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Abstract

A systematic annealing method of finding optimal solutions in recurrent associative
neural networks is presented. The Hopfield neural network and cellular neural network
are very promising in solving many scientific optimization problems by the use of their
collective computational properties. However, the neural networks for optimization are
subject to sub-optimal solutions due to the local-minimum problem as in engineering
optimization problems. Various techniques and neural networks for global optimization
have been suggested. The stochastic methods such as simulated annealing and Boltzmann
machine require a tremendous amount of computational resources in executing the

algorithm on digital computers.

Paralleled hardware annealing exploited in this dissertation is a highly efficient method
of finding globally optimal solutions in recurrent associative neural networks. It is a
paralleled, hardware-based realization of effective mean-field annealing while achieving
the effects of the matrix nonconvexity method. The speed of convergence can be faster
than those of the stochastic methods by several orders of magnitude, and is suitable for
those of typical anmalog very large-scale integration (VLSI) neuroprocessor
implementation. The process of global optimization can be described by the eigenvalues
of a time-varying dynamic system. The generalized energy function, which serves as the
cost function to be optimized, of the network is first increased by reducing the voltage
gain of neurons. Then, the hardware annealing searches for the globally minimum energy
state by continuously increasing the gain of neurons. The proposed annealing technique
is described by applying it to a basic two-neuron network followed by a Hopfield analog-
to-digital decision network in which the desired optimal solutions are exactly known.

The powerful cellular neural networks are examined to understand the effectiveness of the



hardware annealing in solving the problems of energy barriers. In many applications
other than optimization, hardware annealing also provides adequate stimulation to frozen
neurons caused by ill-conditioned initial states. As a practical example of the neural-
based combinatorial optimization, the maximum-likelihood sequence estimation of digital
data in communications is successfully investigated. In addition, efficient computing

architectures for VLSI and detailed circuit design are presented.



Preface

The organization of this dissertation consists of the following chapters.

Chapter I describes classical methods and neural network approaches for solving
combinatorial optimization problems. In addition, several optimization techniques in
classical mechanics, optimization, and neural network are reviewed in relation to the

proposed paralleled hardware annealing.

In Chapter II, the fundamentals of recurrent associative neural networks, Hopfield
and cellular neural networks, are reviewed, and then their local minima problem in
optimization problems is mentioned. By using a basic and generalized neural network
models, paralleled hardware annealing technique for obtaining the optimal solutions is

derived and verified.

In Chapter 111, the hardware annealing is applied to a multi-level Hopfield analog-to-
digital decision network, which is a combinatorial optimization circuit with the local

minima problem, to show the effectiveness of the proposed method.

More detailed description of the hardware annealing and its application to cellular
neural network are given in Chapter IV. Network stability and annealing parameters are
derived and discussed by using the expressions of generalized network energy and
eigenvalues associated with linearized dynamic system. Simulation results of the
proposed method in achieving optimal solutions and improved performance are also

provided.

In Chapter V, a neural network approach for the maximum-likelihood (ML) detection

of signals in digital communications is presented. The mapping of the ML problem onto a



combinatorial optimization problem is discussed. In addition, the hardware annealing is
provided to improve the ML detection performance. By using different networks and
neuron models, the performances of the ML detection in basic inter-symbol interference

channels are compared.

Hardware design of both plain and annealed cellular neural networks is given in
Chapter VI. An efficient network architecture and detailed circuit elements for VLSI

implementation are designed and simulated.



Chapter I

Introduction

1.1 Classical Optimization Problems

An optimization problem consists of looking for a set of variables s ={s,, 5,,-,s,}
which minimizes a cost function J(s) while obeying a number of constraints g, (s),
k=12,---,m. Many optimization problems involve the minimization of a quadratic cost

function;

xeP

min f(x)= nxgg(crx +%xTQx), (1.1)

subject to the inequality constraint Ax < b or equality constraint Ax =b. Here, P is the
bounded polyhedron [1], Q is an #Xn symmetric matrix, A is an #Xm matrix, and
x,c,b e R". Based on the characteristics of the matrix Q, optimization problems can be
divided into three kind of objective functions as;

1. convex,

2. indefinite, or

3. concave.

The convex objective function f(x) is a bowl-shaped (7 +1)-dimensional surface with
degree of freedom represented by the state of x. This surface is characterized by a
unique minimum. There are many convex quadratic optimization problems in adaptive
signal processing. For example, solving the Wiener-Hopf equation for linear optimal

filter is equivalent to finding the minimum of the mean-squared error, which is a quadratic

1



function of the filter tab weights. If the matrix Q is indefinite, there may exist multiple
minima and the solution to indefinite quadratic problem occurs on the boundary point of
the hypercube, but not necessarily a vertex. For a positive definite Q, the energy function
JS(x) is a scalar-valued, concave function of the state vector x and can be visualized as
an inverted bowl-shaped (72+1)-dimensional surface. The solution to a concave
quadratic problem always occurs at a vertex of P. Many engineering problems belong to
the optimization of concave objective functions in which the domain x,, k =12,---,n,
takes a finite number of values in a set, e.g., —1 or +1.

In many branches of science and technology one often encounters difficult
optimization problems which have combinatorial complexity. For such problems there is
a large but finite set of possible solutions, of which we want to find one that globally
minimizes the cost function involved. Those include the map coloring problem [25],
graph partition [16-20,23-25], assignment problem [25], and the traveling salesman
problem (TSP) [11-14,25]. The combinatorial optimization problems can be mapped
onto neural networks by constructing suitable energy functions and then transforming the
problem of their minimization into associated systems of differential or difference
equations.

In general, the computational energy function in optimization can often be expressed

as sum of two terms:
E = Eou + Eoeurins (12

where E_,, is the cost energy function and E___ . is the cost energy associated with
constraint satisfaction. These two terms of the energy function compete with each other.
To obtain the minimum of E of (1.2), we need to minimize the cost function while
simultaneously satisfying the constraint as much as possible. Moreover, the constraint

energy may consist of several terms and (1.2) can be rewritten as



E(x)= Eo(x)+ 3 A,E(x), (13)

where x =[x, x,--x, ', xe{-1+1}", E.(x) is the cost energy function, and E(x) is
the penalty function term representing the violation for the i-th constraint. The penalty
parameters A, >0, i =1,2,---,m, ensure an appropriate balance between two simultaneous
minimizations of the energy functions. For a wide class of optimization problems, the

computational energy function (1.3) can be transformed into a quadratic energy function

E(x)= -liing,xj -ia,x, = -lx'Wx-xra, (1.9)
25 m i=l 2
where
x=[x x - x],xe{-1+1},
a=[e, a, - a,],

W =[w,,1<i,j<n].

The weight matrix W and external input vector a are completely determined by the
associated energy function to be minimized. Let us define an n-dimensional unit
hypercube as D" ={xe R":-1<x, <+l,i= l,2,~--,n}. Depending on the optimization
problem to be solved, the matrix W can be 1) negative definite (semi-definite), 2)
indefinite, or 3) positive definite (semi-definite) which corresponds to convex, indefinite,

or concave quadratic optimization, respectively.

1.2 Combinatorial Optimization using Neural Networks

The range of applications of the theory of recursive neural networks is not limited to
biology but could include those for solving optimization problems as well. The artificial
neural network for optimization problem has been pioneered by Tank and Hopfield [2-4].
They showed that certain highly-interconnected networks of nonlinear analog neurons can

3



be very effective in solving difficult optimization problems. The information pertaining to
the problem to be solved is built into the network as an energy function which is to be
optimized. The mapping of an optimization problem onto a neural network is to build an
energy landscape E(s) in the phase space of neuronal states such that the deepest minima
of E are solutions to the problem. Once the mapping has been achieved, one lets the
system evolve according to the neuronal dynamics until a steady state is obtained. The
great advantage of this method is that a physical device for solving the problem can be

constructed to generate a solution without the necessity of learning iterations.

The neuronal dynamics of Hopfield network can be described by a set of differential

equations;

du :
CTfl:_];ui +;%v]‘+oi’ ’=1)2""’n’ (1'5)

v, = sign(u,) = sxgn(z Wy, +0,), v, e {-L+1}.
]
The Lyapunov [5] or generalized energy function E(f) associated with (1.5) is defined as
E=-2F Yy - 36, (1.6)
i J i

which is to be a non-increasing function of time provided that;
1. the dynamics is serial, i.e., one neuron is updated at a time,
2. the interaction is symmetrical, i.e., W, =W,, Vi, j, and

3. the self-connections vanish, i.e., W, =0, Vi.

In (1.5) and (1.6), ¥, and v, is the states of the i-th neuron input and output, respectively,
W; is the amount of interaction or weight between the i-th neuron input and j-th neuron
output, and 6, is the external input including the bias. The energy function (1.5) can be

rewritten in vector and matrix form as



E=-Yywy-vg, (1.8)
2

where v=[v, v, - v,] e{-1+1}"

T,=0

> %ii

W=[T,},1$i,jsn]=wr
0=[6, 6, - 6,].

The equation (1.8) is a scalar-valued, quadratic function of v and has the same form as
the cost functions in optimization problems. The collective computational properties of
the Hopfield neural network for seeking a stable equilibrium can be utilized in solving
many of difficult optimization problems. When an optimization problem is appropriately
mapped onto the energy function of the form (1.8), it can be solved autonomously and an
output v € D" that minimizes (1.8) will be produced in the steady state. Here, we restrict
ourselves to the combinatorial optimization problems in which each element of the
desired output has a finite number of discrete values in a set, e.g., two-level bipolar
output v, € {~1,+1}, or m-ary unipolar output v, € {0,1,-+-,m - 1}, etc. Many science and
engineering optimization problems belong to these categories. On the other hand, the
optimization problem with inequality constraints, i.e., linear or nonlinear programming

typically requires an additional network for constraints satisfaction [4,27-31).

Many different neural network approaches and techniques have been proposed to
solve a large variety of combinatorial optimization problems. Among them the most

popular and promising are the following approaches;

1. Hopfield neural networks [2-4,12,16-20,27],

2. cellular neural networks (CNN) [59-63,112,113],
3. simulated annealing (SA) [37-42],

4. mean field annealing (MFA) [43-46], and

5. competitive neural networks [25].



The CNN is basically a multi-dimensional array of locally-connected cells and has the
collective computational properties similar to those of the Hopfield network. Together

with the Hopfield neural network, it will be explored in detail in this dissertation.

1.3 Global Optimization

In general, an indefinite or concave quadratic function of the form (1.8) in
combinatorial optimization problems, contains a large number of local minima [1] (Figure
1-1). For instance, in a neural network of binary neurons, any of at most 2" vertices of
the unit hypercube D" can be a solution to the problem, for which the energy function is
locally minimized [4,32-35). In some applications such as the content addressable
memory (CAM), those minima are utilized to store the patterns which can be recalled by
the corresponding recall keys. However, many optimization problems require the global
minimization of the energy function over all possible solutions. In this case, a neural
network may fail to find the desired solution if no provision is made on avoiding those
minima at which the solutions are sub-optimal. In Table 1.1, the performance of a neural
network approach is compared with those of several conventional algorithms in solving
50, 100, and 200-city Traveling Salesman Problems (TSP) [11]. In all cases, the neural
network has little longer average tour lengths than others except simulated annealing
algorithm, which may be a direct consequence of local minima. On the other hand, the

conventional algorithms are designed to deal with combinatorial optimization problems.

The annealing technique in combinatorial optimization problems and neural networks
is originated from the statistical mechanics which is the central discipline of condensed
matter physics. Figure 1-2 shows the relationships among various techniques related to
the annealing theory, in the areas of statistical mechanics, optimizations, and neural

networks. The followings are brief review of these techniques.
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Figure 1-1: Local minima in optimization problems.




Table 1.1 Comparison of various optimization algorithms on N-city Traveling

Salesman Problem (TSP).
Optimization Average Tour Lengths
Algorithms N=50 | N=100 | N=200
Genetic Algorithm 5.58 7.43 10.49

Simulated Annealing (SA) 6.80 8.68 12.79

Elastic Net 5.62 7.69 11.14
Hybrid (SA+Search) - 7.48 10.53
Neural Network ! 6.61 8.58 12.66

1. Potts neural net (mean-field approximation) with fixed temperature [46].



1.3.1 Statistical Mechanics

A fundamental question in statistical mechanics concerns what happens to the system
in the limit of low temperature. In practical contexts, low temperature is not a sufficient
condition for finding ground states of matter. To determine the low-temperature state of
a material, experiments are done by first melting the substance, lowering the temperature
slowly, and then spending a long time at temperatures in the vicinity of the freezing point.
At a high temperature, all particles or atoms of a metal lose the solid phase so that the
positions are random according to statistical mechanics. The particles of the molten
metal tend toward the minimum energy state at which the state of metal is highly ordered
and has the structure of a defect-free crystal lattice, but high thermal energy prevents this.
In order to achieve the defect-free crystal, the metal is first heated to an appropriate
temperature above the melting point and then cooled slowly until the metal freezes into a
defect-free crystal. The slow cooling is usually necessary to avoid dislocations and other
crystal lattice disruptions. The process of controlling the temperature for the global

energy minimization is called metallurgical annealing.

Metropolis [36] introduced a simple algorithm that can be used to provide an efficient
simulation of a collection of atoms in equilibrium at a given temperature. In each step of
the algorithm, an atom is given a small random displacement and the resulting change,
AE, in the energy of the system is computed. If AE <0, the displacement is accepted,
and the configuration with the displaced atom is used as the starting point of the next
step. The case AE > 0 is treated probabilistically. The probability that the configuration
is accepted is p(AE)=exp(—AE[k,T), where k, is the Boltzmann's constant. A
uniformly distributed random number ¥ is selected in the interval (0,1) and compared

with p(AE). The new configuration is retained if N < P(AE), and the original
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configuration is used to start the next step, otherwise. By repeating the step many times,
one simulates the thermal motion of atoms in thermal contact with a heat bath at a given

temperature. The choice of p(AE) has a consequence that the system evolves into a

Boltzmann distribution
e BT
p(v) =—Ze'“'”” (1.9)

v

where T'is a controlling parameter called computational temperature.

1.3.2 Simulated Annealing (SA) and Boltzmann Machine

Using the cost function in place of the energy function and defining configurations by
a set of parameters {v,}, i =1,2,---,n, in optimization problems, simulated annealing (SA)
implements the Metropolis procedure with artificial thermal noise which is gradually
decreased in time. This noise allows occasional hill-climbing interspersed with descents.
At a high temperature, the probability of moves to higher energy levels is large. But at a
low temperature, the probability is low, i.e., fewer uphill moves are allowed as the
temperature decreases. The possible chances of getting stuck in a worse local minimum
are avoided in a controlled fashion by an annealing schedule. This strategy has an
analogy to the physical behavior of metallurgical annealing. More importantly, gross
features of the eventual state of the system appear at high temperatures but fine details
develop at lower temperatures. Interesting features of the SA are its general applicability
and its ability to obtain solutions close to an optimum. It has been applied to a wide
variety of combinatorial problems in such diverse areas as engineering, VLSI design, and

operational research [40-42].

The Boltzmann machine [23,26,40] is a kind of stochastic feedback neural network

consisting of binary neurons connected mutually by symmetric weights. It is an energy

11



minimization network consisting of statistical neurons which appear probabilistically in
one of two states —1or +1. It uses the energy function of the form (1.8) and the
simulated annealing approach to locate energy function minima. Simulated annealing in
the Boltzmann machine is a stochastic strategy for searching the state of neurons
corresponding to the global minimum of the energy function. For the energy function

(1.8), the probability of a particular neuron output being —1 or +1 is given by [23,35]

eu/T
p(v, =xl) = I g gl (1.10)

where #; is the neuron input. Random displacement of the network state is done by using
the number N, selected from a uniformly distributed interval (0,1) as the external input 0,
in (1.8). Therefore, at time step &, the new neuron output v/ for the neuron input z*™ is
given by

v =tanh(yuf")=tanh{y(§n¢jv;" +NfJ}, (1.11)

J=0

where the gain 7 is high enough so that (1.11) approximates the signum function.

1.3.3 Mean-Field Annealing

In physics, the behavior of systems of particles or spins in thermal equilibrium is often
simplified by an analytic expression called the mean-field approximation [46). In a similar
manner, the stochastic simulated annealing can be approximated or emulated by an
analytic version, the mean-field annealing (MFA). The MFA can be based on a spin glass
model [46] or the Hopfield neural network model [43,44]. In the latter case, the
stochastic binary neurons (1.11) in the Boltzmann machine are replaced by analog
neurons with continuous outputs v=[v, v, --- v"]r, —1<x,<+1. The energy function

called the free energy for the continuous output value is given as
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E(v)=-%22w‘iv,vj—20,v,.. (1.12)
i f i

The continuous variable v; of analog neuron will represent the average value of the binary
variable x, =—1 or +1 at the temperature 7. From (1.10), the MFT approximation takes

the form

v, =p(v, =+)=p(v, =-1)

— tanh{ %) = tantd L[ §°
_tanh(T) tanh{T[g%v,+9,)}. (1.13)

In this way, the complex stochastic process of simulated annealing has been approximated
by a system of nonlinear deterministic equations (1.13) and the gain is varied to obtain a
similar effect of controlling temperature in the metallurgical annealing on the deterministic
network. The level of optimization achievable by MFA is comparable to that of SA, but

1-2 orders of magnitude fewer relaxation iterations are required [46].

1.3.4 Parallel Algorithms

The SA is a stochastic optimization technique based on the classical metallurgical
annealing and its performance has been shown to be good in many applications [40,44].
As is common to most algorithms based on randomization techniques, the algorithm
usually requires large amounts of computation time. Paralleled implementations of SA
such as a systolic array algorithm and a clustering algorithm can reduce the computational
burden significantly. However, for large-scale problems, the use of these algorithms on
massively parallel multiprocessor systems becomes impractical and communication

bottlenecks drastically reduce the efficiency [44].

The characteristic features of neural network approaches to combinatorial

optimization problems are;
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» distributed memory with reduction of communication bottlenecks, and

» massive parallelism for fast computing.
The Boltzmann machine belongs to the class of neural network models and is a
representative of connectionist models. It provides a computational model that is suitable
for massively parallel execution of the SA algorithm. The MFA algorithm, a deterministic
version of SA, has been successfully ported to parallel multiprocessor systems such as a
ZIP array p:"ocessor with near-linear speedup [46]. However, these algorithms are also
iterative procedures for solving a set of stochastic or deterministic equations. Figure 1-3
shows the flowchart of a MFA algorithm [46] using Ising Hamiltonian of spins, the mean-
field approximation model of spin glass. A relaxation step indicated by a shaded area
consists of many iterations at a specific 7 for finding a stable equilibrium, and is repeated
many times until a global minimum is obtained. On the other hand, the proposed
hardware-based annealing is directly incorporated with a neural network. It involves a
single network evolution that corresponds to the relaxation step in MFA, therefore can
achieve a very fast convergence speed via true parallelism. Moreover, the convergence

speed of an annealed neural network hardware is almost independent of the network size.
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Figure 1-3: Flowchart of mean-field annealing (MFA) algorithm [46] from
naive mean field approximation model of spin glass.
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Chapter 11

Recurrent Associative Neural Networks

An associative neural network is a network with essentially a single functional layer
designed to map one set of vectors x;, X,, -+, X, into another set of vectors y,, y,, -, y,,
where x, € R" and y, e R for k=1,2,.--,L. In a recurrent associative network, the
output signals of the processing elements of the layer are connected to those elements as
input signals. The insertion of the vector x entered through separate input connections to
the processing elements, causes the feedback loop of the network to become active. It
possesses the following properties [26]. First, given any initial state, the network should
always converge to some stable state. Second, the stable state to which the network
converges should be the one closest to the initial state, as measured by some metric.

Third, it should be possible to have as many stable states as desired.

2.1 Hopfield Neural Networks
2.1.1 Continuous-Valued Neuron Model

The Hopfield neural network belongs to the class of recurrent associative network in
which the dynamics of evolution plays an important role. It has been developed by using
a electrical circuit model consisting of resistors, capacitors, and nonlinear amplifiers as
neurons as shown in Figure 2-1. By applying the Kirchhoff's Current Law, the network

can be described by a set of nonlinear differential equations

16



-1

®

Up.1

An-l

I

Vn-1

Figure 2-1: Hopfield neural network.

17



M—_i f = cee
C e Ru(t)+27;v,(t)+1 i=12,-.n 2.1

J=1

where #,(¢) is the neuron input, v,(f) = f(u,(?)) is the corresponding output through a
nonlinear transfer function f(:), 7, =1/R; is the transconductance between the i-th
neuron input and the j-th neuron output, R, is the equivalent input resistance, and 7, is the
external bias input. Without loss of generality, it is assumed that y= f(x) is
monotonically increasing and differentiable, i.e., df/dx>0, VxeR, and its inverse
function x = f~'(y) exists in the possible range of x. Figure 2-2 (a) shows the transfer
characteristics of the sigmoid function which is widely used as the nonlinearity. Note that

if the ideal current source J, is replaced by a voltage source with a resistance R, =1/T,,
then Z=1/R =3 |T|+|Tl.

The stability of a nonlinear dynamical system is described by the Lyapunov function
[2,3] or generalized energy function. For the system of (2.1), it can be given as

E(z)_-—z 3 Tv, () (z)+2Tj 7 )dv=3 Iy (). 2.2)

l-l J=, i i=l

Each component of the energy function consists of three terms corresponding to the
feedback of neuron output, neuron itself, and input. The integral expression in the second
term represent the area of the function x= f~'(y) when integrated from y=0 to

y=v,; <1 Assuming that the connection is symmetric I, =T, the time derivative of

the energy function (2.2) is given by

dE _ aEdv :
EA-F>

= S Ty, + T (v,)- 1]‘;" 2.3)

i=] j=l pwi t

By using (2.1), f~'(v,)=u,, and dv,/dt = (f [du,)x (du, /dr), (3.6) is shown to be

du, dv, & :
E_Schud_ 3o ( ) <0, 24)

i=l i=
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because C; >0 and the neuron transfer function is non-decreasing, i.e., Jf /ou, 20, Vi.
Therefore, the state of the Hopfield neural network changes in such a way that the energy
function is decreased. In the steady-state, the network reaches a stable equilibrium, at
which du, /dt =0 and dE/dt =0. For a guaranteed binary saturated output in the steady
state, the continuous-value neuron model is replaced by an infinite-gain, threshold neuron
for which the second term in (2.2) vanishes. In this case, the self-connections need to be

zero for stable operation, i.e., T, =0, Vi [2,3].

2.1.2 Threshold Neuron Model

When the neuron gain is very high, the continuous-valued neuron acts like a threshold
neuron and the second term in (2.2) is negligible. In hardware implementations, this is
always the case because the hard-limiting device has smooth transitions. It is related to

the nature of the neuronal dynamics;
V= sign(EW,jv/ +G,J, v, €{-1+1}. 2.5)
i
The energy E({) associated with (2.5) is defined as

l n n n
E=—522%Vivj -Ze,v,. (2.6)

isl j=1 i=)

In (2.5) and (2.6), v, is the state of the i~th neuron output, W, is the amount of interaction
or weight between the i-th neuron input and j-th neuron output, and 0, is the external
input including the bias. The incremental energy AE, for the output change Av, of a

specific neuron i is easily shown to be

J=1

= 1
AE, =-Av{2%vj +9,]—-—2-%(Av,)2, (2.7)
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where the symmetry condition W, =W, is used. If #, =0, then the second term is zero
and AE, <0 because, from (2.5), Av, and the quantity in the parenthesis have the same
sign. Therefore, for a simultaneous change of all neurons, AE = Z:,,;AE-' <0 and the

network always operates in such a way that the energy function (2.6) is decreased.

The symmetry of synaptic weights with vanishing diagonal elements is a sufficient
condition for the stability of a Hopfield neural network with threshold neurons.
However, only the symmetry condition is required in the network with continuous-valued

neurons.

2.1.3 Local Minima in Hopfield Neural Networks

We can re-write the energy function (2.2) in vector and matrix form as
. E= —%vTWv+Tx-vTO, 2.8)

where v=[v, v, - v,,]reD"={veR":—1$v,s+l,i=l,2,-~,n}
W=[T,1<i,j<n|=W', 7, =0
T = diag(T))
x=[, x, ~ xJ,5=[f(v)v

o=[1, L, - L)

The equation (2.8) is a scalar-valued, quadratic function of v and has the same form as
the cost functions in the optimization problems. The collective computational properties
of the Hopfield neural network for seeking a stable equilibrium can be utilized in solving
many of difficult optimization problems. When an optimization problem is appropriately
mapped onto the energy function of the form (2.8), it can be solved autonomously and an
output v € D" that minimizes (2.8) will be produced in the steady state. Here, we restrict

ourselves to the combinatorial optimization problems in which each element of the
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desired output has a finite number of discrete steps, e.g., two-level bipolar output
v, €{-1,+1}, or m-ary unipolar output v,€{0,,---,m—1}, etc. Many science and
engineering optimization problems belong to these categories. On the other hand, the
optimization problem with inequality constraints, i.e., linear or nonlinear programming
typically requires an additional network for constraints satisfaction [25,27-31]. From

(2.8), the gradient of £ with respect to v is given by

V,E=%= —%(W’v+Wv)+Tv-9
- Wy+Tv-0=-C% 2.9)
- dl . -

Here, dx, /dv, = f~'(v,) =u, is used. The equation (2.9) indicates that the dynamics of
the network is equivalent to the directional change of the energy function and a stable
equilibrium v=v, is reached when V E =du/di=0, where v, is the solution of

V,E=0.

Since W is a real symmetric matrix, it can be diagonalized by a set of orthonormal

vectors
W =EAE" (2.10)

where A =diag(A,) is an n-by-n diagonal matrix with eigenvalues A,, ¥ =12,---,n, on
the diagonal and E=[e e, |-+le,] is an n-by-n matrix with the corresponding
eigenvectors e,, k =1,2,---,n, in each column. It is well known from the theory of linear
algebra that for diagonalizable W, the sum of the diagonal elements is equal to the sum of
eigenvalues, i.e, >, w, =Y. A, Therefore, for vanishing diagonal elements of W in
the Hopfield neural network, there exist some positive and negative eigenvalues whose
sum is identically zero. The energy E is an indefinite function of v in a compact set D"

In some directions, the energy value decreases while it increases in the other directions.

22



As a result, the Hopfield neural network can be a tool for an indefinite optimization
problem, in which two important observations can be made. First, the stable equilibrium
v, is not guaranteed to be at the corners of the unit hypercube, i.e., v, € {~1+1}" in
general. However, if the neuron gain is high, v, is close to the corner of the hypercube
[2,3] as can be seen from (2.9). Secondly, for given W and 6, some corners of D" may
not be the stable equilibria because the energy value at the corner is higher than that of its

vicinity.

2.2 Cellular Neural Networks

2.2.1. General architecture

A cellular neural network (CNN) is a continuous- or discrete-time artificial neural
network that features a multi-dimensional array of neuron cells and local interconnections
among the cells. The basic CNN proposed by Chua and Yang [59,60] in 1988 is a
continuous-time network in the form of an n-by-m rectangular-grid array where » and m
are the numbers of rows and columns, respectively. Each cell in a CNN corresponds to
an element of the array. However, the geometry of the array needs not to be rectangular
and can be such shapes as triangle or hexagon [65]. A multiple of arrays can be cascaded
with an appropriate interconnect structure to construct a multi-layered CNN. The r-th
neighborhood cells N_(i, j) of a cell C(i, ), 1<i<n, 1< j<m, are defined as the cells
C(k,), 1<k <n, 1S1<m, for which |k —i|<r and |I-j|<r. The cell C(,j) has the
direct interconnections with N, (i, j) through two kinds of weights, i.e., the feedback
weights A(k,Li, j)/ A(i, j;k,I) and feedforward weights B(k,/;i, j)/ B(, j; k,I), where
the indices pair (k,/;7, j) represents the direction of signal from C(, j) to C(k,/). The
cell C(i, /) communicates directly with its neighborhood cells C(k,/)e N, (i, j). Since
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Figure 2-3: Cellular neural network (CNN).
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the cells C(k,7) have their neighborhood cells, it also communicates with all ofher cells
C(k,)) e N,(i, ) indirectly. Figure 2-3 (a) shows an n-by-m CNN with r =1. The cells
filled with dashed lines represent the neighborhood cells N,(i, ) of C(, ), including
C(i, j) itself.

The block diagram of a cell C(/, j) is shown in Figure 2-3 (b). The external input to
the cell is denoted by v,,(f) and typically assumed to be constant V() =v,, over a
operation interval 0<7< 7. The input is connected to N, (i, j) through the feedforward
weights B(i, j,k,I)'s. The output of the cell, denoted by v,(r), is coupled to the
neighborhood cells C(k,/)e N,(i,j) through the feedback weights A(i,j;k,D's.
Therefore, the input signals consist of the weighted sum of feedforward inputs and
weighted sum of feedback inputs. In addition, a constant bias term is added to the cell. If
the weights represent the transconductance values among the cells, the total input current

i,;(2) to the cell is given by

i)=Y AGLEDv(O)+ Y BG,jik Dy +,, (2.11)
C(k,)eN, (i.f) C(k.J)eN,(1.5)

where 1, is the bias current. The equivalent circuit diagram of a cell is shown in Figure
2-4, where R, and C are the equivalent resistance and capacitance of the cell,
respectively. For the simplicity, /,, R, and C are assumed to be the same for all cells
throughout the network. All inputs are represented by dependent current sources and
summed at the state node. Due to the capacitance C and resistance R, the state voltage

v, (#) is developed at the summing node and satisfies a set of differential equations

av,(1) 1 :
C—d't—=-z o (1) +izy (1)
s 0+ S AGHEDL 0+ Y BG ik Dy +l,,
RX C(l'.')eN;('J) c(k-’)GNr('Oj)

1is<n1<j<m, (2.12)
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The cell contains a nonlinearity between the state node and the output and its input-
output relationship is represented by v, (1) = f (v4(?)). The nonlinear function used in a
CNN can be any differentiable, non-decreasing function y= f(x), provided that
J(0)=0, df(x)/dx20, and f(+s)—>+1 and f(—=)—-1. Two widely used

nonlinearities are the piecewise linear and sigmoid functions as given by

%(lx +1|-[x=1])  ;piecewise —linear

y=flx)= (2.13)

1-e*
l+e™™

;sigmoid.

Here, the parameter A is proportional to the gain of the sigmoid function. For a unity
neuron gain at x =0, A =2 may be used for the sigmoid function. The gain of neurons in
a Hopfield neural network is very large so that the steady-state outputs are all binary-
valued. However, if the positive feedback in the CNN cell is so strong that the feedback
factor greater than one, the gain of the cell needs not to be large for guaranteed binary
output in the steady state. Typically, a unity gain df (x)/dx]_, =1 is used in CNNs. The
transfer characteristics of the piecewise-linear function is shown in Figure 2-5. The
piecewise-linear function provides a mathematical tractability in the analysis, while the
sigmoid-like nonlinearity can be easily obtained as a by-product of electronic circuits such
as operational amplifier. The shift-invariant CNNs have the interconnections that do not
depend on the position of cells in the array except at the edges. The shift-invariant
property of CNN is the most desirable feature when implementing a large-size electronic
network such as VLSI chip. The weights of a shift-invariant CNN can be represented by
the (2r +1)x (2r +1) feedforward and feedback cloning templates

T, =[ap_q,—r$p,qs+r] (2.19)

T, = [bm, -r<p.q S+r].
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Let N=nXxm be the number of cells in a CNN. By using the

notations, (2.12) can be re-written as

where

Here,

dx 1
CZ=—Ex+Ay+Bu+I,,w,

x=[x x, - %] =[O0y, @],

y=n» ol =[v,,.(t)!v,2(t)!---!v,,.(t)]r,

u=[u u, - uN]T=[vu,:v”2:---§v“]r,

A =toeplitz((Ag A, 114, 101--), (A, 1A 1--+1A_, 101--)),
B = roeplitz((B, B, |---|B, 10}---),(B, |B_, I:--|B_, 10!--)),
w=[11.-1].

r

V(1) =[Vey (1) v () -+ v, (0],
Ve () = [Vya (1) vya () - v,n(0],

Vo =[Vats Yz *** Vurm)s

vector and matrix

(2.15)

; N-by-1
; N-by-1
; N-by-1
; N-by-N
; N-by-N
; N-by-1
; 1-by-m
; 1-by-m
; 1-by-m

A, =Ioeplilz((a,'o a, -a,0 ---),(a,"o a_, a._0 )), ; m-by-m

B, =toeplitz((b, o b,, - by, O -+),(Bg Biy -+ By, 0 -,

; m-by-m

and foeplitz(a,b) is defined as the Toeplitz matrix with a in the first row and b in the first

column. Note that the submatrices A, and B, are Toeplitz, but A and B are not. The

elements of T, and 7, are often normalized to the scale of T, e.g., 10™. The notations of

voltages v, (¢)/v,(f) and the state variables x/y will be used interchangeably hereafter.

Because —1< y, <+1, Vk, the output variable y is confined within the N-dimensional

hypercube so that ye D" ={ye R":-1<y, <L,k =1.2,---,N}. The cloning templates

are called symmetric if A(i, j;k,0)= A(k,l;i,j) and B(i,j,k,[)= B(k,l;i,j). In this

case, A and B are symmetric matrices and the stability of the network is guaranteed as

will be shown later on. In fact, the symmetry of A is a sufficient condition for stability.
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Under the constraint conditions | I(O)|<l and | Vi

<1, Vi, j, the shift-invariant CNN
always produces a stable output in the steady state. Moreover, if A(i, j;i, j) > 1/R,, then

the saturated binary outputs are guaranteed.

In any CNN's, all states v, (#), V¢ 20, are bounded and the bound v, can be given
by [59]

V. max =1+R,|1,,|+R,max[ Y. (|4G, j; &, 0| +|BG, j;k,1)|)). (2.16)

1sisn, j
15/%m (k2)eN, (1))

The terms in (2.16) account for the initial value, bias, feedback, and feedforward
interactions, respectively. Therefore, the operating range of the circuits for summing and

integration in Figure 2-3 (b) must be at least -v, _ <v_ ()< v, .,

2,2.2 Stability

The stability of a nonlinear dynamic system including CNNs is described by the
Lyapunov [5] or generalized energy function. For the CNN with the piecewise-linear
function, it is given by [59]

E«)—-;z Y AG, oy (O + > L3 (v, ()’

i.j C(k)eN,(.5) x i

=Y, XBG.jk Dy ()W - Zlv ®. (2.17)

1.j C(EDEN,(1.1)
For the sigmoid nonlinearity, the second term of (2.17) is replaced by

vyg(t)

—2 j (2.18)

The expression (2.18) can be used for arbitrary nonlinearity y= f(x) if its inverse
function x = f~'(y) can be well-defined over the range of x. It can be interpreted as the

area of the function x=f"'(y) when integrated from y=0 to y=v, <l The
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piecewise-linear function used in (2.17) is a special case of this general expression (2.18).
For the piecewise-linear function, x= f ' (y) =y, ~1< y<1, and

() vyl

If-l Oy = Iyay = %(Vyij(f))z, (2.19)

which is consistent with the one in (2.17). In the vector and matrix forms, (2.17) is a

scalar-valued quadratic function of output vector y,

E=--l-y’Ay+Ly’y—y’Bu—Iyrw

2 2R,
s-%y’My—y’b, 2.20)

where M= A —(1/R )I and b =Bu+ I, w. The stability of the network can be tested by
checking the behavior of the energy function after the network is activated at time 7 =1,
By using the chain rule, the time derivative of E can be given by a scalar product of two

vectors

_____ . 221
dt a’ dt k=l @k dt ( )
where dE/dy =V E is the gradient of E with respect to y. From (2.20), we have
a{ 1 , r 1 T
V,E=—|-—y™My-y'b |=——(My+M"y)-b. (2.22)
d\ 2 2
If A is symmetric, soisM and M =M". Therefore,
1
V,E=-(My +b)=~(Ay-R—y+b]. (2.23)

Assume that the network is activated at # =1, and the constraint condition |v,,,j ) | <lis
satisfied. Then, it begins to operate in the linear region because v,y (1) = v,;(1,) and as

time increases, some of the cells become saturated such that |y,|=1 for some /. Note that
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if |x,|> 1, then dy,/dt =0 and the corresponding terms in (2.20) vanish. If we consider
only nonzero terms, then for k #1, y, =x,, dy, [dt =dx, [dt, and from (2.12) and (2.23)
JE[dy, = ~C(dx, [dt). Therefore,

dE __oddy, _ (ﬁ)’
dr C,,z,," dt dt "CZ' dt )’ (224)

Since C'> 0, the energy E decreases as time elapses such that dE/df <0, V¢ 21, When
all the cells become saturated, dE/df =0 and the network results in a stable binary output
for which the energy function (2.20) is locally minimized. Note that the state x is
stabilized after the stable equilibrium is reached through dE/df=0. If we use other
neuron transfer characteristics y = f(x), for which the inverse function x= f'(y) is

well defined in the range of x, (2.20) can be written as
E=-1ymay +lf I )dv—yTb, (2.25)
2 R,

where the second term is simply an N-by-1 vector with the integral expression in each

element. In this case, /™' (y) =x and

1 1 dx
E=- —fY(y)-b=-Ay+—x-b=-C— )
v, Ay+R,f o) y+&x Cdt’ (2.26)
from which it follows that
dE dy __dedy & af(dsc.)’
—=VE=—=-C—.==-CY Z|=%| <o. 227
dt A~ dt Cdt dt CZ.’ ox, \ dt 0 227)

The information to be processed can be passed into the network as a form of the input
v,4 or the initial state v, (0), or both of them. In any cases, the initialization of the state
voltage v, (?) is required at the beginning of each operation, such that |v,,, 0 | <1, Vi, j.

Otherwise, the undesirable situation E(f=0)<E(f=+e) may occur.  Local
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interconnection and simple synaptic weights are the most attractive features of the CNN

for VLSI implementation in high-speed, real-time applications.

2.2.3 Discrete-time CNNs

Discrete-time cellular neural networks (DTCNNs) are special kind of feedback
threshold network where the local interconnections and the shift-invariant weights are
transferred from continuous-time CNNs. They are completely describes by a recursive
algorithm. The dynamic behavior is based on the feedback of clocked, binary outputs and
a single cell is influenced by the inputs and outputs of neighboring cells. The architecture
is closely related to cellular automata, but differs from them in having continuous-valued

inputs and weights.
The DTCNN is the discrete-time version of (2.12) and defined by the state equation

x, (k)= AG, j;k, Dy, (k) + Y, BG, j, k,Du, +1,, (2.28)
kd kd

and the output equation

-1 ifx,(k-1)<0

2.29
+1 ifx,(k-1)20 (2.29)

Yy (k) =Sign(xij(k—1))={

for a cell CG, ), i=12,---,n, j=12--,m, in an nxXm rectangular-grid array. Here,
yu(k)e{-1,+1}, u;eD, AG,jk,l)eR, and B(i, j;k,[)e R, where D is defined as
D={deR:-1<d<+1}. The advantage of DTCNNs is the description of the next
output through a set of linear inequalities in discrete-time fashion. The fact that it does
not include a sophisticated integration algorithm, allows simple implementation of the
algorithm on general-purpose digital computer. In a hardware viewpoint, the operation is
quite insensitive to noise and parameter variations caused by fabrication tolerances and

environmental effects. Thus, the interconnections among cells in a network or among
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VLSI chips in a large scale, multi-chip system, can be simplified. In addition, because the
discrete-time operation is controlled by clock signal, a robust control over the

propagation speed and testability is provided.

The energy function of a DTCNN can be defined by the use of the Lyapunov theory

for discrete-time systems [6,64]

E(k)==Y. AG,j;k.Dy,(k-1)y,(k)

ij kJ

=3, 3. B jsk Dyu(k) (3, (B) + 3, (k =)

L ki

—‘?_}Ib(y” (k)+y,(k-1)). (2.30)
Assuming the symmetric feedback weights A(i, j; k,/) = A(k,1;i, ), the differential
energy AE = E(k +1)- E(k) is given by
AE = —2 (vy ke +1) =y, (k- 1))(2; AG, ik, D)y (k) + ;3(,-,;; kD, + 1,,]
= —iz,(y,j(k +1)=y, (k= D)x, (k). (2.31)
J
Rewriting (2.29) as y, (k+1) = x, (k) / |x,j (k)l and substituting it into (2.31), we can get
AE = -;lxy(k)l(yq(k +1)? -y, (k =1y, (k +1)). (2.32)

Therefore, AE =0 if y,(k-1)=y,(k+1), Vi,j, and AE <0 otherwise. The energy
function E decreases as & increases and the condition AE =0 for a stable state can be
reached. However, for the condition AE =0 there exist two possible cases, i.e., for all i
and j, y;(k)=y,(k-1), and y, (k)= y;(k—1) but y,(k+1)= Y;(k—=1). The first case
obviously corresponds to a stable state, while the second case represents a two-cycle

oscillation between two different outputs. Thus, the stable operation is not guaranteed in
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8 DTCNN with symmetric feedback templates. For some other class of templates, the

DTCNN is shown to be always stable [64].

2.3 Paralleled, Hardware-based Annealing

The Boltzmann machine or MFA described in the previous chapter is an iterative
algorithm for solving a set of stochastic or deterministic equations. On the other hand,
when the problem to be optimized is appropriately mapped onto the energy function, the
Hopfield neural network or CNN can be by itself a tool for solving the problem. The
Hopfield network was originated from the network of probabilistic threshold neurons and
the circuit theory, while the CNN is a continuous-valued variation of cellular automata
with similar collective computational properties to those of the Hopfield network [2].
They are both described by the model of electronic circuits in a nonlinear system, i.e.,
differential equation (1.8) by capacitor and resistors and the energy function (1.9) by the
Lyapunov theory [5,6]. These networks can be realized by physical hardware circuits for
very fast, real-time processing of real-world data or signals. Therefore, for the global
optimization of the energy function, these neural networks need to be equipped with

means of avoiding local minima problems.

The hardware-based annealing technique has an analogy to the metallurgical annealing
in the metallurgy and simulated annealing in the Boltzmann machine, which are the
optimal stochastic procedures. It is a paralleled, electronic version of the deterministic
mean-field leaming rule [43-46] directly incorporated with the Hopfield neural network
or CNN. However, as will be shown in the later, it can be generalized as a hardware-
based optimization technique in which the globally optimal solution is obtained through
the process of changing the network energy from a convex function to an indefinite or

concave function. In contrast to the simulated annealing or other optimization techniques
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on serial or parallel digital computer, it can be easily implemented in a massively-
paralleled hardware for real-time applications. For example, in solving the global
minimum of a 12-neuron, binary Hopfield neural network using the circuit partitioning
technique [19], it took about S minutes on a SUN-SPARC machine. In many applications
of the simulated annealing, the major obstacle has been shown to be the slow
convergence speed toward a near-optimal solution [23,40,46]. On the other hand, the
speed of microseconds or fractional microseconds can be achieved in VLSI neural

networks [47-51].

2.3.1 Local Minima

Let us examine the local minima in the energy function of a Hopfield neural network
and CNN. Typical energy functions of a Hopfield neural network and a CNN are shown
in Figure 2-6 (a) and (b), respectively, for comparison. In the plots, the x- and y-axes
represent two outputs of specific neurons in the networks as the free variables and the z-
axis indicates the magnitude of the energy E. In a Hopfield neural network, the diagonal
elements of the transconductance matrix are zero and due to the infinite neuron gain the
energy term that corresponds to the second term in (2. 16) vanishes [2,3). Some
eigenvalues are always negative such that the sum of all eigenvalues is equal to zero and
therefore the networks have the saddle-shaped energy surfaces [33-35,113] as shown in
Figure 2-6 (a). In Figure 2-6 (b), the energy is plotted as the functions of V,n and v,,, in
2 4x4 CNN with R, =10°Q, I =0 and the cloning templates

0 -025 0 000
T,=|-025 2 -025|and T, =010/ (2.33)
0 —025 0 000
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(b) Concave energy function of CNN.

Figure 2-6: Typical energy landscapes of Hopfield neural network and CNN.
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The eigenvalues of M corresponding to these parameters are evaluated and listed in Table
2.1. The matrix M in this case is positive definite and all corners of [~1,+1] are the

minima as shown in the figure.

Consider a simple two-neuron cellular neural network shown in Figure 2-7 (a). It
contains self-feedbacks and cross-interactions. For simplicity, assume that the neuron
uses the piecewise-linear function, the capacitance C is normalized to a unity, and
interactions are symmetric 4,,=4,,=A4,>T = YR, A,=4,=4. Then, the
Lyapunov function is given by

1 2 2 T 2 2 2
E=—522A“vy,v” +?‘Z(vy,) —ZVﬁvm.

i=l j=l i=l i=]

T T
R R
21Vl A ALV, | ]|V,
M

y u

where —1<v,,v,<+1. By solving the equation Mx = Ax, the eigenvalues and
eigenvectors of M are given by 4, = 4, + 4, - T, A, =4y— A4 ~T, and x, =[+] +l]T,
x, =[+1 ~1]', respectively. Obviously, £ has multiple minima at the corners of [-1,+1]".
If the eigenvalues A are positive and the bias is relatively small, then the minima occur at

all corners as given by

( _(AO“I;"'AI)-(V.:: +V,) SV =V =+1
E= -(Ao‘z; _Al)+(vul "vuz) WV ==Ly, =+l 2.35)
~(4-T,-4)=(v,~v.,) s =+, v, =1
{ —(‘40-7;+Al)+(vul+vn2) WV =V, =1

Depending on the values of 4,, v,,, and V2> €ach minimum has a different value from
others. The lowest value corresponds to the global minimum and others the local minima.

Figure 2-8 (a) shows contour plot of the energy function when 4, =2, 4, =-05, and
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Table 2.1 List of eigenvalues of positive definite M for cloning templates of (2.33).

Eigenvalue Magnitude Multiplicity

A=A, +1.000 4

Ag A +1.250 2

A, +0.750 2

AgsAg +0.441 2

Ayshy +1.559 2
Ans +0.691 1
A +1.309 1
As +0.191 1
g +1.809 1
N +16.00




(a) Two-neuron cellular neural network.

Vul ) d') Vi2
Vy2=f(Vy2)

Vri Va2
: 1
T A2V T

A1V A2V

(b) Equivalent circuit diagram.

Figure 2-7: Two-neuron neural network.
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Figure 2-8: Multiple minima in concave energy function of two-neuron CNN.
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[V1» v.2]=[0.2,~05). The point [+1, —1] is the global minimum while the points [-1, — 1]
and [-1,+1) are the local minima. Four initial outputs a, b, ¢, and d follow the
corresponding trajectories when the network is allowed to evolve. The steady-state
outputs for a and b are both (V15 v,2]1=[+1,—1] which correspond to the global
minimum. The initial locations ¢ and d result in the local minima in the steady state. The
energy levels during the network evolution and steady state for these four cases are
shown in Figure 2-8 (b). Note that two local minima happen to have the same energy
level. The energy landscape E is determined by the interactions and input. However,
there is no direct correspondence between the initial value and steady-state output in a

given network.

2.3.2 Global Optimization

Now consider a CNN with #xm = N neurons. The neuron have the piecewise-linear
transfer function and its gain is variable as shown in Figure 2-9. The gain is controlled by

a monotonically increasing function g(¢) such that

+1 Ve >+lfg
v,=f(gv.)=1 gv, —Ygsv, <+)/g (2.36)
-1 V. <-1g

In this case, the energy function (2.17) can be written as

1 . 1
E=-=3 Y 4G.j:kDyv,v, +ﬁZ("m)z

L.j CkD)eN, (i.)) x i

- 2 z B(,jk, l)vy,.jvw - Z A V-
iJ

i.f C(k)eN,(i.f)

2 g

1
= —EyTng —yrb’ (2.37)
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Figure 2-9: Variable-gain piecewise-linear function for hardware annealing.
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where the factor 1/g in the second term stems from the energy associated with the
piecewise-linear function with a neuron gain other than unity. When M, is diagonalized
as M, =QAgQT, the matrix Q consisting of orthonormal set of eigenvectors e,'s is
independent of neuron gain because M and M, commute. As the annealing gain g
increases from a small initial value 0< g, <<1, the eigenvalues of the time-varying matrix
M, =A-(T,/g)I change from negative to positive values and the energy function E

given in (2.37) gradually changes from a convex function to concave function.

Let A, and A, denote the k-th eigenvalue of M, and M, respectively. Also let

y=PB,e+--+PB,e,, where B,, 1<k<N, are scalar constants. Then, B=Q7y=
Y, Q(Be)=[B, B, - B,] and(2.37) can be rewritten as

N N
E= —2(% BiA, + B,‘efb) = Z;E,,. (2.38)

k=l

From (2.38), it can be seen that the network attains its equilibrium p, when

By =—elb[A, =B, Vk. It also can be found by solving

%=—(A—‘§—I}V—b=—Mx}’—b=0, (2.39)

where the symmetric property of M, is used in the partial differentiation. Thus we have
the same result

4 N e{b N
= —Mg b= -z T = —gﬂo.kek . (2.40)
& =]

&=l

The global minimization of (2.20) can be explained by observing the trajectory of the
equilibrium y, during the process of the proposed hardware annealing. The energy
minimum for g=1 can be obtained by simultaneously minimizing quadratic energy terms
E's in (2.38) and should occur at a vertex of the hypercube [-1,+1]" where the
following conditions are met
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—sgn(—eb/2,) AL >0

2.41
+sgn(-e;b/2,) ; A, <0 @4n

sS“(ﬂk) = {

from the symmetric property of E, as a function of B,. Figure 2-10 graphically shows
the condition (2.41), the relationship between the output for the global minimum and the
equilibrum y, at g=1 along the eigenvector e,. Of course, the conditions (2.41) just
indicate the direction of the global minimum around the origin, but neither an absolute

location in a whole space R nor the direction of the movement as g increases.

For the gain increase from g, to a fixed value 8 at which 4, =0, all eigenvalues are
negative. During this period, we may observe the following facts: 1) M, is negative
definite (i.e., —M, is positive definite), and y, is a unique stable equilibrium so that
Y Z »,; and 2) because the magnitude of —e] b/}.,: in (2.40) increases as g increases, Yo
moves from y,(0) =0 toward the boundary of D¥ while satisfying the condition (2.41).
In other words, the annealing process forces the network such that: 1) the output stays in
a stable equilibrium condition, i.e., y=y,, and 2) the output moves toward the global
minimum energy state. A neuron output is bounded by a value between -1 and +1, some
of neuron outputs become saturated and the linear operation described above does not
hold. However, those neurons with saturated outputs have fixed energy values in (2.20),
they no longer contribute to the energy minimization operation and the process continues
with a reduced dimensionality. As A, >0, E becomes an indefinite function and energy
barriers begin to stand out, preventing the network in the globally minimum energy state

from moving back to local minima.

The critical neuron gain g, similar to the critical temperature [11,46] in the mean-
field annealing, may be defined as the neuron gain at which 4, =0. By noting that
M, =A-(T,/g)l=M+ ((g-1)T,/g)1, it is given by
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T

X

A+T

8 = (2.42)

where A, is the maximum eigenvalue of M = M,(g=1). The critical gain (2.42) and
another important gain value will be further investigated in Chapter IV.

The process of global optimization by hardware annealing is discussed heuristically.

Now let us apply the proposed method to two-neuron CNN described early in this

section.
T T
E= _l vyl] [Ao -I/g 4, ][Vyl ]_[Vyl] [vul]
2 vyz Al Ao - 7;/ g vy! vy2 Vu2
= —-;-y’ng—y’u. (2.43)

Until a saturation occurs in one or both neurons, the network is a linear time-varying
system that can be described by the equivalent circuit of Figure 2-7 (b). By diagonalizing
the matrix M, as M, =QAQ" where A=diag(A,,4,) and Q =[e, | e,] is the
corresponding eigenvector matrix, the eigenvalues are A= A, x4 -T [g. The
equilibrium is given by

- ey ely
Yo =-M,'v, =—'Tie| - i “e,, A,A,#0. (2.44)
1 2

As A, approaches zero, the first term of (2.44) dominates and the direction of Yo
approaches that of the eigenvector ¢,. Note that the desired output y=(+1,-1)7 is
toward the direction of e, the eigenvector that corresponds to the largest eigenvalue. As
g further increases, y, travels the directions of —e,, —¢,, and finally e,. In Figure 2-11,
the trajectory of y, and the eigenvectors e, and e, shifted by u are shown in solid and
dotted lines, respectively, when g varies from 0 to 1. Figure 2-12 shows plots of the
energy landscape (2.43) for increasing neuron gain values. The energy function is

convex, indefinite, and concave when the gain is in the range 0< g <04, 04<g<2/3,
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v2, (extended)

v1, (extended)

(dashed lines: directions of eigenvectors el & e2, u=[-0.5,0.2])

Figure 2-11: Trajectory of equilibrium point for increasing annealing gain.
(g=0-0.4: stable eq., g=0.4-2/3: saddle point, g=2/3-1: unstable eq.)
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Figure 2-12: Dynamic changes of energy landscape for increasing neuron gain

from g=0.1 to g=0.8.

48



and 2/3< g <1, respectively. From the figure, it can be seen that the global minimum is
reached during the gain increase from 0 to 0.4 with 8- =04. In Figure 2-13, the
trajectories of the outputs are plotted when the proposed annealing is applied to the
network conditions of Figure 2-8. Regardless of initial state values, the network results

in the optimal solution at which its energy is minimized globally.

2.3.3 Ill-conditioned Initial Conditions

As indicated in the section 2.2.1, the constraint conditions on the initial state and
input values must be satisfied for the stable operation of the network. The steady-state
values of states is 1< Vyg(f=+4e2)<v,_ ., Vi,j, as can be seen from (2.16). Therefore,
the state values must be initialized to a value —1< V4 (0) S +1 at the beginning of each
operation. Figure 2-14 (a) shows two initial conditions in the two-neuron neural network
with and without satisfying the constraint conditions. For [V (0), v, ()] =[-15,+12],
the output never changes and frozen to the initial value [vy, ®),v,, (t)] = [-1, + 1], Vt20.
This is the case if there is no stable equilibrium with a lower energy value than E(1=0).
Even when the constraint conditions are satisfied, external excitations may not be so

strong as to compete with the initial state [59].

The hardware annealing is shown to be an efficient way of overcoming such ill-
conditioned initial states. It first forces the output to move to around the origin and then
lets the network evolve according to the dynamics described in the previous section.
Figure 2-14 (b) shows the correct operation of the annealed network in finding the global
minimum for both initial conditions used in Figure 2-14 (a). If the initial states are not
used as means of supplying the external input, they can be left uninitialized in each

operation of an annealed network.
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Chapter 111

Paralleled Hardware-based Annealing in
Hopfield Neural Networks

3.1 Introduction

Search of fast optimization in scientific and engineering applications has drawn
researchers' interest in the field of engineering neural networks. Simulated annealing [37-
40] is an important method for searching for the optimal results on digital computers. It
is a stochastic process modeled after the metallurgical annealing in which the slow
decrease of the cooling temperature and the natural tendency towards a minimum energy
state are the key factors. Due to a slow cooling schedule in software execution, the
simulated annealing method on digital computers requires a lot of computing time for a
complex optimization problem. By constructing a hardware-based parallel annealing

technique in analog electronics, the processing speed can be significantly improved.

An analog-to-digital (A/D) converter based on the Hopfield neural network [4,34,35]
is a computational network for obtaining a digital representation of analog input by
minimizing the squared error between them. The properties of the Hopfield network
together with the mapping of the cost function onto the energy function were presented
as an illustrative example of optimization problem. The result, however, is somewhat
discouraging because some of digital outputs are sub-optimal in representing the input
values, due to local minima problem. The first part of this chapter is devoted to the
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hardware annealing technique for avoiding such minima in the A/D conversion neural
network with multi-level neurons, which is an extension of binary Hopfield network. An
A/D conversion neural network is first chosen because it typically consists of small

number of neurons and the local minima can be easily computed.

The characteristics of a multi-level neuron is first reviewed in the next section. The
energy function expression of a multi-level neuron is described. The technique of
hardware annealing is discussed the section 3.1.3. In the section 3.1.4, hardware
annealing is applied to a muiti-level neural A/D converter to help the result to quickly
reach the optimal solution. Simulation results of the energy contour of a multi-level

neural network at various stages of the hardware annealing process are given.

3.2 Hopfield Neural Network with m-ary Neurons

Most neural networks use two-level binary neurons in either a continuous-valued or
threshold logic model. If a combinatorial problem is no longer a binary-valued
optimization such as the quadratic 0-1 programming, it is in general difficult to
accommodate the task with a network of two-level neurons. A multi-level Hopfield
neural network [56] is an m-ary extension of the binary model. An m-ary content
addressable memory (CAM) model has been shown [52] to be a novel technique for
recovering heavily distorted images. Obvious advantage of the multi-level version over
the binary Hopfield neural network is the ability to handle more information with a
smaller number of neurons. A two-level neuron produces output with 1-bit accuracy
while an m-level neuron produces output with log, m-bit accuracy. An analog-to-digital
(A/D) converter using a n-neuron Hopfield network with m =27 levels is equivalent to

(p-n)-bit binary network. Therefore, a multi-level neuron is quite desirable for VLSI
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(b) Transfer characteristic of multilevel neuron
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(b) Neuron energy: E, = J;‘f'l () dw

Figure 3-1: Multilevel neuron and its ‘generalized energy’.
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implementation for complex optimization problems. The activation shown in Figure 3-1

(a) represents a multi-level thresholding operation defined as
Sa(¥)=a,,0,<x<8,,, k=01, m-1 @3.1)

where 6, and a, are the threshold and output values, respectively. We also define the
threshold and output step sizes for k=12,---,m~1, as A6, =6, -0, with A9, =6,,
and Aa, =a, —a,,. If a specific neuron in a network, e.g., the neuron-i, needs to be
referenced, then two indices are used such as 6,, and a,,. A typical two-level neuron
can be modeled by y = f,(x—6) where 8 is the threshold value of the neuron. To
represent a multi-level neuron with m threshold values 6,, k=0,1,---.m—1, a neuron
transfer function of the form

£9=Ycsisx=6,) 6, <8, 3.2)

k=l

can be used. Here, the constant ¢, is a scaling factor for the k-th level, and if a, =0 then
a, =¢,+c,+ ¢, . Therefore, the output level has a step size of Aa, =a,,,—a, =c,.
As in the binary neuron case, we can use a differentiable, monotonically increasing
accumulation function, instead of an ideal staircase function f, (x). The sigmoid function
has been widely used in the neural networks. This function is a bounded, differentiable
real function that is defined for all real input values, and it has a non-negative value

everywhere. By replacing f,(-) with the sigmoid function, (3.9) becomes

m=1 c
Ju(x)= Zm (3.3)

k=0

where A, the gain control parameter of the k-th binary activation function. For the shake

of simplicity, A, =A and ¢, =1 are used for all £.

The govemning equation for the i-th neuron in an n-neuron network can be expressed
as a nonlinear differential equation
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du, (¢

CZT Tu () + _Z,T O +1,0), ()]

where C, and 7] are the equivalent capacitance and conductance at the input node of the
i-th neuron, and 7; is the conductance between the i-th and the j-th neurons. The voltage
at the input node of the i-th neuron is #,(¢) and the output voltage of the j-th neuron is
v;(#). The energy function associated with the network can be expressed as

E=-—-Z > Tvw, +2ij )Mo I, (3.5)

i=l =, jwi i=l ¢ i=l

where f, () is the transfer function of the i-th multi-level neuron. The time derivative of
the energy function is

2 (2 WY 7,’u,+1,). (3.6)

i=l j=), fui

Substituting (3.4) into (3.6), we can obtain

T Saleh)-Leme(%) o7

i) i=1

Since C, >0, Vi, dE/dt <0 if f,(-) is chosen to be a monotonically increasing function.
The operation of the network evolves in the direction of decreasing the energy of the
network until the equilibrium state is reached. As a matter of fact, all underlying
equations (3.4)-(3.7) are the same form as those of the binary Hopfield network.
However, there exists one fundamental difference in the energy function. In the binary
case, the second term in (3.5) vanishes as the neuron gain approaches an infinity. As
noted in the previous chapter, it represents a closed area indicated in Figure 3-1 (b). For
a multi-level neuron, it approaches a non-zero function ¥(v) as the neuron gain becomes
an infinity, i.e., all binary activation functions f,(x-6,), Vk, in (3.2) approach step
functions. Assuming that a, =0 and 6, 20, Vk,
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v

¥(v) = lim ( j = (v)dv) = iAa,e, +(v-a,)6,.,

=1

]
= ZAa,AGP +(v-a,)8,., a, <v<a,,. (3.8)

k
1=l p=l

-

3.3 Neural Network Analog-to-Digital Converter: A Combinatorial

Optimization with Local Minima

The one-dimensional A/D decision network is suitable for illustrating the properties of
the multi-level Hopfield neural network. In this case, a neuron with m discrete levels may
be realized by m-1 amplifiers connected in parallel with their output currents summed
together as indicated by (3.2). The summed current can be converted to the output
voltage of the neuron by a current-to-voltage converter. The output voltages are
connected back to the neuron inputs through interconnection conductances. An analog
input value and reference voltage are applied to all neurons. A general schematic diagram
shown in Figure 2-1 also represents a Hopfield neural network with multi-level neurons.
We use multi-level neurons with integer values @,, =k, k¥ =0,1,2,3, for all i. The synapse
weight values can be determined by minimizing the squared value of the difference

between the input analog value and the corresponding digital representation,

-1 2
E, =(x,, -Zm’v,] , v, €{0,1,2,3}. (3.9)

The analog input x, has a normal range of —0.5< x, <635 and may be scaled to the
range of 0 to 5V if electronic hardware implementation is considered. After expanding

(3.9) and discarding the irrelevant constant term, we obtain

n=1 n= n=1 n-
E,= -%2 2(-m'*")v,v] -Zm'x,v, +%Zlm2"vf ) (3.10)
i=0 f=0, jui i=0 i=0
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Without loss of a generality, we assume uniform spacing between the neighboring
threshold values and the output levels in a specific neuron, i.e., A8,, =8,, -6,,_, = A#8,,

and Aa,, =a;, —a,,_, = Aa,, for all k in the neuron-i. In this case, (3.8) is simplified as
Y(v) = %v(v+ 1)Aa,A8, +(v-a,)A8,,, a,Sv<a,,. (3.11)

The assumption a, =k is used in the first term of (3.11). If we define the first term as
Y, (v)=05v(v+1)Aa,AB,, a, Sv<a,,, then ¥(v)2'¥,(v) where the equality holds
only if v=a, = k. Hence, the second term of (3.11) can be regarded as the biased energy
for the constraint ve {0,1,2,3}. In Figure 3-2, the exact and quadratic approximation
are shown. As shown in Figure 3-2 (b), the energy landscape of concave function
remains unchanged with the approximation. This is generally true even when the neuron
gain is finite but large. Note that, in contrast to the intentional addition of constraint
energy in conventional optimization problems [1,25] or in binary neuron case [4], it is
already included in the energy function (3.8). Therefore, over integer values

v,€{0],-,m—1}, i=0,--,n-1, the minimization of (3.5) is equivalent to the

minimization of
- 1 a=1 n-l n-1 1 1 n-1
E= -—Z Z Ty, - Z(I, —-—TA8,Aq, )v, +—Z TA8Aayv! . (3.12)
2 i=0 j=0,jui ! =0 2 2 =0

Note also that E=E only if v, =a,,, Vi. By equating corresponding terms in (3.10)

and (3.12), we can obtain
T, =-m", (3.13)
L=l,+1,=nx, +% TABAd =T,x, +T,x.,

and
TA8Aa, =m".
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(b) Corresponding changes in total energy function.

Figure 3-2: Non-zero ‘generalized energy’ term and its approximation.

59



If an ideal current source is used for the external bias term /, =0.57A0,Aq, = 05m*,
then

T= i’ |T,j|+7;,.=m‘(1+ i'm’). (.14

J=0,jwi J=0,jwi

where the input transconductance of an amplifier itself is neglected. A 4-ary, 3-neuron
Hopfield neural network for an 6-bit equivalent A/D conversion is shown in Figure 3-3.
By using (3.14) and Ag,, =1, Vi k, the threshold values are given by vectors
6, =(1/21)[1, 2, 3] for the least-significant bit neuron, and @, = (8/3)[1, 2, 3] for the most-
significant bit neuron, respectively, as shown in the figure. If a bias voltage x,, =1, Vi, is
used, then an additional term I, =05m* should be added to the equivalent input
conductance given in (3.14). This change in 7, and correspondingly the change in
A8, =m* [T, reflect different effects of an ideal current bias 7, and voltage bias x,, with a
resistance R, =1/T, connected to the neuron input. The amount of currents that flow
into the neuron input are /, and T,(x,—y,), respectively. However, if the weighted
summation Z:;L‘“ T,v; +1, is performed by a summing circuit and its input is maintained
at a virtually grounded potential, two current values are the same and the equivalent

conductance 7] is solely determined by the summing circuit.

Let us carefully examine the transfer function of the A/D decision network. The
steady state equilibrium is reached when dy, /df =0 for all i. From (3.4), we can obtain
the steady-state solution for the neuron input voltage as

n-1

z ?,}vj +T,x,+Tx,

u, =20 7 , i=0]l-,n-1. (3.15)
i

Let the value of #, be in the range

0,,su<6,, (3.16)
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Am=1 Ay / Ay / Ag /
8o =83 8=2/9 6o =1/21
8, =163 0,=4/9 8, =221
8, =24/3 6,=6/9 8,=3/21

V2 Vi Vo

Figure 3-3: 4-Level, 3-neuron Hopfield A/D converter.
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such that the i-th neuron output is v, =q,,. Substituting (3.15) into (3.16), we can obtain

all possible ranges of input value at which the steady-state solution is given by (3.16) as

=1 1
- E Iy, +179,, - T;x, - z Iy, + 78, 40— T,x,
J=0.4%0 < x, g0 . (3.17)

L ’ L

Figure 3-4 shows the plots of all possible steady-state solutions (3.17) in the A/D decision
network. For some ranges of input value, there exist a multiple of digital representations
for the same input x,. Only one of them is the optimal solution and all others are sub-
optimal in terms of the squared-errors (3.9). The actual output out of those multiple
candidates is dependent on the initial condition #,(0) of the dynamical equation (3.4).
For all zero initial conditions, the energy value is quite large, i.e., £=0 from (3.5), but
the optimal solution can not be guaranteed. Figure 3-5 shows the computed energy
function versus v, and v, with v, =0, %,(0)=0, i=0,1,2, and x, =8. There are two
minima at the vertices [v, v, v,]=[0 1 3] and [0 2 0] which represent decimal numbers
7 and 8, respectively. The vertex [0 2 0] is exactly the desired output with a lower
energy level. At some input values, two local minima can exist. For example, if x, =20,

the possible outputs are 15, 19, and 20.

3.4 Hardware-Based Annealing

The hardware annealing is a paralleled, hardware-based optimization technique that
can be coupled with the recurrent associative neural networks, in which the energy
function can be expressed as a quadratic function of output variables. The voltage gains
of the neurons are gradually increased in a continuous manner to achieve a similar effect
as changing temperature in simulated annealing. If.the multi-level neuron is achieved by a

combination of binary activation functions as in (3.3), the gain control of the composite
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function f,(x,A) can be performed by controlling the individual gain value A, of
Je(x,A), k=12,---,m-1, simultaneously. For the simplicity, the gain control
parameter are the same for all binary and multi-level activation functions, i.e., 4,, =2,

Vi, k. The gain is controlled by a smooth function of time as given by
A=g(1)20, Vi1, (3.18)

where 1, is the time at which the network begins to operate with initial state voltages
#,(t,), i=0,1,---,n—1, and a initial neuron gain g(7,). Typically, with 7, =0, the zero
initial condition #,(¢,) =0, Vi, is used and g(#,) is chosen to be a small positive number
such that 0< g(1,)<1. As will be shown later in the cellular neural network case in
which the collective computational properties are similar to those of the Hopfield
network, the annealing gain g(f) also need to be a monotonically increasing function of
time for a stable operation. Figure 3-6 shows the transfer curves and the corresponding
energy terms of the first neuron (neuron-0) for gain values g =10, 50, and 250. Since the
incremental threshold value A0 is small, a multi-level appearance of neuron
characteristics is clear at high gain. In Figure 3-7, the third neuron (neuron-2) is
examined at the same gain values. Note that the threshold €, and output level a, are not
affected by this gain control operation, although in some cases they are not clearly
distinguishable when the gain is small, as in Figure 3-6. Although the multi-level neuron
is highly nonlinear device, it can be approximated by a linear amplifier at its operating
region if the neuron gain is relatively small. Therefore, during the first half of the
annealing process, the argument of eigenvalues in the linearized system model can be

applied in the same way as described in the section 2.3.

By using two-level activation function as a basic element, Figure 3-8 shows a possible
realization of a variable-gain multi-level neuron for hardware annealing. The input x is

first subtracted by a threshold value 8,, k =1,2,--- . m—1, in each of m-1 branches. The
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Figure 3-6: Transfer functions and energies of the 1st neuron.
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Figure 3-8: Variable-gain multilevel neuron.
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resulting values are then amplified by the gain factor A = g(r) in variable-gain amplifiers
or two-quadrant multipliers. The fixed-gain nonlinear amplifiers following the multipliers
have the sigmoid-like transfer functions. The output values are then summed together to
produce the desired characteristics (3.3) with a time-varying neuron gain A = g(f) and
¢, =1, Vk. With this scheme, the binary representation of a multi-level value is readily
available from the outputs of two-level nonlinear amplifiers. By using m-1
transconductance multipliers with differential input, the variable-gain m-ary neuron can be

realized as shown in Figure 3-8 (b).

3.5 Simulation results

In order to examine the hardware annealing for the A/D conversion network
described above, the same input value x, =8 and zero initial condition are used in the
simulation. By solving the equations (3.4), the network is first operated in the normal

high-gain condition and then annealed by a linearly increasing schedule given by
gi)=azt, a>0. 3.19)

The resulting waveforms for neuron states u,(¢), i =0,1,2, together with the gain control
function are shown in Figure 3-9. Here, the dotted lines in Figures 3-9 (b) - (d) represent
the threshold values of each neuron. The output from the unannealed operation (0<¢ <1
in normalized time-scale) is the sub-optimal solution [O 1 3] as mentioned in the previous
section, while the desired output [0 2 0] is reached in the annealed operation (1<7<3).
In Figures 3-10 (a) and (b), the trajectory of (v,,v,)-pair and output waveforms during
the unannealed and annealed operations are plotted, respectively. Note that the steady-
state values #,(1), i =0,1,2, from the previous unannealed operation are used as the initial
condition of the annealed operation. As described in Chapter I, the global minimization

of the energy function is achieved by dynamical transformation of the energy landscape
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from a convex function to indefinite or concave function. Figure 3-11 shows an
appearance of E for the intermediate neuron gain of 10, at which E is convex and has a
unique minimum. At a higher gain value g=100, the energy landscape is a saddle-
shaped, indefinite function of neuron outputs, as shown in Figure 3-12. Similar results

are obtained at different input values if there exist multiple minima.

With zero initial condition, the transfer characteristics of A/D conversion network is
shown in Figure 3-13 (a). It was obtained by applying integer input values i =0,1,---,63
in an unannealed network and taking the steady-state outputs in decimal number format.
When the proposed annealing technique is added, an ideal transfer curve shown in Figure
3-13 (b) can be obtained. If the input is close to values i +05, i=0,1,---,63, below and
above which the output differs by one, the A/D conversion network may result in
systematic errors as shown in Figure 3-14. The input values used are x, =i+ 049,
i=0,1,---,63. The conversion errors of unannealed and annealed A/D network for two
cases are shown in Figure 3-15, where the comparisons are made with desired integer
values instead of continuous function. For the second case, both unannealed and
annealed operations produce additional errors of maximum one, which may be related to

simulation tolerance but not to the global optimization technique.

As an illustrative example of global optimization techniques, the hardware-based
annealing theory is applied to a Hopfield neural network for A/D conversion to facilitate a
quick search for the optimal solution. The voltage gain of the neurons is gradually
increased from a certain low value to a critically high value. The energy landscape was
modified by the annealing process and the natural gradient-descent operation at various
gain values help the solution to reach the optimal state. In addition, a multi-level m-ary
neuron model is used in the Hopfield network to accommodate non-binary combinatorial

optimization problems.
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Chapter IV

Optimal Solutions for Cellular Neural
Networks by Hardware Annealing

4.1 Introduction

A cellular neural network (CNN) [59-63] is a massively parallel, locally connected,
nonlinear dynamic system. The ability to seek a stable point in a multidimensional phase
space, at which the generalized energy function of the network is locally minimized,
makes it possible to use the CNN's in many areas of image-related signal processing
[60,75-85]). Moreover, due to the space-independent and locally interconnected
architecture, CNNs are suitable for VLSI implementation for high-speed, real-time
applications. Since its systematic introduction in 1988 by Chua and Yang [59,60], many
issues regarding architecture [64-67], stability [67-74], application [75-88], and circuit
implementation [89-100] of CNNs have been addressed and remarkable results have been
achieved. Under the mild conditions, a CNN is always stable and finds a locally optimum
output in the steady state. However, the output so obtained may not be a globally
optimum solution in terms of the generalized network energy, because there may exist
multiple minima at which the energy is minimized locally. This might, in turn, cause sub-
optimal network operations as long as the objective is to map the input signal in one

space to the output in another space by minimizing the cost function involved.
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In optimization-oriented applications such as nonlinear programming problems and
feature recognition tasks, a quick search of the optimal solution is highly desirable. It is
important to avoid any local minimum which can result in a sub-optimal solution or com-
pletely unwanted result. Existence of local minima is common in the solutions for many
optimization-oriented artificial neural networks such as perceptrons and Hopfield net-
works. There has been various suggested procedures for the network to avoid getting
stuck in the local minima. Frequently used schemes include simulated annealing [37-40]
for stochastic hill climbing, mean field annealing [43-46] to deform the energy barrier
profile and Boltzmann-machine technique with the addition of intentional noises. These
techniques are quite capable of escaping the local minima. However, they can not
guarantee to reach a globally optimal solution. The mean-field learning method uses a set
of deterministic equations instead of extensive calculation of probabilities at each

temperature as in the Boltzmann machine.

By adopting a hardware-based parallel annealing in analog electronics, the processing
speed can be significantly increased. The hardware annealing is an efficient electronic
version of mean-field annealing in which the equivalent temperature parameter of the
network is increased to a predetermined high value and then decreased continuously
down to a critical low temperature value. In fact, the local minima in recurrent
associative networks such as binary or multilevel Hopfield networks [29] and cellular
neural networks can be successfully eliminated by applying the hardware annealing
directly to the analog neural networks. It does not require any stochastic procedure. Once
the energy of the network is increased by reducing the gain of neurons to make the
neuron outputs at the non-saturated region, the hardware annealing quickly searches for
the globally minimum energy state, because the nonlinear system problem has been

effectively linearized.
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The organization of this chapter is as follows: In the next section, the characteristics
of the energy in a CNN is described. Section 4.3 describes the principle and dynamical
behavior of the hardware annealing. Several simulation results are presented in Section

4.4, The final conclusions and remarks are given in Section 4.5.

4.2 Local Minima and Energy Barriers in CNN

Figure 4-1 shows the three-dimensional diagram of a 4x4 CNN. The input and
output are directing along the z direction, and the interconnections among cells are
arranged in the (x)) plane. A CNN has the Lyaponov function and collective
computational properties similar to those of a Hopfield neural network. Thus, in addition
to the basic architecture and its properties covered in Chapter II, it is also important to
examine how the Lyapunov function of (2.17) is affected by given cloning templates,
initial state, and input values. For the shake of simplicity, a basic CNN model with r =1
is used in this chapter, instead of general model described in Chapter II. Then, the matrix
A can be defined as

(A, A, 0 ]
A A A,
A=| A A, . | 4.1)
‘. '.. Al
0 A A,

where A, and A, are two m X m Toeplitz matrices with elements determined by a given

cloning template. When the feedforward cloning template is written as

a q aq
T,=|a a, a], (4.2)
a q aq

then A, = toeplitz([a, a, 0---0]) and A, = 10eplitz([a, a, 0 --- 0]).
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Vy(4.1) V42)  V43) Vy(4:4)

Figure 4-1: A 4-by-4 cellular neural network with scalar feedforward operator.
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4.2.1 Energy Landscape

The matrix M of (2.20) can be diagonalized by an orthonormal set of eigenvectors as
M = QAQ" where A is a diagonal matrix with eigenvalues of M on the diagonal and Q is
an orthonormal matrix with the corresponding eigenvectors as columns. To find the
maximum or minimum of E(y) in R", we set the gradient of E(y) equal to zero vector

V,E =0, where

V,E=%=—(A—7;I)y-b=—My-b. (4.3)

If A(i, j;i, j) # T, then M is nonsingular and (4.3) has a unique solution y, =-M™b. If
the forcing function b is identically equal to zero, then (2.20) can be re-written as

E=-1yMy=-L®T) AE )=-13 0,6, @4

k=)

where for the linear transformation Q7, Q"y=y=[y, ¥, ---7,J7. First, consider the
case when 4, >0, Vk. Then M is positive definite and E <0 for all y € D¥, where the
equality holds only at the origin y =0. Thus the energy denoted by E(y) is a concave
function of y in DY, with the maximum value E_, =E(0)=0. Since |y,|=1,
1<k <N, in the steady state, all comners of the N-dimensional hypercube are possible
minima having the energy values of (4.4). From (4.4), the steady-state value of E
depends only on the matrix M. Thus the global minimum is unique for a given cloning
template T,. If b0, the energy E is maximized at y = y, where y, is the solution of
the equation (4.3) and given by

T
k

=-M7"b= i 4.5)

t
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Here, e, is an orthonormal eigenvector of M associated with the eigenvalue 4,,
1<k < N. By substituting (4.5) into (2.20), the maximum value of E is given by

145

1 -
Emax=E(y0)=§bTM lb=2§| 2 .
—

(4.6)

If the location of E__, is inside the hypercube, i.e., y, € DV, then all comers are possible
minima as in the case when  =0. However, if y, € DV, some of the corners are not the
equilibrium states and hence can not be reached in the steady state. Note that from (4.5),
the number of stable equilibria depends on magnitudes of eigenvalues as well as the input
and bias. Secondly, let us consider the case when some of the eigenvalues of M are nega-

tive while satisfying a condition,
N N
DA =3 m = N(AG, Jii, /)~ T.)>O0. @4.7)
k=l k=l

where m, ; is the (i,)-th element of M with m,, = A(, ;i,/))-T,=a,-T,. From the
theory of linear algebra [110], the eigenvalues of M are inside a circle in the z-plane

represented by

N
|z=m,,|< mglem,_J =4(a;|+|a,]) (4.8)

ink
Here a,, a,, and a, are the elements of the cloning template as defined in (2.14). Thus, if
a,— T, <4(|a,|+|a,]), there may exist some negative eigenvalues. In this case, the matrix
M is indefinite, and the energy function E(y) is convex in some directions and is concave
in others. The saddle-point occurs at the origin y =0 when b=0, and at y, from (4.5)
when the forcing function is not zero. If y, € D", the initial locations of the equilibria are
not the corners of D”. However, the indefinite M still guarantees the saturated outputs
in the steady state, provided that it satisfies a condition that will be discussed in the next

section. For the piecewise-linear neuron, the condition is given by A(j, j;i,/)> T, as in
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(4.7). The above eigenvalue analysis, however, is valid only for the time interval
0<¢<1, where ¢, is the time beyond which the network is unstable so that v, (1) =+1 or
-1 for some i and j. When the matrix M is indefinite, the dynamics of the CNN is
somewhat different. The neurons corresponding to the positions of positive eigenvalues
are saturated first and a system with reduced dimension consisting of the sub-matrix M
of M is preduced. Because M has all positive elements on the main diagonal, it is again
an indefinite or a positive definite matrix. If M is indefinite, the reduction of dimension
is repeated. Finally, the stable equilibrium is reached once My is positive definite. The
indefiniteness of M, however, does not imply that it takes more time to reach the steady
state. For given input and bias, the magnitudes of eigenvalues of M determine the speed
of convergence. Assume that if a neuron, say C(p,q), is in saturétion, the output value
of +1 or -1 is maintained for #2¢. Then the contribution of this specific neuron output
to the neighborhood cells C(k,/)e N,(p,q) for t21, is simply +A(k,;p,q) or
—A(k, 1, p,q) which can be regarded as another bias or input. Beyond this time point, the
network is governed by the same equation as (2.20) with the cell C(p,q) removed. The
eigensystem M, may vary as neurons become saturated. However, the initial M, i.e.,
M, which is based on the linear network model through the constraint condition

|x.(0)| <1, V&, plays a major role in the operation of CNN.

4.2.2 Effects of Initial States

In addition to the characteristics of the energy function discussed above, the initial
value of the energy which is determined by the initial state as well as given templates and
the forcing function, plays an important role in the operation of the network. Given input

# and initial state x(0), the output vector y moves toward the closest stable equilibrium
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in the boundary v, € D¥ and stays there. First, note that the initial and final values of the

energy function are given by
E©)= -3 %(0)' [A-T1}5(0) - x(0)'[Bu—1, »] 4.9)

and

1
E(4e0) = -EyIMy. -ylb, (4.10)

respectively, where y_ is the steady-state output. From the constraint condition
|v,,,.(0)|s 1, Vi, j, the relationship y(0)=x(0) is used in (4.9) for the neuron with a
piecewise linear transfer function. Because the network always operates in a direction so

as to decrease the energy as time elapses, the following inequality holds,
E(0)2 E(1) 2 E(+<0) Vi>0. (4.11)

Given E(0), the trajectory of the network output is confined to the basin of attraction in
D", which may consist of many disjoint units. The state in one unit can not reach others
because there exist energy barriers among them. So the neuron is frozen to the state de-
termined by the initial value x(0). This local minima problem was observed [59] in appli-

cations where the global minimization of E is not necessarily required.

Let N,, N,, and N, denote the number of corners of D", the number of possible
equilibria in DV, and the number of minima for which the inequality (4.11) holds, respec-
tively. Then, the relationship N, < N, < N, and N, = Q" hold in general, where Q is the
number of levels that the neuron can have in the steady state. For binary neurons, 0 =2.
The objectives of the proposed annealing method are to maximize the number N, as close
to N, as possible and to minimize the energy E for a given system of (2.17). In some
applications such as content addressable memory, the maximization of N, by a proper

choice of the templates may be desirable for increasing the capacity.
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4.3 Hardware-annealed CNN

The hardware annealing is performed by controlling the gain of the neuron g(),
which is assumed to be the same for all neurons throughout the network for simplicity of
analysis and illustration. The initial gain at time /=0 can be set to an arbitrarily small,
positive value such that 0< g, <<1, and after the annealing process for ¢, period of time
the final gain g(¢,)=1 is maintained until the next operation. When the hardware
annealing is applied to a CNN by increasing the neuron gain g(?), the transfer function can
be described by

+1 V(021
v (8) =4 v, (0 —l<v (<1 (4.12)
-1 V(<=1

where v, () = g(t)v,, (7). Figure 4-2 shows the transfer characteristics of the piecewise
nonlinearity for several gain values. Note that the saturation level is still y=+1or-1and
only the slope of f(x) around x=0 varies. After the state is initialized, i.e., x = x(0),
8(7) increases linearly from g, =g, to g, =1 for 0<¢<7T,. Then, the maximum gain
is maintained during 7, <7< T, during which the network is stabilized. Figure 4-3 shows
the block diagram of a neuron cell for use in the annealed CNN. An analog multiplier is
placed between the summing and nonlinear circuits. Because g>0, a multiplier with

two-quadrant operation may suffice.

4.3.1 Dynamical Behavior of Annealed CNN

The dynamics of a CNN is described by a set of the nonlinear differential equations, |

c%}”:‘%vﬁﬂh 2 AG, ik v+ 3 B, jik, D)V, +],

C(k DyeN,(1.5) C(k1)eN,(i.)

1<isn, 1<j<m 4.13)
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Figure 4-2: Transfer characteristics of variable-gain piecewise-linear function.

B(in ;k;l) Vukl

_’. vyi .

A(ijkD Vyki

Figure 4-3: Block diagram of variable-gain neuron cell with
two-quadrant analog multiplier.
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where v, = f(gv,,) and C is the equivalent capacitance at the state node of each neuron.

In a compact form,
Cx=-T.x+Ay+b, (4.14)

where y= f(gx) and b=Bu~I,w. When the neuron gain is not equal to one, the

Lyapunov function (2.17) can be written as

= -%2 > AG, kD, (v, () + %Z(Vﬂl(t))z

1. C(kDEN, (i) R, 7
=2, XBG kDY, (Ve =Y, Ly, (). (4.15)
hj C(kDEN,(1.) i
where v,, = f(gv,;). For the sigmoid nonlinearity, the second term of (4.15) can be ex-
pressed as
1 vy (1)
Y, [ £y, (4.16)
8R. 7 %

which can be used for arbitrary nonlinearity V()= f(v,(2)) if its inverse function
gv,(O=r" (v,5(#)) can be defined. As stated in Chapter II, the piecewise-linear
function used in (4.15) is a special case of this general expression. For variable neuron-
gain, this is still the case. For the piecewise-linear function, x=f"'(y)= vig,
-1<y<1, and

vyy(t) vy (4)

[ oar=— [ytr=5- (s, @.17)

which is consistent with (4.15). If g=1 then it is the same as the one in the equation

(2.17). By using vector and matrix notations, (4.15) can be re-written as

E=—Lyapsteyry_yp (4.18)
2 2g
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The process of global optimization can be understood by observing the eigenvalues of the
time-varying system matrix of a CNN during the annealing. When the neuron gain g is
decreased to its small initial value, the corresponding output is simply given by y=gx.
For use with arbitrary initial condition instead of the constraint condition [x(0)|<1, we
assume that g, <1f|x,.|, where |x, |21 is the maximum magnitude of neuron state,
such that all neurons are in the linear region. For other nonlinearities, we also can assume
that the system of (4.13) is linear near the operating regions. Note that in (4.13)

Vyy = f(8vy) # 81 (v,,) is true in general. However, 1f| w|<1/g, then f(gv,)=gv,
and the gain control function g(f) can be combined with the weight matrix A in (2.15) to
produce a time-varying matrix M, =A -(T, /()X and the equation (4.14) can be
written as

Cx=(gA-T.Dx+Bu+l,w=gMx+b. (4.19)

Since the matrix M,, 0< g <1, commutes with M such that M_M = MM, it shares the

same eigenvectors with M and

M, =A-£I=(A—ﬁn+&l
g g

l 1
g 4
Therefore, the eigenvalues of M, are given by

A =2 +E

T, k=12, N, 4.21)

where A, is the -th eigenvalue when the neuron gain is 1. During the annealing process,
each eigenvalue starts at the initial value A, +(g,—1)7,/g, and increases toward the
value A, until one or more neurons are saturated so that the eigensystem (4.19) is

modified. If g, =0, then all eigenvalues begin at —c-. Initially, all eigenvalues of (4.21)
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are negative so that the matrix —M,, is positive definite. The energy E decreases along
the trajectory of y in (4.18) toward the minimum point y; which is the solution of the

equation V_E =0 where

E T
V’E=g=—Ay+;y—b=—M8y—b. (422)

For a small g,, the initial value of y at =0, y(0), and the solution of (4.22)

Y =-M;'b

—— i 1 = .oe 7
S e — o

are both close to the origin as verified by

timfyi]= lim}y(@)] =0. 429

Therefore, the output variable y quickly approaches to the equilibrium p; at which the

energy value is given by

1 -
E(y}) =5 b"Mb. (4.25)

Once y = y,, the trajectory of y follows the minimum y; as the neuron gain g increases,
because it is the only stable equilibrium while the matrix ~M, is positive definite. Let
A, k=12,--- N, be the maximum eigenvalue of M, with possible multiplicity of n. As
the gain increases further, A, becomes positive, making the equilibrium p; unstable.
Beyond this time point, the output begins to move from the unstable equilibrium y; to
one of the stable equilibria that have been newly developed as —M_ becomes indefinite.
Note that as the gain increases, the equilibrium y; moves toward the point y, of (4.5), at
which the energy of the network with g=1 is maximized. By recalling that E is a
quadratic function of y, the direction of the movement is the same as the direction to the

local minimum and y; moves away of the global minimum. As A, approaches zero, the
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speed at which the corresponding output y, follows the equilibrium y; also approaches

zero. In the linear operating region, y = gx and

T dx
V E=-Ay+2y_b=-Mx-b=-C%. 426
y y 2 y £ a (4.26)
Substituting (4.23) and y = y; +€ where [y— y;]| <& for a small positive € into (4.26),

we can obtain

V,E=-M,(y;+€)-b=-M,(-M;'b+€)-b
=-M,e. (4.27)

Therefore, for small A,, dy, /dt = g(dx, /dt) is also small. On the other hand, the speed
of movement of y; is determined by g(f). Therefore, at the time when —M, becomes
indefinite, y is in the opposite side of the local minimum around y;, and as A, becomes
positive, y now begins to move to the global minimum. As the other eigenvalues become
positive with further gain increase, the same procedures may take place. Figure 4-4 (a)
shows the one-dimensional plot of the energy function in an unannealed CNN. For the
given initial state, y =+1 is the stable equilibrium that can be reachable in the steady

state. The annealing procedure described above is graphically shown in Figure 4-4 (b).

The argument of eigenvalues in describing the annealing procedure can be verified
through the time-domain analysis. Although M, is a function of time through g =g(?),
the equivalence transformation Q' =Q” is time-invariant. Therefore, the dynamical
equation (4.14) is equivalent to

i1=gA _z+Q"b, (4.28)

where z=Q”x and A = Q’MxQ. Without loss of generality, it is assumed that C =1
in (4.28). Then the diagonal matrix A allows us to find the state transition matrix [111]
of (4.28) during 0<¢<7T,,
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O output
o unstable equilibrium

@ stable equilibirum

y=';-1 y=+1

(a) Unannealed CNN: Steady-state output y=+1 (local minimum).

Emin=8(0)
¥(0)=g(0)x(0)
‘ Y
r Y
8max=1

y=-1 y=+1

(b) Dynamic process of finding global minimum: Change of E
from convex function to concave function.

Figure 4-4: Energy functions of unannealed and annealed CNNs.

92



A unannealed

- time
annealed NN
(a) Eigenvalues of M and M.
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(b) Exponents of state transition matrix $(¢,0).

Figure 4-5: Eigenvalues of M, and exponents of state transition matrix &(¢,0)
(for eigenlavues }\«lk >-T,).



O(1,1)) = exp[ Ig(f)A(g(r))dr}
o

= diag{exp{ j‘[(l', +7T)g(7)- Y;]dr}, k=12,-- N }, (4.29)
&

where £,=0. If g(f)=1 for 120, then ®(1,0)=e™ =diag[e™, k=12,:--,N] as ex-
pected. The difference between the dynamics of an annealed CNN and that of a
unannealed network can be understood by comparing the exponents A,¢ for the
unannealed CNN and those in (4.29) for the annealed network. For a linearly increasing
cooling schedule g(f)=at, where @ =1/T, is a constant, the exponent is a quadratic
function of time as can be seen from

I[(}.' +71)g(7)- T]dr—z'z;T -7t k=12,--N. (4.30)

A

Notice that each exponent is negative for 0<1<27.T, /(A +T.) during which the output
¥ approaches and follows the stable equilibrium y;. In Figure 4-5, the eigenvalues and
exponents of the state transition matrix (4.29) for the unannealed and annealed CNN are
plotted as a function of time or annealing gain. Note that once one or more neuron is
saturated, the dynamics remains the same but with different set of values due to reduced

system dimension.

4.3.2 Stability of Annealed Network

Now let us consider the stability of the annealed CNN by checking the behavior of
E(r) for t 20. By using the chain rule,

dE _OE dy 3B dg

dt o dt agdt @30
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where the symbol - denotes the scalar product and for a continuously increasing neuron
gain, dg/dt > 0. Substituting (4.26) into (4.31), we can obtain

T
dE T dp T, dg ,
E oAyt psp| B %8 4.32
dt (ygy )dt 27 dt’ ? #32)

The second term in (4.32) is a simple quadratic function and is a non-positive quantity.
The first term which is a scalar product of two vectors, can be expressed as a sum of N
terms. If [y,| =1 for some /, then dy,/dt=0 and the corresponding values in the
summation vanish. If we consider only nonzero terms y, = gx, <1, k #/, then we have

dE cbc,,ay,,) Tg' &,
L)) Y . 433
dt C,, (dt dt ) 2¢° ,,g,(y") (433)

Recall that in an unannealed CNN with g =1, V¢ 20, the second term is zero and (4.33)

is simplified to (2.24). However, for an annealed CNN the gain control function g is also

a function of time and
dy odydx dydg adx
L= 4T O g4 4.34
dt ocd dgdt EutEr (434)

where the second equality holds only if y <1. By defining . as the time when g=g_,
the proof of stability of annealed CNN's may consist of two steps.

(A) 0<t<t;: During this interval, M, is negative definite and the system is
asymptotically stable [111] with the output y approaching the stable equilibrium y; given
in (4.23). Assume that the annealing gain g increases slowly such that y=y;. Then,
from (4.25)

EGD) =%b"M;‘bs0, VbeRY. (4.35)

(B) ¢, <t <+oo: From the equations (4.14), (4.33), and (4.34),
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T
dE T T g’
EadAp-"2y4+b| (g(Ay—Tx+b)+g'x)——2& 7
” ¥y gﬁ)(g( y-Tx+b)+g'x) 25777

g .r I, T
=—glAy-Tx+b ’ ——(y Ay——=y'y+y b)
d [-E{yar-=
g g r
=—glAy-Tx+b[  +S-E-S-y"Ay. (4.36)
d fefe-£
For g>0 and g’ =dg/dt 20, the first and third terms are not positive. Thus if £ <0,
Vit 20, then dE/dt <0, Vi20. Initially, the positive definiteness of —-M, guarantees
Y =y;, at which £ <0 as shown in (4.35). If we use other neuron transfer characteristics

¥ = f(gx), for which the inverse function x = (1/g)f () is well defined in the range of

x, (4.18) can be written as
E= —%y’Ay+£xrw—yrb (4.37)
g

where x =[x, K, - x‘,,]r, X, =J':' S~ ()av. Inthis case, f~'(y)=gx and

V,E:-Ay+%f"(y)—b=—Ay+T,x—b=-c% (4.38)
from which it follows that

dE dy  .dx dy N o (dx )’

— =V EZ=-C=2=-CYZL|Zx] <o. 39

dt " /i dt dt Z;ax,, dt (4.39)

Despite of the time-varying nature of the hardware annealing, the stability of the network

is still maintained as long as the gain control function g = g(¢) are non-negative.

4.3.3 Critical Neuron Gains and Annealing Schedule

Two gain values are involved in the annealing operation. First, the critical gain g,

defined in the section 2.3.2 represents the value at which the phase of search for an

96



optimal solution is completed. In relation to this critical gain, two conditions must be

satisfied;

1. the initial gain g, is a small positive number less than g,., and
2. an enough amount of time is allowed for the network state to reach the basin of

attraction to which the global minimum of E belongs, before the gain reaches g,..

From (4.21), the critical gain is given as in (2.42) by

T
= £ 4.40
gC A’lm.x + 7; ( )

where A, denotes the maximum eigenvalue of E at g=1. Since the value A’ _ in
(4.40) is difficult to compute in general, the upper bound can be used instead. From

(4.8),

L. L : (4.41)

& zllllmx +T, mka,x(E:M m,,.,|)+7:r

i=]

where m, , is the (i, j)-th element of M. 'For a CNN with cloning templates (2.14) and
r=1,g.= 7;/(00 +4(|a,|+|az|)).

One or more eigenvalues with positive real parts is a sufficient condition for the
system instability in the sense of bounded-input/bounded-output (BIBO). Therefore, for
the condition g > g, at least one neuron output is saturated as time elapses. However, it
does not guarantee binary-valued outputs for all neurons in the steady state. As much the
same way as the critical gain g, is determined, a saturation gain g; must be defined as
the annealing gain beyond which all saturated binary outputs are guaranteed. Note that
for g> g, the linearized system model is no longer valid and the network operation is

dependent on neuron nonlinearity model. Therefore, one may introduce the Jacobian of
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the system (4.19). If we rewrite (4.19) as x = CX(x) where X(x)=-T.x+A f(gx)+b,

then the Jacobian matrix of X(x) is given by
Jx(X)=AJ . (x)-T]I, (4.42)

where J,(x) is the Jacobian matrix of f(gx) defined as

J,(x):diag[%,k - 1,2,~--,N].

k

When the neurons with the piecewise-linear transfer function are used,
v,=f(gv,)=gv,, Jp(x)=gI, and J4(x)=gA-TI. Note that the Jacobian matrix
Jx(x) is not symmetric in general because for i # j, df(gx)/dx, #df(gx)/dx; and
(AY, (x))r = Jp(x)A #AJ,(x). Let x_, be the minimum value of the state such that
Yuin =S (X)) is  the minimum neuron output for logic +1, and let
AY ={y e R":|y,|< f(xua)r k=12, N }. To ensure the instability of the system in

A", the Jacobian matrix J, (x) must have at least one eigenvalue with positive real part.

The system of (4.19) can be examined in a piecewise-linear fashion. Assume that
g=N-p, 1Sg<N-1, neurons become saturated at time f={,>/. so that the
corresponding outputs are binary-valued. Then for 12¢,, we can define a pXx p sub-
matrix J ., of Jy(x)=J,,, as the Jacobian of a p-dimensional system constructed by
discarding the rows and columns that correspond to the neurons with saturated outputs.
The Jacobian J ,,, must be either indefinite or positive (semi-)definite. There may exist
stable equilibrium in AP”, otherwise. With repeated applications of dimensionality
reduction, the final neuron or neurons will be saturated in the steady state if the corre-
sponding Jacobian is positive definite. Therefore, to ensure all binary-valued outputs in
the steady state, the Jacobian J,,,, ¥ =12,---,N, can not be negative (semi-)definite.

Since the network dynamics depends on the initial state and the external forcing function
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as well, it is difficult to anticipate the order in which the neurons are saturated. Thus, a

sufficient condition can be given as all positive values along the main diagonal of J, (x),

A(i,j;i.j)%—i&)-l; >0 k=12, N. (4.43)
k
If we define
n= m}n(-‘U;Tgx)) (4.44)
k

for y = f(gx)e A" then (4.43) is satisfied if > T,/ A(i, j;i, 7). For the piecewise-linear

transfer function, x,;, =1/g and 1= g. In this case, the saturation gain g is simply
T,

; (4.45)

For the sigmoid function, n=df (x)/dx |mm and y,, = f(x.)=/,(g ¥, ), where
fi(®)= f(x)|,.,. Therefore,

_4fg x| _ dfi(w) L
M= — & aw |_ ony  AGFLT) (4.46)
and
& (am| Y | >
8 = 4G, jii, j)( dw w‘_'(y_)] : (4.47)

If we choose y,;, = f,(1) =0.7616, then g, =2.381- T,/ A(i, j.i, ).

In summary, the hardware annealing may consist of the following operation phases;
1. Search phase (g, < g < g.) : The annealing process forces the network state to move
to the basin of attraction to which the global minimum of E belongs, i.c.,

¥(g) e D" = y(g.) e 2" where Q" is an N-dimensional manifold.
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2. Attraction phase (g, < g <g,) : Once y(g.) € 2%, a further gain increase makes the
output approach the global minimum rapidly. In addition, the energy barriers begin
to stand out so that £2" becomes disjoint from others and occasional jumps to local
minima can be prevented.

3. Completion phase (g; < g<1) : In this interval, the formation of the original energy

landscape is completed and all saturated binary outputs are obtained.

Thus, the annealing schedule must be chosen such that g, =g, < g. =g(f.) and the
time period 1 for search phase is long enough. The qualitative analysis of the value ¢,

for the successful search phase, is subject to further investigation in the future.

4.4 Simulation Results

Figure 4-6 (a) shows the energy landscape of a 4x4 CNN in the steady state as the
functions of v,,, and v,,;. The CNN uses the bipolar sigmoid function as the neuron

nonlinearity and has the parameters: R, =10°Q, 7 =0, and the cloning templates of

111 000
T,=|121|and T, =01 0], (4.48)
111 000

For these parameters, the matrix M has six negative eigenvalues and each of three distinct
eigenvalues has the multiplicity of 2, as given in Table 4.1. In the figure, all neurons
other than C(2,2) and C(2,3) have fixed, steady-state output values determined by the
network operation. Notice that, because y, ¢ D'® where y, is given by (4.5), there are
three minima at the locations [v,,,v,,]1=[-1,-1], [+1,-1], and [+1,+1]. Depending on
the value of v,(0) and v,, the output [v,,,,v,,,] will be attracted to one of vertices
[-1,-1], [+1,-1], and [+1,41] in the steady state. The points [V,22.¥,23) =[-1,-1] and

[+1,—1] are the local minima and [v,;,v,,]=[+1,+1] is the global minimum with the
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Figure 4-6: Local minima problem in CNN.
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Table 4.1 List of eigenvalues of indefinite M for cloning templates of (4.44).

Eigenvalues Magnitude Multiplicity
ALA, +0.618 2
Ay, +1.000 2
A A -0.2361 2
Aphg - 1.0000 2
Agy g - 1.6180 2
y I . +4.2361 2

As +0.3820 1
Ay +0.1459 1
Ay +2.6180 1
A +6.8541 1
YR +16.00
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lowest energy value. Figure 4-6 (b) shows the contours of the energy function and the
trajectory of the output values during the network operation. The figure shows that the
initial output values [v,,,(0),,,,(0)] indicated by X is attracted to the point [~1,-1],

which is one of the local minima.

The hardware annealing is performed by controlling the neuron gain g(f), which is
assumed to be the same for all neurons throughout the network. The initial gain at time
1=0 can be set to an appropriately small, positive value such that 0< g(0)<<1. After
the annealing process for 7, period of time, the final gain g(7,) =1 is maintained until the
next operation. Figure 4-7 shows the results of hardware annealing for the same network
parameters including the initial state as in Figure 4-6, and g(f)=a¢ where o is a
constant. In Figure 4-7 (a), the local minima do not exist and the output [+1,4+1] which
was the global minimum before annealing, became the only minimum that can be reached
by annealing. However, this does not mean that the local minima were removed by the
hardware annealing. As a matter of fact, the local minima still exist at the locations they
do all the time, and as the result of the annealing process two-dimensional subspace D?
spanned by [v,,,,v,,,] moved to different location in D' at which the global minimization
of E can be achieved. In Figure 4-8, E(f) is plotted for unannealed and annealed
operations. The annealing operation is activated at time ¢ = 1 (normalized) with the initial
state x(1*) equal to the final state of the unannealed operation. Note that for all £,
lslx,,(l*)ls Ve = R sz,,ITA(i-j)lﬂ"ul =11. For comparison purpose, the

dynamics of E(¢) is shown for three different cooling schedules

a’ ; schedule A
g() =1 a,t ; schedule B (4.49)
ot ; schedule C
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Figure 4-8: Comparison of energy E(t) with and without annealing for different

schedules (Annealing is activated at t=1, A:square, B:linear, C:square-root).
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where @,, @,, and &, are constants. In Figure 4-9, the corresponding waveforms for the
states and outputs of four cells C(2,1) — C(2,4) are shown. The steady-state value Vyy is

not affected by the annealing but the polarities of the other outputs changed.

Figure 4-10 shows how often the local minima problems are encountered, and how
effectively the hardware annealing solves them in 50 independent experiments with the
parameters given in (2.33). In Figure 4-10 (a), each row denotes an experiment and each
neuron is numbered as a column. In each experiment, v, (0) and v, are chosen randomly
in D'® so that the constraint conditions and the independency of the experiments are satis-
fied. In the figure, neurons with the black color indicate the changes in steady-state out-
puts as the result of hardware annealing. Figure 4-10 (b) shows the comparison of the
energy levels for unannealed and annealed conditions. Similar experiments are conducted
for two special cases when v,(0)=0 and v, =0. Figure 4-10 (c) shows the energy levels
when v (0)=0. In this case, the initial value of E is zero as given by (4.7). This energy
value is quite high compared to those in the steady state and the basin of attraction can be

as large as a whole D¥. However, from (4.6) it can be seen that
E. =%b’M"b2E(O) =0 (4.50)

for positive definite M, as given in Table 2.1. Correspondingly, the network still can stay
at the nearest local minimum in the steady state and the zero initial condition does not
always provide the optimal solution. On the other hand, the annealing process not only
increases the value of energy function to near zero initially, but also force it to reach E__
during the relaxation process as described in the previous section. In Figure 4-10 (d), the
external forcing function & is set to zero in which case the energy is solely determined as
E =-05y"My. The figure shows that the hardware annealing provides the globally op-

timal solution in each experiment. By using the exact steady-state values |y,| =1, Vk, the
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Figure 4-10 (cont.): Experiments with zero-initial and zero-input conditions.
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computer-generated solution for the global minimum of E is shown to be -10.8. Note
that for the piecewise linear function this value is -14 because the 2nd term in (2.16) is

0.5, instead of 0.7 for the sigmoid nonlinearity.

Figure 4-11 shows the edge detection results of a 64-by-64 CNN for unannealed and
annealed conditions. Figure 4-11 (a) shows the original gray-scale image. The sigmoid
function is used as the neuron nonlinearity and the cloning templates given in Figure 4-11
(b). See also [2, Fig. 18]. Figures 4-11 (c) shows the CNN outputs due to the annealing
effect. Here, the image is applied to the input only and v_(0)=0. Two networks
resulted in the same, correct outputs. When the image is applied to both the input and
initial state, the output is not correct as shown in Figure 4-11 (d). It shows the correct
output when the annealing operation is applied. In Figure 4-11 (e), the constraint
condition lv,d,(O) | <1, Vi, j, is removed and random values of the initial state between 1
and 5 are used. As a result, the output of unannealed network contains many neurons
that are not able to toggle the states. However, as shown in the figure, the hardware
annealing provides enough stimulation to those frozen neurons caused by such ill-
conditioned initial states. Next, a small amount (standard deviation of 0.1) of white
Gaussian noise is added to the input image. The annealed network produces a clean
output as shown in Figure 4-11 (f). However, as noise level increases the effect of noise

is not negligible in an annealed network.

4.5 Conclusions and Remarks

The hardware annealing is a very effective method of overcoming local minima in the
CNN. Instead of using stochastic optimization as in simulated annealing, or Boltzmann
machine, the proposed method continuously reconfigures the energy surface of the net-

work so that the network state easily finds the global minimum. The process of global
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0 0 0 -0.25| -0.25| -0.25
0 2 0 -0.25] 2 |-0.25
0 0 0 -0.25| -0.25| -0.25
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Figure 4-11: Edge detection application of 64-by-64 CNN.
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Figure 4-11 (cont.): Edge detection application of 64-by-64 CNN.
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Figure 4-11: Edge detection application of 64-by-64 CNN.
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optimization is explained by the use of eigenvalues of the network. In applications other
than optimization, the hardware annealing is also useful in that it provides enough
stimulation to overcome the energy barriers among the local minima. Because the
annealing can be performed by the direct control of the paralleled hardware, the speed of
searching for optimal solutions can be very fast, compared to those of the software-based

algorithms.
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Chapter V

Maximum-likelihood Sequence Estimation
by Neural Networks

5.1 Introduction

The performance of digital communication systems is largely affected by an ability to
overcome the channel impairments introduced during signal propagation. Information-
carrying signals in wireless mobile communications are often distorted severely due to the
noise, limited bandwidth, and multi-path propagations through surrounding objects.
Traditionally, detection of signals in such environments was performed by an optimization
method for minimizing the probability of detection errors. Several demodulation
techniques such as adaptive equalization and maximum-likelihood sequence estimation
(MLSE) have been developed and used extensively in such applications. The MLSE
system provides an optimum performance in terms of error probability. The numerically
efficient version of the MLSE, known as the Viterbi algorithm [114,119] can be
implemented in VLSIs [115-118], and the researches toward more efficient hardware

implementations continue in both academy and the industry.

The artificial neural networks have been great promise in solving many complex signal
processing and optimization problems that can not be addressed satisfactorily with
conventional approaches. Supervised/unsupervised learning and massively parallel ar-
chitectures inherent in the artificial neural networks provide attractive means of
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optimization and fast problem solving. The neural network approaches in com-
munications have been motivated by the adaptive learning capability to process real-world
signals. Well designed neural networks have the ability to perform the error correction of
" error-control codes [120,121], and equalization of transmission channels [135-139].
Performing maximum likelihood decoding of linear block error-correcting codes is shown
to be equivalent to finding a global minimum of the energy function associated with a
neural network. Given a code, a neural network can be constructed in such a way that
there exists one-to-one correspondence between every codeword and every local
minimum of the energy function. Decoding techniques using neural networks can be a
useful tool for solving problems of maximization of polynomials over multi-dimensional

space.

In this chapter, the Hopfield neural network or CNN with hardware annealing is used
to solve the optimization problem involved in the MLSE. In an optimization point of
view, the MLSE is a combinatorial minimization of the cost function over all possible
sequences of a finite length. The signaling alphabet & ={a, }, k=12,---,M, and the
length of sequence s, ={s,}, i =0,1,---,n—1, correspond to the set of numbers and the
dimension of a problem, respectively. There are M" possible combinations over which
the MLSE computes the cost function. The best estimate of transmitted sequence is the
one that has the minimum cost. A computationally efficient method is the Viterbi
algorithm in which the redundant computations involved in the MLSE are avoided. As an
alternative approach to such optimal algorithms, the MLSE by hardware-annealed neural
network is proposed and examined as a real-time machine for combinatorial optimization

problems.

Although the areas of applications of analog circuits are limited due to inaccuracies

caused by parameter variations and noise, the neural network approach using combined
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discrete-time and continuous-time signal processing techniques has the following

advantages over others;

1) Speed: The most powerful property of a recurrent associative neural network is the
collective or massively-paralleled computations of the solution in a single operation.
The best estimate of sequences of length » can be found in a single evolution interval
which could be a fraction of microseconds by using semiconductor technologies.

2) Complexity: The network complexity increases linearly with the length of the sequence
to be estimated and/or the number of channel memory. In addition, the structure of
the MLSE mapping entails a modular architecture for large-scale hardware
implementation. For the detection of long sequences, multiple modules can be
cascaded to construct a large network.

3) Numerical stability. Under mild conditions, the neural network exhibits an absolute
stability. Conventional algorithms sometimes suffer from the numerical stability,

e.g., a large eigenvalue spread in the gradient-descent method [124].

5.2 MLSE using Neural Network

An optimum method of detecting digital data symbols transmitted over time-
dispersive, time-varying channels in the presence of additive white Gaussian noise has
been known as the maximum-likelihood sequence estimation (MLSE). As a class of
nonlinear receivers, it exhibits superior error rate performance compared to its linear
counterparts. However, it is often impractical to construct due to the computation
intensity and complexity required for the signal processing functions. A more efficient
computational method of implementing MLSE is the Viterbi algorithm. An alternative
implementation of MLSE function is to use neural networks as a massively parallel

computing machine. It can be readily shown that the cost function to be minimized in the
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MLSE has the same form as the Lyapunov (energy) function associated with the Hopfield
neural network, and if the cost function is mapped onto the network then the desired
estimate is obtained at the output.

Figure 5-1 shows the baseband model of a digital communication system over inter-
symbol interference (ISI) and additive Gaussian noise channel. The actual ISI channel
together with the baseband Nyquist filters in transmitter and receiver can be modeled as a
finite impulse response (FIR) filter of length L+1. The channel is represented by the
impulse response h(k) =h, and its z-transform H(z). Note that (k) =0 for k <0 and
k> L. The received signal r(f) is the convolution of u(k)= 2.- u,8(k —i) with h(k)
where (k) is the Kronecker delta function, plus white Gaussian noise n(k) of zero-mean

and variance o7,
r(k) ="y u, h(k —i)+n(k). G.1)

The maximum likelihood sequence estimation is an optimum receiving system in a sense
that it minimizes the probability of errors [114,119]. The maximum-likelihood sequence

estimator selects a sequence as a best estimate of transmitted sequence, that maximizes

the conditional a posterior probabilities p(r,|u,), where r,={r,r,-,r_} and
u, ={uy,u,,---,u,_} are the received and transmitted sequences of length n, respectively.
For a sufficiently large n, the MLSE algorithm is to choose a sequence that maximizes a

scalar cost function

n-l

L 2 n~1 n=l 2
J=——Z(’k _Zhi.ut—i) =—2(r, _Zh;-'"i] G-2)
k=0 =0 k=0 =0

for all possible combinations of sequences of length n. The cost function (5.2) is simply
the sum of squared-errors between received sample and the output of the channel for the

input u, to be estimated. The evaluation of values given by (5.2) must be performed over
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Figure 5-1: Baseband digital communication system model.
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all possible sequences of u, ={u,,u,, }. Therefore the algorithm complexity is

u,.,
proportional to M", where M is the number of signaling alphabets, i.e.,
u, € {a,,a,,m,a M } Vk and n is the length of the sequence to be estimated. In typical
data communications in which the length of a sequence is not given explicitly, the number
n can be arbitrarily large and in principle could be infinity. When (5.2) is expanded, the

first term can be discarded because it is a constant for given input r,. Then, by changing

the sign of the resulting cost function and dividing by 2, the MLSE is equivalent to

minimizing the quantity
. n=l { n=1 . 1 =1 n=l { n-l
J, = —Re{Z(Er,‘h,‘_,]u,}-l- > 22(217 i k—j)
1=0 \ k=0 i=0 j=0
n—l n-| n-l
= —Zl'z‘x,_lu u; - Re{z,)’,-u,-}, (5.3)
n--o j=0
where
n=1
WE Zrkh;-i

X = Zh hyy= 2" heu .

k=0
The y, is the cross-correlation between the received signal and A(k), while x, is the auto-
correlation of A(k). If the channel is considered to be time-invariant during # symbol in-

tervals, then x_, =x;, kK =1,2,---,L. In vector and matrix forms, (5.3) can be written as

A 1
J, = Eu” Xu- Re{u” y} (5.4)
where w=[u, u - u,_] =u, + ju, ue{a, a,,,a,}", aeC
T . n
Y=o 2 Y] =i+ iv yeC
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xn-l xn-3 e xO x—l
[ Xp Xp2 0 X Xp

Here, the channel is assumed to be stationary at least for » symbol intervals. If the

channel is non-stationary, x, # x_, in general.

In general, a data communication system transmits and receives a sequence of
complex-valued data symbols {u,}, where u, =u, , + ju,,, u,, €, u,, €0, Fora
physical realization of the MLSE, the received baseband signal must be separated into the
real and complex parts in (5.4). The signaling alphabet & = {a,, a,,---,&,,} depends on
the modulation techniques employed. Therefore, consideration is made on the binary
signaling alphabet & ={-1,+1}, for which A/=2 and all the quantities in (5.7) are real.

The followings are some of typical sets in normalized antipodal formats [119];

a={-1+1}, binary PSK or QAM
o, 0, ={-1+1}, QPSK or 4-ary QAM
o, 0, ={-3,-1,+1,43}, 16-ary QAM.

Figure 5-2 shows the constellation diagrams of these signaling alphabets. Of course, there
exist other constellations in QPSK and 16-ary QAM techniques, and other techniques
such as 256-QAM modulation. The major attention is paid to the binary and QPSK for
which the binary neurons can accommodate the signals. However, a neural network with
multi-level neurons can be used for more complicated signal constellations, e.g., 4-level

bipolar neurons for 16-ary QAM.

The correlation matrix X is Hermitian, Toeplitz, and positive semi-definite [124],
which imply that X] =X, is symmetric and X7, =X, is skew symmetric from the

equality X” =X7 - /X7, =X = X, +jX,, and all eigenvalues of X are real and non-
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negative. In almost any situations except the case x, =0, X is positive definite. The cost
function .7,, given by (5.3) is real and needs to be represented by real quantities in the
right hand side for the physical realization of the equation. By using the properties of

symmetric and skew-symmetric matrices, (5.4) can be expanded and reformulated as

A 1
Ty = (X, + 207X g, + 7% 5~ (u] 3, +uZ,)

_Ir oy xl:xg u, vl &
gt o NG E
B’ Xu-ua'y. (5.5)

Here, the matrix X is again symmetric and positive semi-definite. Let x” =[x,’ 1x7 ]

where x,, x, € R". Then

< [x7T[X, X2
X% = [l] [X;foJ[}'] = xTX, %, + XX 0, + 61X 0 4 XIK, . (5.6)
|

Now, since X is Hermitian and positive semi-definite, the quantity ¥”X¥ is real and non-
negative for any ¥ € C*", Using ¥ = x, + jix,, we have
~ ~ . H .
XUXE =(x, + jx,) (X, +ij)(x, + jx,)
=x X, x, - x{ X %, +X; X X, + x; X, x, 20. 5.7
From the skew-symmetric property of X,, x/X{x, =—x/X,x,. Therefore, (5.6) and

(5.7) are the same and x"Xx >0 for any x € R*".

5.3 System Model

The artificial neural network considered here for implementation of the MLSE func-
tion is based on the work done by Hopfield [2-4]. The similarity between the cost

function given in (5.5) and the energy function of Hopfield network allows a neural
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network implementation of the MLSE function for digital communications. First,

consider the Hopfield type energy function of the form
E=—%vTWv—v"0, (5.8)

where ve {—I,+1}2", W e R***" and 6 € R*. This energy function corresponds to two-
level threshold neurons. If neuron gain is finite but very large, (5.8) is still valid without
any significant error [2,3]. In this case, v is the continuous-valued output with
ve D" ={ve R ~1<v,<+1,i=01,--2n~1}. A direct comparison of (5.5) with
(5.8) reveals that the desired estimate &, can be obtained at the output of a Hopfield

neural network if

<_ | X, 1X] =_| 2
==X==|_E d@8=y=|==|. 59
W=-X [XQE'X, an y N (5.9)

In other words, the cost function j,, is mapped onto a neural network constructed by the

transconductance matrix W = X and input vector 8 = 7.

Figure 5-3 shows the block diagram of the neural network MLSE receiver. The
received signal (7) is first separated into two baseband signals, i.e., in-phase signal 7, ()
and quadra-phase signal 7,(#). The signals are then sampled at ¢ =kT where T is the
duration of a symbol, and the resulting discrete-time signals r,(k) and r,(k) are
correlated with the channel impulse response A(X¥). The correlation filter matched to
channel impulse response #(k) is approximated by a FIR filter, whose tab coefficients are
updated sequence by sequence. In general, because the channel characteristics is not
known, its impulse response is also estimated by using the received reference signals.
Thus, the estimate /(k) is used instead. Note that the channel estimation is equivalent to
finding a set of filter coefficients that minimizes the cost function or the mean-squared

errors between received and desired signals. Therefore, it corresponds to a convex
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Figure 5-3: Block diagram of neural network MLSE receiver.
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optimization problem that can be efficiently solved by a neural network [1,25]. However,
such a approach is not considered and the structure of the channel estimator in Figure 5-3
is left undecided in this thesis. The in-phase and quadra-phase signals from the
correlators are shifted into two separate tapped delay lines of length #. The outputs of

tapped-delay lines are given by

71 =04 %@ = 7,@=0] =[y10 31~ Yigwo ]

Yo =[7200) 7o) - 31=1] =[ye0 Yor * Youn] -
If a binary modulation technique is used, all the signals are real and only one receiving
path for signal preprocessing is required. Either a Hopfield neural network or CNN can
be used as the core of nonlinear signal processing for the MLSE as shown in the figure.
If the neural network produces saturated binary or multi-level values in the steady-state,
the outputs represent the MLSE of received sequence, i.e., &, ={#, #, --- #,_,}. Since
the cost function to be minimized is unique, the resulting Hopfield neural network and
CNN are basically the same except the neuron models. In the Hopfield network case, the
network is reset to all zero initial state values at the beginning of each operation. On the
other hand, the input ¥ in a CNN architecture can be served as the input to the network,
initial state or both. After # symbols are shifted into the delay lines, the network performs
the MLSE of an n-symbol sequence through an autonomous evolution of its internal state
for 0<1<7,. If the shift operations of delay lines are pipelined, the network can
estimate n/7,, symbols per second. For example, if 7,, =1 psec. and #=100, then a

real-time operation of symbol rate up to 1x10° symbols/sec. is readily achievable.

A) High-gain Neurons and Hopfield Model:
Since the matrix X is positive semi-definite, £ is a convex function of output v and has a

unique minimum. However, the MLSE is a combinatorial minimization of j,, over the set
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of signaling alphabets. In the bipolar binary case, & €{~1+1}"" while veD* =
{v €R™ -1<v, < +l,i= 0,1,~~,2n-1}. In order to transform the convex optimization
into a concave equivalence, we add the constraint energy E = p(v+9)’ (v—¢), where ¢
is a 2n-by-1 unity vector and u is a constant. If we neglect the constant term

1" ¢ = p(2n), the cost function (5.5) is mapped onto the neural network with a modified

energy function
E=E Iw:R. aey T w'v
=-%vf(i-2u1)v-v’7s-%v’Wv-v’E u<—%—“—, (5.10)

where I is a 2n-by-2n unity matrix and A, > 0 is the maximum eigenvalue of X. The
second term of (5.10) corresponds to the constraint energy satisfying
E.=p(v+¢) (v—9)20, ve D™, where the equality holds only if ve {-141}". The
parameter g controls the shape of energy landscape. If p<-A4__ /2, then Eisa
concave function of v by the negative definite matrix -W = X +2ul, and saturated binary
output in the steady state is guaranteed such that v(f =) € {~1,+1}*". The maximum
eigenvalue A_,., on the other hand, is difficult to compute and may vary sequence by
sequence. The eigenvalues of X are real and bounded by [110];

X, -22L‘,|x,| <A< xo+2i|x,|. (5.11)

i=l i=l
Therefore, the parameter i can be chosen such that p < —-x,/2 - Z; |x,]. Note that the
positive semi-definite X, i.e, A 20, does not imply x, 2 22:;1|xi| in (5.11). Figure 54
shows typical energy landscapes of the original and modified energy functions.

Figure 5-5 shows the network diagram when #n=6 and L =2. In this case, the matrix

X given as
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Figure 5-4: Addition of constraint energy for combinatorial optimization.
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Figure 5-5: Hopfield neural network for QPSK modulation (L=2, n=6).
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t 5T
X =[.x.’_i.)5€]. (5.12)

directly corresponds to geometrical locations of submatrices and elements. Next,
consider the antipodal binary signaling alphabet o ={-1,+1}. In this case, M=2 and all
the quantities in (5.5) are real. Thus, the cost function .7,, and the corresponding synapse

matrix W are simplified as

J, =-;-uTXu—ury (5.13)
W=X-2ul=-X-2ul

The correlation matrix X is real symmetric and Toeplitz with x, =x_,, k=0,1,---,L, in
the k-th diagonal above or below the main diagonal. In Figure 5-6, the block diagram of
a neural network for the MLSE is shown (L=3, #=12). The network has » neurons and
the nx»n matrix W has n(2L+1)- L(L+1) nonzero elements which is approximately
equal to n(2L +1) if n>> L. Therefore, the complexity of the MLSE neural network is
proportional to the sequence length  or channel memory L. The property of W enables
a further reduction in the number of synapses by L(2n—L-1)/2. Furthermore, the
MLSE neural network has a strong local connectivity
i+L

c
C==-Tu +2 v, + - xy,—2uv +y, (5.14)

J=i=L

Here, -2 > 0 is the transconductance for a self-feedback and g <0 is a bias term. Note
that the self-feedback is always positive because —x, —21 > 22; |x,|=0.

n-l n-1

E———zszv 291»
l=° Jj=0
n—l i+L
=_z 3 xv,vj+;lz v) Zy, v,. (5.15)
2 i jut i=0
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Figure 5-6: Hopfield neural network for binary modulation (L=3, n=12).
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As can be seen from (5.14) and (5.15), regardless of the number », only 2L +1 adjacent
or neighboring neurons are interconnected together. This local interconnection
architecture is very desirable for efficient hardware implementation using VLSI
technologies. Moreover, because x_, = x,, 1 <k < L, for stationary channels, the number
of interconnections can be reduced from 2L+1 to L+1 if one input to the synapse circuit

is given by —(v,,, +v,_, ) through differential input terminals.

B) Piecewise-Linear Neuron and CNN Model:
Now consider the piecewise-linear neuron with the same architecture. Now consider the

Lyapunov function of a CNN in vector and matrix forms,
E= —%VT(A—Z;I)v—vT(Bu+Ibw)E—%ver-v"b, (5.16)

where all parameters are defined in Chapter II. Here, u and T, =1/R_ are the external
input to the CNN and the input transconductance of a cell in the equivalent circuit
diagram in Figure 2-4, respectively. The mapping can be done by letting M =-X and
b=y. Correspondingly, the transconductance matrix and input vector are given as
A=-X+TI and b= J, respectively. Here, the constant term T.1 represents positive
unity feedback in each cell. As in the previous case, the matrix -M =X is positive semi-
definite and accordingly E is a convex function of v. For the autocorrelation function,
x,20 and all the diagonal elements of M are negative A(i, i, )—T, =—x,<0.
Correspondingly, in each cell the amount of self-feedback is less than 1 and the saturated
binary output is not guaranteed. The addition of the constraint energy E,=puv'v asin

the Hopfield network case gives us an equivalent concave energy function;

E= E|M=x.b=y +uviv= —%vr(i—z,ul)v -’y

v (A-TXp-v7b. (5.17)

Ly My-vp=-1
2 2
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The parameters are now given by A =—X+(7, ~2u)I and b = , where a constant g is
chosen such that M = -X -2l is positive definite. The condition on the parameter p
can be somewhat alleviated by allowing an indefinite M with all positive elements on the
main diagonal, i.e., A(, jii, /)~ T, =-x,~2p>0 [59]. From (4.1) and (5.17), the CNN

has two rows and the feedback operator

x=[AdAT] | X+ (E—2m  XG
=|-I4_ g I A Mg g - S 5.
A [A,‘E A, X, X, ¥zl (5.18)
where A{ = A, and A] =-A,. The corresponding cloning templates are given as
X | T X2 | X0 0 X | X2 |0 Xg
L= X =% X0 | -X + T +2p]-x, | -x,, || -x, (5.19)
X 1] X2 | Xy 0 X | "X | Xy
T, =[10].
For binary case, the feedback operator (5.19) is reduced to
T, = [_xl. |-+ [=x; | =%, | =% + T, + 2| ~x, | -x, |”'|—xt.]- (5.20)

The network diagram of (5.19) is shown in Figure 5-7. Note that the elements of T, may
be updated dynamically as the characteristics of transmission medium changes. For the
cloning templates of the form (5.19), the feedback operator is symmetric in a row, but has
an opposite sign in adjacent two rows. However, the matrix M is symmetric and the

CNN always finds a stable equilibrium as shown in Chapter II.

5.4 Hardware Architecture
5.4.1 Neural Network

As noted above, the Hopfield neural network and CNN for the MLSE share the same

interconnect architecture with possible different neuron models. The number of neurons
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Figure 5-7: Cellular neural network for QPSK modulation (L=2).
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N, is equal to the number of bits in the sequence, e.g., N, =n in binary case and

N, =2n in QPSK case. The number of synaptic weights for n>> L is

z{ n(2L+1) : real (binary) (5.21)

2n{4L+1) : complex (QPSK).
If synapse circuits with differential input terminals are used, N, can be reduced to
n(L+1) and n(2L+1), respectively. To accommodate the channels with slowly time-
varying characteristics, the synapse circuits need to be programmable. The
transconductance multiplier using the double-MOS linear resistors [126,127] may be a
hardware-efficient element for this purpose. It requires only four transistors of small or
moderate device sizes and its input and control terminals are both differential. Figure 5-8
shows a possible implementation of the i-th neuron and associated synapses. When all
transistors in the double-MOS linear resistors are the same device-size ratio #/L, the
differential current flowing two virtual ground nodes of operational amplifier is given for
i=0,1l,,--,n-1, by

L
L-1L= "Ko((xo - 2#)": + th ("m +V, )) +KVerVis (5.22)

k=1
where K, = uC,,.(W/L) and V_, is a fixed voltage. Here,  is the mobility of electrons

for n-channel MOSFETs. Some of v_, or v,, are zero for the edge neurons

i=01,--,L-1andi=n-L,.--,n—1. The differential output voltage is thus
1
-V, ==R(, "Iz)=‘m'(11‘lz), (5.23)

where ¥, is the control voltage of the feedback double-MOS linear resistor, which
determines the overall neuron gain. The equivalent resistance R, together with the
capacitance C performs a lossy integration represented by the differential equation (5.14).

At the beginning of each operation, the capacitors are set to zero initial values by closing
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Figure 5-8: Implementation of i-th neuron and associated synapses using
double-MOS linear resistors of Figure 6-10 (a).
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switches connected in parallel. The nonlinear amplifier following the summing circuit has
either the sigmoid or piecewise-linear transfer function. To generate both positive output

v; and negative output -v,, a nonlinear amplifier with fully balanced outputs is required.

5.4.2 Tapped-delay Line

The analog tapped-delay line consisting of a cascade of sample-and-hold (S&H)
circuits typically causes significant errors as discrete-time samples are shifted through,
due to the accumulation of noise generated in a single S&H circuit. For continuous
operations while the neural network is performing the MLSE, the delay lines must be
pipelined. As shown in Figure 5-9 (a), » S&H circuits in parallel can perform the
pipelined operation without the accumulation of noise. Each transconductor has two
separate holding capacitors at the input, one of which is to accept new sample while the
other holding the previous value as the input to the neural network in operation. The
clock signals ¢ and ¢, k =0,1,---,n—1, are used for sampling, and ¢, is a control signal
which is common to all S&H circuits for multiplexing two voltages on the holding
capacitors. Note that either ¢'s or ¢ 's are off for the period of T,, during which » shift

operations occur. Figure 5-9 (b) shows the timing diagram of these clock signals.

5.4.3 Modular Architecture

For the detection of especially long sequence, a multiple of MLSE neuroprocessors
with modular architecture can be cascaded if the effects of interconnections between

networks are negligible. If we define
WE =[W W™ iW] | =W IWiw]] (5.24)

where
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Figure 5-9: Pipelined analog tapped-delay line.
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then the neural network with the transconductance matrix W, can be divided into m sub-
networks such that W, =[W, {W,{---|W,_ W, ], where W,, k=0,1,---,m—1, is W,
shifted or permutated down by k& rows. Furthermore, if Q denotes W, with all zero
row(s) removed, i.e, W, -[Q’ 0] then the original network can be constructed by
cascading m subnetworks, each having the transconductance matrix Q. The uppermost L
and bottommost L feedback inputs associated with W, and W, are set to zeros, which
correspond to the leading and tailing zeros of the sequence to be estimated. In this way,
the original network structure is preserved, i.e., W, =W, =0 and W.=W. In QPSK
case, the resulting network for the MLSE can be turned into a modular architecture by
adding dummy rows to the transconductance matrix. In this case W, and W, defined

above are required for every sub-matrix of W=X, as given in (5.5).

S.4.4 Hardware Annealing

Even with a correct mapping of the MLSE function onto a neural network, the
desired optimal or near-optimal solutions are not guaranteed because a combinatorial
optimization problem always involves a large number of local minima [1]. Therefore, in
addition to the basic structure of the network, the annealing capability is provided to
obtain the global minimum of the cost function (5.3) over all possible combinations of
sequence. The hardware annealing [34,35,112,113] is a dynamic relaxation process for
finding the optimum solutions in the recurrent associative neural networks such as
Hopfield network and CNN. Near optimal solutions can be obtained by applying the

hardware annealing technique for avoiding local minima problems which are inherent in
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combinatorial optimizations. Here, the optimum solution is defined as the one with the

lowest value of the generalized energy function associated with the network.

5.5 Simulation Results

The simulations of simple binary communication system with several ISI channels are
performed by solving the differential equations (5.14). Random data sequence u, = {u,},
k=0,,.--,n-1, is generated and convolved with a channel response A(k) which is
assumed to be known exactly. Figure 5-10 shows various sample waveforms of the
neural network MLSE (NN-MLSE). A 48-bit transmit sequence (A) is influenced by an
ISI channel with H(z)=040823+08165z"'—040823z and 6 dB of SNR. The
received signal (B) is correlated with h(k) and then used as input to a 50-neuron
Hopfield neural network whose initial state values are zero, i.e, #(0)=0, Vi.
Additional 2 neurons account for the leading or tailing effect of the ISI channel on the
sequence. Waveform (C) is simply a concatenation of neuron states #,(7), i =0,1,---,49,
during the network evolution. The steady-state outputs of unannealed and annealed NN's
are shown in (D) and (E), respectively. The outputs of two leading neurons are discarded

and set to zero values. As shown in the figure, both outputs are error-free.

To compare the proposed method with a conventional optimization technique,

simulations are conducted on a binary communication system with ISI channel given by

Hm(z)=—l—-(l.0+0.5 ™). (5.25)

V125

In this case, x, =10, x, =x_, =04, x, =0 for |k| 22, and the correlation matrix is given

by
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symbols

A: transmitted sequence, u(k)

B: received signal, r{k)

C: time evolution of neural network state values, ui(t), i=1,2,..,50
D: unannealed network output, vi, i=1,2,..,50

E: annealed network output, vi, i=1,2,..,60

Figure 5-10: Sample waveforms in neural network MLSE of 48-bit binary sequence
(channel: h0=0.40825, h1=0.8165, h2=-0.40825, SNR=6dB).
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(1 04 l
04 1 04 0
04 1 -,
X= 04 "-. 04 , (n-by-n). (5.26)
.1 04
0 04 1 04
i 04 1|

For both cases of #=20 and » =100, the minimum and maximum eigenvalues of X are
approximately A, =02 and A, =18, respectively. Therefore, the coefficient z can
be chosen such that the additional value of synaptic weights in the main diagonal satisfies

IL-2u>T +18=28for T =1.

Table 5.1 shows the comparison of the NN-MLSE and conventional simplex method
for finding 20-bit estimates. Since the simplex method is not efficient for concave
optimization problems, the original cost function (5.4) is used and the signs of the final
results are taken as the estimate. For each method, estimates of 1,000 symbols through
50 independent experiments are conducted. The results shows that the NN-MLSE has
slightly better performance at low SNR values and is much faster than the simplex
method in simulation execution time. By considering actual steady-state outputs at
fractions (typically 0.2) of the average execution time 2.15 sec. per run, the speed

advantage over the simplex method amounts to several hundreds in the simulations.

In Figure 5-11, error rates are plotted for the MLSE of unannealed and annealed
NN's. In addition, two different neuron models, i.e., the sigmoid and piecewise-linear
functions, are used to compare their effects on combinatorial optimization problem.
Here, the channel model is the same as (5.25) and 100 simulations are performed
independently on the sequences of length 100 (n=100) for each signal-to-noise ratio
(SNR) value. From the figure, it can be seen that the neural networks with

» piecewise-linear function, and
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Table 5.1: Comparison of two optimization methods in MLSE of 1000 binary

symbols for channel with inter-symbol interference and additive noise.

Errors/1000 | Average Ee:;emion Time
O | e, | S
0 198 238
3 111 164
6 46 63
9 17 16
12 3 3 2.15sec. | 286 sec.
15 0 0
18 0 0
21 0 0
24 0 0
27 0 0
Test Conditions:

1. Channel characteristics: H(z)=0.89443+0.4472 z'!.

2. n=20, L=2.

3. - Neural network: 20-neuron Hopfield model.
- Simplex method (part of commercial tool): 20-variable search for minimum

of cost function J.
4. 50 independent runs for each method.
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Figure 5-11: Effects of neuron models and hardware-annealing on
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Figure 5-12: Error rate performances of neural network MLSE and
Viterbi algorithm (L=0).
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» annealed operation
have 1~ 1.5dB better performance over those with others. The sigmoid nonlinearity not
only reduces the number of local minima but also provides chances of smoothing down

the desired global minimum.

For the case when no inter-symbol interference is present, the error rate performances
of the proposed method and Viterbi algorithm (VA) are shown in Figure 5-12. All CNN
models and VA have the same error rates in this case. This might be the consequence of
independence between received samples. However, since the correlator in Figure 5-3 just
bypasses the input (%(k)=8(k)), the performances are somewhat poor than theoretical
values [119] P, =05 erfc(,/m which is obtained through an ideal continuous-time
matched-filtering of received signal prior to the sampling. Here, erfc(-) is the

complementary error function and ¥, is received SNR per information bit.

Next, the error rates of MLSE by unannealed and annealed NN's are shown in Figure
5-13 (a) for two-ray minimum-phase channel (5.25) and in Figure 5-13 (b) for two-ray
nonminimum-phase channel H (z)= (0.5 +z™ ) / V125, respectively. For comparison, the
results of VA are also shown in the figures. In the simulations for the second channel
H,(z), it is assumed that the decisions are made in reference to direct received samples
which are half the magnitude of delayed versions. As expected, an annealed NN has
better performance than an unannealed NN in both cases. It might be worthwhile
mentioning that the NN-MLSE for a minimum-phase channel H_(z) is less efficient than
the VA at the moderate values of SNR, but does not suffer much from the nonminimum-

phase characteristics of the channel.

In addition to the network and neuron models, there are three ways to provide the

input y to a CNN, i.e,,
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Figure 5-13: Error rate performances of neural network MLSE and Viterbi

algorithm (L=1, n=100, 10,000 binary symbols).
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(a) weighted feedforward input v,
(b) initial state v_(0), and

(c) combination of these two.
The hardware annealing also can be incorporated with the network in two different ways;

(1) annealed operation alone, and

(2) annealed operation following unannealed operation.

In the case (2), the final state values become the initial states of annealed operation. The
results of Figure 5-13 are done by the case (a) and annealing method (2). With the
annealing method (1), the difference of three methods are shown in Figure 5-14 (a) and
(b) for unannealed and annealed conditions, respectively. For the method (a), the initial
state values are zero and an unannealed NN has less chances of getting stuck in local
minima as noted in Chapter IV. Thus, the improvement by hardware annealing is small in
this case. The method (b) is the winner of all cases in unannealed operations. However,
because the annealing in this case results in the optimal solutions of a cost function
j,, =0.5u" Xu instead of (5.13), the results are completely unsatisfactory as shown in the
figure. See Figure 4-11 (d). For the case (c), the error rate is somewhat higher than that
of the case (a) in unannealed NN-MLSE, but is almost the same in annealed operations.

From these simulation results, we may have the following preferences;

» method (b) (v, =0 and v_(0) = y) for unannealed NN-MLSE and
« methods (a) (v, = y and v_(0)=0) and (2) for annealed NN-MLSE.

Similar results can be obtained for the model of two-ray nonminimum-phase channel as

shown in Figure 5-15.
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(b) Annealed neural network.

Figure 5-14: Comparison of methods for providing input y (minimum-phase

2-ray channel model, L=1, n=100, 10,000 binary symbols).
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Figure 5-15: Comparison of methods for providing input y (nonminimum-phase

2-ray channel model, L=1, n=100, 10,000 binary symbols).
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5.6 Discussions

The maximum-likelihood estimation of signals in interference and white Gaussian
noise environments can be efficiently performed by utilizing the collective computational
behaviors of artificial neural network. Both the Hopfield neural network and CNN
models can be used as an approximate and exact realization of the MLSE, respectively.
Several issues such as network models, neuron models, and methods of supplying input
to the network are investigated in terms of the probability of error. It is demonstrated
that artificial neural network is an efficient way of direct realization of the MLSE. In
addition, the performance of the NN-MLSE can be improved by paralleled hardware
annealing technique which is developed for high-speed, real-time neural networks.

The hardware architecture of proposed method is discussed regarding circuits of
neural network and analog tapped-delay line, modular architecture for large-scale

network, and hardware annealing. It has the following important properties;

1. massively paralleled operations,
2. circuit complexity proportional to length L,
3. space-independent local interconnections, and

4. simple modularity.

These are very desirable in VLSI implementations of the network. The MLSE of a
sequence is done in a single evolution interval of the neural network, which can be orders
of microseconds or fractions of a microsecond, the speed of MLSE is typically limited by
supporting circuitry such as analog tapped-delay line which runs at a symbol rate.
Moreover, the operating speed of recurrent associative neural networks are almost

independent of network size.
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Chapter VI

CMOS Design of CNN with Programmable
Synapses

6.1 Introduction

A cellular neural network (CNN) is a locally connected, massively paralleled
computing machine. Under the mild conditions [59], a CNN autonomously finds a stable
solution for which the Lyapnov function of the network is locally minimized. The CNN's
can be used in many computation-intensive applications such as image and signal
processing. Moreover, the quadratic nature of the Lyapnov function allows us to map it
into optimization problems [4,59]. Several structural variations of the continuous-time,
shift-invariant, rectangular-grided network which was introduced by Chua and Yang
[59,60] in 1988, have been reported. Among them are discrete-time CNN [64], CNN

with nonlinear and delay-type templates [65], etc.

Local interconnection and simple synaptic operators are the most attractive features
of the CNN for VLSI implementation in high-speed, real-time applications. Several
hardware implementations of the CNN have been reported in the literatures [89-99]. In
this second part of the chapter, the CMOS VLSI design of a continuous-time, shift-
invariant CNN with digitally-programmable operators is considered. In addition, the
circuits for hardware annealing [34,35,112,113] is included to provide the flexibility of

the network in a variety of applications. Since its systematic introduction, many issues
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have been addressed and remarkable results have been achieved. Under the mild
conditions, a CNN is always stable and finds a locally optimum output in the steady state.
However, the output so obtained may not be a globally optimum solution in terms of the
generalized network energy, because there may exist multiple minima at which the energy
is minimized locally. This might, in turn, cause sub-optimal network operations as long
as the objective is to map the input signal in one space to the output in another space by

minimizing the cost function involved.

6.2 Hardware architecture
The differential equations (2.15) governing a CNN is rewritten here for convenience
dx
Ca=—T,x+Ay+Bu+I,,w, (6.1)

where ye DV ={ye R":~1< y, <Lk =12,---,N}, and A is an N-by-N real symmetric

matrix defined as

[A, A, 0 ]
A, A, A,
A= A A, - : 6.2)
oA
I 0 A A,

Here w=[11--- 1" is an N-by-1 constant vector. In (6.2), A, and A, are two mxm
Toeplitz matrices with elements determined by a given cloning template. The synapse

weights of the shift-invariant CNN can be described by the feedback and feedforward

cloning templates
a aq aq b 4 b
T,=|a, a, a|andT,=|4 b &/, (6.3)
a, 4 a b, § b,
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respeétively, where all elements represent the normalized numbers to 7, =1/R,, and a, =
A, jii, T, > 1. Then A, =toeplitz(a,,a)) and A, =r1oeplitz(a,,a,), where
toeplitz(a, b) is defined as the Toeplitz matrix with all a's in the main diagonal, and all 4's
in above and below the main diagonal. The input vector v, and the matrix B can be
defined in a similar way. Note that the matrix A or B is not Toeplitz, but always real
symmetric as long as the cloning templates are shift-invariant. Let », x and y be the input,
state and output voltages normalized to v,,(f =+cc). Then, the maximum value of x in
the steady state is the sum of absolute values of all inputs from the neighborhood cells,

| = 2T A+ X T ]+ []

i, j=t ij=1

=ay+4(|a | +|ay]) + 8, +4( |&+]8,])+]x,), 6.4)

where |u|<1, |y|<1, and x,=1/T,. For example, if a,=2, a,=a,=4 =1, and
b =b,=0, then |x_ |=11. The neuron cell should be able to handle the state voltage of

the range |x| < |x,..|-

The shift-invariant architecture of the CNN is the most advantageous feature in
realizing the network in electronic circuits using the VLSI technologies. The basic cell
consists of a summing circuit for the right hand side of (2.12) and nonlinear function
generation circuit. The neuron cells and operator weights are the basic elements of the
CNN hardware. To accommodate a large-size neural network in a single VLSI chip, it is
especially important to design the low-complexity and high-accuracy circuits for the
efficient realization of neurons and weights. The shift-invariant property of the operator
weights in the CNN implies that the number of distinct weights are much less than that of
neighboring cells and the network shares the same unit consisting of a neuron cell and

synaptic weights to and from the neighboring cells. If the symmetry of the weights is
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assumed except in the edges, the number of the r-neighborhood cells C(k,/) e N, (i, j) of
the cell C(j, j), Vi, j, is

N (r)y=1+4r(r+1), (6.5)
while the number of distinct weights is

N,,,(r)=%(r+l)(r+2). 6.6)

The network considered in this design is a continuous-time, rectangular-type CNN
with =1. A CNN unit consists of a core neuron cell, synaptic weights, input/output
circuits, and digital interfaces, as shown in Figure 6-1 (2). To construct a complete CNN,
a multiple of the units can be arranged in an n-by-m rectangular grid with appropriate
interconnections with the neighborhood cells as shown in Figure 6-1 (b). The digital
interfaces provided are control data buses and read data lines. Four control buses for
weights a,, a,, a,, and 5, are 5-bit wide each. On the other hand, a read data line is
common to all the cells in a row, and a column select line is activated at a time to read
cell outputs in a specific column. The data for synaptic weights are written into operator
registers and the network outputs are read out of the cell output latches. This method
reduces the number of output signals and, because the read operations can take place
during the next network operation through the direct memory access (DMA), there is no
speed penalty in a moderate-size network. Figure 6-2 shows a detailed block diagram of
synaptic weights and input circuits. There are three kinds of feedback synaptic weights,
i.e., a,, a, and a, in (6.3), each of which is independently programmable via control bus
lines. There is only one feedforward synapse in each cell for the direct input b, of (6.3).
In many applications, scalar feedforward templates, i.e., b, #0, § = b, =0, are used. If
necessary, non-scalar T, may be implemented externally with ,=1. The operator

weight for , can be configured as an independent programmable source with the input u
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Figure 6-1: Architecture of CNN.
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connected to a fixed bias voltage. In other words, the input # can be written into the
network through the digital interface or a simple multilayer CNN can be realized in a
time-multiplexed fashion. In each operation, the cell needs to be initialized to a value
~1<x(0)<+1 where, depending on the applications, x(0) can be a direct or weighted
input x(0)=v,, or zero. One end of the capacitor C is switched to the voltage x(0)
during the initialization operation. At the same time, the outputs of synapses go into
high-impedance state by control signals ¢ and ¢, and the state node is connected to Voro
for avoiding possible spurious operation caused by the closed loop with the parasitic

capacitance at the state node.

In addition to the basic structure of the network, the annealing capability is provided
to accommodate the applications in which the optimal solutions of energy ﬁnction are
required. The hardware annealing is a dynamic relaxation process for finding the
optimum solutions in the recurrent associative neural networks such as Hopfield network
and CNN. Here, the optimum solution is defined as the one with the lowest value of the
generalized energy function associated with the network. In addition, it has been also
shown that it provides a enough stimulation to the network such that the output can cross
over energy barriers that might exist among the local minima. The hardware annealing is
performed by controlling the gain of the neuron, which is assumed to be the same for all
neurons throughout the network. After the state is initialized x = x(0), the initial gain at
time 7 =0 can be set to an arbitrarily small, positive value such that 0< g(0)<<1. It then
increases continuously for 0</<7, to the nominal gain of 1. The maximum gain
&.ex =1 is maintained for 7, <7< T, during which the network is stabilized. When the
hardware annealing is applied to a CNN by increasing the neuron gain g(f), the transfer
function can be described by v, ()= f (g(t)v,q(t)) or simply y = f(gx). Note that the

saturation level is still y =+1 or -1 and only the slope of f(x) around x =0 varies. By
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using the normalized variables in a vector and matrix notations, (2.12) can be re-written

as
C%=Ay—7;x+b, 6.7)

where y= f(gx) and b=Bu+I,w for a constant vector w=[11---1)7. In (6.7), A
and B are two real N-by-N matrices determined by given cloning templates T, and T},
respectively. For the shift-invariant CNNs, they are real symmetric. Initially, the gain g is
small so that the network can be linearized. For the piecewise linear function, the
assumption is exact until some of neurons are saturated. In this case, y = gx and (6.7)

becomes

c% =M, x+, (6.8)

where M, = gA — 7.1 for an N-by-N identity matrix I. The process of finding the optimal
solutions takes place during the change of M, from negative definite to indefinite matrix,

as the annealing gain g increases.

6.3 Circuit Design

The first circuit designed is an unannealed CNN with fixed synaptic weights. To
simplify the design, the current-mode circuits [92-94] are used. The summation of
weighted currents is simply done by a wired-ORing of all signals and the fixed weights
can be accomplished by appropriate transistor sizing. A cell circuit consists of a constant
input resistance negative current conveyer followed by the piecewise-linear circuit. The
piecewise-linear function is achieved by cascading two current limiters as shown in Figure
6-3. The limiting operation of the input current denoted by /_ first takes place at a

negative value /, =—Al and positive value I, =AI. For I, <-Al, no currents flow
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(b) Transfer characteristics of two current limiters in cascade.

Figure 6-3: Piecewise linear function.
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through the transistors M, and M,. Therefore, /5 = I ;5o =2AI and I, =—Al, where
I, represents the drain-to-source current of M, and so on. For I >-Al,
Ingy=1Ips,= A+I and [y =1I,=AI-I  producing the output current
I, =Al - I =1,. However, if I, 2 Al then I, =1I,,;, =0 and J, = Al. The negative
current conveyer [128] circuit shown in Figure 6, provides a constant input resistance
whose value is independent of the input current. The transistors M, and M, operate in
the saturation region and have the same geometry and W/L value. The linear /-V

conversion is performed by M, and M, and the equivalent input resistance is given by

1
R (77 EOA) .

If we denote the currents through M, and M, by I, and I,, respectively, then
=1 +1,. The range of input I, for proper current conveying operation is given by
1| < K(W[2LY(V, -2V, )*, where V, is the gate voltage of M, for biasing. When I, and
I, are mirrored by transistors M, — M; and subtracted at the output node, the output

current is given by
L,=L-1=-1I, (6.10)

Therefore, the circuit of Figure 6-4 is a negative, bidirectional current conveyer with
constant input resistance R,,. The equivalent input resistance R, corresponds to R, in
(2.12) and determines the time constant with which the network evolves. Therefore, it is
desirable for a neuron cell to have a controllable resistance R. Figure 6-5 shows a
simple current comparator using a cascade of two inverters. The input current 7, and
reference set by ¥, are compared and a logic voltage V" is obtained. Figure 6-6 shows a
complete schematic diagram of a neuron cell. The synaptic weighting is carried out by
M, — M,, for a, and M, — M, pair for a,. Note that four copies of a current mirror are

used to provide the weight a, for four neighborhood cells. All the current including the
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feedback cufrent, bias current, and those from the neighborhood cells are summed
together at the input node, i.e., the drain of M,. Transistors M,, — M,, pair provides a
bias current which is set by the bias voltage ¥,. A simple current comparator circuit
consisting of transistors M,, — M,, produces the logic output Vv, Which represents the

sign of the neuron output. The SPICE simulation results of the piecewise-linear function

together with the synaptic weights are shown in Figure 6-7.

The core cell of an annealed CNN consists of a summing circuit, analog multiplier,
and nonlinear function circuit as shown in Figure 6-8. The synaptic weights are digitally
programmable through binary-weighted current switches. When the weights need to be
programmable, the current-mode circuits also provide the simplicity over voltage-mode

circuits because N, (r) << N,(r) for r 21 as indicated by (6.5) and (6.6).

A. Transresistance multiplier: The hardware annealing is performed by the pre-
multiplication of the state v, by the gain control function g before the nonlinear function
J() takes place. Thus an analog multiplier is placed between the summing circuit and
nonlinearity as shown in Figure 6-8 (b). Since g is positive, the two-quadrant multiplier is
employed. The analog multiplier [124,125] is a basic building block in many analog
signal processing applications including artificial neural networks, and can perform both
multiplication and nonlinear function. However, a care must be taken in choosing the
circuit, because some of the analog multipliers often result in the post-multiplication
g f(vy) as well as the desired function f (g-vy). In other words, as the gain
decreases, the linear operation region and saturation levels are also reduced. In this case,

the minimum gain g_. can not be made small arbitrarily.

The basic element of the proposed circuit is the double-MOS differential resistor
[126,127] operating in triode region. As shown in Figure 6-9, the differential MOS linear
resistor has two input terminals driven by the voltages ¥, and V,, and two output
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Figure 6-7: SPICE-simulated transfer characteristics of combined
neuron and synapses.
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terminals driving the currents /, and J, at the same virtual voltage . All transistors are
matched through identical geometry and operate in the triode region. When the
nonlinearity cancellation condition (V, =V, and ¥, =V,,) is met, the currents /, and I,

which flow out of the output terminals are given by
I =K— [(Vcl ~-V,-V. - Ks)Vl3+(V -V, -V; -—V )V ] (6.11)

and

= K G h i Vo V= Fs =V, =202 |
where ¥}, =V -V, and V,, =V, -V, and their difference is simply

/4

I, =Il—12=2KT(VCI-VC2)(VI-V2) (6.12)
where K =11C,, /2. To ensure triode region operation, the voltages ¥, ¥, and ¥, must
satisfy

Vs Vz:Vssmin[Vm-Vr’ch—Vr] (6.13)
where V; is the threshold voltage of MOS device. When the double-MOS differential

resistor is configured as the feedback resistor as shown in Figure 6-9 (c), the following

relation holds;

V — Ilz
° T KWLV

(6.14)

For the negative feedback of operational amplifier, the gain control voltage Ve=Vo ~Ve,
needs to be positive. Despite its good linearity over a wide range of input, the drawback
of this circuits is the limited output voltage as is given by ¥, <¥,,, — ¥, from (6.13). For
example, if V,, =V, =+5V, V. =1V, then ¥V, <~35V for a useful range of V.

However, when the gain is low the corresponding output is also small around the bias

166



voltage V5. Thus it does not cause serious problem in most cases, provided that ¥,

is properly chosen.

B. Summing circuit: If the summation of the weighted currents from the neighborhood
cells is carried out directly in the transimpedance multiplier, the value of resistance R,

varies as the annealing gain changes because

1

&= xwmy

V.>0. (6.15)

The equation (6.15) indicates that the value of the resistance R_ changes with the inverse
proportionality as the gain control voltage ¥, does. This is not desirable for hardware
annealing since the eigenvalues of M_ in (6.8) remain unchanged. In order to
accommodate a constant R,, the same current inverter shown in Figure 6-4 can be used at
the input stage of the multiplier. If a capacitance C is connected between the input and

Venp» then the circuit performs a lossy integration
av, /4
CT;’+K(I)(V, -2V, )=1,. (6.16)

where V, =V, is the voltage at the input node. By using the Laplace transform, the
transfer function of the summing circuit corresponding to (6.16) is given by

Vals) _ 1 1

O o) " KWW —20,) T+ s KW ID,~27,))

(6.17)

C. Nonlinear function: The circuit for the nonlinear function y = f(x) is accomplished by
a simple transconductor consisting of a differential amplifier. Its large signal transfer
function is a smooth, sigmoid-like characteristics. However, because the output swing of
the transimpedance multiplier is limited by (6.13), the value of differential

transconductance g, = (KI,(W/L))"* is relatively small in accommodating the normalized
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linear operating region ~1< x <1 for the input range of |x|<|x,.|~10. Here, I, is the
bias current and /L is the device ratio of the differential-pair transistors. Notice that
the situation remains unchanged for increased /, because it also increases the saturated
output levels. Therefore, as shown in Figure 6-10, a weak positive feedback is applied to
increase the transconductance value without increasing the W/L ratio of M, and M,.

The transistors M, — M, in saturation determine the feedback factor o, 0 ax <1,

_wiL),, _(W/L),,

(o4 = . (6.18)
W/L)y  (W/L),q
Then, the transconductance at ¥, =¥, —V, =0 is shown to be
g, =Emen (6.19)

l-a
The complete schematic diagram of a neuron cell for an annealed CNN is shown in Figure

6-11. If the piecewise-linear function is needed, the circuit shown in Figure 6-12 may be

used instead of the circuit described above.

D. Programmable synapses: The circuit shown in Figure 6-13 is a binary-weighted
current source array with the capability of four-quadrant multiplication. The magnitude
of the multiplication is done by n—1 LSB bits and the polarity of the output I, is
controlled by swapping the inputs /, and I, through the MSB bit. In this design, n=5
and the sizes of transistors for weighting are chosen such that |1,|< (2-27)|I,, where
I,=1 -1, in a step of 0125/,. Because the current mirrors are used several times, it is
important to match them as closely as possible through a careful layout design. The
synapse weight for the self-feedback A(j, j;/, j) must be a positive number greater than
one. Thus, only four control bits are used for this synapse and, with the addition of
constant factor of one, the range of output current is given by 7, <1, <(5-272)/,ina

step of 0.251,.
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(a) Schematic diagram.
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(b) Transfer curves with (0<a<1) and without (a=0) positive feedback.

Figure 6-10: Differential transconductance with positive feedback.
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Figure 6-12: Circuit schematic of piecewise-linear function.
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Figure 6-13: Circuit schematic of digitally-programmable synaptic weigth.
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6.4 Simulation results

Figure 6-14 shows the SPICE simulation results of state and logic output voltages in

a 4-by-4 CNN during four operation intervals. The cloning templates used are

0 05 0 000
T,=[-05 2 -05(andT,={0 1 o] (6.20)
0 —05 0 000

In each operation, the hardware annealing is applied for 0<r<4.5uS with an
initialization period 05uS and g, =005. Figure 6-15 shows simulated transfer
characteristics of the programmable synaptic circuit shown in Figure 6-9, and combined
synaptic weight and piecewise-linear circuit of Figure 6-12. Figures 6-15 (a), (b), and (c)
show the simulated transfer characteristics of the transimpedance multiplier, differential-
pair transconductor without feedback, and the piecewise-linear circuit, respectively. A
composite result is shown in Figure 6-15 (d) for several gain control voltages. If the
piecewise-linear circuit is not used, the circuit of Figure 6-10 must be used in order to
accommodate relatively small dynamic range of transimpedance multiplier. When
Ve2 =Vpp, the minimum gain obtainable is approximately 0.02, which is small enough to
stimulate the network during the annealing operation. Figure 6-16 (a) shows the transfer
characteristics of digitally programmable synapse circuit shown in Figure 6-13 together
with the piecewise-linear function. Because the role of transistor M, in Figure 6-3 (a) is
done by either M, or M, in Figure 6-13, discontinuous transitions between linear and
saturation operating regions are produced through the polarity control circuit (M, — M,
in Figure 6-13). However, they can be avoided by using complete piecewise-linear and
synapse circuits. In Figure 6-17, experimental circuits of variable-gain neuron and fixed

synaptic weights are shown.

172



A CMOS design of continuous-time CNN with programmable synaptic weights is
presented. For the maximum flexibility over a variety of applications, CNN circuits with
hardware annealing capability and digitally programmable synaptic weights are designed
and verified via circuit simulations. The proper network operation is confirmed for

arbitrary and known cloning templates.
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Figure 6-15 (cont.): SPICE simulation resuits of variable-gain neuron.
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Figure 6-15: SPICE simulation results of variable-gain neuron.
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Conclusions and Further Works

A paralleled annealing method for the recurrent associative neural networks is
presented. By using the basic, prototype, general, and application models of neural
networks, the method is described and analyzed in terms of the generalized energy which
corresponds to the cost function in optimization problems. In contrast to iterative neural
network algorithms such as Boltzmann machine and mean-field annealing, it is directly
incorporated with a network for solving combinatorial optimization problems and
achieves as much parallelism as the network does. In addition, the network stability and
parameters in annealed neural networks are also covered as a guideline toward

applications.

The generalized energy function of a network which corresponds to the cost function
to be minimized or maximized in optimization problems, is first increased by reducing the
voltage gain of neurons. Then, the hardware annealing searches for the globally minimum
energy state by continuously increasing the gain of neurons. In this sense, the hardware
annealing shall be a paralleled, hardware-based realization of the mean-field annealing.
However, the process of global optimization can be described by the eigenvalue problem
of a time-varying dynamic system, instead of stochastic reasoning. As a consequence, the
hardware annealing;

» achieves fast operation via true parallelism and

» is suitable for hardware realization.

The speed of convergence can be faster than those of the stochastic methods in several

orders of magnitude, and is comparable to those of typical analog VLSI neuroprocessors.
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In a field of applications where real-time operation for the optimal solutions is
required, conventional iterative algorithms are limited in accommodating with high-speed,
low-power electronic system. With the annealing capability, a VLSI neuroprocessor can
easily incorporate with a variety of combinatorial optimization problems in high speed.
The applications of hardware annealing may include, but are not limited to

« general-purpose hardware accelerator,

» special-purpose engineering optimization tool, e.g., VLSI design and network

router,

« signal detection and error correction in communications, and

« image processing and feature extraction, etc.

A fundamental architecture of hardware annealing method is covered in this thesis.
To establish the hardware annealing method as a general approach to neural network
optimizations, further researches on the following areas may be required;

1. qualitative analysis of annealed neural network,

2. applications,

3. efficient hardware architecture for large-scale problems,

4. VLSI implementation,
in general aspect, and

1. choice of annealing schedule for better performance,

2. relaxation time for guaranteed optimal or near-optimal solutions,

3. efficiency of hardware annealing in practical applications of CNN,

4. extensive performance evaluation of NN-MLSE,

in relation to the topics covered in this thesis.

180



References

[1] P.M. Pardalos, J.B. Rosen, Constrained Global Optimization: Algorithms and Appli-
cations, Berlin; Germany, Springer-Verlag, 1987.

(2] J.J. Hopfield, "Neurons with graded response have collective computational
properties like those of two-state neurons,” Proc. Natl. Acad. Sci. U.S.A., vol. 81, pp.
3088-3092, 1984,

(3] J.J. Hopfield and D.W. Tank, "Neural' computation of decisions in optimization prob-
lems," Biol. Cybern., vol. 52, pp. 141-152, 1985.

[4] D.W. Tank and J.J. Hopfield, "Simple ‘neural' optimization networks: An A/D con-
verter, signal decision circuit, and a linear programming circuit," JEEE Trans.
Circuits Systs., vol. 33, no. 5, pp. 533-541, May 1986.

[S] R.E. Kalman and J.E. Bertram, "Control system analysis and design via the ‘second
method' of Lyapunov Part I: Continuous-time systems," Trans. ASME, pp. 371-393,
June 1960.

[6] R.E. Kalman and J.E. Bertram, "Control system analysis and design via the 'second
method' of Lyapunov Part II: Discrete-time systems,” Trans. ASME, pp. 394-400,
June 1960.

[7] G.A. Tagliarini, J.F. Christ, EW. Page, "Optimization using neural networks," /EEE
Trans. Comput., vol. 40, pp. 1347-1358, Dec. 1991.

[8] C.-Y. Maa, M.A. Shanblatt, "A two-phase optimization neural network," IEEE
Trans. Neural Networks, vol. 3, pp. 1003-1009, Nov. 1992.

[9] B. Bhaumik, "Optimization with neural networks: a recipe for improving convergence
and solution quality," Biol. Cybern., vol. 67, pp. 445-449, 1992.

[10] S. Abe, J. Kawakami, K. Hirasawa, "Solving inequality constrained combinatorial
optimization problems by the Hopfield neural networks," Neural Networks, vol. 5, pp.
663-670, 1992.

181



[11] C. Peterson, "Parallel distributed approaches to combinatorial optimization: Bench-
mark studies on traveling salesman problem," Neural Computation, vol. 2, pp. 261-
269, 1990.

[12] G.V. Wilson, G.S. Pawley, "On the stability of the travelling salesman problem algo-
rithm of Hopfield and Tank," Biol. Cybern., vol. 58, pp. 63-70, 1988.

[13] E. Wacholder, J. Han, R.C. Mann, "A neural network algorithm for the multiple
traveling salesmen problem," Biol. Cybern., vol. 61, pp. 11-19, 1989,

[14] R. Cuykendall, R. Reese, "Scaling the neural TSP algorithm," Biol. Cybern., vol. 60,
pp. 365-371, 1989.

[15] S.V.B. Aiyer, M. Niranjan, F. Fallside, "A theoretical investigation into the perform-
ance of the Hopfield model," JEEE Trans. Neural Networks, vol. 1, pp. 204-215, June
1990.

[16] J.-S. Yih, P. Mazumder, "A neural network design for circuit partitioning," IEEE
Trans. Computer-Aided Design, vol. 9, pp. 1265-11271, Dec. 1990.

[17] D.E. Van den Bout, T.K. Miller, "Graph partitioning using annealed neural net-
works," IEEE Trans. Neural Networks, vol. 1, pp. 191-203, June 1990.

[18] P.-H. Shih, W.-S. Feng, "An application of neural networks on channel routing
problem," Parallel Computing, vol. 17, pp. 229-240, 1991.

[19] A. Ushida, L.O. Chua, "A global optimization algorithm based on circuit partitioning
technique," Proc. IEEE Int. Symp. Circuits Syst., pp. 475-478, 1992.

[20] S.T. Chakradhar, et al, "Toward massively parallel automatic test generation," JEEE
Trans. Computer-Aided Design, vol. 9, pp. 981-994, Sept. 1990.

[21] D.M. Wells, "Solving degenerate optimization problems using networks neural oscil-
lators," Neural Networks, vol. 5, pp. 949-959, 1992.

[22] M. Forti, S. Manetti, M. Marini, "Neural networks for optimization of non-quadratic
cost functions with application to adaptive signal processing," Proc. IEEE Int. Symp.
Circuits Syst., pp. 2909-2912, 1992.

[23] JHM. Korst, EH.L. Aarts, "Combinatorial optimization on a Boltzmann machine,"
J. Parallel and Distributed Comput., vol. 6, pp. 331-357, 1989.

182



[24] P. Peretto, An Introduction to the Modeling of Neural Networks, Cambridge; Great
Britain, Cambridge University Press, 1992.

[25] A. Cichocki, R. Unbehauen, Neural Networks for Optimization and Signal Process-
ing, West Sussex; England, John Wiley & Sons, 1993.

[26] R. Hechht-Nielsen, Neurocomputing, Reading, MA: Addison-Wesley Publishing
Co., Inc,, 1990

[27] M.P. Kennedy, L.O. Chua, "Unifying the Tank and Hopfield linear programming cir-
cuit and the canonical nonlinear programming circuit of Chua and Lin," IEEE Trans.
Circuits Syst., vol. 34, pp. 210-214, Feb. 1987.

[28] M.P. Kennedy, L.O. Chua, "Neural networks for nonlinear programming," IEEE
Trans. Circuits Syst., vol. 35, pp. 554-562, May 1988.

[29] C.-Y. Maa, M.A. Shanblatt, "Linear and nonlinear programming neural network
analysis," IEEE Trans. Neural Networks, vol. 3, pp. 580-594, July 1992.

[30] C. Chiu, C.-Y. Maa, M.A. Shanblatt, "Energy function analysis of dynamic pro-
gramming neural networks," IEEE Trans. Neural Networks, vol. 2, pp. 418-426, July
1991.

[31] A. Rodriguez-Vazequez, et al., "Nonlinear switched-capacitor “neural” networks for
optimization problem," /EEE Trans. Circuits Syst., vol. 37, pp. 384-398, Mar. 1990.

[32] D. Kunz, "Suboptimum solutions obtained by the Hopfield-Tank neural network al-
gorithm," Biol. Cybern., vol. 65, pp. 129-133, 1991.

[33] B.W. Lee, B.J. Sheu, "An investigation of local minima of Hopfield network for op-
timization circuits," in JEEE Int. Conf. Neural Networks, San Diego, CA, vol. I, Pp.
45-51, July 1988.

[34] B.W. Lee, B.J. Sheu, "Modified Hopfield neural networks for retrieving the optimal
solution," IEEE Trans. Neural Networks, vol. 2, pp. 137-142, Jan. 1991,

[35] B.W. Lee, B.J. Sheu, "Paralleled hardware annealing for optimal solutions on elec-
tronic neural networks,” IEEE Trans. Neural Networks, vol. 4, pp. 588-598, July
1993.

[36] N. Metropolis, et al., "Equations of state calculations by fast computing machines,"
J. Chem. Phys., vol. 21, pp. 1087-1091, 1953.

183



[37] S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, "Optimization by simulated annealing,"
Science, vol. 220, pp. 671-680, May 1983.

[38] W. Jeffrey, R. Rosner, "Optimization algorithms: simulated annealing and neural net-
work processing," Astrophysical J., vol. 310, pp. 473-481, Nov. 1986.

[39] S. Geman, D. Geman, "Stochastic relaxation, Gibbs distribution, and the Bayesian
restoration of images," JEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 721-
741, Nov. 1984.

[40] EH.L. Aarts, JHM. Korst, Simulated Annealing and Boltzmann Machine, Wiley,
Chichster, 1988.

[41] S.S. Wilson, "Teaching network connectivity using simulated annealing on a
massively parallel processor," Proc. IEEE, vol. 79, pp. 559-566, Apr. 1991,

[42] C.R. Nassar, M.R. Soleymani, "Codebook design for trellis quantization using
simulated annealing," /EEE Trans. Speech Audio Proc., vol. 1, pp. 400-404, Oct.
1993.

[43] C. Peterson, J.R. Anderson, "A mean field theory learning algorithm for neural net-
works," Complex Systems, vol. 1, no. 5, pp. 995-1019, 1987.

[44] C. Peterson, E. Hartman, "Explorations of the mean field theory learning algorithm,"
Neural Networks, vol. 2, pp. 475-494, 1989.

[45] C. Peterson, "Mean field theory neural networks for feature recognition, content ad-
dressable memory and optimization," Connection Science, vol. 3, pp. 3-33, 1991.

[46] G. Bilbro, et al., "Optimization by mean field annealing," in D.S. Touretzky [Ed.],
Advances in Neural Information Processing Systems, Vol. I, Morgan Kaufmann, New
York, 1990.

[47] J. Van der Spiegel, et al, "An analog neural computer with modular architecture for
real-time dynamic computations,” IEEE J. Solid-State Circuits, vol. 27, pp. 82-92,
Jan. 1992.

[48] B.E. Boser, et al, "An analog neural network processor with programmable
topology," IEEE J. Solid-State Circuits, vol. 26, pp. 2017-2025, Dec. 1991.

184



[49] E. Sackinger, et al, "Application of the ANNA neural network chip to high-speed
character recognition," IEEE Trans. Neural Networks, vol. 3, pp. 498-505, May
1992.

[50] J. Choi, "Analog-digital VLSI neuroprocessors for signal processing and
communication,” USC-SIPI Report #246, Dept. of Electrical Engineering, University
of Southern California, Dec. 1993.

[51] W.-C. Fang, B.J. Sheu, O.T.-C. Chen, and J. Choi, "A VLSI neural processor for
image data compression using self-organizing networks," IEEE Trans. Neural
Networks, vol. 3, pp. 506-518, May 1992.

[52] R. Bijjani, P. Das, "An M-ary neural network model," Neural Computation, vol. 2,
pp. 536-551, 1990.

[53] K. Sivakumar, U.B. Desaai, "Image restoration using a multilayer perceptron with a
multilevel sigmoid function," Proc. IEEE Int. Symp. Circuits Systs., pp. 2917-2920,
1992,

[54] J. Si, A.N. Michel, "Analysis and synthesis of discrete-time neural networks with
multilevel threshold functions," Proc. IEEE Int. Symp. Circuits Systs., pp. 1461-1464,
1991.

[55] J.-D. Yuh, R.W. Newcomb, “Circuits for multilevel nonlinearities," Proc. Int. Conf.
Neural Networks, vol. 11, pp. 27-32, 1992,

[56] J.-D. Yuh, R.W. Newcomb, "A multilevel neural network for A/D conversion,"
IEEE Trans. Neural Networks, vol. 4, pp. 470483, May 1993.

[57] S.H. Bang, B.J. Sheu, J.C.-F. Chang, “Search of optimal solutions in multi-level
neural networks," Proc. IEEE Int. Symp. Circuits Systs., vol. 6, pp. 423-426, 1994.

[58]) S.H. Bang, B.J. Sheu, J.C-F. Chang, "Multi-level neural networks with optimal
solutions," scheduled for IEEE Trans. Circuits Syst., Dec. 1994.

[59] L.O. Chua, L. Yang, "Cellular neural network: Theory," IEEE Trans. Circuits Syst.,
vol. 35, pp. 1257-1272, Oct. 1988.

[60] L.O. Chua, L. Yang, "Cellular neural network: Applications," IEEE Trans. Circuits
Syst., vol. 35, pp. 1273-1290, Oct. 1988.

185



[61] L.O. Chua, T. Roska, "The CNN paradigm," IEEE Trans. Circuits Syst. Part I, vol.
40, pp. 147-156, Mar. 1993.

[62] T. Roska, L.O. Chua, "The CNN universal machine: An analogic array computer,"
IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 163-173, Mar. 1993.

[63] T. Roska, J. Vandewalle, Eds., Cellular Neural Networks, West Sussex; England,
John Wiley & Sons, 1993.

[64] H. Harrer, J. A. Nossek, “Discrete-time cellular neural networks," T. Roska, J.
Vandewalle, Eds., Cellular Neural Networks, West Sussex; England, John Wiley &
Sons, 1993,

[65] T. Roska, L.O. Chua, "Cellular neural networks with non-linear and delay-type tem-
plate elements and non-uniform grids," Int J. Circuit Theory and Applications, vol.
20, pp. 469-481, 1992, also in [6].

[66] H. Harrer, "Multiple layer discrete-time cellular neural networks using time-variant
templates,” IEEE Trans. Circuits Syst. Part II, vol. 40, pp. 191-199, Mar. 1993.

[67] A. Bouzerdoum, R.B. Pinter, "Shunting inhibitory cellular neural networks: Deriva-
tion and stability analysis," IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 215-221,
Mar. 1993,

[68] L.O. Chua, T. Roska, "Stability of a class of nonrecprocal cellular neural networks,"
IEEE Trans. Circuits Syst., vol. 37, pp. 1520-1527, Dec. 1990.

[69] T. Roska, C.W. Wu, M. Balsi, L.O. Chua, "Stability and dynamics of delay-type
general and cellular neural networks," IEEE Trans. Circuits Syst. Part 1, vol. 39, pp.
487-490, June 1992.

[70] P.P. Civalleri, M. Gilli, L. Pandolfi, "On stability of cellular neural networks with
delay," IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 157-165, Mar. 1993.

[71] M.P. Joy, V. Tavsanoglu, "A new parameter range for the stability of opposite-sign
cellular neural networks," JEEE Trans. Circuits Syst. Part I, vol. 40, pp. 204-207,
Mar. 1993.

(72] P. Thiran, "Influence of boundary conditions on the behavior of cellular neural net-
works," IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 207-212, Mar. 1993.

186



[73] F.A. Savaci, J. Vandewalle, "On the stability analysis of cellular neural networks,"
IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 213-215, Mar. 1993.

[74] T. Roska, C. Wah, L.O. Chua, "Stability of cellular neural networks with dominant
nonlinear and delay-type templates," IEEE Trans. Circuits Syst. Part I, vol. 40, pp.
270-272, April 1993.

[75] T. Matsumoto, L.O. Chua, H. Suziki, "CNN cloning template: Connected
component detector," IEEE Trans. Circuits Syst., vol. 37, pp. 633-635, May 1990.

[76] T. Matsumoto, L.O. Chua, R. Furukawa, "CNN cloning template: Hole-filler," JEEE
Trans. Circuits Spst., vol. 37, pp. 635-638, May 1990,

[77] T. Matsumoto, L.O. Chua, T. Yokohama, "Image thinning with a cellular neural net-
work," IEEE Trans. Circuits Syst., vol. 37, pp. 638-640, May 1990.

[78] T. Matsumoto, L.O. Chua, H. Suziki, "CNN cloning template: Shadow detector,"
IEEE Trans. Circuits Syst., vol. 37, pp. 1070-1073, Aug. 1990.

[79] B.E. Shi L.O. Chua, "Resistive grid image filtering: Input/output analysis via the
CNN framework," IEEE Trans. Circuits Syst. Part I, vol. 39, pp. 531-548, July 1992,

[80] K.R. Crounse, T. Roska, L.O. Chua, "Image halftoning with cellular neural net-
works," IEEE Trans. Circuits Syst. Part II, vol. 40, pp. 267-283, June 1993,

[81] B.E. Shi, T. Roska, L.O. Chua, "Design of linear cellular neural networks for motion
sensitive filtering," JEEE Trams. Circuits Syst. Part II, vol. 40, pp. 267-283, May
1993.

[82] V. Cimagalli, M. Bobbi, M. Balsi, "MODA: Moving object detecting architecture,”
IEEE Trans. Circuits Syst. Part II, vol. 40, pp. 174-183, Mar. 1993.

(83] T. Sziranyi, J. Csicsvari, "High-speed character recognition using a dual cellular
neural network architecture (CNND)," IEEE Trans. Circuits Syst. Part II, vol. 40,
pp. 223-231, Mar. 1993.

[84] V. Perez-Munuzuri, V. Perez-Villar, L.O. Chua, "Autowaves for image processing
on a two-dimensional CNN array of excitable nonlinear circuits: Flat and wrinkled
labyrinths," JEEE Trans. Circuits Syst. Part I, vol. 40, pp. 174-181, Mar. 1993,

[85] T. Roska, et al., "The use of CNN models in the subcortical visual pathway," JEEE
Trans. Circuits Syst. Part I, vol. 40, pp. 182-195, Mar. 1993.

187



[86] S. Paul, K. Huper, J. Nossek, L.O. Chua, "Mapping nonlinear lattice equations onto
cellular neural networks," JEEE Trans. Circuits Syst. Part 1, vol. 40, pp. 196-203,
Mar. 1993.

[87] Z. Galias, "Designing cellular neural networks for the evaluation of local Boolean
function," JEEFE Trans. Circuits Syst. Part II, vol. 40, pp. 219-223, Mar. 1993.

[88] P. Szolgay, G. Voros, Gy. Eross, “On the applications of the cellular neural network
paradigm in mechanical vibrating systems," JEEE Trans. Circuits Syst. Part I, vol. 40,
pp. 222-227, Mar. 1993.

[89] L. Yang, L.O. Chua, KR. Krieg, "VLSI implementation of cellular neural
networks," Proc. IEEE Int. Symp. Circuits Syst., pp. 2425-2427, 1990.

[90] H. Halonen, V. Porra, T. Roska, L.O. Chua, "Programmable analog VLSI CNN chip
with local digital logic," Proc. IEEE Int. Symp. Circuits Syst., pp. 1291-1294, 1991.

[91] JM. Cruz, L.O. Chua, "A CNN chip for connected component detection,” /EEE
Trans. Circuits Syst., vol. 38, pp. 812-817, July 1991.

[92] S. Espejo, et al., "Switched-current techniques for image processing cellular neural
networks in MOS VLSL" Proc. IEEE Int. Symp. Circuits Syst., pp. 1537-1540, 1992.

[93] A. Rodriguez-Vazquez, et al., "Current-mode techniques for the implementation of
continuous- and discrete-time cellular neural networks," IEEE Trans. Circuits Syst.
Part II, vol. 40, pp. 132-146, Mar. 1993.

[94] J.E. Varrientos, E. Sanchez-Sinencio, J. Ramirez-Angulo, "A current-mode cellular
neural network implementation," IEEE Trans. Circuits Syst. Part II, vol. 40, pp. 147-
155, Mar, 1993,

[95] H. Harrer, J.A. Nossek, R. Stelzl, "An analog implementation of discrete-time cellu-
lar neural networks," IEEE Trans. Neural Networks, vol. 3, pp. 466-476, May 1992.

[96] LA. Baktir, M.A. Tan, "Analog CMOS implementation of cellular neural networks,"
IEEE Trans. Circuits Syst. Part II, vol. 40, pp. 200-206, Mar. 1993,

[97] GF.D. Betta, S. Graffi, Zs.M. Kovacs, G. Masetti, "CMOS implementation of an
analogically programmable cellular neural network," IEEE Trans. Circuits Syst. Part
I, vol. 40, pp. 206-215, Mar. 1993,

188



[98] M. Anguita, F.J. Pelayo, A. Prieto, J. Ortega, "Analog CMOS implementation of a
discrete time CNN with programmable cloning templates," IEEE Trans. Circuits Syst.
Part II, vol. 40, pp. 215-218, Mar. 1993.

[99] G.C. Cardarilli, F. Sargeni, "Very efficient VLSI implementation of CNN with dis-
crete templates,” Electronics Letters, vol. 29, pp. 1286-1287, July 1993.

[100] N. Fruehauf, E. Lueder, G. Bader, "Fourier optical realization of cellular neural
networks," IEEE Trans. Circuits Syst. Part II, vol. 40, pp. 156-162, Mar. 1993,

[101] T. Kozek, T. Roska, L.O. Chua, "Genetic algorithm for CNN template learning,"
IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 392-402, June 1993,

[102] L.O. Chua, P. Thiran, "An analytic method for designing simple cellular neural net-
works," IEEE Trans. Circuits Syst., vol. 38, pp. 1332-1341, Nov. 1991.

[103] G. Seiler, A.J. Schuler, J.A. Nossek, "Design of robust cellular neural networks,"
IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 358-364, May 1993.

[104] G. Seiler, J.A. Nossek, "Winner-take-all cellular neural networks," IEEE Trans.
Circuits Syst. Part II, vol. 40, pp. 184-190, Mar. 1993.

[105] F. Zou, J.A. Nossek, "A chaotic attractor with cellular neural networks," IEEE
Trans. Circuits Syst., vol. 38, pp. 811-812, July 1991.

[106] F. Zou, J.A. Nossek, "Bifurcation and chaos in cellular neural networks," /EEE
Trans. Circuits Syst. Part I, vol. 40, pp. 166-173, Mar. 1993.

[107]) F. Zou, A. Katerle, J.A. Nossek, "Homoclinic and hetroclinic orbits of the three-
cell cellular neural networks," IEEE Trans. Circuits Syst. Part I, vol. 40, pp. 843-
848, Nov. 1993,

[108] M. Gilli, "Strange attractors in delayed cellular neural networks," IEEE Trans. Cir-
cuits Syst. Part I, vol. 40, pp. 849-853, Nov. 1993,

[109] B.W. Lee, B.J. Sheu, Hardware Annealing in Analog VLSI Neurocomputing, Nor-
well, MA: Kluwer Academic Publishers, 1991,

[110] D. Quinney, An introduction to the Numerical Solution of Differential Equations,
Research Studies Press, England, 1985.

[111] C.-T. Chen, Linear System Theory and Design, Orlando, FL; Holt, Rinehart and
Winston, 1984.

189



[112] S. Bang, B.J. Sheu, "A quick search of optimal solutions for cellular neural
networks," submitted for journal publication.

[113] S. Bang, B.J. Sheu, "Optimal solutions for cellular neural networks by paralleled
hardware annealing," admitted for JEEE Trans. Neural Networks.

[114] G. Ungerboeck, "Adaptive maximum-likelihood receiver for carrier-modulated data
transmission systems," /EEE Trans. Communications, vol. 22, pp. 624-636, May
1974.

[115] P.G. Gulak and E. Shewdyk, "VLSI structures for Viterbi receivers: Part I -
General theory and applications," IEEE Trans. Selected Areas in Communications,
vol. 4, pp. 142-154, Jan. 1986.

[116] P.G. Gulak and E. Shewdyk, "VLSI structures for Viterbi receivers: Part II -
Encoded MSK modulation," JEEE Trans. Selected Areas in Communications, vol. 4,
pp. 155-159, Jan. 1986.

[117] P.G. Gulak, T. Kailath, "Locally connected VLSI architectures for the Viterbi
algorithm," JEEE Trans. Selected Areas in Communications, vol. 6, pp. 527-537,
Apr. 1988.

[118] N.J.P. Frenette, et al, "Implementation of a Viterbi processor for a digital
communications systems with a time-dispersive channel," JEEE Trans. Selected Areas
in Communications, vol. 4, no. 1, pp. 160-167, Jan. 1986.

[119] J. G. Proakis, Digital Communications, McGraw Hill, New York, 1983.

[120] G. Zeng, D. Hush, and N. Ahmed, "An application of neural net in decoding error-
correcting codes," Proc. IEEE Int. Symp. Circuits Systs., pp. 782-785, 1989,

[121] J. Bruck and M. Blaum, "Neural networks, error-correcting codes, and polynomials
over the binary n-cube," /EEE Trans. Information Theory, vol. 35, no. 5, pp. 976-
987, Sept. 1989.

[122] A. Hiramatsu, "Integration of ATM call admission control and link capacity control
by distributed neural networks," IEEE J. Selected Areas in Communications, vol. 9,
pp. 1131-1138, Sept. 1991

[123] J. Provence, "Neural network implementation for an adaptive maximum-likelihood
receiver," Proc. IEEE Int. Symp. Circuits Systs., pp. 2381-2385, 1988.

190



[124] S. Haykin, Adaptive Filter Theory, 2nd Ed., Prentice Hall, NJ, 1991.

[125] J.N. Babanezhad and G.C. Temes, "A 20-V four-quadrant CMOS analog multi-
plier," IEEE J. Solid-State Circuits, vol. 20, pp. 1158-1168, Dec. 1985.

[126] K. Bult and H. Wallinga, "A CMOS four-quadrant analog multiplier," IEEE J.
Solid-State Circuits, vol. 21, pp. 430-435, June 1986.

[127] M. Ismail, S.V. Smith, R.G. Beale, "A new MOSFET-C universal filter structure
for VLSL," IEEE J. Solid-State Circuits, vol. 23, pp. 183-194, Feb. 1988.

[128] Z. Czarnul, "Novel MOS resistive circuit for synthesis of fully integrated continu-
ous-time filters," IEEE Trans. Circuits Syst., vol. 33, pp. 718-721, July 1986.

[129] K. Bult, H. Wallinga, "A class of analog CMOS circuits based on the square-law
characteristic of an MOS transistor in saturation," JEEE J. Solid-State Circuits, vol.
22, pp. 357-365, June 1987.

[130] S.H. Bang, B.J. Sheu, "A neural-based digital communication receiver for inter-
symbol interference and white Gaussian noise channels," Proc. IEEE Int. Symp.
Circuits Systs., pp.2933-2936, May 1992.

[131] S.H. Bang and B.J. Sheu, "Neural network communication receiver based on the
nonlinear filtering," Proc. IEEE Int. Jnt. Conf. Neural Networks, June 1992,

[132] J. Choi, S.H. Bang, B.J. Sheu, "A programmable analog VLSI neural network
processor for communication receivers," JEEE Trans. Neural Networks, vol. 4, no. 3,
pp. 484-495, May 1993.

[133] S. Bang, B.J. Sheu, J. Choi, "Programmable VLSI neural network processors for
equalization of digital communication channels," Proc. Int. Workshop on Applications
of Neural Networks to Telecommunications, Princeton, NJ, 1993.

[134] J. Choi, S.H. Bang, B.J. Sheu, "A programmable VLSI neural network processor
for digital communication," Proc. IEEE Custom Integrated Circuits Conf., May
1993.

[135] S. H. Bang, J. Choi, and B. J. Sheu, "A 3V data transceiver chip for dual-mode
cellular communication systems," JEEE Symp. on VLSI Circuits, pp. 71-72, Koyto,
Japan, May 1993.

191



APPENDIX

Journal Papers:

[1] J. Choi, S.H. Bang, and B.J. Sheu, "A programmable analog VLSI neural network
processor for communication receivers," JEEE Trans. Neural Networks, vol. 4, May
1993.

[2] S.H. Bang, B.J. Sheu, J.C.-F. Chang, "Multi-level neural networks with optimal
solutions," scheduled for JEEE Trans. Circuits Systs., Dec. 1994,

[3] S.H. Bang, B.J. Sheu, "Optimal solutions for cellular neural networks by paralleled
hardware annealing," admitted for JEEE Trans. Neural Networks.

[4] S.H. Bang, B.J. Sheu, "Cellular neural networks for MLSE detection of signals in
digital communications," submitted for journal publication.

Conference Papers:

[1] S.H. Bang and B.J. Sheu, "A neural-based digital communication receiver for inter-
symbol interference and white Gaussian noise channels," Proc. IEEE Int. Symp.
Circuits Systs., May 1992,

[2] S.H. Bang and B.J. Sheu, "Neural network communication receiver based on the
nonlinear filtering," Proc. IEEE Int. Jnt. Conf. Neural Networks, June 1992.

[3] S.H. Bang and B.J. Sheu, "A multi-chip module for hand-held digital cellular mobile
telephone," Proc. IEEE Multi-chip Module Conf., 1992.

[4] S.H. Bang, J. Choi, and B.J. Sheu, "A 3V data transceiver chip for dual-mode cellular
communication systems," /993 Symp. on VLSI Circuits, Kyoto, Japan, May 1993.

[5] S.H. Bang, B.J. Sheu, J. Choi, "Programmable VLSI neural network processors for
equalization of digital communication channels,"” Proc. Int. Workshop on Applications
of Neural Networks to Telecommunications, Princeton, NJ, 1993.

[6] J. Choi, S.H. Bang, B.J. Sheu, "A programmable VLSI neural network processor for
digital communication," Proc. IEEE Custom Integrated Circuits Conf., May 1993.



[7] S.H. Bang, B.J. Sheu, J.C.-F. Chang, "Search of optimal solutions in multi-level
neural networks," Proc. IEEE Int. Symp. Circuits Systs., vol. 6, pp. 423-426,
May/June 1994.

[8] S.H. Bang, B.J.Sheu, J.C.-F. Chang, "Paralleled hardware annealing for optimal
solutions in multi-level recursive neural networks," Proc. World Cong. Neural
Networks, pp. IV104-109, June 1994.

[9] S.H. Bang, B.J. Sheu, "A quick search of optimal solutions for cellular neural
networks," Proc. World Cong. Neural Networks, pp. 11549-554, June 1994,

[10] S.H. Bang, B.J. Sheu, R.C.-H. Chang, "Maximum-likelihood sequence estimation of
communication signals by a Hopfield neural network," Proc. IEEE Int. Conf. Neural
Networks, pp. 3369-3374, June 1994.

[11] S.H. Bang, B.J. Sheu, T.H.-Y. Wu, "Paralleled hardware annealing of cellular neural
networks for optimal solutions," Proc. IEEE Int. Conf. Neural Networks, pp. 2046-
2051, June 1994, -

[12] S.H. Bang, B.J. Sheu, "Dense CMOS design of cellular neural networks with
programmable synaptic weights (Invited)," Proc. IEEE Int. Conf. Neural Networks,
pp- 1923-1928, June 1994.



