:
IF X is F(kli), THENY; is 1 and Y; is 0, j #i,i=1,2,---,¢, (18)

in which fuzzy singletons (0 or 1) are used in the consequent parts, since we kuow that xﬁ__" belongs
to class ¢ with degree 1. This rule can be read as: if the object is close to xg), then it belongs to
class i.

The number of rules by the Direct Method is equal to the total number of prototypes; hence,
this method is suitable for small prototype sets.
2) Cluster Analysis
An alternative to the Direct Method is to divide the prototypes into a small number of groups,
and generate a rule for each group. Cluster analysis is a way to group the prototypes. There are a
variety of clustering techniques that can be used for this purpose, e.g., the k-means family (fuzzy
or non-fuzzy) of clustering algorithms [1], and neural network classifiers [8].

Suppose M; clusters are obtained for class i. Compute the centroid of each cluster, denoted by

zg). Let G(k|?) be a fuzzy set induced by zg), with membership function:

s () = o(l1x — 2.,

k=1,2,--- M;, 1 =1,2,---,¢, (19)
We can then create the following fuzzy rules:

IF X isG(kli), THENY; is I and Y; is 0, j #1i,i=1,2,-+-,c. (20)



We can view the Direct. Method as a special case of cluster analysis methods, in which a cluster

is created for cach prototype; hence, (20) is a general form for numerical rules.

2.4 A Fuzzy Classifier Using Fuzzy Inference

We can now construct a classifier that uses the linguistic rules in (15) and the numerical rules in
(20). Denote by L{ the inferred fuzzy set for Y; from linguistic rule j, and by N;(k|:) the inferred

fuzzy set for ¥; from the numerical rule associated with zg) . Using (15) and (11), we have

#p (y) = s (x) * g (y),

i=1--,¢j3=12,---,L, (21)
and, using (19), (20), and (11), we have
$(llx - 2 lle.)8(y - 1) i 5 = i,

d(llx - zMe)o(y) i
i,j-—-l,"',C,k:l,"',Mi, (22)

ek (Y) =

where 8() is the Kronecker delta function. Note that we have used the following fact: ¢(e)x5(e) =
&(®)8(e), since §(e) takes only 0 and 1 as its values.

Now we can apply (10) to combine the inferred results; however, we usually have different belief
factors for linguistic and numerical rules; therefore, we assign a weight factor to each fuzzy rule (a;
for a linguistic rule and B, for a numerical rule), and use (10), (21), and (22) to conclude that, for

t=1,2,---,¢,

L M .
nai(y) = (GB (11 (%) * gy (y))) ® (GBﬂL¢(llx -2, llo.)8(y - 1)) ®
k=1

3 =1
MJ

( @ @aii¢(||x—z£."||q.->6(y)) (23)

j=1,5#i k=1



where the big @ represents L (or M, or ¢) cascaded @ operations. Figure 3 illustrates (23) for
¢ = 5 triangular membership functions for Iy (y), and minimum inference for the linguistic rules.
The trapezoids correspond to the first term in (23), the spikes at y = 1 correspond to the second
term, and the spikes at ¥y = 0 correspond to the third term. Note that, prior to taking all the
‘I'-conorms in the third term, there are many constituents to that term; however, after taking these
"I'-conorms, only one survives. Note, also, that our example has assumed no overlap between the
trapezoidal membership functions and those at y=0and y = 1.

We can now defuzzify B! to obtain the value of pur;(x), i-e., pr;(x) = §; = COA(B]), i =
1,2,--+,c. Note that pur,(x) provides the degree of similarity of x to class i. If a crisp decision is
needed, we can compare all ur,(x)’s over i, and assign x to the class with maximum membership.
For example, in Figure 3, the y coordinate of the “x” points represents the COA values of B;. Since
COA(Bj) is the maximum, our decision is class 3.

Equation (23) represents a family of classifiers capable of using both crisp numerical data and
linguistic knowledge. By selecting a pair of specific T-norms and T-conorms, we can reach various
kinds of classifiers. The parameters, a;’s, Bi’s, and Q;, can be determined by trial-and-error or b)(

using some training algorithms.

3 Relation between the Additive FL Classifiers and the Bayes

Classifiers

Combining rules additively [7] is a technique that uses addition in place of a T-conorm to combine
the inferred fuzzy sets from fuzzy rules. A FL classifier that combines rules additively is referred
to as an Additive Fuzzy Logic Classifier (AFLC). Obviously, the value of pp: (y) for an AFLC can
be greater than unity; however, this problem is easily handled by our FL classifier because we can
scale pp:(y) by a common factor without changing the defuzzified value of B (see (12)). In this
section we will study the relation between AFLCs and Bayes classifiers.

Fuzzy and probabilistic classifiers are not always related to each other because probabilistic



quantities may not exist for some classification problems. In order to investigate their relation, we
suppose that there exist underlying probability quantitics, i.c., an a priori probability, 7%, for cach

class, and, class-conditional joint probability densitics, pi(x), i =1,2,---,¢.

3.1 Relating the Two Classifiers by using Special Linguistic Rules

Theorem I: The AFLC gives the same crisp classification results as the Bayes classifier, if: (1)
all pi(x)’s are bounded by a number pyax, (2) ¢ linguistic rules are used in the FFL classifier, with
143 (X) = P;(X)/Pmaxs @ = Pj, and pgy(y) = 8(: = j)8(y — 1) + (1 - 8(i = 7))é(y), .5 = 1,2, -+, ¢,
and (3) no numerical rules are used in the FL classifier.

Proof: Using conditions (1)-(3) in (23), we have

18;(¥) = D=1 Fi((pi (x)/Pmax) *

(8(i = 7)8(y — 1) + (1 = &(i ~ 7))é(y)))

Pl'pi(x)/pma.x if y= 1
Yi=14#i FiPi(X)/Pmax ify=10 (24)
0 otherwise
Using COA defuzzification (12), we obtain
P-p,-(x)
(x) =COA(B)) = =———— (25)
rie) = COAB) = = Pini)
On the other hand, the discriminant functions of the Bayes classifier are (3]:
gi(x) = Pipi(x), i =1,2,--+,¢c. (26)

Since gi(x) equals pp,(x) multiplied by a term that does not depend on i, the FL classifier gives

the same crisp decisions as the Bayes classifier. O

10



3.2 Relating the Two Classifiers by using Special Numerical Rules

The probabilistic classifier we consider here is the Bayes Minimum Error Classifier using Kernel

Estimation (BMECKE), which uses the following discriminant functions [3]:

). Ni .
LS K (lx - /o) (27)

N.‘U" k=t

gi(x) =

where d is the dimension of x, || e || is the Euclidean distance, and K() is a kernel function. The
reasons why we consider the BMECKE are: (1) kernel estimations converge to the true probability
densities under a broad range of conditions, and thus the BMECKE is a good approximation of
the optimal Bayes classifier; and (2) the BMECKE has been well studied [3, 11].

Theorem 2: An AFLC gives the same crisp classification results as the BMECKE, if: (1) The Direct
Method (Section 2.2) is used to generate numerical rules; (2) no linguistic information is used; and,
(3) K(x) is bounded by Kmax, $(¢) = K(#)/Kmax, B = Pi/N;, and, Q; = o?1.

Proof: When using the Direct Method to generate numerical rules, {zg) } in (23) are the same as

{x}:)}. From conditions (2) and (3), and using (23), we have, fori = 1,---,¢,

( N; )
N Kl = x{1)/o:) y=1
k=1
_ c P N; ) (28)
w0 =\ ¥ gR=Y Kllx- /o) y=0
J=1,51 k=1
0 otherwise
Hence, COA defuzzification gives
P, N (6
- Lkt K(llx = xi "1/ 03)
pr, () = : (29)

Sier Thiy 7K (I = xP/a:)

It is easy to see that pr,(x) differs from gi(x) in (27) only by a term that does not depend on i;

thus, the two classifiers give the same classification results. O

11



3.3 Discussions

Theorem 1 says that il we use the class-conditioned probability densities for antecedents of luzzy
rules, and the a priori probabilities as the weighting factors, the AFLC reduces to the Bayesian
classifier. Consider the example of classifying grape fruits and oranges, in which the a priori
probabilities of grape fruits and oranges are Py and P,, the probability densities of their radii are
pe(r) and po(r), and the latter are bounded by pmax. Let fuzzy sets A! and A? be: pp(r) =
Po(r)/Pmax, and j22(r) = Po(r)/Pmax. The linguistic rules that correspond to those in Theorem 1
are: (1) IFR is A', THEN Y, is 1, Yz is 0, and, (2) IF R is A%, THENY, is 1, Y; is 0, which
mean that if R is A!, then it is a grape fruit, and if R is A?, then it is an orange.

In Theorem 2, the only probabilistic information used in the AFLC is the a priori probabilities,
the P;’s. If the P;’s are unknown, a natural choice is to set ﬂ;; = 1/N;, since by doing so, all classes
are treated equally. In addition, assuming equal a priori probabilities is also a natural choice for
the BMECKE. In this case, the AFLC and BMECKE give the same result; hence, we can reach
the same classifier as the BMECKE without using any probability concepts.

From this we see that there is an intrinsic relation between combining rules additively and
probability principles. In light of this relation, we speculate that additive combining is suitable for
independently drawn prototypes, as is kernel estimation. On the other hand, if the prototypes are
dependent, or, if the rules are generated by cluster analysis, then the rules will not be independent,

and therefore other operators should be used to combine rules.

4 Parameter Training for AFLC

Parameter training selects a set of parameters for the FL classifier that optimize some predefined
criterion function. For a classifier, the number of misclassifications is an obvious criterion. When
the underlying probability quantities are all known, the Bayesian classifier is optimal; therefore,
the parameters given in Theorem 1 are optimal for the FL classifier. On the other hand, when we

know only a set of samples, we can not evaluate the number of misclassifications; instead, we use

12



an error count. within the sample set. as a criterion.

In the rest of this paper, we will consider only a Gaussian function for ¢(), i.e., ¢(z) =
exp{—xz?/2}. In the FL classifier, the following four sets of parameters must be determined:
o’s, s, Q’s, and z’s.  The number of parameters in cach parameter set is: N(a) = L,
N(B) = N(z) = T, M;. and N(Q) = cd* (where d = dim(x)). a’s represent the belief mea-
sure of the linguistic rules, so they should be determined in the rule-extraction procedure. If
human experts provide linguistic rules, they may also be able to provide belief factors for the rules.

Here we only discuss some methods to determine the other parameters from training samples.

4.1 Determining zg)

As mentioned in Section 2.3, cluster analysis methods can be used to initialize the zg)’s. The
following Fuzzy c-Means algorithm (FCM) has been widely used in rule generation for FLS’s.

FCM Problem (1]: Suppose we have a set of vectors, x,,p = 1,2,--+, N, and we wish to group
the data into M clusters. The FCM problem is to find M cluster centers, V =[vi),k=1,---, M,
and a fuzzy partition matrix, U = [ugp),k = 1,---,M,p = 1,---, N, by minimizing the following

criterion function:

N M
Im (U1 V) = Z Z “Z}“xp - Vk"21 (30)

p=1k=1
where m > 1 is a parameter, usually chosen to be 2. uy, can be viewed as the similarity between
xp and cluster k. When uy, assumes only binary values, i.e., ux, = 1 or 0, (meaning that x; does
or does not belong to cluster p, respectively), then J, (U, V) is the total in-cluster squared error.
In the FCM problem, ui, € [0,1], which means that x, can belong to more than one cluster to
different degree of similarity. The solution to this clustering problem is the following:

FCM Algorithm: Iteratively, perform the following computations:

!
(1+1) _ 2::’:1(”&3)7"’%
V=

i ) ’ ’
E,',V:l(uﬁ,f)"‘

13



and,

ird!* 20, j=1,---,\M

Z l(d(‘+|]/d('+|))l[('vu-ll m
G B " ) 3
tep 1 ifd, " =0 (32)
. ] .
0 if (15,,“’ =0,j#k
whereh=1,---, M, and,
A8 = [y~ v, Vi= 1, Mand p= 1,0, N (33)

It has been proved that the FCM algorithm always converges [2]. In practice, the algorithm is
initialized with a randomly picked u}g,) (orv )), and is stopped when u(l“) (.2 (or | v,(,l“) —vg) )]
is smaller than a threshold.

When the FCM algorithm is used for the samples in each class (and thus, ¢ sets of u, and
v, are obtained), the resulting cluster centers provide representative vectors in the class, and thus
are used as the initial values of our zg)’s. The number of clusters, M;, is determined based on

the number of samples in class i, and the constraints on the maximum number of rules. Figure 4

depicts 50 points from two classes, and 4 clusters centers found by FCM for each class.

4.2 Determining g

The number of samples that are close to a z( ) reflects the “typicalness” of the z}c ). It is reasonable
to assign a large weighting factor, 8, to 2 zf:) that has a large concentration of samples around
it. Suppose M; cluster centers are obtained for class i. Since c sets of uxp, are obtained for the ¢
classes, in order to distinguish among them, we add a superscript to up; i.e., we denote by u;':p the

convergent value of ug:' 1) for class i. We use the following ad hoc measure of concentration for Bi:

N;
Bi=> (u) k=1, Mi=1---c (34)
=1



4.3 Determining (;

We consider only a special case when @Q; = a?/. How to choose the o;’s is also a problem in the
design of BMECKE. According to Specht [11], BMECKE tends to a ncarest-neighbor classifier as
a; = 0, and it tends to a linear classifier as 0; = 00. Specht reports that it is not difficult to find a
good value for a; by trial-and-error, because the misclassification rate does not change drastically
with o;. The initial value of o; can be computed from the average distance between all pairs of

samples, i.e.,
N; N;
o9 = Lk=1 Lp=1,pk LXK Xp)

t A’i(Ni - 1) (35)

It has been shown [10] that kernel estimation is the smoothest if a,(o) is proportional to N7 %2. We

found that when N; is very large a}o) tends to a constant; hence, we compute o; as:

o

= W (36)

g;
where a§°) is given by (35).

4.4 Training o; for Two-Class AFLC

A trial-and-error method, which computes the misclassification count for each value of o;, needs a
great deal of computation when the number of samples is large. Here we propose a gradient-search

method to compute o;.

When there are no linguistic rules, then, from (23) and (12), we have [u;(x) stands for pr,(x)]

M; .
pi(x) = COA(BY = 3 Bid(llx — 2(|/0:)/C (x, 01, 02) 37

k=1

where C(x, o1, 03) does not depend on 1, so it cancels when we compare g, and p, i.e., C(x,01,02)
does not affect the classification result; hence, in the following we drop C(x,0y,02) from j;(x)-
Because we want to view o; as a variable, we denote p;(x) as p;(x, ;).

Our ultimate purpose is to minimize the misclassification count. For the two-class case,

15



1
/t,(xi ),m) > [t'l(X ,3) implies a correct classification of x( ). hence, the count. of correct classi-

fication can be written as

Ny N, .
N(oy,09) = Z s { xk ,(r,) - [t-z(xi,”, a))] + Z u[/tg(x(kz), o2) — 144 (x(kz),m)] (38)
k=1 k=1

where u() is the unit step function. Qur goal is to maximize A (a1, 0;). Unfortunately, this count
is not a differentiable function of g;; hence, we use a sigmoidal function, f(z) = 1/(1 + e™F) to
approximate the step function, where 7 is a fixed positive number. In this way, we get.the following

criterion function:
M 1 1 L 2 2
N(oy,02) = J(on,02) = ¥ Sl (x{00) — pa(x, o2)] + 3 flua(x®,02) - (xP,00)] (39)
k=1 k=1

Our gradient-search algorithm for updating o; is:

a§l+l) — a{l) + J(l)aa_a‘]l (40)
o) = off 450 2% (41)

This is 2 many-at-a-time algorithm, i.e., it needs to compute N, + N, derivatives at every iteration.
As in many other hill-climbing algorithms, this algorithm can also be implemented in a one-at-a-
time manner. The trick is to use one pair of samples at a time; specifically, to replace J(o,,03) in

(40) and (41) by

Jk(al1a2) f[ﬂ'l(xk ao'l “Z(Xk ’02 ]+ f[/‘2(xk ’02 ﬂl(xk adl)] (42)

and to increment k in each iteration, i.e., to use the training samples iteratively.
Figure 5a shows the performance surface of J(oy, ;) (with ¥ = 10) for the samples and cluster
centers depicted in Figure 4. Observe that J(oy,02) has a very small gradient on a plateau of

maximum values, which makes the gradient-search algorithm converge very slowly. To overcome

16



this problem, we fixed a3 at its initial value, [initial values of a; are computed by (36)], and
applied our training algorithm only for ;. ‘This results in a point on the plateau, which is okay
because J(ay,03) is close to its maximum value at any point on the plateau. Figure 5b shows
the performance surface of J(ay, ;) for several values of a,. Observe that .J (a1,02) is a concave
function of @y, which assures [ast convergence of the gradient-search algorithm. Observe, also, that

a global maximum of J(o,0;) occurs when o) = 2.2 and a9 = 4.

5 Examples and Discussions

Ezample I: Following Ishibuchi et al. [4], we designed a two-class classifier on a pattern space
[0,20] x [0,20]. The numerical data are: S = {(4,11),(8,11),(11,3),(13,4),(13,10)} and
S2 = {(2,13), (6,14),(13,2),(14,3), (14, 14)}. The following two linguistic rules were used: (1)
IF z, is SMALL and z3 is SMALL, THEN y, is 1 and y, is 0, and (2) IF z; is VERY LARGE or
zy is VERY LARGE, THEN y, is I and y; is 0. The membership functions of fuzzy sets SMALL
and VERY LARGE are shown in Figure 6.

Classifier Design: We used the AFLC with product inference, because no information was known
about the dependency of the data. In generating numerical rules we used the Direct Method and
Gaussian membership functions, i.e., ¢(z) = exp{—z2/2}. The a and § were all set to unity.
Because the number of training samples is small, we did not use (36) to compute o;; instead, we
picked two values, 0y = 02 = 3 and gy = g2 = 5.

Results: Figure 7 shows the decision boundaries of the BMECKE using only numerical data.
Figure 8 shows the decision boundaries of the AFLC using both numerical data and linguistic
information with the same values for o;. We see that: (1) both classifiers classify all prototypes
correctly, and (2) the fuzzy classifier correctly conveys the effects of the linguistic rules. These re-
sults are comparable to the neural network classifier in [4], which is trained by the back-propagation
algorithm; however, the AFLC is nearly a one-pass process, whereas the neural network classifier

may need a significant amount of time for training.
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Ezxample 2: "The data were randomly generated from two exponential distribut wns:
pi(er x2) = e exp(=cia(zg — mi)u(zy — mp) = cip(cr = mp)u(xs — mn)),i= 1,2, (43)

where «() is the unit step function. We used ¢y = ¢12 = V2/4, iy = myy = 0; and, ¢2, = cg9 = L,
may = 4, maz = 0. Figure 4a shows {ifty points from each class. Suppose the a priori probabilities
of the two classes are cqual, then, the decision boundary of the Bayes minimum-error-rate classifier
is a triangle, as shown in Figure 10. The error rate of this classifier is 8.36%.

First we examined the AFLC without linguistic rule. The 100 points (shown in Figure 4) were
used as training set as well as test set. The leave-one-out [5] method was used, i.e., when a sample
was used for testing, it was taken out of the training set. The FCM algorithm was used to find the
zg)’s. Using (36) we obtained the initial values 0y = 2.3 and g, = 0.7, after which the gradient-
search algorithm was used to train oy, while o was fixed to be 0.7. All 8i’s were set equal to unity.
Table 1 summarizes the classification results before and after training o;, with M = 1,2,4,8, 16,
and 50 (M; = M, = M). Note that when M = 50 the AFLC is the same as the BMECKE. We see

that a small M works better than M = 50, which justifies the usefulness of the clustering method.

Table 1: Classification results of AFLC:
Number of misclassified samples

M* 112 [4]81]16]50
Before Training | Errors | 20 | 19| 22 [ 15 | 21 | 21
After Training |Errors |16 | 8 | 9 | 9 | 8 | 11
* M is the number of clusters.

Our next experiment is to see how linguistic rules affect the AFLC. We used the following three
linguistic rules: (1) IF z, is LARGE, THEN y, is 1 and y, is 0, (2) IF z2 is LARGE, THEN ¥,
is I and y, is 0, and (3) IF z, is SMALL, THEN y, is 1 and y, is 0. The membership functions

for LARGE and SMALL are shown in Figure 9.

We used the Direct Method to generate numerical rules, so that the AFLC without linguistic
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rules reduces to the BMECKE. In this way, we are able to examine the effects caused solely by
linguistic rules. In the experiment, all #’s and o’s are unity, except for @z, which was set. equal to
3.

Monte Carlo simulations were conducted Lo test the L classifier versus the BMECKE. In ecach
run of the simulations, M randomly drawn points for cach of the two classes were used in training,
and another 250 points from each class were used in testing; 100 runs were conducted for M= 10,
20, 100; and, o; were computed by (36) for cach run of the simulations. Results are summarized in
Table 2, where we also give the results for the case when the same o was used for the two classes,
i.e., 0 was computed by (36) when all samples are assumed to come from a single class (in fact,
Specht’s probability neural network classifier [11}, which is essentially a BMECKE, uses the same
o for all classes). It is seen that in all cases, the FL classifier gives better performance than the

BMECKE.

Table 2: Classification results of FL and BMECKE classifiers:
average percentage of errors of 100 runs

o; different ﬂ o; same

M | FLC | BMECKE [| FLC | BMECKE
10 | 11.25 12.81 10.49 16.56
20 | 12.86 13.77 11.30 14.62
100 | 9.89 10.38 11.57 13.24

Decision boundaries of the BMECKE and the AFLC for a specific set of training data are
shown in Figure 10. The decision boundary of the theoretical Bayes minimum-error classifier is
also shown in the figure. Obviously the AFLC approximates the optimal boundary better than the
BMECKE. Table 3 summarizes the theoretical error rate of the Bayes classifier and the percentage
of misclassified points out of a set of 1000 test samples (500 for each class) for the other two
classifiers.

Remark: We observe that linguistic knowledge can have a significant effect on the performance
of a FL classifier. A heuristic explanation for this is that linguistic rules function as additional

prototypes; therefore, linguistic rules can help to improve performance if the prototype set is small
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or does not correctly represent the characteristics of the classes. Of course, poor linguistic rules

can lower the performance of the classifier.

Table 3: Classification results of three classifiers:
Percentage of misclassified test samples

Bayes L Kernel
8.36 14.6 22.6

6 Conclusions

We have developed a method to use fuzzy inference in classifier designs, and have constructed a
structure for a FL classifier that utilizes both numerical data and linguistic information. We have
shown that, when using certain linguistic rules, the AFLC reduces to the Bayes minimum error
classifier; and, when using a certain method to generate fuzzy rules from numerical data, the AFLC
reduces to a Bayes classifier that uses Parzen’s kernel-estimation of probability densities. We also
discussed some methods to determine the parameters in the FL classifier. Our experimental results
showed that the FL classifier uses linguistic information in a reasonable way, and that it can provide

better performance than probabilistic classifiers that do not use linguistic information.
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Figure 2: Membership functions of fuzzy sets on the input and output spaces of an FLS. (a) Antecedent
fuzzy sets on feature space, and (b) Consequent fuzzy sets on [0,1].
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Figure 4: (a) Fifty points from each of two classes, each of which is exponentially distributed; o/+ denotes a
point in class 1/class 2; and (b) four FCM centers for each class; x/+ denotes a FCM center of class 1/class 2.
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Figure 5: (a) Performance surface of J(oy,02). (b) Performance surface of J(oy, o2) for fixed o2.
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Figure 6: Membership functions for SMALL and VERY LARGE, reproduced from [4]
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Figure 7: Decision boundaries of BMECKE using only numerical data. The bold line is for ¢; = 5, and the
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Figure 8: Decision boundaries of AFLC using both numerical data and linguistic rules. The bold line is for
o; = 5, and the slim line is for ¢; = 3.
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Figure 10: Decision boundaries of the Bayes, BMECKE, and AFLC. BMECKE uses 20 prototypes in kernel
estimation; AFLC uses 20 prototypes and three linguistic rules.
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