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Abstract

Fuzzy logic systems (FLS's) can be designed using training data (i.e., given numerical input/output pairs)
and supervised learning algorithms. FLS's can be viewed as a linear combination of nonlinear fuzzy basis
functions (FBF’s), and methods of linear optimization like orthogonal least squares (OLS) can be applied
to tune the parameters of the FLS. The generated FLS should be as small as possible while fulfilling the
required task of function approximation, so as to reduce computation when the designed FLS is applied to
new data. OLS can be used to select a subset of most significant FBF’s out of an initial pooi set up by
the training data. The drawback to OLS is that the resulting system still contains information from all M
initial rules, derived from the training points, even though only the most important Ms rules have been
established by OLS. This is due to a normalization of the FBF’s, and leads to excessive computation times
during further processing. Our solution is to construct new FBF'’s out of the reduced rulebase and to run
OLS a second time. The resulting system not only is of reduced computational complexity, but is of very
similar behavior to the unreduced system. The second run of OLS can be applied to a larger set of training
data, which significantly improves the precision. We illustrate our two-pass QLS algorithm for prediction of
the Mackey-Glass chaotic time series. Extensive simuiations are given in which we look at tradeoffs among
the design parameters of a FLS for this application.
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Chapter 1
Introduction

Fuzzy logic systems (FLS's) can be efficiently designed when linguistic information is available to generate
fuzzy rules. Such rules may also be generated from available sample data, namely, desired input-output-pairs.
The goal of automatced learning for FLS’s is to generate a system from given training data. This system should
have a reasonable size, best possible precision to model the training data, and, make good extrapolations
for input data not included in training. An advantage of FLS’s over feedforward neural networks is that
linguistic information may be combined with numerical data. We focus on FLS’s with » inputs, one output,
singleton fuzzification, Gaussian membership functions, and height method of defuzzification. These FLS’s
are proven to be universal approximatorsin [7]. If the parameters in the antecedent membership functions of
a FLS are fixed, the FLS becomes a linear combination of nonlinear fuzzy basis functions (FBF’s). Classical
linear regression. like the Gram-Schmidt orthogonal-least-squares (OLS) algorithm, can be used to select
significant FBF’s from the training data and to determine the weights (the parameters in the consequent
membership funczions) which appear in the FBF expansion. This is done in (7], but its algorithm has a
disadvantage which, as we show in Chapter 2, makes it difficult to use for practical implementations. The
FLS in [7] is not reduced in complexity by selecting a subset of FBF’s, because each FBF is normalized by
all membership functions (MBF’s) of the rules which define the original FBF’s. An application of OLS for
two-layer feedforward neuronal networks [2] does not suffer from this problem, because their radial basis
functions are not normalized. .

A slightly modified OLS algorithm, which is descibed in Chapter 3, is able to work just with the reduced
number of M rules, instead of the original M rules. This allows us to use OLS in a second pass to generate
a new reduced fuzzy system. The set of training data for this second pass may even be larger than the one
used in the first, which improves the results a lot. The first pass of OLS requires most of the computation;
but, it can be made with a smaller data set, which speeds computation time.

In Chapter 4 we apply our new design procedure to the prediction of the Mackey-Glass chaotic time

series.



Chapter 2

OLS as applied to FLSs

The key idea in [7] is to view a FLS as a fuzzy basis function ezpansion. The FBF's are derived from the
rules of the FLS’s fuzzy associative memory (FAM) bank. A system with M rules contains M FBF's:

:"= s (z)

a‘lf-I lnF:' : 4 j=1.2.---,4’l«[ (21)
Tj=1 iz #ps(24)

with the antecedent Gaussian membership functions

1 z,-—:‘:‘! :
#F{(zi)‘—‘exp -3 =

pi(z) =

(2.2)

Other MBF’s are also possible. We will call the parameters Z] and ¢} (i = 1,2....,n) the set of antecedent
parameters for the jth rule.

A FBF can be viewed as providing the relative degree for which the jth rule fires. The numerator gives
the degree to which a particular rule fires (the product is used as an AND-operator); the denominator of the
FBF gives the surmn of the degrees for all rules. Due to the normalization of the denominator, each FBF uses
the whole FAM-bank.

The FLS using height method of defuzzification can be written as the following FBF expansion

M
fl@) =Y pi(=)0; (2.3)
=t
which is a weighted sum of our nonlinear FBF’s. The OLS algorithm is capable of selecting a subset of
Ms < M basis function vectors and computing a weight vector 8 = [f1,- - -, f,]T to approximate a given
training vector d. In matrix form, it calculates a vector 4 to make the product P8 as close to d as possible,
where d = [d(1),---,d(N)F, P = [Ep -+-, Py ] with p; = [pi(1), -, ps(N)]T, 8 = [01,---,05)%, and N is
the number of training samples. M is initially set equal to N to determine the regressor vectors ;- The
elements of this vector are the values of the related FBF, computed for each input vector of the training
data. These regressors are the input for the OLS algorithm, which then selects a subset of Ms of the W
regressor vectors and computes the weights &, --, 8, for (2.3).

Using only the selected FBF’s with the resulting weights gives a system that models the training data
quite well and is able to generalize for data not included in training; however, it is incorrect to believe that
the FLS has been totally reduced, because the denominator of each FBF in (2.1) contains all MF’s, including
those of rules belonging to the M — M5 non-selected FBFs. At this point, it is impossible to totally discard
the non-selected FBF’s; hence, the present FLS can’t be reduced to fewer than M rules, even though it
contains fewer than M FBF's. To calculate the output value of the FLS for an input vector z, N x n MF’s
have to be computed, regardless of how many FBF’s are selected by the OLS algorithm. If we don’t reduce
the amount of computation during later processing, why should we apply the OLS algorithm at all? We
could keep all the M FBF’s and have a very precise system. To do this is not reasonable, if, as in signal
processing applications, the amount of training data is large. We want a way to really reduce the system.

’
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Chapter 3

Reducing the FLS using OLS

Our approach is to use the OLS algorithm two times. The first application of the OLS algorithm is almost
as described in [7], and picks the Ms most significant FBF's out of M = N initially established FBFs. The
second application of the OLS algorithm is described in detail below.

Suppose we are given N training data pairs: {z(t),d(t)}, t=1,2,...,.V . Before training, we initially
choose and compute the parameters of the M antecedent FBF’s as follows:

#=2(j), o =max((zi(j)) - min(z:(7))] Mis
i=1,2,...,n, j=12,...,N. (3.1)

Note that some of our experiments that used the algorithm in [7] for o7 (which differs from (3.1) in that
n/Ms is replaced by 1/Ms) showed that the resuiting FBF’s degenerated to very narrow functions which do
not approximate functions very well (Fig. 2.1). The above algorithm for the choice of o7 is only heuristic.
In general the choice of a';i depends on the application. The final choice for o7 can make a big difference in
the approximation results. We have more to say about this in Chapter 4.

The number of FBF’s, M, initially equals the number of training samples .V. For every FBF we have 0
compute a vector p,, whose elements are given by (2.1). OLS is run, but after its completion we keep only the
selected FBF's, together with their entries in the FAM-Bank and the respective antecedent parameters (Z;,
o). As stated above, this changes the saved FBF’s. The are now only normalized by Zf;’l [Ii=: spi{zik
When plotted, we have observed that the new FBF’s look quite similar to the original ones; basically,' their
ranges change, whereas their shapes remain the same. We use this first application of OLS to reduce the
number of FBF’s; we do not use it to choose the final §-parameters in (2.3).

The task now is to find the §-parameters for the given rules, so as to model the training data as best as
possible. We use OLS a second time to do this; but, we modify the algorithm in (7], because it requires as
many FBF’s as training data points. We determine & for only Ms FBF’s, but want to optimize it for all v
given training samples. Fortunately, the original algorithm, as described in (2], lets us do this. Qur second
run of OLS is much faster than the first run, because usually Ms € M. Note, also, that there is no need
to use the same training samples in the second application of OLS as in the first application of OLS. The
training set may even be much larger than the first training set without costing too much computation. We
use this approach in Chapter 4.

The complete set of equations associated with the OLS algorithm are stated next, for convenience to the

reader:
o At the first step of the OLS algorithm, the first basis vector w, is chosen. For 1 £ i £ M compute:

(hT
(s) _ (3) _ (H)_] ) .d. 3.2
W =P, N = T ( --)
1 2 (12?))12).(1')

and the error-reduction ratio , .
( ))r (i)

i iz (i) w
ferrf? = {7y S8 ©3)



Find the FBF with the largest error reduction ratio
[err]$') = max([err]{"), 1<ig M
and select the first basis vector 1y, and the first element g; of the LS solution vector
w=uw=p . q=g.
o At the k'th step, where 2< bk < My, for 1 <i< M, i#1d,...,i$ ik—1, compute

T,
M2 cick

ajk -
g =2
k-1 (hT
0 © @ _ (w')'d
wy' =p - ) eywm, g = ———,
B 2t O By
and (T, (1)
i ipg (0l ) Ty
[err]l) = (gf ))2—_"?51_—&'-

Again, find the FBF out of the remaining ones with the largest error reduction ratio

[err]f:‘) = max([errj}':)), 1<i< M,
i# il""l i;'ik-l

(3.4)

(3.5)

(3.5)

(3.7)

(3.3)

(3.9)

and select the next orthogonalized basis vector w, and the kth element of the LS solution vector g:

w=ut=p,. a=gl.

e Solve the triangular system

Al =g,
where . . . (iaea)
1oy of) -
01 ol .. ol
A= 0 0 .. : ,
(img)
1 a.‘f;‘il.Ms
|0 0 0 1 ]
and
fn &
g=f |, &=1 :
Mg Ons

(3.10)

(3.11)

(3.12)

(3.13)

The solution 4 can be found through back-substitution or by brute-force § = A~!g. The matrix A can
be inverted without numerical problems because it is ideally conditioned, all eigenvalues are the same.

The final FBF expansion is a
4
flz) = 3 pi; ()5

i=1
Our two-step OLS procedure to reduce and optimize a FLS is:

(3.14)



o Set N = Ny and establish M = Ny initial FBF’s
Keep track of the antecedent parameters (Z;, o;) which describe the appropriate rule. Compute ¥V x 1

regressor vectors p. for all antecedents, the elements of p; are the FBF’s computed for every given
input vector z(t).

o Run the OLS algorithm to select Ms significant rules out of M = Ny
At this point, only the Mg rules are of interest, and we only store their antecedent parameters. We do
not solve the triangular system in (3.11) in this first application of OLS.
Remark: It is not necessary to fix (i.e. prespecify) Ms. Asin (2], we can terminate the first application
of OLS at the Mgsth step when

Ms
1- Z[err],- <p (3.13)

i=1
where p is a prespecified tolerance and 0 < p < 1.

o Discard everything but the selected sets of antecedent parameters

Now we set M = Mg, to reduce the number of retained rules; hence, we need the regressor vectors
p, for only the M rules. The number of p; vectors is reduced, but not their dimension, which is still
N1 x 1.

e Run OLS for a second time to obtain the 8-parameters

OLS now uses all the Ms FBF’s; hence, it does not have to find the FBF with the largesc error
reduction ratio. It merely orthogonalizes the modified set of Ms FBF’s by using Equations (3.2), (3.6),
and (3.7), and then determines g from (3.11) - (3.13). In general, this second run is computationally
much less extensive than the first run, because we do not need to choose the best subset of VM5 FBF’s
out of M FBF’s.

Remark: 1t is not necessary to run OLS the second time using the same set of training data as the first
run, i.e. we can choose N = Ny # V). The training set may even be much bigger (i.e., V3 &« M),
which can improve the resulting system a lot and may offset using a smail training set on the first run.

We now have a completely reduced fuzzy system, one based on My rules. This system can be easily used
to compute an output value for a new input vector z. The computation time is proportional to Ms x 7
MF’s. Compared to the method in (7], this represents a real-time computation reduction of Ms/.V, which
can be quite substantial.



Chapter 4

Prediction of Chaotic Time Series

Let z{k),k = 1,2.... be a time series. The problem of time-series prediction is: given a window of n past
measurements, z(x# — n + 1), z(k — n + 2),...,z(k) , determine a future value z(k +!), where n and [ are
fixed positive integers.

z(k—n+1),z(k=-n+2),...,2(k) — z(k +1{) (4.1)

In our work we have chosen ! = 1, i.e., we have developed fuzzy systems to periorm prediction of time serizs
one step into the fucure.

The OLS methods require a training set of data; hence, we assume that =(1),2(2),...,z(P) are given.
The size of the window of past measurements, n, must be fixed ahead of time. This corresponds to the
dimension of the system’s input. Clearly, n < P. The set of training samples contains P — n elements
in the form of z; = col(input:desired output]. More specifically, z; = col{z(1),...,2(n) : z(n = 1)], z, =
clz(2),...,.z(n+=1) :2(n+2)], ..., zp_n = col[z(P —n),...,z(P - 1) : z(P)].

4.1 The Mackey-Glass Chaotic Time Series

The time series we shall apply our predictors to is the Mackey-Glass chaotic time series. It has become a
benchmark problem for time-series prediction. Chaotic time-series are generated from deterministic nonlinear
systems and are suificiently complicated so that they appear to be random; however, because they are
deterministic in nature, chaotic time series are not random. The Mackey-Glass series is generated from the
following delay differential equation:

dz{t) _ 0.2z(t—1)

= T~ 01 (4.2)

It is meant to be a crude description of the regulatory mechanism for human blood cell production [6]. The
delay r is the time that cells need to mature. It can be increased by certain diseases, causing aperiodic
(chaotic) fluctuations. The solution of the differential equation is a continuous signal, which we discretize
to a time series at integer units. The delay r affects the fractal dimension of the attractor; in general, the
higher the 7, the higher the fractal dimension. There are four important regions for

0 < 7 £ 433 :stationary

453 < 7 < 13.3 : stable limitcycle

133 < r < 16.8 : period doubling, bifurcation sequence
168 < r : chaotic

For further details, see [3]. When r > 16.8, this system exhibits chaotic behaviour, with some limit cycles
interspersed. In our experiments we have chosen values around = = 30, for which it is chaotic. Figures 4.1
to 4.4 illustrate the series for periodic (r = 15) as well as chaotic (r = 30) cases. Both time and phase plots
are shown.

There is no closed-form solution for this equation, and it can only be approximated, using numerical
integration methods. A characteristic feature of chaotic systems is the exponential growth of disturbances.
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A small change (error) of a state is amplified exponentially over time. Finally, the disturbance becomes as big
ag the signal and the systems behaviour is permanently changed. This causes a problem with approximate
solutions; they can stay close to the true trajectory only for a limited time. The unavoidable errors finally
cause divergence. Another cause for errors is that the Mackey-Glass equation is continuous and has to be
discretized for a numerical integration.

We tried different approaches to solve the equation. Integrations using Euler and 4th-order Runge-Kutta
methods with different stepsizes were tested. Runge-Kutta requires a lot more computation, and the retarded
argument has to be interpolated (we used cubic spline-interpolation). We got best results with simple Euler
integration and a stepsize of 1/5000. The resulting trajectories are converging for about 1600 uaits in time,
after that the errors due to finite precision and discretization cause divergence. Although the signai is
different from the theoretical solution then, the system’s dynamics are still very close to the original. The
data is still useful for training and application of our FLS’s.

4.2 Training and Results

Figures 4.5 to 4.9 show prediction results for fuzzy systems with Ms = 50 rules and n = 10-dimensional
input data. All results where obtained by training in the first pass of OLS for a section of 301 data points,
when 1000 < ¢ < 1300, yielding 291 training vectors. Unless otherwise specified, the second pass of OLS was
performed with the same data. Training was done in 3 different ways:

(1) Only one-pass OLS was performed, including the computation of the -parameters; Figs. 4.3 and 4.6
show the performance of the resuiting FBF expansion. The first 291 points of the graph show the behaviour
for the training data. the rest is the real prediction.

(2) Our two-pass OLS algorithm was appiied. Figures 4.7 and 4.8 show the performance of the reduced
system, where again the first 291 points of the graph show the behaviour for the training data. the zest
is the real prediction. The results are comparable, but computation time for the second approaca is much
faster than for the first approach. Note that the error for the reduced system in Fig. 4.8 is slightly larger
than for the one-pass output in 4.8. This is typical because due to the renormalization the shapes of the
FBF’s change slightly when the least significant ones are removed. The solution becomes suboptimal. We
now show how to compensate for this.

(3) The amount of training data for the second pass of OLS was increased to the region 1000 < ¢ < 2000.
yielding 991 training samples. Also, the standard deviations o of the MF’s were increased to o7 = 0.3
from the value obtained from (3.1); a-;’ = 0.8 was found by trial and error to give best results. Very smail
values of o] gave very jagged performance, as depicted in Fig. 2.1. As o7 values were increased, better and
better predictions were obtained. Then, as o7 values became too large, predictions once again deteriorated,
although this time the predictions were not jagged; instead they became too smoothed out. The second-
pass of OLS training gives a FLS with outstanding performance. When plotted in the same graph, original
time-series and its prediction are indistiguishable.

4.3 Choice of Parameters

In a FLS, there are some free parameters to choose: the number of tules {FBF’s) Mjs in the final FLS, the
number of inputs, and the standard deviations o, and &3 of the Gaussian membership functions for the first
and second pass of OLS training, respectively. The number of free parameters depends on the application.
In our example of time-series prediction we are free to choose the number of inputs n (in general, chis is not
the case; n is usually not a free parameter). On the other hand, in this application all inputs use the same
data, but at different points in time; therefore all MBF’s have the same common ¢. In general this is not
the case, i.e., the inputs might have completely different meanings and ranges, in which case each input has
its own ¢, which increases the number of parameters. The amount of training data for each pass can also be
viewed as a design parameter. In an experiment we used different 301 points for the first-pass training data
of 100 FLS and found that approximately 1/10th of them show pcor out-of-sample performance because the
training data by chance wasn’t rich enough. For all later experiments therefore the amount of training data
was increased to 501 points. We did not use more because there is a tradeoff between reliability of training
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and first-pass training time, the latter growing quadratic with the amount of trainig data. F igure 4.10
shows the training data leading to the worst performance as an example. In the first-pass training region
(1000,1300], from where the rules are picked, the series is by chance almost periodic. The rules get optimized
to model these dynamics. After one-pass training the modelling for this area works fine, but out-of-sample
performance expectedly isn’t good. A second pass training with the whole shown area can’t improve this,
since the rules are fixed. The quality of the predictor gets visible after the second pass, a bad system shows
poor performance even on its second pass training data and can be rejected by a suitable algorithm at that
point.

We performed a lot of experiments to find out what the optimum design parameters are for the the
Mackey-Glass predictor, to get a baseline of the possible quality of predictors generated by our algorithm.
In most experiments, one or two design parameters are varied while the others are held fixed. Qur measure
for the performance is the RMS prediction error. To get more meaningful results, we perform Monte-Cario
simulations, average across 10-30 realizations. A realization is the output of a FLS; they differ by the
random initial conditions of the Mackey-Glass series they were trained for. The most trivial algorithm for
a prediction of a time series is the hold-method, which uses the last observed value as the prediction for the
next future value, e.g., like predicting today’s temperature as tomorrow’s. If the time series changes slowiy,
this is quite adequate. The error of this method is proportional to the derivative of the time series. A more
sophisticated predictor must outperform this benchmark to be useful; therefore we compare our results o
the hold-method.

We now discuss in more detail the effect of the parameters.

o Number of rules My in the final FLS: The number of rules in the final FLS establishes how many
features it can recognize. Too few wouldn’t be enough for a system description; too many lead to a
jittery system. There is a dependency to the number of inputs, the mote inputs are used, the more
versalite are the states the FLS can “see”. To handle these properly, more rules are required. In
an experiment we used 10 inputs and varied Ms. Figure 4.11 shows the results, the performance for
20 < Ms < 60 is quite stable. Qur FLS is very robust to a wide range of values for Ms; hence. above
a certain value, M is not a critical parameter.

Number of inputs n to the FLS: The window of past observations is the input vector for the FLS. If
the window is too small, the FLS can't recognize the system state. Wich increasing window size the
number of rules should be increased as well, to compensate for the greater variety. This dependency of
Mg and n is visible in Fig. 4.12. It is also visible that the region of low error becomes wider for larger
systemns, meaning that those are less critical to size. The diagonal of the lowest errors is approximately
a straight line described by the relation

n=2+0.2*Ms. (4.3)

Along this line the error decreases with growing system size, as expected.

The numerical data for this plot is given in Table 4.1.

Fig. 4.13 shows the results of an experiment where the number of rules was held fixed, while varying the
number of inputs. The minimum is at n = 11 for our Mg = 50 rules; beyond n = 11 the performance
decreases slowly.

When the number of inputs is set to one, the resulting system performs very similar to the hold-method.
This is not surprising, because one input cannot sense any trend and therefore the FLS learns to repeat
the last value. Figure 4.14 shows how the system output lags behind the true series when n = 1; just
like the hold-method.

o Shape of the antecedent membership functions for the first and second pass, in our case the standard
deviation of the Gaussian MBF’s o: We found that a major reason for good performance of the two-
pass method is the independence of ¢y and 3. We get better results if o3 is larger than oy. Figure
4.15 shows results of Monte-Carlo simulations in which both values were varied. It depicts the average
RMS prediction error for 50 realizations. The minimum was found at oy = 0.05 and o2 = 0.7. From
the surface plot it can be seen that o is less critical to choose (it must not be too small) than o3.
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The numerical data for this plot is given in Table 4.2.

In another experiment we tested how robust the generated FLS's are to changes in the system’s dynamics.
We applied FLS’s that were trained for = = 30 to Mackey-Glass time series with different (randomly chosen)
7. Results are shown in Fig. 4.16. Surprisingly, the error is still low compared with the hold-method (which
is about 0.03, way above our plot), even for significantly changed r.

13
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Figure 4.7: Reduced fuzzy system (two-pass OLS) dashed: desired output. soiid: FBF expansion output
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Figure 4.8: Residual error of reduced fuzzy system
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Variation of # of fules, n=10, tau=30, training pass1 [500.1000], pass2 [500.2000]
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Figure 4.11: Variation of the number of rules
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n\Ms | 10 20 30 40 50 60 70 80

2 0.0053 0.0158 0.0399 0.0414 0.0853 0.0948 0.1413 0.1219
4 0.0037 0.0039 0.0155 0.0485 0.0558 0.0819 0.1087 0.1099
6 0.0093 0.0032 0.0037 0.0107 0.0182 0.0415 0.0446 0.0615
8 0.0116 0.0044 0.0028 0.0047 0.0122 0.0243 0.0293 0.0369
10 0.0173 0.0071 0.0049 0.0030 0.0082 0.0145 0.0131 0.0297
12 0.0268 0.0100 0.0062 0.0045 0.0032 0.0036 0.0057 0.0129
14 0.0340 0.0131 0.0080 0.0058 0.0045 0.0033 0.0036 0.0034
16 0.0447 0.0229 0.0092 0.0076 0.0057 0.0045 0.0034 0.0026
18 0.0524 0.0287 0.0115 0.0087 0.0072 0.0057 0.0044 0.0036
20 0.0541 0.0262 0.0141 0.0103 0.0083 0.0067 0.0054 0.0043
22 0.0575 0.0295 0.0168 0.0114 0.0092 0.0080 0.0068 0.0054
24 0.0582 0.0365 0.0199 0.0125 0.0104 0.0085 0.0071 0.0061

Table 4.1: Average RMS error for variation of both n and Mg over 23 realizations

Variation of # of inputs, Ms=50, tau=30, training pass1 [S00,1000], pass2 [S00,2000]
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Figure 4.13: Variation of the number of inputs
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o1\o2 | 0.3000

0.4000 0.5000 0.6000 0.7000 0.8000 0.3000 1.0000

0.025 | 0.0256
0.050 | 0.0236
0.075 | 0.0145
0.100 | 0.0131
0.125 | 0.0129
0.150 | 0.0122
0.175 | 0.0119
0.200 | 0.0100
0.225 | 0.0092
0.250 | 0.0084
0.275 | 0.0084
0.300 | 0.0079

0.0102 0.0051 0.0056 0.0096 0.0138 0.0262 0.0309
0.0101 0.0046 0.0033 0.0021 0.0044 0.0086 0.0113
0.0080 0.0055 0.0035 0.0027 0.0025 0.0039 0.0083
0.0079 0.0051 0.0034 0.0025 0.0026 0.0035 0.0061
0.0076 0.0049 0.0034 0.0027 0.0029 0.0037 0.0069
0.0072 0.0049 0.0034 0.0027 0.0034 0.0038 0.0049
0.0071 0.0048 0.0035 0.0029 0.0038 0.0053 0.0078
0.0065 0.0047 0.0033 0.0032 0.0035 0.0036 0.0094
0.0060 0.0044 0.0032 0.0032 0.0034 0.0062 0.0113
0.0053 0.0040 0.0032 0.0041 0.0036 0.0054 0.0096
0.0051 0.0039 0.0033 0.0028 0.0064 0.0074 0.0100
0.0047 0.0036 0.0031 0.0040 0.0057 0.0072 0.0088

Table 4.2: Average RMS error for variation of both ¢ and o3 over 30 realizations

Fuzzy Systems trained for tau=30 making predictions for different tau
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Figure 4.16: Application on different
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Chapter 5

Conclusions

We have shown how to modify the OLS FLS training algorithm presented in [7], so that a substantial saving
in running time is achieved. Our two-pass OLS method lets us use different training segments for sach pass.
leading to better generalization capabilities. The process of choosing an optimal set of rules is now made
independent from the computation of the output centroids, giving more design flexibility. Our application of
the two-pass OLS-trained FLS to prediction of the Mackey-Glass chaotic time series gives excellent results,
even for changed system dynamics. Finally, we advocate comparing all new ways (FLS’s, feedforward neural,
networks, radial basis function networks, etc.) to predict time series against the hold method.
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