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Abstract

In this paper we present a formal derivation of general nonsingleton fuzzy logic systems
(NSFLSs), and show how they can be efficiently computed. We give examples for special cases of
membership functions and inference. We show how a NSFLS can be expressed as a nonsingleton
[uzzj; basis function expansion, and present an analytical comparison of the nonsingleton and
singleton fuzzy logic systems formulations. We prove that a NSFLS can uniformly approximate
any given continuous function on a compact set, and show that our NSFLS does a much better

Jjob of predicting a noisy chaotic time series than does a singleton FLS.

1 Introduction

A fuzzy logic system processes crisp data at the input and produces crisp data at the output;
therefore, a fuzzifier is used at the front of the system to convert crisp data to fuzzy data, and a
defuzzifier is used at the output of the system to convert fuzzy data into crisp data. The most
widely used fuzzifier is the singleton fuzzifier [11, 28, 30], mainly because of its simplicity and lower

computational requirements; however, this kind of fuzzifier may not always be adequate, especially



in cases where noise is present in the training data or in the data which is later processed by the
system. A different approach is necessary in order to account for uncertainty in the data, which is
why we direct our attention in this paper at the nonsingleton fuzzificr and nonsingleton fuzzy logic
systems (NSFLSs).

Nonsingleton fuzzifiers have been used successfully in a variety of applications (1, 8, 18, 21,
24, 26). In neural-fuzzy systems [1, 8], vectors of fuzzy sets are used both to train a fuzzy neural
network and as inputs during processing. In [18] an optimizing control method for optimizing the
fuel consumption rate of a marine diesel engine utilizes empirical rules that are expressed by fuzzy
numbers. Nonsingleton input has also been used in turning process automation [24] to represent
a human operator’s actions in the fuzzy rule-base, in the design of fuzzy control algorithms [21],
and fuzzy information and decision-making [26]). These methods are largely heuristic and provide
no closed-form expressions for fuzzy logic systems; hence, their generalizations are very difficult.

In this paper, we develop a quantitative formulation of a NSFLS and its efficient computation.
This formulation provides a tool for accounting for uncertainty in either the training data or the
input to the system. In Section 2 we give a brief discussion on nonsingleton fuzzification. In
Section 3 we derive, from first principles, the continuous and discrete forms of NSFLSs, and show
how, and the conditions under which, a NSFLS reduces to a singleton FLS. We also quantify the
difference between the output fuzzy sets for nonsingleton and singleton fuzzification; show how
our NSFLS can be expressed as a nonsingleton fuzzy basis function (FBF) expansion; and, present
examples for product and minimum inference and Gaussian input, antecedent, and consequent fuzzy
sets. In Section 4 we show that our NSFLSs uniformly approximate any given continuous function
on a compact set. In Section 5 we apply our NSFLS to the prediction of a noisy Mackey-Glass
chaotic time series, and show, by means of simulations, that the NSFLS is much more successful

in producing accurate forecasts of that series than is a comparable singleton FLS. In Section 6 we



draw our conclusions.

2 The Non-Singleton Fuzzifier

Fuzzy sets have been interpreted as membership functions px [34] that associate with each element

z of the universe of discourse, U, a number zx (z) in the interval [0, 1]:

px :U—=[0,1). (1)

A fuzzifier maps a crisp point z € U into a fuzzy set X € U.

1. In the case of a singleton fuzzifier, the crisp point z € U is mapped into a fuzzy set X with
support z;, where px (z;) = 1 for z; = z and ux(z;) = 0 for z; # z, i.e., the single point in

the support of X with non-zero membership function value is z; = z.

2. In the case of a nonsingleton fuzzifier, the point z € U is mapped into a fuzzy set X with
support z;, where uy achieves maximum value at z; = z and decreases while moving away

from z; = z. We assume that fuzzy set X is normalized so that ux(z) = 1.

Nonsingleton fuzzification is especially useful in cases where the available training data, or
the input data to the fuzzy logic system, are corrupted by noise. Conceptually, the nonsingleton
fuzzifier implies that the given input value z is the most likely value to be the correct one from
all the values in its immediate neighborhood; however, because the input is corrupted by noise,
neighboring points are also likely to be the correct values, but to a lesser degree.

It is up to the system designer to determine the shape of the membership function px, based
on an estimate of the kind and quantity of noise present. It would be the logical choice, though,
for the membership function to be symmetric about z, since the effect of noise is most likely

to be equivalent on all points. Examples of such membership functions are: (1) the Gaussian,
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px(z;) = exp[- 1%'):], where the variance o2 reflects the width (spread) of ux (z;); (2) triangular,

tx (z:) = max(0, 1 - |£%]); and, (3) px (z:) = ET%’*IB where z and ¢ are respectively the mean
and spread of the fuzzy sets. Note that larger values of the spread of the above membership

functions imply that more noise is anticipated to exist in the given data.

3 Non-Singleton Fuzzy Logic System Formulation

3.1 General Results

Consider a fuzzy logic system with a rulebase of M rules, and let the {*# rule be denoted by R'. Let
each rule have p antecedents and one consequent (as is well known, a rule with ¢ consequents can
be decomposed into ¢ rules, each having the same antecedents and one different consequent), i.e.,

it is of the general form:
R': IF uy is F{ and vy is F{ and --- and u, is F} THEN vis G/,

where ug, k = 1,...,p, and v are the input and output linguistic variables, respectively. Each F}
and G! are subsets of possibly different universes of discourse. Let F} C Ui and G' C V. Each rule
can be viewed as a fuzzy relation R' [35] from a set U to a set V, where U is the Cartesian product
space U = Uy x- - -xUp. R!itself is a subset of the Cartesian product UxV = {(z,y) : z € U,y € V},
where z = (21, %3,...,2p), and zx and y are the points in the universes of discourse, Uy and V, of
ug and v,

First we present a system formulation for the continuous case, and then for the discrete case.
We also demonstrate that in the case of the height defuzzifier, the continuous and discrete cases

produce identical systems.



R! is characterized by a continuous multivariate membership function pgi(z,y), and can be

described by the following:

R = ju  bri(z )/ ()

= /U,-/U /Vup‘,(zl)*-u*up':’(x,,)*ycr(y)/(z,y), @)

where * denotes a t-norm. [ denotes the union of individual points of each set in the continuum.
Let the input to R' be denoted by A, where A is a subset of a p-dimensional Cartesian product

space, and is given by:

A= [ o [ mxle) o emx, )@, ®

where X; C Ui (k= 1,...,p) are the fuzzy sets describing the inputs.

Up to this point, the formulation is identical to that of the singleton case. In the singleton case,
though, it is assumed that each input fuzzy set X has non-zero membership value only at a single
point, which reduces A to a set with a single point z, € U. In our treatment here, we do not make
this assumption. Each input fuzzy set is represented by the more general nonsingleton form in (3),
thereby allowing any uncertainty in the input to be represented in the system.

According to the Compositional Rule of Inference, the fuzzy subset Y' of V induced by A € U

is given by the composition of A and R':

Y'= Ao R' =sup(A« R'). (4)
zeU



Note that all unions (denoted by [) in A and R', over Uy, k = 1,...,p, arc over the same spaces;
therefore, we can write Y/, as

Y'=sup ( b @) s sy 5 x o) *Ilc:t(y)) /@ )

zeU

Since the supremum is only over z € U, then by the commutativity and monotonicity properties

of a t-norm, we can rewrite Y as:

Y'=/Vﬂc:(y)*2gg (/ulfu Itxn(’-‘l)*’“*I‘Xp(-"’p)*"l".‘(z‘)*"'*"Fn"(z")) /). (6)

Next, we recall that, by definition, a t-norm is a two-place function from [0, 1] x [0, 1] {36]; thus,
we can consider every t-norm in (6) to be acting on a pair of membership functions. The calculation
of the t-norm over all the points in the corresponding spaces of the two membership functions is
easier to visualize if the membership functions are in the same space; therefore, we rewrite (6) in

the following manner:

Y= fvucr (y)*igg (/U‘ fU [ex, (1) % gt (z1)) % - - - * [px, (zp) *up,t,(zp)]) /(y)- (")

Note that the supremum in (7) is over all points z in a p-dimensional Cartesian product space. By
the monotonicity property of a t-norm [36], that supremum is attained when each term in brackets

attains its supremum. Let
pL(zk) = px, (k) * up (k) (8)

where HQls BXes BFL € Uk. Assuming that Fqt produced by (8) is a function whose supremum

can be evaluated, let z .., denote the point in Uy where that supremum is attained; then, (7)



becomes:

V' = [ e (0 Teatiqy (ko) /W), (9)

where T_, denotes a sequence of p t-norm operations.

Using the same procedure and rationale as in the continuous case, we can derive corresponding
expressions for discrete NSFLSs. Each U;, (i = 1,...,p) and G are finite (and thus countable),
and the i** antecedent membership function, HEss and consequent membership function, pqt, have
nonzero membership values at discrete points 2;.1,...,Z;y;, and vi,..., U, respectively. The I*»

rule, R!, is therefore given by:

ﬂp m

ny
R = 2 one E Z”’F“ (T1iy) *-- el o 1 (zw'y) * pet (¥5)/ (215> Z2,i0 -+ - ZTp,ips ;) (10)

1=l ip=1j5=1

where ) denotes the union of the individual points of each set. The p-dimensional input to
R! is given by A = ik -Z::f;l Bxy (Z1,3y) * - % px, (Tp,i ) [(Z1,61) T2,iz0 + - -1 Tp,i,)- Using the
Compositional Rule of Inference and the commutativity and monotonicity properties of a t-norm,

we can write the discrete output fuzzy set Y/ as:

Y' = Y uei(yy) *

i=1

ng p
sup D 20 by (Z) * ok i (Zp) * (1) * o i (Z04,) | /(5)- (11)
A =1 ip=1

From the finiteness of each universe of discourse, Uy, the supremum is the same as the maximum;
therefore, we need to calculate the maximum over all z € U of the parenthetical term in (11). That

term will be maximized when every term FaL (zx:,) = px, (zx,i,) * LRt (&, ) is maximized. If the



global maximum, T¢ maz, of cach Hot (z«,i,) can be evaluated, then,

yi= Z: re(y5) *ﬁ:]ﬂqi (zk.mat)/(yj)’ (12)

i=1

which is the discrete counterpart to (9).
Because our FLS has M rules, the final output fuzzy set, Y, is obtained by t-conorm aggregation

of the individual outputs of each rule, i.e.,
Y=Y'4Y2i...bY¥M (13)

where + denotes t-conorm (s-norm) [15, 36).

Kosko [11] has utilized arithmetic addition as a means of aggregation instead of a t-conorm. In
most cases, this produces a central-limit-theorem effect that approximates a unimodal fuzzy set.
The smaller the spread of this set, the higher the probability that the defuzzified value is the correct
one. This additive structure is encountered in many t-conorms, which impose certain conditions
(i.e., bounded sum) or normalization to keep the result in [0, 1] (e.g., Einstein sum, algebraic sum,
Hamacher sum [36]).

We will use a special case of an additive fuzzy logic system, one that uses a weighted additive
combination of the points where each output fuzzy set becomes a maximum; it is the modified
height defuzzifier of [9], which was also proposed by Wang [28, 29]. Let §' denote the point in
each individual output fuzzy set such that ggi (7') = 1, and &' denote the spread of ugi. Then, the

modified height defuzzifier leads to the following output for our nonsingleton system:

Egl g 7?:1/‘02 (3k.:up)] / (61)2
M [To kg (zhsus)] /(802

Y= fas(z) = (14)



The spread, &', of the output fuzzy set is proportional to the amount of uncertainty that §' is close
to the point where g (y’) = 1 (e.g., in the case of Gaussian consequent fuzzy sets, §' could be
chosen to be the standard deviation); thus, if §' is very small (high degree of confidence), then the
corresponding point § is more heavily weighted than if § is very large. For the case of the modified
height defuzzifier, the discrete nonsingleton fuzzy logic system (with M rules in its rulebase), has
the form of (14) with 2 ,up replaced by g maz, and, assuming fine enough discretization, will give
identical results as the continuous system.

By defining the following nonsingleton fuzzy basis functions (FBFs)

(72 by (k)] /(62
3 ['T:T.—,ll‘qg (zk.sup)] / (51)2’

pi(z) = (15)

we can express our nonsingleton system in (14) as the following fuzzy basis function expansion:

M
fas(2) =Y Toi(2). (16)

=1

The modified height defuzzifier is a simple and fast method to implement a general FLS; how-
ever, other defuzzification methods, that have different properties, can also be used, e.g., Center-Of-
Area, Center-Of-Sums, and First-Of-Maxima (see (9] for an overview and comparison of different
defuzzification methods).

In order to contrast the nonsingleton and singleton discrete cases, and to also show that the
singleton case is a special case of (11), we assume, as mentioned before, that the input fuzzy sets are
normalized. Consequently, for each input fuzzy set X; there exists at least one point zj 4, € X such
that px, (zk,q,) = 1. In addition, we assume that Zx = zx 4, is unique in X (extension to multiple
such points is easy); then, px, (£1) = ... = pux,(Tp) = 1, and px, (Z1) *... % px,(Zp) = 1, which is

true for all t-norms. Consequently, the general nonsingleton case in (11) can be decomposed into



contribution of the singleton components and the remaining components with membership values

less than unity:

Vi = Y oi() sup [tr @) *ecoxmm@E)+ 3 Y - Y (o) *

j=1 W#q ia#gq2  ipFgp

X2 (B2,05) % - % X, (Tp,ip) * 171 (1) * gy (T2in) % -+ *ﬂp;,(-’cp.i,)] /(%)

il‘cﬂ (45) * Sns/(y;)- (17)

=1

where ‘+/ denotes union. If the inputs are indeed singletons, then the term on the right-hand side
of '+’ becomes zero, and the supremum is no longer necessary, in which case (17) reduces to the

familiar singleton case, namely,

Y = 3 ur() % g (@) %ok gy (50)/ (5)
j=1

3 et (u3) % 54/ (3). 18)

=1

Equations (17) and (18) show that in the nonsingleton system the scaling of the output fuzzy set
for each rule will, in general, be different than in the case of a singleton system.
A general expression for quantifying the scale factor difference, §s = Sp, — S,, can be found as

a direct consequence of (17) and (18), i.e.,

05 =Sps— Ss = sungU[l‘Fl'(il) *ee '*”’F},(EP) + Z Tt 2 KX, (zl,ix) Lo
W¥n  ipEep

*ex, (Zpip) * gt (T10) %o % ppy (Bpp)] — Bpt(21) * - - - % g (Zp)- (19)

The most widely used subclasses of FLSs are those with product or minimum inference as a

t-norm, and with Gaussian or triangular membership functions. These subclasses are considered
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next.

3.2 Product Inference

The k** input fuzzy set and the corresponding k** antecedent are assumed to have the following

forms:

. - 2 (zhi, —m ‘)2
Thi, — MX o F|
BXy (xk.l'k) =exp{— ( ki 2 k) y BEt (xk,l'g) =exp| — - 2 A » (20)
2axk k ZUF,
k

and 'x’ in (11) denotes algebraic product, i.e.,

Y'= il‘c' (v5) - sup (Zl )f,[#xl (=14) - pr(z10)) - - [x, (2p3,) - R (z,,,,-,)]) /(y;)- (21)
i=1 =

f1=1 ip=1

By maximizing the function
pat (Thi) = Bx, (Thie) - Bp (ki) (22)

we find that it is maximum at

2 2
X ™} +aF‘,‘mxk

(23)

Zk,maz =
' o’§k + U?“,“

An important special case occurs when all input points for each input variable have the same
level of uncertainty (after they are fuzzified using the nonsingleton fuzzifier), so that ag(k =o%. In

this case, mx, = zx (see Section 2}, and therefore

U?VmF: + a}za:k

(24)

Tk,mazr =
a}( + a:.,
k

11



Substituting (24) into (21), the latter becomes:

Yi= Z 1 (y;) H rqt (zk,maz)/(y;)- (25)

j=1

Since we are using Gaussian consequent fuzzy sets, the point where each output set becomes
maximum is unique. Consequently, for the special case of product inference, Gaussian membership

functions, and equal uncertainty on all inputs, the nonsingleton FBFs given by (15) become:

axm,.;+a

| (A (—,kmr‘—) /(8')?

pl(g) = axm‘,.; +¢F, (26)

=M, | {9 kgt (‘_,WTL) / (5‘)2

When the uncertainty of the input is zero, 0% = 0, and (23) reduces to the singleton case,
i.e., Tk mez = mx, = zx. In this case, each px, (Z,maz), k = 1,...,p, is unity, and-therefore

Hot (zk,maz) = EF (zx), so that (25) reduces to

Y=Y () IIuF: (=1)/ (%), 27)

J=1

and the FBFs in (26) become:

[Tiei £r2 (z6)/ (61)?

s(2) = , 28
P& = S T, by (o) @2 =)
where pj denotes the singleton FBFs. Additionally {see (14)],
M S G [TEo bty (hmas)| /(6)?
fns L) = ! z)= (29)
(z) ,Z}y n(z) = M [ o (zk‘mu)] /(8)?

12



reduces to

S, 7 ey 1t (20)/ (8
LN ARV

M
L@ =) i) = (30)
=1

Comparing (29) and (30), we see that nonsingleton and singleton FLSs are structurally the same.

To illustrate the differences between a NSFLS and a singleton FLS, we present the case of a one
rule SISO FLS with Gaussian membership functions and product inference. For the nonsingleton
system, the input is also fuzzified using a Gaussian membership function. Figure 1 shows the output
fuzzy sets corresponding to each system. Observe the Gaussian nature, in Fig. 1b, of the product
function ;zQ§(a:), and the location of its maximum value at 2 = z; mq-. In this case, the output
membership function for the NSFLS is of greater maximum height than that of the singleton FLS.

Figure 2 demonstrates (19) for product inference and Gaussian membership functions. The
bimodal curves indicate the scale factor difference between the two systems, as the input sweeps
over the entire universe of discourse of the antecedent membership function. The larger amplitude
scale factor difference curve corresponds to a nonsingleton input with higher level of uncertainty
(ox = 0.70F), whereas the smaller amplitute difference curve corresponds to nonsingleton input
with lower level of uncertainty (¢x = 0.20r7). When the input singleton and the mean of the
corresponding nonsingleton input are at the mean of the antecedent [i.e., mpt = my,, so that
Tkmaz = M (see (23)], the difference in the scale factor is zero.

Figures 1 and 2 clearly imply that (especially in the cases of more complex systems with more
than one rule, and multiple inputs) the defuzzified nonsingleton system output may be significantly
different than the corresponding singleton system output.

Figure 3a, which is a direct implementation of (26) (with p = 1, M =4, z, € [1,100), §' = 1,

mpr = 20-1, and opt = 10, for{ = 1,..., M), shows the difference between the fuzzy basis functions

13



in a singleton system versus the fuzzy basis functions in a nonsingleton system. When the degree of
uncertainty in the Gaussian input is large, the basis functions of (26) (shown in Fig. 3a by the dash-
dotted line) are significantly different than in the singleton case (solid line). Note that, when the
uncertainty at the input is small, then the nonsingleton case is essentially identical to the singleton
case, and the NS FBFs plotted in Fig. 3a are indistinguishable from the singleton FBFs. For the
example presented here, the higher uncertainty input had variance of the order of the variance
of the antecedents, whereas the lower uncertainty input had variance about one twentieth of the
variance of the antecedents. Figure 3b depicts the fuzzy basis functions for a singleton (solid line)
and a nonsingleton FLS with four rules, product inference and triangular membership functions.
Observe that the two exterior FBFs saturate at unity.

Greater uncertainty in the input not only "fires” rules at a higher level than a singleton system
[Eq. (19), and Figs. 1, and 2], but it also usually fires more rules than a singleton system would.
This is due to the fact that a nonsingleton input may have membership (or, nonzero subsethood
[10]) in more antecedent fuzzy regions than a singleton input. For example, a vertical line at z = 40

in Fig. 3a intersects three singleton FBFs and four nonsingleton FBFs.

3.3 Minimum Inference

Now, we let "x’ in (11) be the t-norm 'min’, in which case Kot (zx) in (8) is

pqt (ki) = min(px, (2h4 ), 2 (Th,00)), (31)

for finite universes of discourse. As in the case of the algebraic product t-norm, the term in the
parenthesis in (11) is maximized when every grouped pair is a maximum, i.e., Hqt (zk,i,) must be
maximized over all k£ and all z.

In order for the input fuzzy set X} to activate the fuzzy rule R! at F}, some of the points in the

14



support of X must coincide with some points in the support of Fj. Let this set of points define the

closed interval [ax, cx] such that by € (@, ck) and ax < by < ci (Fig. 4). Without loss of generality,

let u F (zk,,) be strictly increasing, and jx, (z&,i,) be strictly decreasing on the interval [ag, cx] and

consequently on any closed subintervals [ax, bi), [bk,ck]. [In the case of ux, (z«,,) being a proper

subset of ppt (Thyiy ), i-ey 2x, (Zhii) C Bpt(Thsin)s and px, (Thi) # ppi(Tki,) for at least one z4,,

or if px, (zki,) = BF! (%&,i,), then obviously maxy. Hqt (ki) = maxvzpx, (zki)]. Let b be

the point of intersection of Br and px,. From the monotonicity conditions on the membership

functions in these intervals, we have:

Vz € [ar, be), min(ux, (zri) 87 (Zh0n)) = 8 (Tki)

where BE (zk,1) < EF (z,2) if zp1 < 225

thus,
sup ppi (Teip) = gt (be)-
z€lar,bx]
Similarly,
Vz € [be,cr], min(px, (Trin)s wre (2hi)) = X (2h)
where px, (zk3) > px,(Zk,a) i Tr3 < Zra,
so that

sup  px, (Thi) = px, (bs).
3e[bk ,Ck]

15
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(35)



Consequently, Hq! (xk,i,) becomes a maximum at the point of intersection of the two membership
functions, which is also intuitively satisfying. For example, for the previously described Gaussian
membership functions [Eq. (20)], by equating their exponents and solving a second-order equation,
we find the point of intersection to be given by:

axmpt + aFsz

36
ST or (39)

Tkmaer =

if Op > 0x and mpt > k.

The output fuzzy set Y is computed exactly as in (25), after replacing product with min, and
Zk,maz With the expression in (36).

The complete solutions for the maximization of Hqt for algebraic product and minimum t-
norms are summarized in Table 1, along with the corresponding solutions for the case of triangular
membership functions. The centers of the antecedent and input triangular membership functions
are denoted by mpt and my,, respectively, and their corresponding left and right spreads by ! Fir
Ix,, TRl a.r;d rx,- Observe, from Table 1, that z; ma. is easiest to calculate in the cases of product
inference with Gaussian membership functions, and minimum inference with triangular membership

functions.

4 Uniform Approximation Property of Non-Singleton Fuzzy
Logic Systems

Wang and Mendel [31] and Kosko [11] have shown that specific subclasses of singleton fuzzy logic
systems are universal approximators. In [31}, the Stone-Weierstrass theorem (involving algebras
of functions) was used, for approximations in the uniform topology on a compact set. This result

was proven only for singleton FLSs with product inference and Gaussian membership functions. In

16



[11], continuity was used to prove uniform approximation capability of singleton additive systems.

Although (14) bears structural resemblence to Kolmogorov’s representation theorem [16], the
two are quite different. Kolmogorov’s theorem (which resolved Hilberts 13** problem) provides a
representation of a continuous function of several variables defined on an n-dimensional cube, by
sums and superpositions of continuous functions of one variable. In contrast to fuzzy basis functions
(15), the nonlinear functions employed in Kolmogorov’s theorem, as well as in the subsequent
improvements of that theorem by Lorentz [16] and Sprecher [25], are highly nonsmooth and strictly
increasing. Even though these nonsmooth functions can be viewed as limits of uniformly converging
series of smooth sigmoidal type functions [12, 13], the monotonicity requirements are too restrictive
for our basis functions.

Here, utilizing concepts from real analysis [23], we present a uniform approximation theorem
for nonsingleton fuzzy logic systems, that includes the systems described in [31] and [11] as special
cases.

Theorem. Any given continuous function ¢ : U — V on a compact set U € RP can be
uniformly approximated by the nonsingleton fuzzy logic system f,; in (14).

Proof: See Appendix A.

This is an existence theorem, which gives us assurance that there exists an NSFLS capable of
uniformly approximating any continuous function on compacta; however, it does not tell us how to
choose the parameters of the NSFLS nor does it tell us how many basis functions will be needed

to achieve such performance. These topics will be the subject of a later paper.
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5 Modeling and Prediction of Complex Systems: Chaotic Time

Series

Several well-known algorithms exist [2, 4, 33] for the calculation of dynamical and geometric in-
variants such as fractal dimension (capacity, correlation, information) and Lyapunov exponents,
of an underlying strange attractor of time series. The largest Lyapunov exponent is essentially
a measure of how predictable a system can be from observations of the past, whereas the fractal
dimension is an indication of the complexity of a system. Unfortunately, data requirements and
extreme sensitivity to noisy measurements make th%g algorithms prohibitively expensive in prac-
tical applications. Even if these invariants could be calculated accurately, they still do not provide
enough information for the construction of a predictive model.

Other approaches attempt to construct a predictive model based solely on the given time-series
data. Several such approaches (e.g., Gabor polynomials, linear prediction) have been compared
to prediction using feedforward neural networks, with the best results occuring for the neural
networks [14] In [28] it was shown that a numerical-fuzzy approach based on a singleton FLS can
give results equivalent to those or even better than that of a neural network. Here, we show that
our nonsingleton FLS can significantly outperform an equivalent singleton FLS in the predictive
modeling of a chaotic time series, especially in cases where either, or both, the training data and
input data are corrupted by noise.

Chaos is having an impact on many different fields, including physics, biology, chemistry, eco-
nomics, and medicine [3, 5, 22]. The chaotic time series that we examine is a model for blood

production, due to Mackey and Glass [17]. This chaotic time series is described by the following

18



delay differential equation, that is now known as the "Mackey-Glass equation”:

dz(t) _ 0.2z(t - 1)
dt 14z -7)

- 0.1z(t). (37)

For 7 greater than 17, (37) exhibits chaotic behavior.

Chaotic behavior can be described as bounded fluctuations of the output of a system with high
degree of sensitivity to initial conditions [3]; i.e., trajectories with nearly identical initial conditions
diverge exponentially (note that exponential divergence of two distinct trajectories does not imply
unboundedness. Figure 5 illustrates this kind of behavior). A system, such as the one in (37),
exhibiting chaotic dynamics, evolves in a deterministic manner; but, the correlation of observations
appears to be limited; thus, prediction of the state of the system is particularly difficult [22).

In order to demonstrate the qualitative nature of the dynamical system given by (37), we display
representative portions of the time series for different values of  in Figs. 6(a) and 6(b). We also
depict the amplitude spectrum estimates of these representative sections in Fig. 6(c) and 6(d), and
their corret;ponding two-dimensional phase plots in Fig. 6(e) and 6(f). From these plots we are able
to distinguish periodic behavior for small 7’s and chaotic behavior for larger 7’s. Most commonly,
the transition of a system from predictability to chaos occurs via a cascade of bifurcations, which
are qualitative changes in the limit sets of a system, where a limit set is the set of points whose every
neighborhood B is repeatedly entered by the solution ¢;(z) of the differential equation as ¢t — co.
For 7 close to 17, which is the onset of chaos for the Mackey-Glass equation, the bifurcations get
closer and closer together, until the system breaks down into chaotic behavior.

The largest Lyapunov exponent [5], A, which quantifies the rate of divergence of the time series
and therefore the degree to which the system is predictable in the long term, can be estimated using

nonlinear regression [19]. If A > 0, then the system will exhibit chaotic behavior (this property
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makes it possible to detect chaotic dynamics in a noisy environment just by examining the sign of
A). We estimated A to be 0.007 for the Mackey-Glass equation with 7 = 30, thus confirming thai
the system is indeed chaotic.

We designed the NSFLS in (16) to be a single-step predictor of the Mackey-Glass chaotic time
series. Our design is based on N training pairs that we obtained by simulating (37) for 7 = 30, using
a finite-dimensional iterated mapping. A higher-order Adams-Bashforth integration algorithm [20]
with sufficiently small step size would be a good choice for the simulation of (37) (note that in order
for the higher-order aigorithms to yield better results than the lower-order ones, the integration
step should be chosen to be sufficiently small). In our simulations, we assumed that only noisy
measured values of z(t) are available, namely, {(t) = z(t) + n(t), t = 1,..., N. The input vector
to our fuzzy logic system is u(t — 1) = [((t - 1),{(t — 2),...,{(t — p)]7, so that the estimate of the

time series, based on our NSFLS is given by:

£(t) = fas(u(t - 1)). (38)

Figure 7 depicts the prediction results, in the absense of noise, for three hundred points of
(37) [z(1001) to z(1300), after allowing 1000 points for the transients to die out], produced by our
singleton FLS using a numerical-fuzzy algorithm (all fuzzy rules were generated from the training
data). Five hundred input-output training pairs of five inputs and a single output were used to
construct the system; these were drawn from z(1) to 2(1000).The same numerical-fuzzy algorithm
and number of training pairs were used to construct a nonsingleton system of the form of (14).
All the common parameters between the singleton and nonsingleton FLSs were chosen to be the
same. For all simulations, ox in the NSFLS case was chosen equal to the standard deviation of the

additive noise. In a noise-free environment, for which ox = 0, the performance of the nonsingleton
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system was identical to that of the singleton system. As shown in Fig. 7, both systems can closely
predict (37) in the given range.

Using the same common paramecters for both systems, as in the noisc free case, we added
zero mean uniform noise to the training and test sets and we retrained both systems. Again,
five hundred input-output training pairs of five inputs and a single output were used to construct
the system, drawn from (1) to {(1000). Figure 8 shows typical prediction results for both the
singleton and the nonsingleton systems, at signal-to-noise ratios (SNRs) (defined as 20 - log%‘::'ﬁ'-,
where o denotes standard deviation) of -5, 0, and 10dB. Figure 9 summarizes the performance of
the nonsingleton and singleton systems for these SNRs, averaged over 100 realizations. The average
mean-squared error and average standard deviation for each case are given in Table 2. Figure 10a
shows the prediction results based on our NSFLS, for twenty different realizations and SNR =
0dB, overlapped on the same figure to give a visual representation of the standard deviation of the
predicted estimates. Figure 10b shows the prediction results based on the corresponding singleton
FLS, for twenty realizations. It is evident from this figure that the singleton FLS does not appear
to be able to deal effectively with the uncertainty during the prediction process, due to the noise
in the training data and the input. Our NSFLS is significantly more successful in producing better
predicted estimates of the chaotic time series.

Note that no attempt was made to optimize the FLSs used here. Algorithms aimed at obtaining

optimum, or near optimum, NSFLSs will be described in a future publication.

6 Conclusions

We have presented the continuous and discrete cases of a general NSFLS, and its efficient com-
putation for the special subclasses of Gaussian and triangular membership functions with product

or minimum inference. We have also developed a simple equation that describes the scale factor
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difference between singleton and nonsingleton systems; it lets us examine and compare the behavior
of singleton and nonsingleton systems for different types of inputs and uncertainty levels. We have
also shown that a NSFLS can be expressed as a lincar combination of nonsingleton fuzzy basis
functions. Although, conceptually, singleton and nonsingleton FLSs are very different, the latter
does have essential structural similarities with the former, and they become identical in the ab-
sense of noise or uncertainty at the input. We have also shown that the NSFLS (14) can uniformly
approximate a continuous function on a compact set, i.e., it is a universal approximator.

The utility of our NSFLS and its superiority over a singleton FLS was demonstrated through
our example on the prediction of a chaotic time series from noisy observations. In all cases, our
NSFLS significantly outperformed a corresponding singleton FLS. Both were trained in the same
manner, with identical common parameters, and were capable of closely approximating the time
series in a noise-free environment.

In summary, we have found NSFLSs to be very promising and an effective tool for dealing with

uncertainty, totally within the framework of fuzzy logic.

Appendix A. Derivation of Uniform Approximation Theorem

Proof: Uniform approximation requires that

Ve>0|fus(z) —9(z)l<evVzel. (A-1)

fas(z) is given by (14) and represents the crisp output produced by the modified height method

defuzzifier of the nonsingleton system. Since U is a compact subset of RP, continuity of g implies
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uniform continuity [23]; thus,
Va>036>0 3 |9(z,) -9)l<aVz,z, €U 3 |z, —z,| <6 (A-2)

Let {B;} be a family of open balls (open sets) of radius & that covers U, and Bj be the set of
all limit points of the open set B;. Since U is compact, any open cover of U contains a finite open

subcover:

Uc CJ By. (A-3)

i=1

We construct such a subcover, comprised of open balls B, , centered at ¢;, such that the centers of

the nearest neighbors of each open ball, B, is a limit point of B,,, but does not belong to B, i.e.,
QGB;‘ and ¢ ¢ B,,. (A-4)

Then, assuming that U is connected, and B, and B, are nearest neighbors:
I =B, )Be, #90 forl,k < g, (A-5)

The image of the center of each open ball under g is given by g(g). Since g is a continuous function,

the image of U under g, g(U), in V will also be compact and connected, and

o) < | ) 9(By). (A-6)
=1

Select fuzzy sets G' € V centered at §' = g(g) such that the set of points of support of G',

Set, covers g(B, NU), and pe (#') = 1; hence, U}, Sg: covers g(U). Let g, € By, 2, € B, and

23



Z3 € In; then, |z, — z3] < & and |z3 — z,| < 8. From (A-2) and the triangular inequality:

lg(z1) — g(z2)] < lg(z)) — g(z3)l + [9(z3) — 9(z2)| < a1 + 4 = ca. (A-7)

The distances of z; from ¢; and z, from ¢; are both bounded by §; thus, z; can come arbitrarily close
to ¢, and z, can come arbitrarily close to ¢;. By letting z, and z, approach ¢ and ¢, respectively,
then (A-7) bounds the difference of their corresponding images: |g(g;) — g(cx)| = I§ — #*| < €a.

Any point z € U that is not a center of a fuzzy set, belongs to some Ij;; therefore, the distance
of its image from the image of the center ¢ is given by (A-7): |g(g) — g(z)] < €2. Let this point z
be the point z; ,,, at which the functions ot in 7',:‘=1in (Zk,sup) in (14) are maximized.

Now suppose that z; ,,, activates N < M rules. Then we have N individual centers, whose final
output, according to the modified height method defuzzifier, lies somewhere inbetween, or exactly
on, the centers of the sets Y!, and, consequently, the centers of the sets G', by construction. This is
ensured by the fact that, for any z € U, the sum of the coefficients (15) of each &' in (14) equals 1,
ie, IM, p;(g) = 1. [Note that, from the properties of the most commonly used t-norms (algebraic
product, Einstein product, bounded difference, and Hamacher product) and (12), we know that
the output fuzzy set Y* and the consequent fuzzy set of the I*» rule, G, achieve their maximum at
the same point #. In the case of minimum as a t-norm, G! is required to be symmetric]. We have
already shown that the distance between centers G' and G* is bounded by ¢z; thus, the distance of
the output f,,(z) produced by the nonsingleton fuzzy logic system (14) from the centroid of Glis

also bounded by €3, i.e., | fns(z) — 9(g)| < €2. Then, by the triangular inequality:

[frs(2) — 9(2)| < [frs(z) —9(c)|+ l9(e) —9(z)| <2+ e2=¢ (A-8)

Thus, the nonsingleton fuzzy logic system f.s(z) in (14) uniformly approximates g(z). O
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The above proof contains the systems shown in [31] to be universal approximators as a special

case. It can also be easily extended to nonsingleton and singleton additive FLSs [9, 11].
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Table 1: zg ma, for Gaussian and triangular membership functions in the cases of algebraic Product and
Minimum t-norms. {Due to space limitations, dctails of derivations will be given in a future publication.)

t-norms Zk.maz for Gaussian Zk,maz for triangular
membership functions membership functions
03‘ka; +’:-l mx,
Product a,"+ wh if mx, <mg and 71 € [mx,, mpt], then zx mee =N
xk UF: & &
mx,+me =l o 4rx,
where 71 = L—k
if lF: >rx, and 1, ¢ [mx,, mp:‘], then zk mas = Mx,
ifl,.-: <rx, and 1 ¢ [mx,, mp:], then zx maz = mpt,
if mx, > mp and 7; € [mx,, mg), then Ze,mas =12
m g +mx, —=Ix, +rp
where 72 = —* 3 L
iflx, > HF‘ and v, ¢ [mp‘u.,mx,], then zx,maz = mpt
iflx, < rFL and y; ¢ [mp:,mx,], then zi maz = Mmx,
if mx, = mp: = m, then 4 maz = m
. IX™ pl +9 pt X, Cptmx,+rx, m et
3 k F3 3
Minimum oxFo T ¥7, if mx, < mp
&
. lkapg-o-rp:mxk .
if op > ox, and mp > mx,, —lx“_'_—r;— if mx, > mp:
k
k
orop < OXx, and mp < my,
dpzmxk—akad
UFL —dxk
if OF > 0X, and mp < my,,
or opt < ox, and mpt > mx,

Table 2: Average standard deviations and average mean-squared errors for different signal-to-noise ratios, for
singleton and nonsingleton systems. In the noise-free case, the average standard deviation and mean-squared
error were 0.0168 and 2.8329 x 10~%, respectively, for both systems.

[SNR [ -5dB | 0dB | 10dB
Singleton FLS, avg. std 0.5517 | 0.3308 | 0.1281
Nonsingleton FLS, avg. std || 0.2128 | 0.1496 | 0.0765
Singleton FLS avg. mse 0.3066 | 0.1101 | 0.0165
Nonsingleton FLS avg. mse || 0.0462 | 0.0228 | 0.0059
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Figure 1: a) SISO FLS: Composition of rule with singleton input, and corresponding output. b) SISO
NSFLS: Composition of rule with Gaussian input, and corresponding output. This figure also illustrates
Eq. (25) (with M=1, p=1, mp: = 40, oz = 10, z; = 25, ox = 7, mg: = 50, oG = 15) for Gaussian
membership functions. Equation (25) reduces to (18) if the input is singleton, with '+’ replaced by product.
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Figure 2: Scale factor difference between SISO singleton and nonsingleton systems, over the entire input
range for one antecedent. When the input singleton and the mean of the corresponding nonsingleton are at
the mean of the antecedent, the scale factor difference is zero. For higher levels of uncertainty in the input
(represented by larger variance in the Gaussian nonsingleton input), the scale factor difference is larger.
This difference in scale factors is also evident in Fig. 1 for one particular case of singleton and nonsingleton
inputs. The horizontal axis represents the means of the Gaussian input in the nonsingleton case, and the
location of the singleton input in the singleton case.
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Figure 3: (a) Fuzzy basis functions for nonsingleton (dash-dotted line) and singleton fuzzy logic systems
with four rules, for Gaussian membership functions and product inference. (b) Fuzzy basis functions for
nonsingleton (dash-dotted line) and singleton fuzzy logic systems with four rules, for triangular membership
functions and product inference. The antecedent membership functions were chosen to be the same in the

NSFBFs and singleton FBFs.
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Figure 5: Sample waveforms of the Mackey-Glass chaotic time series (7 = 30) for two different, but very
close initial conditions (all values in the initial value interval are set to 0.1 for the first waveform, and to
0.100001 for the second waveform). Observe that after a certain point the two realizations evolve completely

differently.
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Figure 6: (a)-(b) Represcntative samples of the Mackey-Glass time series, after letting transients relax.
(c)-(d) Amplitude spectra plotted on a semilog scale, for the examples illustrated in (a) and (b). (e)-(f)
Corresponding phase plots of the time series segments depicted in (a) and (b). ('d’ in x(t-d) on the vertical
axis denotes the delay used in the Mackey-Glass equation; it is either 13 or 30).



Figure 7: Prediction results in the absense of noise. The solid line is the actual time series, whereas the
dash-dotted line shows the predicted estimates. In this case, the NSFLS and the singleton FLS produce
identical results. The same parameters of the singleton FLS used here, are also used in the subsequent cases
when noise is added. All the common parameters of the NSFLS and the singleton FLS are identical.



Typical pradicfon recutts for the singleton FLS at SNR=-5dB

-1y T

S oty e

e e

‘i m @

S

L -
SIS

o L

E R =

150

(b)

Typical predicion results lor the singleton FLS at SNR « 0B

100

Typical prediction cesuts for e NSFLS ot SNR = 548

150

100

%

15)

(a)

Typical predicion regults for the NSFLS at SNR = 048

BYye o ey

- g ey

b DA

e

e it ;

—— e o 2P P, = *

—— - - —
- —— A s W . -
3y

- 'l

Ia.ldl.\mslf

TS TU U TL T TSl Ao o
=

s a7 v

Y 5

L~ e e s
e v

JrReen e e e
I,li?l.‘lll‘

—~—

" Tl A A

A
150

(d)

Typical prodiction results for o singleton FLS at SNR210d8

—
-
——
ETY YV Y
e
er AL
e Y3 -
-
— g

P &
-
- =
B Fus ol M oem e
Py a3 e 30
- S Yl
St D1 s
-

08+

02

Typical prodicton results for the NSFLS at SNA = 10dB

250

200

100

250

150

()

100

150

(e)

Figure 8: Typical prediction results (single realization) for nonsingleton and singleton fuzzy logic systems,

for different signal to noise ratios.
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Figure 9: Averaged prediction results for 100 Monte Carlo runs. In all cases, the mean squared errors and
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the corresponding standard deviations are significantly smaller in the nonsingleton case (see Table 2).



Singaton FLS predicton resusts for 20 Merite-Carlos ot SNR = 0B

T

RSFLS predicton resuts for 20 Monte-Cados 2t SNR « 0B

4 T \J T

ne

50 100 150 200 250 300

(a) (b)

Figure 10: a) Prediction results for the NSFLS, for twenty different noise realizations, at 0dB. b) Prediction
results for the singleton FLS, for twenty different noise realizations, at 0dB. These figures show that the
standard deviation of the prediction results is much higher in the singleton case than in the nonsingleton

case.



