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Abstract

With the rapid progress of microelectronic technologies, an intelligent machine pos-
sessing skills of sensing, information processing, moving and thinking has been explored
for many commercial, medical, and scientific applications. The high-speed and low-power
features in VLSI design are pursued for many high-performance machines and portable
devices. The medical prosthetic devices for cochlear implants and pacemakers for heart
diseases are excellent examples. The various information processing schemes for medical
images are also presented. In an artificial neural network, the backpropagation learn-
ing method, quasi-Newton method, non-derivative quasi-Newton method, Gauss-Newton
method, secant method and simulated Cauchy annealing method to obtain an optimized
solution have been investigated. By using the quasi-Newton method, a three-layered feed-
forward network can successfully learn no-crossover trajectories. In a biologically-inspired
neural network area, the nonlinear model of the functional properties of the hippocampal
formation has been developed. The architecture of the proposed hardware implementa-
tion has a topology highly similar to the anatomical structure of the hippocampus, and
the dynamical properties of its components are based on experimental characterization
of individual hippocampal neurons. Recently, multimedia systems have received a lot of
attention from the industry for consumer markets, publishing, education and entertain-
ment. Data compression is an important scheme for multimedia systems to reduce data
storage and transmission costs. A self-organization neural network architecture is used to
implement vector quantization for image compression. A modified self-organization algo-
rithm, which is based on the frequency-sensitive cost function and the centroid learning
rule, is utilized to construct the codebooks. This self-organization method is quite efficient

and can achieve near-optimal results. A new adaptive vector quantization method based

xi



on the Gold-Washing method is also presented. The algorithm is shown to reach rate
distortion function for memoryless sources. The computation power of the move-to-front
vector quantizer can reach 40 billion operations per second at a system clock 100 MHz by
using a 0.8 um CMOS technology. The algorithm and architecture for the Gold-Washing
method can lead to the development of a high-speed image compressor with great local
adaptivity, minimized complexity, and fairly good compression ratio. The work described

in this dissertation has paved a way for further study of intelligent microelectronic systems.
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Chapter 1

Introduction

This dissertation contributes to understand multimedia systems, artificial and biologically-
inspired neural networks for different engineering and medical applications. The objective
is to develop microelectronics intelligent systems based on the understanding of human
brain [1.1]. The intelligent machine is an integrated information processing system which
can communicate with the real world through different sensors such as audio and video
channels, together with a large knowledge database. High-speed image processing, vision
understanding, and 3-dimensional motion graphics provide the systems with visual ca-
pabilities. Speech recognition and synthesis techniques provide the systems with audio
processing capabilities. The system is also equipped with microsensor and controller units
to accomplish physical actions. Such a powerful multi-media data-fusion machine can be
used in many places, and will help people in their business, education, and daily lives.
Artificial neural networks can be thought of as an architectural solution to common
engineering problems such as optimization, pattern recognition, and control systems [1.2].
In electronic implementation, there are currently a variety of problems yet to be solved.
Theory remains ahead of hardware implementations. The design choices are digital, or
analog, or a combination of both. The implementation of neuron models can be oriented
toward emulation of biological systems or simulation of neural network paradigms. In

many real-world applications, thousands of neurons are required which can be effectively



implemented in multiple VLSI chips at present and in wafer-scale integration in the fu-
ture. Therefore, development of an effective VLSI architecture which allows an array of
neuroprocessors to function together is critical.

Data compression is essential in reducing the data transmission or storage costs for
broad areas of applications such as high-definition television, teleconferencing, remote
sensing, radar, sonar, computer communication, facsimile transmission, and multimedia
system [1.3]. A computer with a multimedia system will play voice and music in high-
fidelity digital-audio stereo, show movie-quality image, easily access or interact with in-
dustry, and consumer markets, publishing, education and entertainment systems. All of
these applications require efficiently to process, store and communicate information. Tra-
ditionally, there has been a tradeoff between the benefits of employing data compression
versus the computational costs incurred to perform the encoding and subsequent decoding,.
However, with the advent of cheap microprocessors and custom chips, data compression
is rapidly becoming a standard component of communications and data storage. A data
encoding/decoding chips can be placed at the ends of a communication channel with no
computational overhead incurred by the communication processes.

The rest of this dissertation is organized as follows. A general introduction for micro-
electronic technologies is addressed in Chapter 2. Based on the advanced VLSI technolo-
gies, the commercial, medical, and military applications have been presented. In Chapter 3,
the backpropagation learning method, quasi-Newton method, non-derivative quasi-Newton
method, Gauss-Newton method, secant method and simulated Cauchy annealing method
have been investigated. By using the quasi-Newton method, a three-layered feedforward
network can successfully learn trajectories without crossovers. Chapter 4 presents the non-
linear model of the functional properties of the hippocampal formation. The architecture
of the proposed hardware implementation has a topology highly similar to the anatomi-
cal structure of the hippocampus. VLSI design techniques, optical interconnection, and

medical applications are well described in Chapter 5. In Chapter 6, a self-organization



neural network architecture is used to implement vector quantization for image compres-
sion. Chapter 7 describes the impact and conclusion of dissertation work. In Appendix A,
the adaptive vector quantization method based on the Gold-Washing method is presented.
The proposed algorithm and architecture can lead to the development of a high-speed

image compressor.

References

[1.1] T. Kaminuma, G. Matsumoto, Biocomputers, Chapman and Hall, New York, 1991.

[1.2] A. D. Kulkarni, Artificial Neural Networks for Image Understanding, Van Nostrand
Reinhold, New York, 1994.

[1.3] G. Held, T. R. Marshall, Data Compression: techniques and applications: hardware
and software considerations, John Wiley & Sons, New York, 1991.



Chapter 2

Microelectronics-Based Intelligent Systems

What is the intelligence? The intelligence can be defined as a process which is comprised
of learning, reasoning, and the ability to provide correct decision [2.1]. In order to de-
velop a similar understanding of the mechanisms of intelligence, the research of machine
intelligence helps us to understand natural intelligence. Since the high-performance smart
machine requires a lot of computation power, the innovative VLSI designs at the archi-
tectural and circuit levels with the advanced manufacturing technologies can provide the

high-speed information processing.

2.1 Commercial Applications

Technological advances are revolutionizing computers and electronic devices to support
digital multimedia [2.2], which stimulate the development of a wide spectrum of applica-
tions, such as tele-conferencing and video entertainment. These applications coupled with
virtual reality will result in a new generation of systems enabling effective tele-personal
interactions between individuals via their multimedia home workstations. The integration
of virtual reality techniques with multimedia teleconferencing leads to the development
of tele-virtual conferencing systems, that synthesize panoramic, life-like three-dimensional
video images and stereophonic audio. Some interesting applications of the multimedia
systems are listed as follows.
(1) two-way interactive broadcast media,

(2) interactive television, video games, music, and movie,



(3) virtual-reality entertainment and education systems,

(4) interactive magazines and books,

(5) interview, working, shopping, and museum tour at home,
(6) health diagnosis at home.

The exciting technological and business trends are development of home and office
electronics with digital computer and communication technologies including the built-in
intelligence and multimedia systems [2.3]. Reliable person identification, using pattern-
recognition techniques applied to visual and speech patterns, replace locks and keys in
many instances. Office automation products such as powerful pen- and voice-based per-
sonal digital assistants and voice translators are very useful. Home and office electronics
will have interactive speech control. An intelligent robot will act like a family servant or a
personal secretary. The smart vehicles will improve the safety of commutation and reduce

the road traffic in the future.

2.2 Medical Applications

While human diagnosticians will continue for many years to examine images from X-ray
machines, CAT scanners, nuclear-magnetic-resonance scanners, and supersonic scanners, a
high degree of confidence will ultimately be placed in the ability of computerized systems
to detect and diagnose problems automatically. Lifetime patient records and histories will
be maintained in nationally or internationally coordinated data banks in place of today’s
disorganized system of partial, fragmented, and often illegible records. Intelligent software
will be available to enable this extensive data bank to be analyzed and accessed quickly by
both human and machine experts. Expert systems will influence virtually all diagnostic
and treatment decision. Surgical operations will make extensive use of robotic assistants
[2.4]. In types of surgery requiring very precise performance, e.g., in eye surgery, the actual
operation will be carried out by the robot, with human doctors overseeing the operations

(2.1].



Through the applications of computer technologies, handicaps associated with the ma-
jor sensory and physical disabilities can be overcome during the next decade or two [2.1].
For the blind, reading machine will be pocket-sized devices that can instantly scan not
only pages of text but also signs and symbols found in the real-world. They will also be
able to describe pictures and graphics, translate from one language to another, and provide
access to on-line knowledge bases and libraries through wireless networks. Blind persons
will carry computered navigational aids that will perform the functions of seeing-eye dogs.
The deaf will have hearing machines that can display what people are saying. Eventually
we may find suitable channels of communication directly into the brain to provide truly
artificial sight and hearing. The physically handicapped will have their ability to walk and
climb stairs, abilities that will overcome the severe access limitations wheel chairs impose.
One that has shown promising in experiments at a number of research institutes, is direct
electrical stimulation of limb muscles. This technique effectively reconnects the control

link that was broken by spinal cord damage.

2.3 Military Applications

A profound change in military strategy arrives. Virtual reality provides real-time inter-
active simulation for military training. Advanced frequency control and timing devices
will improve the stability and accuracy which impact the performance of military commu-
nication, navigation, surveillance, electronic warfare, missile guidance, and identification-
friend-or-foe systems [2.5]. Intelligent satellite systems will be developed to precisely de-
termine the time, position and speed of vehicles or objects. The more developed nations
increasingly rely on "smart weapon,” which incorporate electronic copilots, pattern recog-
nition techniques, and advanced technologies for tracking, identification, and destruction.
A small and light-weight military land navigation device and smart combat system can be

carried by the human soldier. In the future, most combat work will be done by robots.
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Chapter 3

Neural Network Learning on Space Trajectories

Neural networks are parameterized by a set of synaptic weights. The task of an optimiza-
tion scheme for a neural network is to find a set of synaptic weights that make the net-
work perform the desired function. The backpropagation learning method, quasi-Newton
method, non-derivative quasi-Newton method, Gauss-Newton method, secant method and
simulated Cauchy annealing method have been investigated. According to the computa-
tion time, convergence speed, and mean-squared error between the network outputs and
desired results, the comparison of these six methods for learning a sine function has been
presented. By using the quasi-Newton method, a three-layered feedforward network can
successfully learn a circle. After the learning process, the network is connected into a
recurrent network. Any point of the circular trajectory can be used as the starting point.
With different starting points which can be inside or outside of the circular trajectory,
the trained network also generates a circular trajectory. It indicates that the recurrent
network has very good curvature attraction. In another example, one half of symbol-eight
trajectory can also be reconstructed by the proposed learning procedure. Therefore, a
feedforward network without the time-delay elements has the necessary capability to learn

trajectories without crossovers,

3.1 Introduction

For engineering applications, neural networks can be thought of as an important archi-

tectural solution to common engineering problems such as image analysis, plant control,



optimization, and pattern recognition [3.1]. By far, the most popular neural networks
today are the multilayer perceptrons [3.2], Kohonen’s self-organizing maps [3.3], adaptive
resonance theory (ART) networks [3.4], Hopfield nets [3.5], and cellular neural networks
[3.6]. Many of the learning theories of engineering neural networks can be traced back to
Rosenblatt’s Perceptron and Bernard Widrow’s Adaline. Another significant breakthrough
was the discovery of the back-propagation training algorithm by Werbos [3.7]. In a neural
network, the relationship between the input data and the desired results can be described
by using nonlinear mathematical equations. Based on the equations, the quasi-Newton
method, non-derivative quasi-Newton method, Gauss-Newton method, and secant method
[3.8] can be applied. The quasi-Newton method and Gauss-Newton method are only used
for solving the derivative functions. The non-derivative quasi-Newton method and se-
cant method are extensions from the quasi-Newton method and Gauss-Newton method,
irrespectively. They are suitable for solving the non-derivative functions.

Neural networks map the input vectors to the output vectors. This mapping might
classify some input data, produce a control action, predict the next state of a system, and
so on. In general, there are two categories of training methods for engineering neural net-
works: the deterministic and statistical categories [3.9]. The deterministic methods include
the backpropagation learning method, quasi-Newton method, Gauss-Newton method. The
statistical methods, such as simulated Cauchy annealing method [3.10,3.11] and Boltzmann
machine [3.12], search for the globally optimal solution but they converge very slowly.

In order to learn the space trajectories such as circular and symbol-eight trajectories,
recurrent neural networks [3.13,3.14] and time-delay neural networks [3.15-3.17] have been
proposed by many researchers. In the biological study, recurrent networks are very com-
monly found in the brain. The recurrent neural networks are capable of holding memories
in the network loops. The learning methods [3.13,3.14,3.18] for recurrent networks are re-
quired to integrate the information in the previous iterative stages. This learning operation

is more complicated than that of feedforward network.



Time-delay feedforward networks have been successfully applied to speech recognition
[3.19,3.20]. Based on the back-propagation learning method, the adaptive time-delay neu-
ral network in the continuous-time mode has been reported in [3.21]. To learn spatiotem-
poral topology by using adaptive time-delay neural networks was proposed by Dayhoff et
al. [3.15-3.17]. They used a gradient decent method for training a feedforward network
on the discrete-time mode. The training strategy is to map the current input data to the
next incoming data. After the training process, the network is connected into a recurrent
network so that the number of input neurons are the same as that of the output neurons.
Before a trajectory is reconstructed from a time-delay neural network, a segment of the
seed data are required to fill in the delay buffers. According to their simulation results
[3.15], a quarter of a complete circle was used as the network input in order to generate
the complete circle. Possible applications of time-delay neural networks include time-series
analysis and prediction.

By using the quasi-Newton method, the multilayer feed-forward networks for learning
space trajectories have been presented. The network without any feedback connection is
used to learn the mapping from the input vector to the next incoming vector. After the
training process, the network is connected into a recurrent network and only one starting
point is provided to reconstruct the complete trajectory. The most common feed-forward
networks are static, having no internal delays and responding to a particular input by
immediately generating a specific output. This type of network is suitable for learning

trajectories without crossovers.

3.2 Learning Methods
3.2.1 Backpropagation Learning Method

The backpropagation learning method has been very popular in the field of neural networks

during the past decade. The synaptic weights are adjusted by using the backpropagation

10



technique in the negative gradient direction. During the training, the network performance

is improved by minimizing the cost function,

N
(df = yf}21 (31)

i=1

E(W) =

B =

where W is a synaptic weight matrix, NV is the total number of input vectors, d; and
yi are the desired and actual output vector, respectively, corresponding to the i** input
vector x;. The backpropagation learning rule in the batch-mode operation [3.22] can be
described as follows,

(a) the hidden-to-output connection:

Awyy = -7 2= n Zfil ‘si.qF(Si'p)a and

Jwpq

6“-‘1 = (d"uq - yi.q] y:',qr

(3.2)

where w4 is a synaptic weight that connects neuron p in the present layer to neuron ¢ in
the next layer, 7 is a learning rate constant, and F is the neuron transfer function. Here,
Si,q is the weighted sum to neuron ¢, y;, is the output of the ¢*" neuron, and d; 4 is the
desired output of the ¢g** neuron corresponding to the i** input vector x;.

(b) the hidden-to-hidden or input-to-hidden connection:

Awyy = -7 g = n ZJ‘\rl bigF(Sip) , and

Jwpq 1=

, (3.3)
0ig = F(Si,g) X wgibi; -

For the synaptic weight between the input neuron and hidden neuron, F(S;,) in Eq. (3.3)

is equal to the input signal z; .

3.2.2 Quasi-Newton Method and Non-derivative Quasi-Newton Method

The learning process of a feedforward network, in which the network connection strengths
are modified systematically so that the response of the network progressively approximates
the desired response, can be structured as a nonlinear optimization problem. The network
performance is improved by minimizing the cost function in Eq. (3.1). In addition to using

the first derivative of cost function like the backpropagation learning method, the second
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derivative terms are also used in the Newton’s method. By applying the truncated Taylor

series expansion, E(W) around W) can be described as [3.8]
EW®W 4 §) ~ QW) = B(WH) + g®5 4+ %6TG(‘"‘)6, (3.4)

where g is the first derivative term of E(W), G is the second derivative term of E(W),
§ is equal to W — W) and Q¥ (4) is the resulting quadratic approximation at the
k" iteration. The W**1) in the Newton’s method is simply W®*) 4+ %) where the
correction 8(¥) is used to minimize the value of Q(¥)(§). The method requires zero, first
and second derivatives of F to be available at any point. The k% iteration of the Newton’s
method can be performed in the following procedures,

(a) solve GR§ = —g®) for § = 60), and

(b) set Wk+D) = W) 4 k), (3-5)

The second derivative of the cost function with respect to the synaptic weights provides
information about the curvature of the error surface. By using the first and second deriva-
tives information, the network can be trained to reach the minimum of the cost function.
Since the computation complexity of the second derivative is very high, the quasi-Newton
method can be applied by using an iterative approximation scheme for the inverse sec-
ond derivative term. This approach avoids direct computation of second derivative, and
computational complexity is reduced by a factor of O(N) [3.8]. The basic quasi-Newton
algorithm consists of the following steps:

(a) set a search direction sF) = —HKF) . gk)
(b) let WD) = W) 4 55k and (3.6)
(¢) update HF) to H*+1)
where H is the approximate inverse second derivative matrix, s contains weight-change
information, 7 is the learning rate constant, and £ is the iteration index. The key feature

of the algorithm is the updating strategy for the approximate inverse second derivative
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matrix. The Broyden, Fletcher, Goldfarb and Shanno (BFGS) technique [3.8] can be
applied,

= T k) TH ) LR 40 50 T
(k+1) _ (k) BT HKAK) | sR)sk) " Ry HK LH K48 §
H = HY + (1+ 5 T (k) )stkﬂ"qtk) ST (k) ,

4 #) = gt _ g®) gnd (3.7)
k) = ps()) = Wik+1) _ Wik),

The initial matrix H(® is usually selected to be a unity matrix. In the quasi-Newton
method, the BFGS formula is suitable because it can provide a better performance than
the other formulas such as the rank-one formula and Davidon-Fletcher-Powell (DFP) for-
mula [3.8]. For the non-derivative quasi-Newton method, the first derivative function g is

replaced by the finite-difference function,

g+1) — E(w(k] + A) - E(W(k])

= , (3.8)

where A contains small values.

3.2.3 Gauss-Newton Method and Secant Method

The pertinent mathematical equations can be constructed according to the relationship
between the input vectors and desired output vectors. The synaptic weights are the un-
known variables in the equations. If there are n input vectors and m synaptic weights,
the n equations with m unknown variables are to be solved. Usually, the number of input
vectors for the neural network is larger than that of synaptic weights. These equations
contribute to an over-determined system so that there are no exact solutions. On the
other hand, if the neural network is mapped into a well-determined system or an under-
determined system, appropriate solutions for synaptic weights can be easily found. In the
over-determined system, the least squared-error solutions can be obtained by minimizing
the cost function in Eq. (3.1). The mathematical equations of the neural network can be

represented as

a;(W) = di - yi, (3.9)
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where d; and y; are the desired and the actual output vectors, respectively, corresponding
to the i* input vector x;. The m x n Jacobian matrix J can be obtained through the
differentials of Eq. (3.9). The iteration process of the Gauss-Newton method is

(a) solve JRIWTs = _3EWak) fors = s

3.10
(b) set WEH) = WB 4 g(k), (3.10)

For the non-derivative scheme, the secant method which is modified from the Gauss-
Newton method can be applied. Here, the generalized secant method based on Broyden’s
approach [3.8] is used. The Jacobian matrix J in the Gauss-Newton method is replaced
by the following equations,

z(¥) = alk+1) _ ak)  and

s®) (20 — 30T gh)” (3.11)
sk T g(k) :

Jk+1) — (k) 4

The above formula is used to produce an approximate Jacobian matrix for Eq. (3.9). The
updating formula in the generalized secant method is the same as in Eq. (3.10) for the

Gauss-Newton method.

3.2.4 Simulated Cauchy Annealing Method

The simulated Cauchy annealing method proposed by Szu [3.10,3.11] is an useful statistical
method for network training. The method has three important features: (i) States are
generated with a probability density that has a Gaussian-like peak and lorentzian wings
that imply occasional long jumps among local sampling. (ii) The canonical ensemble for
a state acceptance probability allows occasional hill-climbing among descents. (iii) An
artificial cooling temperature enters both (i) and (ii) as a control parameter of noise.

The cost function of the simulated Cauchy annealing method is the same as in Eq.
(3.1). The annealing temperature is

i
1+ k&’

T(k) = (3.12)

where T, is a initial temperature, and k is the number of iterations. The random dis-

placement for generating a new vector W(**1) can be T'(k) * tan(#), where 6 is a random
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value normalized between —n/2 and /2. The acceptance criterion is based on the follow-
ing equation,

1

Pl = 1 + e@E/T(R)’

(3.13)

where AFE is the cost function difference between the neighboring input stages. If AE
is smaller than zero, the displacement for generating the new vector W{+1) is applied.
Otherwise, a random search is performed to determine the updating of vector W(*), If the
random number generated between 0 and 0.5 is less than the acceptance criterion, then

the displacement is used to generate a new vector W(k+1),

3.3 Computer Analysis Results

A three-layered feedforward network was configured with 1 input unit, 2 hidden units, and
1 output unit. The input data range is from 0 to 1.57 with 128 sampling points. The two

hidden units have the same transfer function,

1

(3.14)

The output neuron has a linear transfer function with a scaling factor r. Figure 3.1 shows

the neural network configuration. The network function can be described as follows,
y(@) = r - [ws + wg - Flwy+wz + z) + wy + Flwz+wy - )], (3.15)

where z is an input signal, y is the network output, and w,, w,, ..., and w; are the
synaptic weights. The backpropagation learning method, quasi-Newton method, non-
derivative quasi-Newton method, Gauss-Newton method, secant method, and simulated
Cauchy annealing method were used to train this network for the sine function. Simulation
results are listed in Table 3.1.

For the back-propagation learning method, the scaling factor r of the output neuron
was chosen to be 0.5 which is a constant value during the training process. If the initial
synaptic weights are zero, the synaptic weights at the same layer after training have the

same results. In such condition, the network cannot be effectively trained. In order to
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(X1 1 X2 5 vy X123)

Figure 3.1: A three layered feedforward network.

achieve a good performance, initial synaptic weights are required to have different values.
The learning rate constant is chosen to be 0.01. If a larger learning rate constant is used,
the training process might not converge. After 1,050 iterations, the mean-squared error
between the reconstructed and original sine curve is 0.000271. Figure 3.2(a) shows the
plot of the cost function against the iteration index. The reconstructed curve and original
sine curve are shown in Figure 3.2(b). For the quasi-Newton method, the network training

is performed by optimizing the following equation,

128

E(W) = Z [sin(z;) — y(z)]?, (3.16)

=1

where sin() is the sine function. The vector W consists of 8 components which are r,
wy, Wy, ..., and wy. If an initial weight vector W is selected, the cost function E will be
updated based on the information of its first and second derivatives. If a good initial vector
is used, a very good performance can be achieved. The plot of the cost function at each
iteration is shown in Fig. 3.3(a). After 4,650 iterations, a mean-squared error of 0.000009
can be achieved by using the quasi-Newton method. Figure 3.3(b) shows the plots of the

reconstructed curve and original sine curve. They are almost perfectly matched. For the
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non-derivative quasi-Newton method, the derivative function in the quasi-Newton method
is replaced by the finite-difference function. If the initial vector for the quasi-Newton
method in Table 3.1. was used for the non-derivative quasi-Newton method, a mean-
squared error of 0.045978 could be achieved. It indicates that the finite-difference function
is not a perfect approximation of the derivative function and the final result converged
to a different local minimum. Therefore, a different initial vector should be used for the
non-derivative quasi-Newton method. After 5,000 iterations, a good performance can be
achieved with a mean-squared error of 0.000058. Figure 3.4(a) shows this plot of the cost
function at each iteration for non-derivative quasi-Newton method. The reconstructed

curve and original sine curve are shown in Fig. 3.4(b).

Table 3.1: Performance comparison of six different learning methds. (MSE: mean-squared
error)

Methods Backpropagation | Quasi-Newton b(;;na::?;::::: Gauss-Newton Secant c ausc;?ual: :_;i“" g
Para- After After After After After After
meters Initial ||eaming| Initial | eaming| Initial | jearning| Initial | earning| Initial | jearning| Initial | jearning

r 0.5 0.5 025 813 025 | -2.83 -0.5 2237 | -1.25 | -4.07 05 0.60
w1 0.1 -1.76 0.1 1.20 0.25 4.87 0.5 0.55 -0.5 -0.54 1.0 -4.96
w2 1.0 3.10 1.5 -0.45 1.0 -1.60 -1.5 -1.85 0.5 1.85 1.0 1.62
w3 0.2 -5.61 0.1 245 | 05 0.54 0.5 -4.90 -0.5 4.90 1.0 0.57
W4 -1.0 1.79 -1.5 -0.81 | -1.0 -1.84 1.5 1.60 -2.5 -1.60 1.0 -1.89
w5 0.3 -0.21 0.1 0.38 0.5 0.43 0.5 0.06 -0.5 0.83 1.0 2.31
Wg 1.5 2.57 1.0 -3.59 1.5 -0.93 -1.0 | -0.10 0.5 -0.54 1.0 -4.34
w7 -1.5 -4.66 -1.0 2.58 -1.5 0.77 1.0 -0.12 -1.5 -0.64 1.0 -3.54

MSE 0.000271 0.000009 0.000058 0.000058 0.000059 0.000059
Iterations 1,050 4,650 5,000 16,000 17,000 161,589
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Figure 3.2: Network training by using backpropagation learning method. (a) Cost function
ver training iterations. (b) Reconstruction and original Sine curves

In the proposed neural network, the 128 sampling data x are used to describe the
sine function. They can be contained in 128 equations which become an over-determined

system. Each equation is described as follow,
a;(W) = sin(e;) — y(z;), fori = 1, 2, ..., 128, (3.17)

The 8x128 Jacobian matrix J can be obtained by taking the differentials of Eq. (3.17).

This Jacobian matrix is

7= [8_8. da dJa da 0da 0Oa Oa 3a]
B ar 6w1 6wg 6w3 31&; a’UJ5 8106 aw? '

(3.18)

According to Eqs. (3.10) and (3.11), the Gauss-Newton method and the secant method can
be used. Since the operations of matrix inverse are required in the iterations of these two
methods, the good initial vector W and learning rate constant 7 are very crucial in order
to achieve converged results. If a poor initial weight vector or the learning rate constant
value is used, singular results of matrix inverse could occur. The cost functions of the
Gauss-Newton method and the secant method at each iteration are shown in Figs. 3.5(a)
and 3.6(a), respectively. The reconstructed curves also are shown in Figs. 3.5(b) and

3.6(b).
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Figure 3.3: Network training by using quasi-Newton method. (a) Cost function versus
training iterations. (b) Reconstruction and original Sine curves
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Figure 3.4: Network training by using non-derivative quasi-Newton method. (a) Cost
function versus training iterations. (b) Reconstruction and original Sine curves
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Figure 3.5: Network training by using Gauss-Newton method. (a) Cost function versus
training iterations. (b) Reconstruction and original Sine curves
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Figure 3.6: Network training by using secant method. (a) Cost function versus training
iterations. (b) Reconstruction and original Sine curves
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The values of cost functions for the quasi-Newton method and Gauss-Newton method
usually smoothly decayed without large disturbance during the learning process. In the
simulated Cauchy annealing method, the steep hill-climbing occurs which strongly affects
the plot of the cost function in Fig. 3.7(a). The converged result is not sensitive to the initial
condition but sensitive to the annealing procedure. As compared with other methods, the
required number of iterations for good convergence is quite large but the computational
time for each iteration is very small. Fig. 3.7(b) shows the plots of the original sine curve

and the reconstructed curve after 151,589 iterations of training.

0.5

0.5+

g |

Figure 3.7: Network training by using simulated Cauchy annealing method. (a) Cost
function versus training iterations. (b) Reconstruction and original Sine curves

The computation time and mean-squared errors of these six methods are listed in
Table 3.2. The backpropagation learning method shows the behavior of quick convergence
but with a very suboptimal solution. The best performance is obtained by the quasi-
Newton method. The total computation time for the Gauss-Newton method and the secant
method are quite large because they require heavy computation in matrix multiplication
and inverse. The mean-squared errors of network training by the non-derivative quasi-
Newton method, Gauss-Newton method, secant method, and simulated Cauchy annealing

method are almost the same at their converged stages, but their final synaptic weights
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and scaling factor values are quite different. It indicates that the network has a lot of
local minima in the cost function. In view of the performance criteria of computation
time, convergence speed, and mean-squared error, the quasi-Newton method stands out
well and the Gauss-Newton method is also quite attractive. In real-world applications,
most systems are more suitable for non-derivative operations so that the non-derivative

quasi-Newton method and secant method can be very practical.

Table 3.2: Computation time and mean-squared errors of six different learning methods
after 100, 200, 450 iterations, and the final convergence.

Methods Back- . Non-derivative Gausei Fenric Seciiit Simulated
Iterations propagation Quasi-Newton Quasi-Newton Cauchy annealing
Time
(sec) 0.7 1.5 34 3.6 3.6 0.3
100
MSE| 0.175603 0.289970 | 0.062914 0.431622 0.738700 0.488601
Time| 4 3.0 6.8 7.1 7.0 0.6
(sec) : : ' ’ ’ ’
200
MSE| 0.140996 0.228342 0.036978 0.390267 0.597239 0.463296
Time| 44 6.7 15.1 16.1 16.2 13
(sec) : ) : : : *
450
MSE| 0.014565 0.228855 0.008166 0.303796 0.297951 0.451719
Time
Conver-| (sec) 7.4 68.6 170.9 577.6 610.6 467.9
gence
MSE| 0.000271 0.000009 0.000058 0.000058 0.000059 0.000059

(Note: Computation time is obtained from the SUN-4 SPARC station-2.)

3.4 Neural Networks for Learning Space Trajectories

A three-layered feedforward network for learning a circular trajectory was configured with

2 input units, 6 hidden units, and 2 output units. The hidden and output neurons have
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the same transfer function in Eq. (3.14). The desired circular trajectory is sampled at 128
reference points which become the training data. These points can be defined as

(sin(g5i) + 1), and

3.19
(cos(F5i) + 1), for0 < i < 127 (9:19)

B3 b=

According to the computer analysis results in section 3, the quasi-Newton method can
yield the best performance for learning a sine function. Here, only the quasi-Newton
method based on the BFGS scheme is used for the feedforward network learning. If
the input vector is (z;1, ®;2), then the desired output vector is (zi411, @it1,2). The
network learning is performed by optimizing Eq. (3.1). If an initial synaptic weight
matrix is selected, the cost function E will be updated based on the information of its
first and second derivatives. After 15,000 iterations, a mean-squared error of 0.000010
can be achieved. This trained network is connected into a recurrent network. Only one
initial input vector is required to be the network input. Figure 3.8 shows the plots of the
desired and reconstructed trajectories with the starting point (0.5, 1.0). The mean-squared
error is increased to 0.000261 because the distortion is accumulated in the reconstruction
process of the recurrent network. Any point of the desired circular trajectory can serve as a
network input datum. Figure 3.9 shows the reconstruction performance versus the different
input data. The worst case is the mean-squared error of 0.000859, and the plot of its
reconstructed circle is shown in Fig. 3.10. This reconstructed circle still agrees well with the
desired circular trajectory. Figures 3.11 shows the plots of two reconstructed trajectories
for the input vectors, (1.0, 1.0) and (0.5, 0.5), which are not on the desired circle. It
indicates that the recurrent network memorizes the topology of a circular trajectory and
is not sensitive to the noise added to the input signals.

In a separate experiment, one half of the symbol-eight trajectory is used for the network
learning. The same three-layered feedforward network is used. The desired trajectory is
sampled at 64 reference points which can be defined as

(sin(337) + 1), and

3.20
(sin(ggi) + 1), for0 < i < 63. #2)

B3 b3
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Figure 3.8: Desired circle and reconstructed circle at the initial vector (0.5, 1.0).
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Figure 3.10: Desired circle and reconstructed circle at the initial vector (0.4025, 0.9904).
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Figure 3.11: Reconstructed trajectories from noisy input data. (a) Initial input vector
(1.0, 1.0). (b) Initial input vector (0.5, 0.5).
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The network was trained by using the quasi-Newton method. The mean-squared error
between the desired and reconstructed trajectories is 0.000038 at the 10,000 iterations
for the feedforward network. After the training process, the network is connected into a
recurrent network. Figure 3.12 shows the plots of the reconstructed and desired trajectories
for the initial input vector (0.5, 0.5). The mean-squared error is increased to 0.000501.
Figure 3.13 shows the plots of two reconstructed trajectories for the input vectors, (1.0,
0.5) and (0.5, 0.75), which are not on the desired trajectory. In such a case, a very good

reconstruction performance can also be achieved.

) 61 02 03 04 05 06 07 08 09 1
Y1

Figure 3.12: Desired trajectory and reconstructed trajectory at the initial vector (0.5, 0.5).

A three-layered feedforward network for learning a symbol-eight trajectory was con-
figured with 2 input units, 12 hidden units, and 2 output units. After 20,000 iterations,
the mean-squared error between the desired and reconstructed trajectories is 0.000059 for
the feedforward network. If the trained network is connected to a recurrent network, the
mean-squared error is increased to be 0.275 for the input vector (0.5, 0.5). Figure 3.14
shows the plots of the desired and reconstructed trajectories. In the intersection point (0.5,
0.5) of the symbol-eight trajectory, there are four possible moving directions. Here, the
recurrent network only remembers one direction in the intersection point so that one half
of symbol-eight trajectory is reconstructed. In order to determine the correct direction,
the network is required to keep the information of the previous curvature positions as in

the time-delay neural networks.
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Figure 3.13: Reconstructed trajectories from noisy input data. (a) Initial input vector
(1.0, 0.5). (b) Initial input vector (0.5, 0.75).
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Chapter 4

Algorithms and Architecture of the Biological

Hippocampus

The hippocampal formation is a brain system which performs the cognitive functions of
learning and memory. The architecture of the proposed hardware implementation has a
topology highly similar to the anatomical structure of the hippocampus, and the dynami-
cal properties of its components are based on experimental characterization of individual
hippocampal neurons. A mixed analog/digital processor has been effectively implemented
for the hippocampal dentate gyrus. The local data computation is executed by analog
circuitry to achieve full parallelism and to minimize power consumption. Interneuron
communication is carried out in the digital format to achieve network scalability. The
proposed VLSI design of a nonlinear model of the hippocampus will not only facilitate for
efficient emulation of biological systems or simulation of neural network paradigms but

also produce useful knowledge and results for scientific and engineering applications.

4.1 Introduction

Research on the neurobiological substrates of learning and memory has progressed substan-
tially during the past two decades, with a convergence of evidence identifying several brain
systems critical for memory function [4.1] and several cellular and biochemical mechanisms
of learning-induced synaptic plasticity [4.2]. Because of the complexity of the mammalian
brain, however, further progress in understanding the relationship between neuronal pro-

cesses and mnemonic processes will require the use of mathematical models and computer
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simulations of the dynamic properties expressed by networks of neurons [4.3]. With regard
to this goal, one of the most important unresolved issues is how to ensure that there is
a sufficient degree of identity between mathematical models of neural networks and func-
tional properties of real brain that the focus of neural network research remains biologically
meaningful, and thus, likely to identify the basis for the unique information processing and
storage capabilities of the brain.

Algorithms based on neural network paradigms have been demonstrated to be useful
in signal processing and pattern recognition tasks. In order to effectively address complex
real world problems, the neural networks must be scaled up, or modularized, and then must
be efficiently implemented in hardware. In general, a neural network module consists of a
large collection of simple processing elements. These simple processing elements execute
mathematical algorithms to collectively carry out information processing through their
responses to stimuli. There are technological constraints to the scale size and capacity
of neural network hardware. In contrast, biological networks which incorporate features
of real neurons and the connectivity of real neural networks have been shown to exhibit
theoretical advantages in dimensional scaling and processing time. In order to develop a
hardware implementation of the proposed model [4.1], the role of cellular and circuitry
characteristics in the computational basis of hippocampal memory function have been
studied.

Rapid advances in silicon fabrication and design technologies, especially the advent
of very large-scale integration (VLSI) circuits, have made possible the implementation of
engineering and biological neural networks. There has been much research in the area
of analog neural network hardware implementations for various applications of adaptive
signal processing. Lyon and Mead [4.4] described an analog electronic cochlea for speech
recognition. Koch et al. [4.5] reported a real-time chip for rudimentary computer vision
and robotics. Moore et al. [4.6] presented the VLSI implementation of an engineering
neural system for color constancy. Van der Spiegel et al. [4.7] presented a simple analog

neural computer for speech processing. Sackinger at al. [4.8] developed the analog neural
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processor for high-speed character recognition. Mead et al. [4.9] developed an analog
VLSI chip for binaural hearing. Sheu et al. implemented a motion sensor chip [4.10] and
a neuroprocessor for self-organization mapping [4.11,4.12]. Many cellular neural network
(CNN) implementations have been reported [4.13,4.14]. In addition to CMOS technology,
various design and fabrication technologies such as BiICMOS [4.15], field-programmable
gate array (FPGA) [4.16], and charge-coupled device (CCD) [4.17] also have been used for
efficient construction of neurocomputing systems.

The custom VLSI hardware for neuron network applications can be constructed by
the digital or analog design approaches. In the digital approach, a higher resolution and
less noise-sensitive can be achieved. However, the silicon area and power consumption is
higher than those of the analog design. On the other hand, an analog design can have many
properties in common with real neural tissue. Analog computation can allow many neurons
to collectively perform complicated functions in real time. Due to the regular and local
connections among neural cells, the architecture of analog CNN circuitry is well-structured
and the operation speed is independent of the network size. Usually, current saturation
problems can occur in large-dimensional, global-connected neural networks. This effect
can be alleviated by using the local-connected networks, such as CNN, or the networks

with a small volume of interconnections.

4.2 Nonlinear Systems Model of the Hippocampus

The dynamic properties of individual hippocampal neurons were characterized experimen-
tally using a nonlinear systems analytic approach [4.18]. Experiments were conducted
using in vitro slice preparations of the hippocampus of New Zealand white rabbits. The
primary afferents to the hippocampus, perforant path axons of the entorhinal cortex, were
stimulated with a random interval train of electrical impulses: a series of 4064 impulses
with a Poisson distribution inter-impulse intervals. The mean inter-event interval (A) was

500 ms, with a range of 1-5000 ms. Throughout random train delivery, electrophysiological
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activity was recorded intracellularly from single granule cells of the dentate gyrus, which
receive excitatory input from perforant path axons.
The nonlinear input/output properties of granule cells were defined as the kernels of a

functional power series expansion:
y(t) = Go + Gilhy, &(t)] + Galha, 2(t)] + Galhs, (t)] + ..., (4.1)

where y(t) is the output of dentate granule cells, (g;) is a set of mutually orthogonal
functions, and (h;) is a set of kernels which characterize the relationship between the

input and output:

Go(t) = 0,

Gi(t) = ]hl('r]:r(t—r)dr,

Galt) = 2 / ha(r, 7+ A)z(t—)2(t—A—1)dAdr, and

Gs(t) = ﬁff/h3(r,r+A1,T+Ag)z;(t~T)x(t—r—Al)
2t =7 —Ap —Ag)dAdAqdr.

(4.2)

The train of discrete input events defined by x(t) is a set of §-functions. The first, second
and third order kernels of the series are obtained by the process of orthogonalization using
cross-correlation techniques applied to point process events [4.19].

The first order kernel, hy(7), is the average of all evoked granule cell responses occur-
ring during train stimulation as shown in Fig. 4.1(a). The second order kernel, hy(r, A)
as shown in Fig. 4.1(b), represents the modulatory effect of a preceding stimulus occur-
ring A ms earlier on the number or probability of granule cell activation by the most
current stimulation impulse, where 7 is the cell activation latency. The third order kernel,
h3(r, Ay, Ag) as shown in Fig. 4.1(c) represents the modulatory effect of any two preceding
stimuli occurring A; ms and A; ms earlier on the number or probability of granule cells
activation by the most current stimulation impulse. In total, the kernel functions repre-

sent a complete characterization of the functional properties resulting from the interaction
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among whatever system of neural elements is studied, and provide a basis for predicting

the activity of those elements in response to any arbitrarily selected stimulus condition.
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Figure 4.1: The kernels for dentate granule cells in vitro. (a) First order kernel. (b) Second
order kernel. (c¢) Third order Kernel.

4.3 Engineering Neural Networks for the Hippocampus

In the area of neural network hardware design, there are currently a variety of problems
yet to be solved. Theory remains ahead of hardware implementations. In electronic imple-

mentation, the choices are digital, or analog, or a combination of both. The analog design
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approach can be divided into continuous-time and discrete-time electronics. A critical con-
tent in the VLSI implementation of learning techniques is the accuracy and convenience
of using analog memory. A recent important improvement of VLSI hardware is in cellular
neural networks due to the simplicity of architecture and the potential for many appli-
cations [4.13,4.14]. Figure 4.2 shows the relationship between engineering neural network
and biological neural network for the hippocampus. The different hardware implementa-
tion schemes such as analog computing, analog subthreshold and pulse stream methods

have been proposed by many researchers.

Global Interconnec

(w/ Nonlinear Networks)

Pulse Computation
Stream ,\...-—-—->
Model

Digital |

Figure 4.2: The relationship between engineering neural network and biological neural
network.

The proposed neural network is based on the biological neural input/output and in-
terconnection models. All neural operations are performed asynchronously according to
biological neural functions. The neural network is a dynamic system which will be trained
according to the stimuli. Potential applications are in the areas of data storage, classifica-
tion, and understanding. In additional to the local neural interconnections, the proposed
biological neural network has the interconnections between the neighboring neural layers
such as CA1l, CA3 and dentate [4.1,4.18]. The analog CNN design scheme is extensively

studied for the proposed neural memory system.
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The implementation of neuron models can be oriented toward emulation of biological
systems or simulation of neural network paradigms. Progress in hardware implementation
will contribute to a better understanding of paradigms and biological systems. In many
real-world applications, thousands of neurons are required which can be effectively im-
plemented in multiple VLSI chips at present and in wafer-scale integration in the future.
Therefore, development of an effective analog VLSI architecture which allows an array of
neuroprocessors to function together is critical. A mixed analog/digital approach is one
of the good choices in the implementation of electronic neural systems. The local data
computation is executed by analog circuitry to achieve full parallelism and to minimize
power consumption. Interprocessor communication is carried out in the digital format to
preserve signal strength across the chip boundary and to achieve network scalability by
using an array of neural chips.

Due to the limitations by production yield and fabrication cost of semiconductor tech-
nologies, the high-performance analog neurocomputing IC chip will have a finite physical
size. In real-world applications, there will be cases when the size of the data set is larger
than the number of neurons on one chip. Effective partition of the data set with appro-
priate handling of the boundary problems is the key to map the input data to multiple
chips for collective computation. The proposed analog VLSI design of a nonlinear model
of the hippocampus will not only facilitate for efficient emulation of biological systems or
simulation of neural network paradigms but also produce useful knowledge and results for

scientific and engineering applications.

4.4 VLSI Design

The response properties of the granule cells have been analyzed by using the time-series
neural model. The output of a neural cell can be described with the estimated kernel
functions. The hardware implementation is used to realize the Eq. (4.1) which can be
described by the functional block diagram as shown in Fig. 4.3. A VLSI architecture

design of a neural cell, which is a hybrid analog/digital design, is shown in Fig. 4.4. Before
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the operation of neuron function being performed, the signal RESET is issued to set the
contents of input latch and shift registers to the Vs,. The input signal X is pipelined into
the input latch. The previous input sequence is stored in the shift registers. The signals
CLK1 and CLK2 are used to control the data shifting among the input latch and shift
registers. The timing relationship in the neural model is mapped into the relationship
of space connection in the shift registers. The signal READ is used as a enable signal
for memory access. It controls the period of memory access which is determined by the
response time of the analog current-sum circuitry. The AND gate functions are used to
generate the memory access signal. From timing diagram shown in Fig. 4.5, the processing
of the neural cell can be divided by three different operations: (a) shift the previous data
and latch the incoming data, (b) generate memory access signals, fetch the memory data,

and generate the output result, and (c) refresh the memory cell.

Input ol D ! D vee
L] :
Higher-Order

| \ :—\\ Terms
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%

+ Output

E Delay @ Convolution @ Addition

Figure 4.3: Functional block diagram of the nonlinear input/output property of a granule
cell.

The hy, hg, and h3 are stored dynamically in the analog memory cells which can be
implemented by using the modified Gilbert multiplier. The circuit schematic of the com-
pact and wide-range Gilbert multiplier for the neuron memory cell is shown in Fig. 4.6(a).
The measured dc characteristics of the synaptic weight memory is shown in Fig. 4.6(b).
Since the memory for synaptic weights is implemented by using the gate capacitances of

MOS transistors, periodical refresh is required to prevent the leakage current through the
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diffusion-to-substrate junction from changing the stored value. From the measurement on
charge retention characteristics, a refresh cycle of around 0.1 sec is sufficient to retain the
8-bit accuracy [4.20]. Each updating or refreshing the data is performed while the correct
memory address is provided. A decoder is required to decode the memory address in order
to generate the control signals for the pass transistors. The input data will be stored
in the synaptic weight memory through pass transistors. The refresh operations can be
overlapped with the operations of the neuron function.

The currents from the synaptic weight memory will sink to the I-to-V converter which
is an operational amplifier with a linear floating active resistor feedback. Figure 4.7(a)
shows the circuit schematic of I-to-V converter for the operation of the current summation.
The measured characteristics of this I-to-V converter is also shown in Fig. 4.7(b). Due
to the operation range of I-to-V converter, the total current from the synaptic weight
memory is limited. According to Fig. 4.7(b), the 500 pA is the maximum total current.
In the Fig. 4.6(b), the linear current range of memory cell is adjustable by using different
voltages, Vin. Empirically, the contribution of higher order kernels can result in output
values that range from -100% to +400% of the magnitude of the h; value. Since the
currents are proportional to the values of hy, hg, and hg, the total current will be within
four times the current from the ky memory cell. Therefore, the N can be a large number,
if the physical layout routing and propagation delay issues can be efficiently implemented.
If the 500 pA is the maximum operation current in the I-to-V converter, the h; memory
cell can provide the 125 pA with the maximum data resolution. The total current from
the hy and hz will be within -250 pA to 375 pA so that the circuitry of I-to-V converter
still performs in the linear operation range.

A set of 9 neurons is arranged in a two-dimensional 3x3 mesh array. Each neuron
connects with its four neighboring neurons and has a physical size 1,000 A x 1,200 A
with the number of stored time units equaling four (N=4). Figure 4.8 shows a layout
of a complete neuron with a decoder for refreshing address. According to the SPICE-3

circuit simulation, the functionality of a neuron with 11 synaptic weights can be correctly
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(b)

Figure 4.6: Synaptic weight memory. (a) Circuit schematic of the compact and wide-range
Gilbert multiplier. (b) Measured dc characteristics.
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IV Converter

Figure 4.7: Output function generator. (a) Circuit schematic of I-to-V converter with
linear floating active resistor. (b) Measured characteristics of I-to-V converter.

addressed. The total response time is approximately 1 ps. The 3x3 neuron array with
some testing modules, as shown in Fig. 4.9, was fabricated in a 2-um double-polysilicon
CMOS technology through the MOSIS Service of USC/Information Sciences Institute at
Maria del Rey, CA.
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Chapter 5

Smart Machines and Medical Applications

5.1 Powerful and Portable Machines

A powerful machine with interactive user interfaces, multimedia applications, and build-in
intelligence is driving up computational complexity. The high-speed processing elements,
high-throughput architecture and efficient networks are required to meet the future com-
putation power. Recently, a 500-MHz processor [5.1] from NEC Corp. is fabricated in a
0.4-um CMOS technology to provide a high-speed computation core. It uses an 8-stage
pipelined data path. This extremely high clock speeds unearthed a number of design issues
such as the clock distribution scheme, a programmable phase-lock loop for generating the
internal 500-MHz clock, and the design of a stable power supply.

Consumers have driven to demand for portable and high-functionality products. The
power consumption has to be reduced in order to maintain longer operation period. Low-
voltage, very-low-current integrated circuits techniques have progressively found numerous
applications in small portable battery-operated instruments such as medical devices, short-
range low-frequency radio communication devices and palm computers. In these systems,
low power consumption is the first constraint, for which speed and/or dynamic range of
circuitry have to be sacrificed [5.2].

For both analog and digital circuits, there are limits to how much power can be re-

duced. In analog circuits, a desired signal-to-noise ratio must be maintained, while for
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digital IC power, the lower limit is set by cycle time, operating voltage, and circuit ca-
pacitance. A smaller supply voltage is not only way to reduce power for digital circuits.
More radical approaches include minimizing the number of device transitions needed to
perform a given function, local suppression of clocks and reduction of clock frequencies,
and even elimination of system clocks in favor of self-timed modules. Parallelism can be
used to compensate the performance lost by slower clocks. For analog circuits, reducing

signal-to-noise ratios to the minimum value can cut power.

5.2 Optical Sensors and Interconnection

High-speed computer communication and information processing are now approaching
a bottleneck limited by electronic interconnection bandwidth, which can be alleviated
by the optical interconnection. Optical interconnection and optoelectronic information
processing systems can take the combined advantages of the optics and electronics. Due
to the monolithic integration of many optoelectronic integrated circuits (OEICs) in the
same substrate, optical information processing can be realized in a very compact hardware
[5.3]. As optical interconnection and optoelectronic information processing become more
popular, high-performance integrated optical receiving modules and the laser diodes are
in strong demand.

In order to achieve the transmission data rate of higher than 1 G H z, specialized fabri-
cation technologies based on compound semiconductors such as GaAs, InGaAs/InP, All-
nAs/InGaAs have been utilized. The corresponding feature sizes have been continuously
reduced to the sub-micron level [5.4]. The key engineering design challenge is due to the
fact that the front-end unit of the receiver needs to operate at a very high rate and at
a very low noise level. The following information processing units require the high-speed
operation which could generate a large switching noise. The GaAs MESFET technology
becomes a suitable candidate for this type of integration because various circuits can be
integrated onto a single chip as fabrication technologies become more mature for large-

volume production [5.5].
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5.3 Medical Devices

The advances in implantable biomedical devices have saved lives and improved the qual-
ity of life for hundreds of thousands of patients suffering from various medical condi-
tions. Nowadays, implantable cardioverter/defibrillators, drug delivery systems, neurolog-
ical stimulators, bone growth stimulators, and other implantable devices make possible
the treatment of a variety of diseases [5.6]. The future appears even more exciting, with
the prospect of implantable devices and prosthese aiding in the recovery of body functions
and the improvement in quality of life, as well as the saving of lives.

Each year, a lot of people die suddenly from heart disease. The prevention or termina-
tion of heart disease with medications has not proven to be either reliably effective or safe
because of the variations in physiology and disease states from one individual to another.
In contrast, electrical impulse therapy promises to be more consistent in its behavior and
more adaptable as an individual’s disease progresses. An artificial cardiac pacemakers
incorporate sophisticated algorithms for stimulating the heart to produce an adequate
cardiac output for daily life. It has two major components, a pulse generator and one or
more leads [5.7]. The pulse generator is an electronic device that emits an electric pulse
capable of stimulating the heart muscle to contract. The pulse generator requires a lead to
transmit stimuli to the heart and cardiac signals back to the generator’s sense amplifier.
Today, most pulse generators can also sense natural electrical activity in the heart and
supply a stimulus only as needed.

The perception of sound is actually a multifaceted task; frequency discrimination,
loudness judgment, sound localization, and speech perception place different demands on
the auditory system. A fairly recent development in treatment for the profoundly deaf
is the cochlear implant. A cochlear implant is an electronic device that partially restores
hearing via electrical stimulation of the inner ear. Candidacy requirements for cochlear
implantation include a bilateral profound sensorineural hearing loss, little or no benefit
from hearing aids, and no medical or radiological contraindications to surgery[5.8]. The

Nucleus 22 Nultiple Channel Cochlear Implant [5.9] consists of both internal and external
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components. The internal component consists of an electrode array made up of 22 pure
platinum bands supported on a flexible silastic carrier. Each electrode band is separately
connected to the receiver-stimulator via a platinum-iridium wire. The electrode array is
surgically implanted into the scala tympani. Insertion depth of array varies depending on

the condition of the cochlea. The maximum insertion depth for the array is 25 mm [5.9]

5.4 Biomedical Imaging

"Seeing is believing” is a powerful perception that has pervaded medicine from its outset.
The natural inclination of health professionals to directly observe tissues and organs has
prompted the development of various optical instruments such as microscopes, ophthalmo-
scopes, gastroscopes, endoscopes, and diverse devices for examining every accessible tissue
or organ in the body [5.10]. The diversity of modern imaging methods challenges the
imagination. The various probes (i.e. x-rays, nuclides, magnetic resonance) to elicit infor-
mation regarding structure, chemical composition, physiological function and metabolism
of internal organs. Such techniques can provide images displaying not only size, shape
and location of internal structures, but also the spatial distribution of certain specific
constituents.

Medical imaging has became a vital part of patient diagnostic systems. Almost all
physical processes are performed by using image human anatomy, X-ray computed tomog-
raphy (CT), angiography, positron emission tomography (PET), and magnetic resonance
imaging (MRI). These medical imaging modalities have introduced significant changes
in routine patient care, adding diagnostic evidence and expanding therapeutic efficiency.
Nevertheless, the mechanisms of medical image understanding are complex. They rely
particularly upon the knowledge of organ topologies and the relationships they share. Ef-
ficient image segmentation and restoration, motion detection, 3-D reconstruction [5.11],
image registration [5.12] and database are very important techniques for medical image
understanding. Based on these techniques, a medical expert system can provide initial

diagnosis or suggestion for the physicians and patients.
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5.4.1 Image Segmentation and Restoration

Segmentation subdivides an image into its constituent parts or objects. The level to which
this subdivision is carried depends on the problem to be solved. Segmentation should stop
when the objects of interest in an application have been isolated. Segmentation algorithms
for monochrome images generally are based on one of two basic properties of gray-level
values: discontinuity and similarity [5.13]. In the first category, the approach is to partition
an image based on abrupt changes in gray level. The principal areas of interest within
this category are detection of isolated points and detection of lines and edges in an image.
The principal approaches in the second category are based on thresholding and region
growing. Discontinuity or similarity of gray-level values of its pixels is applicable to both
static and dynamic images. The motion information can often be used as a powerful cue
to improve the performance of segmentation algorithms. Tissue classification of magnetic
resonance images is a process in which image elements representing the same tissue type
are grouped together and referred as a class. In addition to discontinuity and similarity
approaches, statistical approach [5.14] is also very useful for segmentation of magnetic
resonance images, especially textured images.

The ultimate goal of restoration techniques is to improve an image in some sense. The
restoration techniques are oriented toward modeling the degradation and applying the
inverse formulating a criterion of goodness. These techniques basically are heuristic pro-
cedures designed to manipulate an image in order to take advantage of the psychophysical
aspects of the human visual system [5.13]. For example, contrast stretching is considered
an enhancement technique because it is based primarily on the pleasing aspects it might
present to the viewer, whereas removal of image blur by applying a deblurring function is

considered a restoration technique.
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5.4.2 Motion Analysis and Deformable Models

Motion can be characterized by observing the apparent motion of discrete set of features
or brightness patterns in the images. Two major distinct approaches [5.15] have been de-
veloped for the computation of motion from image sequences. The first of these is based on
extracting a set of relatively sparse two-dimensional features in the images corresponding
to three-dimensional object features in the scene, such as corners, occluding boundaries
of surfaces, and boundaries demarcating changes in surface reflectivity. Such points, lines
or curves are extracted from each image. Inter-frame correspondence is then established
between these features. The other approach is based on computing the optical flow or the
two-dimensional field of instantaneous velocities of brightness values in the image plane.
A technique for modeling shape changes in a time series of biological images of arbitrary
dimension is described in [5.16]. The technique consists of first segmenting the image to
locate the specimen, and then parameterizing the specimen in the initial image with an
orthogonal material coordinate system. The deformation of the material coordinate system
caused by the changing shape of the specimen is then solved for by minimizing an energy
function. The energy function is determined by the factors of brightness continuity and

shape changing.

5.4.3 Data Visualization and Image Database

Image processing offers a powerful tool for medical diagnosis by using visual inspection.
A computer vision approach can aid understanding of a series of sequential images. For
example, the computation is addressed of local descriptors of the heart pumping function
from ventricular contours. Physical constraints are exploited such as spatial smoothness
of the displacement field and shape correspondence between ventricular boundaries during
the beats [5.17]. Effective visualization schemes based on clinical information can be used
to obtain the detailed operations of heart pumping.

Information management and communications systems for medical applications have

been undergoing design and development for more than ten year now [5.18]. The aim
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of these activities has been the development of distributed computer systems providing
storage, processing, and communication services required by the medical community. One
of the main critical issues of such systems is the handling of information (i.e., text, images,
graphics, and voice) in a uniform way and the fast access through the network or storage
media. The efficient compression schemes [5.19] can highly improve the performance of

information management and communication.
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Chapter 6

Image Compression Using Self-Organization Networks

A self-organization neural network architecture is used to implement vector quantization
for image compression. A modified self-organization algorithm, which is based on the
frequency-sensitive cost function and centroid learning rule, is utilized to construct the
codebooks. Performances of this frequency-sensitive self-organization network and a con-
ventional algorithm for vector quantization are compared. The proposed method is quite
efficient and can achieve near-optimal results. Good adaptivity for different statistics of

source data can also be achieved.

6.1 Introduction

Image compression can be applied to the motion-picture industry and consumer electronics
for high-definition TVs, advanced multi-media computer systems, remote sensing systems
via satellite, aircraft, radar, sonar, teleconferencing or movie-on-a-chip systems. Efficient
compression of data would significantly decrease both the communication and archival
costs [6.1,6.2].

According to Shannon’s rate-distortion theory, a better performance is always achiev-
able by coding a block of signals instead of coding each signal individually [6.3,6.4]. A
vector is a k-dimensional ordered set of real numbers. The components of a vector repre-
sent signal samples or numerical values of certain parameters or features that have been
extracted from an image. In the most direct application of vector quantization to im-

age compression, a group of contiguous signal samples is blocked into a vector so that
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each vector simply describes a small portion of the original image. This leads to efficient
exploitation of the correlation between samples within an individual vector. Vector quan-
tization (VQ) is popular in image processing, speech processing and facsimile transmission
[6.2,6.5-6.7]. It is capable of producing good-quality reconstructed images. The efficiency
of a data compression scheme is measured by its compression ability, the resulting distor-
tion, and the implementational complexity.

Artificial neural network approaches appear to be very promising for intelligent infor-
mation processing [6.8-6.15] due to their massively paralleled computing structures and the
use of learning to adapt the network parameters. Here, a self-organization neural network
architecture is used to implement the vector quantizer. An improved self-organization
algorithm, which is based on the frequency-sensitive cost function and centroid learning
rule, is utilized to construct the VQ codebooks. This algorithm yields near-optimal results
with very few iteration paths. A vector quantizer is adaptive if the codebook or the en-
coding rule is changed in time in order to match the local statistics of the input sequence.
The proposed method of using one iteration path can provide a fairly good local vector
quantizer with a minimized computational complexity. The training source data can be
a subset of an image frame, an individual image frame, or multiple image frames. The
proposed adaptive vector quantizer based on the self-organization network is a forward
adaptation method [6.16]. Before encoding the different statistics of the source data, the
codebook is updated and transmitted to the decoder so that it can correctly reproduce

the current vector.

6.2 The Algorithm
6.2.1 Self-Organization Learning

Artificial neural network approaches provide an effective alternative to solving complex

information processing problems. The principle of constructing artificial neural networks



comes from the understanding of operation of the neurons in the biological brains. Neu-
rons are placed in an orderly fashion and reflect some physical characteristics of the ex-
ternal stimulus. Although much of the low-level organization in the brain is genetically
predetermined, it is likely that some of high-level organization is created during learn-
ing which promotes self-organization [6.11]. A self-organization network consists of the
input layer and the output layer, which is also called the competitive layer. The basic
theory and operation of self-organizing neural networks were described by Grossberg [6.8-
6.10], Kohonen [6.11], and other researchers [6.17-6.19]. One major challenge of using the
basic self-organization network is that some of the neural units may be under-utilized.
Various modifications have been proposed to solve this problem [6.8,6.17,6.20]. The pro-
posed frequency-sensitive self-organization method applies the variable-threshold model

from Grossberg [6.8-6.10] to overcome the under-utilization problem.

6.2.2 Frequency-Sensitive Self-Organization (FSO) Method

The neural network architecture based on frequency-sensitive self-organization for image
compression is shown in Fig. 6.1. The FSO network consists of two layers: an input layer,
and the competitive layer. The input layer serves as a data buffer. It also distributes the
input data X, to the competitive layer. In the competitive layer, each node computes
the distortion between its codevector W; and the input vector. The competitive process
is performed throughout the whole layer by the winner-take-all operation. The winning
neural unit is determined according to the minimum distortion criterion. The synaptic
weights are then updated according to the FSO learning rule.

The FSO method systematically distributes the codevectors in the vector space R" to
approximate the unknown probability density function P(X) of the training vectors. It
overcomes the under-utilization problem by including the frequency-sensitive cost function
to the learning rule. The neural units are modified with an approximately equal frequency.

The 1-path FSO scheme for adaptive vector quantization is described as follows:
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Figure 6.1: The structure of the FSO neural network.

Initialize codevectors (synaptic vectors): W; = X; or Rand(i),? = 1, ..., M with

Rand being a random number generation function and W; = [Wyy , Wia , ..., Wig].

For input vector X, find the frequency-sensitive distortion F'D; = d(X,, W;) for

all output neural units:

F’ k
FD; = (1 + =) - Kis — Wi, 6.1

where F; is the frequency count of the codevector W; and Fj;4 is the frequency

threshold.

Select the output unit N; with the smallest frequency-sensitive distortion and label

it as the winner and increase its winning frequency count F; by one.

Update the winning weight vector W;-(t) with a frequency-sensitive learning rule:
Wie(t+1) = Wie(t) + S@) [ X(t) - Wi(t) ], (6.2)

where t is the iteration index; and 0 < S(t) < 1. Notice that the learning rule
moves the winning weight vector toward the input vector by some fractional amount,

St) = }% , which is a centroid learning ratio value.
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(5) Repeat steps (2) through (4) for all training vectors.

Use of the frequency-sensitive cost function can avoid under-utilization of some code-
vectors during the learning process for an inadequately chosen initial codebook. The Fﬁ}
term in Eq. (6.1) represents the frequency sensitivity of the cost function. In order to pur-
sue a better performance, the selection of the frequency threshold Fjjq is very important.
If the Fypq value is equal to one, the distortion calculation in the 1-path FSO method is
similar to that of the frequency-sensitive competitive learning method proposed by Ki-
ishnamurthy et al. [6.13]. If the value of Fi;q is larger than the total number of source
vectors, the cost function is not sensitive to the frequency. Figures 6.2 and 6.3 shows the
relationship between the reconstructed performance and the frequency threshold Fy;q for
the 512x512-pixel Couple and Creek images, respectively. The good frequency threshold is
close to the average training frequency. In an example with 10,402 source vectors and 6-bit
codebook, the average training frequency for each codevector will be ﬂé% = 163. The
selection of Fypg4 value is related to the grouping of source vectors. The index histograms
of codevectors for the different frequency threshold values are shown in Fig. 6.4, where
the initial 6-bit codebook is sampled from the source data. The standard deviations of
the codevector index frequencies for the Fi;y being equal to 1, 163, and the infinity in
the Couple image are 89, 152, and 235, respectively. In general, if the value of Fyq is
smaller than the average training frequency, the index histogram of codevectors is close to
the uniform distribution and the codevector grouping is very sensitive to the frequencies
of the codevectors. Some dissimilar source vectors might be inappropriately assigned to
one codevector. The reconstruction performance is the worst while the Fizg value is equal
to one. On the other hand, if Fyyg is much larger than the average training frequency,
a diverse distribution will occur and the frequencies of some codevectors could be very
small. While the Fj;q is equal to the infinity, the reconstruction performance is also quite

poor. Therefore, the choice of frequency threshold Fjpq value being the average training

frequency can yield a good performance according to the computer analysis.
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Figure 6.2: Plots of the mean-squared error against the frequency threshold for 512x512-
pixel Couple image using the 1-path FSO method on 5x5-pixel subimage blocks. (a) 6-bit
codebook; ATF=163. (b) 7-bit codebook; ATF=82. (c) 8-bit codebook; ATF=41. (d) 9-
bit codebook; ATF=21. (e) 10-bit codebook; ATF=11. (MSE: Mean-squared error; ATF":
Average training frequency)
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Figure 6.3: Plots of the mean-squared error against the frequency threshold for 512x512-
pixel Creek image using the 1-path FSO method on 5x5-pixel subimage blocks. (a) 6-bit
codebook; ATF=163. (b) 7-bit codebook; ATF=82. (c) 8-bit codebook; ATF=41. (d) 9-
bit codebook; ATF=21. (e) 10-bit codebook; ATF=11. (MSE: Mean-squared error; ATF:
Average training frequency)
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Figure 6.4: Index histograms of 64 codevectors using the 1-path FSO method on 5x5-pixel
subimage blocks. (a) 512x512-pixel Couple image with F}j4 equal to 1; standard deviation
= 89. (b) 512x512-pixel Couple image with Fyg equal to 163; standard deviation = 152.
(¢) 512x512-pixel Couple image with Fyus equal to oo; standard deviation = 235. (d)
512x512-pixel Creek image with Fyzg equal to 1; standard deviation = 75. (e) 512x512-
pixel Creek image with Fjzq equal to 163; standard deviation = 69. (f) 512x512-pixel
Creek image with Fy;4 equal to oo; standard deviation = 147.
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In order to further improve the performance, a second path is used to adjust codevectors
into better cluster centroids. The codebook produced by the 1-path FSO method is used as
a reference codebook. In the Fig. 6.4(b), the frequencies of few codevectors are very small
or zero while the average training frequency is used for the frequency threshold. During the
second path, the unused or least frequently used codevectors in the 1-path FSO method
are deleted. Each highly used codevector is split into the two codevectors. According to
the number of the unused or least frequently used codevectors, the corresponding number
of the highly used codevectors is used to generate the new codevectors. Here, the splitting
scheme in the LBG method [6.6] is used. The highly used codevector W; is split into
Wi+ 8 and W; — §, where § is a small constant vector. The training process of the 2-path
FSO method is the same as that of the 1-path FSO method.

In the LBG method, the initial codebook could come from the splitting algorithm
[6.7]. First, these codevectors are used to partition source data into subgroups. Then new
codevectors are produced by calculating centroids of these subgroups. The iteration of
grouping and calculating centroids in the LBG method is similar to that of incrementally
updating the closest codevector for each incoming data through the centroid technique in
the FSO method. If the frequency-sensitive term F’i} is not used in the cost function, and
the scheme for generating the new codevectors from the highly used codevectors is also not
performed, then the result from the iterative FSO method asymptotically approximates
that from the LBG method. The learning process in the FSO method is repeated with
the same termination criterion in the LBG method. The result of the n-path FSO method
appears very close to that of the LBG method.

The frequency-sensitive term is used to avoid under-utilization of some codevectors.
After the first and second iterations, a good resultant codebook has been generated. If
the frequency-sensitive term is used in the n-path FSO method, it may generate little dis-
turbance in the grouping operation. The total distortion in each iteration is not smoothly
decayed. The proposed method may need more iterations to achieve the convergence. Fig-

ure 6.5 shows the distortion in each iteration for three different frequency thresholds, 163,
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163 - n, and infinity, with the same convergence criterion when a 6-bit codebook is used.
The best performance can be achieved when the frequency threshold is equal to infinity. It
indicates that frequency-sensitive term is not required in the n-path FSO method in order
to optimize the computational complexity and reconstruction performance. Therefore, the
n-path FSO scheme for vector quantization can be described as follows:

MSE
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Figure 6.5: Comparison for three different frequency thresholds, 163, 163 - n, and oo, with

the same convergence criterion. (a) 512x512-pixel Couple image using a 6-bit codebook.
(b) 512x512-pixel Creek image using a 6-bit codebook.
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(1) The codevectors after training in the 2-path FSO method are used as the initial

codevectors. The initial value of "n” is set to 3.

Codebook Training:

(2) According to the previous index histogram of codevectors, the unused codevectors
or the least frequently used codevectors are deleted. By using the splitting method,

the new codevectors are generated from the highly used codevectors.
(3) The frequencies of all codevectors are reset to zero.

(4) For input vector X, find the distortion D; = d(X,, W;) for all output neural units:

k
Z (i — Wis)". (6.3)

J=1
(5) Select the output unit N; with the smallest distortion and label it as the winner and

increase its winning frequency count F; by one.

(6) Update the winning weight vector W;«(t) with a frequency-sensitive learning rule:
Wi(t41) = Wis(t) + S(t) [ X(t) — Wis(t) ], (6.4)

where t is the iteration index; and 0 < S(¢) < 1. Notice that the learning rule
moves the winning weight vector toward the input vector by some fractional amount,

Sit) = F , which is a centroid learning ratio value.

(7) Repeat steps (4) through (6) for all training vectors.
Estimation of Convergence:

(8) The total distortion 7T'D™ is reset to zero.
(9) Forinput vector X,, find the distortion D; = d(X,, W;) for all output neural units.

(10) Select the output unit N; with the smallest distortion and calculate the total distor-

tion,
TD" = TD"™ + D;. (6.5)
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(11) Repeat steps (9) through (10) for all source vectors.

(12) The convergence of the n-path FSO method is determined by the following equation,

| TD" — TD™! |
TDn

£ €, (6.6)

where € is a convergence parameter. If the convergence criterion is matched, the
n-path FSO method is finished. Otherwise, "n” is increased by one and steps (2)

through (12) are performed again.

Table 6.1 lists the performance of the Couple and Creek images at each path step before
reaching the termination criterion of the n-path FSO method. In the 10-bit codebook size,
the values of n are 14 and 7 for the Couple and Creek images, respectively. Here, the ¢ is
chosen to be 0.0005 for the cases listed in the Table 6.1.

The large dynamic range of images requires that the effective compression algorithm
be adaptive to the local image frame statistics. For the vector quantization approach, edge
degradation is very severe if no adaptation is allowed for different scene characteristics.
In order to simplify computational complexity, the 1-path FSO method can be used as an
adaptive method. The adaptivity of the 1-path FSO method is a forward adaptation [6.16]
in which the current block information is extracted from the future of the vector sequence.
A new codebook can be trained from a next subset of an image frame, an individual image
frame, or multiple image frames. The trained codebook completely replaces the old one
and is required to be transmitted to the decoder before reproducing the source data with
different statistics. While an image sequence is encoded, the codebook can be updated
periodically or updated by a criterion which is determined according to the reconstruction

performance.
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Table 6.1: Mean-squared error between original and reconstructed results for the Couple
and Creek images by using the n-path FSO method.

Couple Creek
Image
Codebook size Codebook size
Path 10-bit | 9-bit | 8-bit | 7-bit | 6-bit | 10-bit| 9-bit | 8-bit T-bit | 6-bit
number
n MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE | MSE
1 59.35| 77.11| 99.93{126.68|161.44161.76200.67/235.979275.46/316.14
2 51.59| 69.75| 91.07{119.20{158.64{156.62|196.15/232.81|270.72/314.67
3 48.83| 66.29| 86.94(115.16(156.00(152.22/192.13229.78 267.44314.41
4 47.91| 65.27| 85.55(114.201153.99/151.27/191.32228.88/265.971312.4()

5 47.43 1 64.77 | 85.25|113.67(153.13(150.87/191.08|229.13265.19312.73

6 47.21 | 64.68 | 85.17(113.44|152.47[150.68{190.76)|228.38|264.88312.62

7 47.07 | 64.57 | 85.09{113.18/153.11{150.73|190.70,228.33 265.49

8 47.00 | 64.41 | 85.03(113.08(152.00 265.43

9 46.96 | 64.35 [ 84.97(113.09(151.89

10 46,89 64.30 | 84.95 151.84]
11 46.86 [ 64.31

12 46.82

13 46.79

14 46.79

6.3 System Simulation

In the computer analysis, the original and reconstructed Couple images using the 1-path,
2-path and n-path FSO methods for the 10-bit codebook are shown in Fig. 6.6. The

mean-squared error (MSE) measure is used to evaluate the reconstructed image quality,

Ny —1 N; =1 t 2

QR [I(-’Lsy)_!(z"ry)]

MSE = }0: > NN, ; (6.7)
= y=0

where [ is the original image of size Ny - N and I' is the reconstructed image. Table 6.2

lists the mean-squared error and computational time of images using the 1-path, 2-path
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and n-path FSO methods, as well as the LBG method. Similar simulation results for the
Creek image are shown in Fig. 6.7 and listed in Table 6.3. In the n-path FSO method,
the performance of the Couple and Creek images at each path step is illustrated in the
Table 6.1. The results from the n-path FSO method are very close to those from the LBG
method with the same convergence criterion. In some selective cases, the performances of
the reconstructed images from the n-path FSO method can be better than those from the
LBG method. The 7-bit and 8-bit reconstructed Couple images, and the 9-bit and 10-bit
reconstructed Creek images are such cases. The reconstructed images using the proposed

method on 5x5-pixel subimage blocks are reasonably good.

Table 6.2: Reconstruction performance of image compression using the FSO method and
the LBG method on 5x5-pixel subimage blocks of a 512x512-pixel Couple image.

Methods FSO LBG
. 1-path 2-path n-path
Codeboo " MsE[SNR[CT| MsE| SNRICT |MsE[SNR n[CT | msE[sng] n] CT
ize (min) min) (min) (min)

10-bit 11 59.35{24.51{16.9| 51.59(25.12|33.8| 46.79|25.54 14/482.0| 46.68|25.56/13|235.9
9-bit 21 77.11)23.37| 8.4| 69.75/23.81(16.6| 64.31/24.16 11]189.6] 63.92|24.19|16/140.3

8-bit 41| 99.9322.25 4.2| 91.07/22.65| 8.3| 84.95/22.95 10| 86.2| 86.83|22.86/21| 92.4|

7-bit 82 1126.67/21.22| 2.1{119.20121.48| 4.3{113.09(21.71] 9| 39.5/116.27/21.5927 57.3

6-bit 163 |161.44{20.16| 1.0|158.64{20.24| 2.1|151.84/20.43 10| 21.4/150.33/20.4818| 19.5

Note: n: number of iterations; CT: computational time from a SPARCstation-2; min: minutes;
SNR: signal-to-noise ratio; MSE: mean-squared error; Fy,g: frequency threshold.

In order to maintain the fidelity, the codebook is to be updated according to the image
frame statistics. If the 10-bit codebook generated from the 1-path FSO method for the
Couple image is used to encode and decode the Creek image without any modification, the
mean-squared error is up to 258, as shown in Fig. 6.8. The bridge in this reconstructed
Creek image is quite blurred. After adapting this poor codebook by using the 1-path FSO
method, a better reconstructed image as shown in Fig. 6.7(b) can be achieved with the

mean-squared error of 162. This result illustrates that the codebook needs to be adjusted

67



() (d)

Figure 6.6: Image compression using the FSO method on 5x5-pixel subimage blocks.
(a) Original Couple image; 512x512 pixels. (b) Reconstructed image using 10-bit 1-path
FSO codebook; MSE=>59.35. (c) Reconstructed image using 10-bit 2-path FSO codebook;
MSE=51.89. (d) Reconstructed image using 10-bit n-path FSO codebook; MSE=46.79.
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Figure 6.7: Image compression using the FSO method on 5x5-pixel subimage blocks. (a)
Original Creek image; 512x512 pixels. (b) Reconstructed image using 10-bit 1-path FSO
codebook; MSE=161.76. (c) Reconstructed image using 10-bit 2-path FSO codebook;
MSE=156.62. (d) Reconstructed image using 10-bit n-path FSO codebook; MSE=150.73.
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Table 6.3: Reconstruction performance of image compression using the FSO method and
the LBG method on 5x5-pixel subimage blocks of a 512x512-pixel Creek image.

Methods FSO
E 1-path 2-path n-path
Codebooky | """l vsE[SNR/ CT| MSE|SNR|CT | MSE[SNR| n] CT |MSE SNR|nf CT

Size (min) (min) (min) (min)

LBG

10-bit 11 {161.76/19.96{16.8]156.62{20.10|33.5/150.73|20.2 250.8{159.67]20.00{13] 231.8

7

9-bit 211200.6719.02 8.3|196.1519.12/16.6(190.70/19.24] 7|124.1/191.0819.21[17] 148.3
7
8

8-bit 41 (235.9718.32 4.2/232.81/18.38| 8.3(228.3318.44
7-bit 82 1275.46{17.65) 2.1)1270.72117.72| 4.2|265.4417.81

61.4/222.23(18.56/20 86.7

34.6/1256.22117.94 22 48.4

6-bit 163 |316.16{17.05| 1.0314.67|17.07| 2.1|312.6217.10| 6| 13.3[296.28|17.31/19| 21.0|

Note: n: number of iterations; CT: computational time from a SPARCstation-2; min: minutes:
SNR: signal-to-noise ratio; MSE: mean-squared error; Fy : frequency threshold.

according to the statistic change of the source data. In the 1-path FSO method, the
codebook is trained by the source data with one iterative path. Each source vector is
used to update the corresponding codevector only one time. In the LBG method, a lot of
iterative paths for codebook training are required. According to the results of Tables 6.2
and 6.3, the computational complexity of the 1-path FSO method is close to that of one
iterative path in the LBG method. Therefore, the proposed 1-path FSO method can

achieve a very good adaptivity.
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Chapter 7

Impact of Dissertation Work

Algorithms based on neural network paradigms have been demonstrated to be useful
in optimization and classification tasks. Different learning methods such as the back-
propagation learning method, Gauss-Newton method, and Quasi-Newton method can be
thought of as quadratic optimization techniques. A three-layered neural network without
time-delayed elements can successfully learn space trajectories without crossovers. The
proposed work provides the concept for using a simple neural network to learn the space
trajectories which were investigated by the other researchers using time-delayed neural
networks. It indicates that some applications with short memory source for information
processing can be efficiently implemented by a compact neural network.

The frequency-sensitive self-organization (FSO) method for image compression can
achieve high adaptivity, good reconstruction performance and a fairly good compression
ratio. Since the proposed FSO method is based on the vector quantization scheme, the
other applications for adaptive classification or identification can also be implemented
by the FSO method. In Appendix A, a new adaptive vector quantization scheme based
on the Gold-Washing method are also presented. These two compression methods can
be combined with the industrial standards for high-performance compression. The next
significant improvement of existing compression algorithms for images, video, speech and
audio can be achieved by using perceptual modeling. In addition to the source coding, the

complexity and reliability of channel coding must be considered together.
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In order to effectively address complex real-world problems, the neural networks must
be scaled up, or modularized, and then must be efficiently implemented in hardware. In
general, a neural network module consists of a large collection of simple processing ele-
ments. These simple processing elements execute mathematical algorithms to collectively
carry out information processing through their responses to stimuli. There are technolog-
ical constraints to the scale size and capacity of neural network hardware. In contrast,
biological networks which incorporate features of real neurons and the connectivity of real
neural networks have been shown to exhibit theoretical advantages in dimensional scaling
and processing time.

Hippocampus is a very good research topic for understanding the design of high-
performance intelligent machines. It plays an important role in the functions of learning
and memory. However, hippocampus remains to be clarified: how the memory system is
performed and how the hippocampal circuitry is constructed. In hardware implementation,
a mixed-signal design technique is one of the good choices. The local data computation is
executed by analog circuitry to achieve full parallelism and to minimize power consump-
tion. Interneuron communication is carried out in the digital format to achieve network
scalability by using an array of neural chips. The proposed VLSI implementation of a non-
linear model of the hippocampus will not only facilitate for efficient emulation of biological
systems or simulation of neural network paradigms but also produce useful knowledge and
results for scientific and engineering applications.

In future research, further investigation and understanding of brain functions will be
conducted. A new massively parallel computing system from the study of biological neural
behavior and topology can be created for the intelligent living machines. In addition to
investigating visual and auditory perception, the sensors for measuring humidity, atmo-
spheric pressure, temperature, tastes and smells can be explored for the multi-channel
computers. New hardware design techniques also need to be developed further to meet

high computation power in the large-scale real-world applications. Optical computing
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and interconnection through optical fiber or optoelectronic components provides another

scheme for intelligent system design.



Appendix A

An Adaptive Vector Quantizer Based on the
Gold-Washing Method

The VLSI architecture for an adaptive vector quantization is presented. The adaptive vec-
tor quantization method does not require a-priori knowledge of the source statistics and
the pre-trained codebook. The codebook is generated on the fly and is constantly updated
to capture local textual features of data. The source data are directly compressed without
requiring the generation of codebook in a separate pass. The adaptive method is based on
backward adaption without any side information. The speed of data compression by using
the proposed adaptive method is much faster than those by using the conventional vector
quantization methods. The algorithm is shown to reach rate distortion function for mem-
oryless sources. In image processing, most smooth regions are matched by the codevectors
and most edge data are preserved by using the block-data interpolation scheme. The VLSI
architecture consists of two move-to-front vector quantizers and an index generator. It ex-
plores parallelism in the direction of codebook size and pipelining in the direction of vector
dimension. According to the circuit simulations using the popular SPICE program, the
computation power of the move-to-front vector quantizer can reach 40 billion operations
per second at a system clock 100 MHz by using a 0.8 um CMOS technology. It can provide
a computing capability of 50M pixels per second for high-speed image compression. The
proposed algorithm and architecture can lead to the development of a high-speed image
compressor with great local adaptivity, minimized complexity, and fairly good compression

ratio.



A.1 Introduction

Data compression is essential in many applications such as digital laser-discs, electronic
cameras, video-phones, video-conferencing systems, image and interactive video tools on
personal computers and workstations, and high-definition televisions. Efficient compres-
sion of information data would significantly decrease both the communication and archival
costs [A.1,A.2]. A fundamental result of Shannon’s rate-distortion theory [A.3] states that
better performance can be achieved by coding vectors instead of scalars. Vector quan-
tization [A.1] is a process in which data are divided into small vectors, which are then
individually encoded in sequence. The objective is to identify a set of possible vectors
which are representative of the information to be encoded. For each source vector, the
vector quantization encoder selects the closest matching vector from the codebook.
Vector quantization (VQ) is a very effective technique for speech waveform coding
and image data compression [A.4-A.8]. An optimal codebook should completely reflect
the statistics of the input vectors. A codebook generated by using the LBG algorithm
[A.5] is locally optimized for the particular training data. Generally there are two types
of codebook generation methods: the universal method and the adaptive method. In an
universal method, the codebook generated from a large set of images is fixed at both the
transmitter and the receiver. Therefore, there is no overhead required for transmitting the
codebook. However, new images which are not included in the training sequence may not
be well represented, and a large codebook is needed in order to maintain a good fidelity
for the various kinds of data. In an adaptive method for image compression, Gersho et
al. [A.9] proposed a progressive codevector replacement method. It adaptively replenishes
codevectors in order to keep the partial distortion constant while the source statistics
change. In Goldberg’s method [A.10], a new codebook is generated for the individual
images or subparts of the image. The advantage of this adaptive method is that the
codebook represents the individual image better, and a smaller codebook can reach a
distortion requirement. On the other hand, a larger codebook is used in Zeger’s method

[A.11]. A new partial VQ codebook is periodically generated from the source data and
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then replaces the nearest codevectors from the currently used codebook. In our proposed
adaptive method, the codebook is generated on the fly as the data flow in. There is no need
to have the codebook training in a separate pass. The codebook is constantly updated
during the encoding and decoding operations in order to capture the local textual features
of the data. This adaptive method has several advantages. First, the separate codebook
transmission is not required. Second, a smaller codebook can meet the distortion criterion.
Finally, the computational cost for generating new codevectors is also very low.

Usually, the reconstructed images from the vector quantization approach reveal several
types of annoying distortion such as sawtooth edges, visible blocking structure, smeared
out details and contouring in the smooth area. In the proposed adaptive vector quan-
tization (AVQ), these drawbacks are reduced by using an interpolation method which is
called the block-data interpolation method. The detailed explanation of the block-data
interpolation method is in Section A.2.2. If a source vector cannot be matched by the
codevectors according to the performance requirement, a new codevector is generated by
using the block-data interpolation method. The computational complexity of the block-
data interpolation method is very low, as compared with those of the conventional VQ
methods for generating new codevectors. Therefore, the compression speed for the AVQ
method is very fast.

Traditionally, the search operation is executed sequentially. Each source vector is
compared with a codevector at a time. For k input vectors of dimension n and a codebook
of size 2™, the computation time is O(kn2™). This step requires a huge computational
power. If parallelism in the direction of the codebook size and pipelining in the direction of
vector dimension are explored, all codevectors can be evaluated in parallel for a given source
vector. The computation time is reduced to O(kn). In the proposed VLSI architecture,
key functional modules include an array controller, two move-to-front vector quantizers
(MFVQs), and an index generator. The source data are pipelined into the two vector
quantizers. The index generator calculates the index value from the output results of

the two MEFVQs. If there exists a codevector which can meet the distortion requirement,
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the Huffman code for the index value of the codevector and an identification code form
the compressed data. Otherwise, the host machine uses the new codevector generated by
the block-data interpolation technique to represent the source data, and then update the

codebook data in the MFVQ.

A.2 The Algorithm

The proposed vector-quantization-based lossy data compression was briefly described in
[A.12]. The AVQ method has a feature derived from lossless move-to-front algorithms
[A.14,A.15]. If the current source word is used as the new codevector to update the
codebook, the rate distortion function can not be reached. Ornstein and Shields [A.16]
used a greedy algorithm to form the codebook. They demonstrated that their method can
reach the rate distortion function in the almost-sure sense. However, a fixed codebook was
used. When the statistics of the source data changes from time to time, the performance
of their algorithm would degrade. Zhang and Wei [A.13] have developed the mathematical
foundation of the "Gold-Washing” technique, and show that for memoryless sources and
Markov sources, the rate distortion function can be achieved.

Since the source statistics are unknown, the optimal codevector distribution is not
available to the encoder. Therefore the key issue in the design of this type of adaptive
lossy data compression algorithms is how to choose the new codevectors. The basic idea
for the Gold-Washing technique is to use a finite buffer, and to keep on replacing unused
or infrequently used codevectors. Notice that there is a survivability associated with each
codevector. A properly generated codevector has a much better chance to survive than
an inadequately created codevector. The Gold-Washing technique uses this property to

retain useful codevectors in the codebook and to discard useless codevectors.

A.2.1 Gold-Washing Method

There are two buffers (buffer-1 and buffer-2) in the proposed codebook as shown in Fig.

A.1. In the buffer-2, a frequency table for each codevector is used. For each incoming data
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x;, the best matched codevector is searched by calculating distortion measure p(x;,y;).

If the distortion measure is less than a threshold, then the match has been achieved. Here

n

pxiyi) = Y (o —ya)® (A.1)
k=1

When a best-matched codevector y; exists, two possible cases are considered:

(1) If codevector y; is in buffer-1, move it to the top of buffer-1 and push down the
first j-1 entries of buffer-1 by one notch.

(2) Otherwise, codevector y; is in buffer-2 and the corresponding frequency counter
entry is to be increased by 1. When the match is not achieved, a new codevector is created
by using the block-data interpolation method. This new codevector is put on the top of
buffer-2 and its initial frequency counter is set to zero. All previous entries of buffer-2
are pushed down by one notch. If the content of the frequency counter for the codevector
in the bottom of buffer-2 is below a frequency threshold value T, this entry is deleted.
Otherwise, this entry is copied to the top of buffer-1 and the whole entries of buffer-1 are
pushed down by one notch. In such a case, the previous last entry in buffer-1 is discarded.

In image processing, buffer-1 functions as a frame adaptive buffer and buffer-2 functions
as a block adaptive buffer. The sizes of buffer-1 and buffer-2 can be adjusted according to
data statistics. For example, if buffer-1 is not used completely after encoding one frame
image data, it means that either the size of buffer-1 is too big or the size of buffer-2 is too

small, which can be caused by an inadequate frequency threshold value.

A.2.2 Block-data Interpolation

Selective data from the block source information are quantized. The quantized data are
used to find the neighboring data values by the interpolation method. The coefficient codes
for the neighboring data are also constructed. The quantized level and jumping step for
the coefficient table are selected according to performance requirements. For example, 4
bits are used to quantize image pixel data such that the maximum distortion for each pixel
is 8 gray-levels. Based on these quantized data, linear interpolation is used to estimate

other pixel results. Here, the jumping step is chosen to be 32. If the difference between the
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Figure A.1: Buffer configurations in Gold-Washing algorithm.

original pixel value and interpolated value is within (-16,16), then "0” is used to encode
this pixel and the linearly interpolated value represents this pixel. If the difference is larger
than 16, then 710" code is used, and the interpolated value is increased by 32 to represent
the pixel. Otherwise, it is encoded by "11” and the interpolated value is decremented by
32 to represent the pixel. Without a large gray-level difference among neighboring pixels,
the maximum distortion can be limited to 15 gray-levels for each pixel.

If the 4x4 subimage block is used, the 4 corner pixels are quantized and the others
are estimated by interpolation using these 4 quantized values. After quantization and
interpolation, the estimated subimage block is

Qoo @p1 Qo2 Gp3
aijp a1 a2 413

(A.2)
o 021 azy  d23

a3p 431 dzp daz3
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Here, the ago, @os, @3, and ass are individually quantized from the original gray-level
values of the 4 corner pixels. The linearly interpolated formula for the other pixels is

described as follows,
aij = bjaio + bs_jaiz + biao; + bs-iaz; , (A.3)
for (i,5) € {(0,1), (0,2), (1,0), (2,0), (1,3), (2,3), (3,1), (3,2) },

where bp = 0,0, = %, by = -:1;, and b3 = 0. According to the values of ag;, ag2, @10,
@0, @13, A3, azy, and azp, the values of ayy, a1, ajz, and ay, are estimated by the

following formula,

ay; = a,;aoj + 53_{(133' + 5_?‘(1-,'0 -+ 3-13_;,'(153, forl < i4,j < 2, (A.4)

where b, = %— and by = é The difference between the original and interpolated values

can form a coefficient table. Figure A.2 illustrates one representative example. If a 5x5
subimage block is used, the center pixel of the block can be used as a sampled datum as
well as the four corner pixels. In other words, if a larger block size is used, more sampled
data are required in order to maintain a good quality for reconstruction.

The selection of a new codevector is very important. If the source data are used as
a new codevector, the rate distortion function cannot be achieved, and the compression
ratio is decreased due to transmitting or storing the entire source data. Therefore, the
block-data interpolation method tries to introduce a small change to the source data in
order that the new codevector can represent a possible grouping of source data. This
process can increase the possibility of matching codevectors. The code for source data is
also reduced by using the block-data interpolation method.

As compared with the bits of codevector index, more bits are used to encode a subimage
block by applying the block-data interpolation method. The high-entropy data can be
preserved very well. According to the Gold-Washing method, most codevectors in buffer-1
and buffer-2 represent the smooth regions. The complex edge data are usually encoded
by using the block-data interpolation method so that the edges can be reconstructed very

clearly.

82



102 135 188 201
@) 73 91 146 179 | Oy ginal 4x4 subimage
50 87 134 157 | block data.

39 82 122 134

96 135 188 208)
73 91 146 179

®) Quantize 4 corner pixels
50 87 134 157 | using 4-bits.
32 8 122 128/
( 133 171 (208)) y i g
se quantized data in
75 110 146 181
(c) corners to linearly interpolate

87 121 155

53
L (3 64 9% /

7 96 133 171+32208)

75 110-32 146 181 Use a jumping step (=32)

(d) to overcome the bad
53 87 121 155 S
estimations.

§ 32 64+32 96+32 128/

(0110 0 10 1101 Encoded data for original
0 1m0 0 subimage block data.

0 0 0 0 Total bits = 32

ko 0010 10 10 1000 MSE =61.88

their neighboring pixels.

(e)

Figure A.2: One example of block-data interpolation.

A.2.3 Adaptive Vector Quantization

The procedure for encoding is:
1. Create the initial codebook from a random generator or the previous codebook data.
2. Encode the incoming data x; by codevector matching. If a best-matched codevector
y; exists such that p(x;,y;) is smaller than the threshold, then an identification bit of
type 1 and the Huffman code for the j index are used to encode x;. The codebook is

updated by the Gold-Washing method.

83



3. If no codevectors can meet the minimum distortion requirement, the block-data
interpolation is used to generate a new codevector. This new codevector is added to
the codebook according to the Gold-Washing method. An identification bit of type 2,
quantized sample data, and coefficient table are used to encode this x;.

In the decoding process, the following procedure is used. Upon receiving data, the
decoder checks the identification bit first. If it is of type 1, the received code reconstructs
the codevector index by using the inverse Huffman table. The codevector index is used
to retrieve the data by using table lookup and to update the codebook according to the
Gold-Washing method. Otherwise, the data is produced from quantized sample data and
a coefficient table. The codebook also needs to be updated by using the Gold-Washing
method.

A variable-length coding scheme can be implemented for the indices of codevectors in
buffer-1 since the codebook updating of buffer-1 is based on the move-to-front feature. The
frequently used codevectors are usually in the front entries of buffer-1. Here, the dynamic
Huffman coding scheme [A.17] is used to reduce the entropy of indices due to the unknown
source statistics. On the other hand, the codevectors of buffer-2 have similar probabilities
of being matched because the frequently used codevectors are moved to buffer-1 and the
infrequently used codevectors are discarded. The indices of codevectors in buffer-2 can use
a fixed length code.

An efficient matching strategy has been developed. If more than one entry can make
the p values smaller than the threshold, then x; can be encoded by either the first-matched
entry or the entry with the smallest distortion. The smallest-distortion scheme is also called
the best-matching scheme. Table A.1 illustrates the performance comparison between
the best-matching scheme and the first-matching scheme. Due to Huffman codes for the
indices of buffer-1, the first-matching scheme can yield a higher compression ratio for a
given distortion threshold but the quality of the reconstructed image is worse than that
by using the best-matching scheme. By comparing the similar reconstruction performance

in the two schemes, the compression ratio using best-matching scheme is higher than
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the other one. In the AVQ method, the new codevector generated from the block-data
interpolation method can be quite different from the other codevectors. Therefore, no
similar codevectors appear in the codebook at the same time so that the best-matching

vields the best performance.

Table A.1: Mean-squared errors and compression ratios versus distortion thresholds for
Girl and Pepper images by using the best-matching and first-matching schemes.

Images Girl Pepper
erformance | Begt_Matching | First-Matching | Best-Matching | First-Matching
Digtorion MSE | CR | MSE| CR | MSE| CR | MSE | CR
800 50.61| 7.57 | 53.59| 7.62 | 61.89 | 8.41 | 66.00 | 8.66
1000 48.95| 9.13 | 53.78| 9.32 |62.92| 8.99 | 69.26 | 9.40
1200 49.44(10.24 | 56.46(10.72 | 66.39| 9.45 | 72.50 | 9.95
1400 52.65(10.98 | 61.80|11.70{69.13 | 9.99 [ 76.56 |10.50

1600 56.22|11.60 | 67.08|12.40 | 71.09 [ 10.53 | 79.53 | 11.07

1800 61.87(11.95| 73.16(12.79 | 73.95|10.81 | 84.84 | 11.44

2000 66.25(12.56 | 80.12(13.48 | 78.11|11.18|93.24 [11.85

Note: The same distortion threshold is used in buffer-1 and buffer-2.
MSE : mean-squared error, CR : compression ratio.

In the Gold-Washing method, the values for the codebook size (buffer-1 and buffer-2),
the distortion threshold, and the frequency threshold should be carefully chosen. Initially,
a typical codevector size of a 4x4 window can be selected. If a larger codevector size is
used, then the codebook sizes for buffer-1 and buffer-2 are increased in order to maintain
a good performance. According to the same reconstruction quality for the AVQ and the
LBG methods, the codebook size for the LBG method can be referred as the codebook
size of buffer-1. The codebook size of buffer-2 is larger than or equal to that of buffer-1.

The choice for the distortion threshold can affect the survival probability of codevectors.
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In some cases, the compression ratio can be increased by choosing a larger distortion
threshold. Relationship between the compression ratio and distortion threshold is also
illustrated in Table A.1. Usually, the distortion threshold is determined by the required
quality of the reconstructed image. The frequency threshold is chosen to make a good use
of the codebook size. If swapping of codevectors between buffer-1 and buffer-2 occurs too
frequently, the frequency threshold is too small and should be increased. In the codebook
design, buffer-1 functions as a frame adaptive buffer and buffer-2 functions as a block
adaptive buffer. An efficient codebook implementation for encoding an image frame can
be described as that the number of codevectors swapping between buffer-1 and buffer-2
is close to the codebook size of buffer-1. If block-data interpolation occurs frequently,
then it could be the main cause of an inefficient encoder operation. In such a situation,
it is better to increase the codebook size. The quantized level and jumping step for
the block-data interpolation can be varied in order to achieve a good estimation of the
source data. Therefore, values of the codebook size, the distortion threshold, frequency
threshold, quantized level and jumping step should be judiciously chosen in order to ensure
that block-data interpolation occurs infrequently, and a high performance is maintained.

In order to increase compression efficiency, the source data can be classified or trans-
formed first [A.18], and then each classified data can be compressed by using the AVQ
method individually. In video processing [A.19], intraframe compression and interframe
compression can be performed. Since the most bits are used for the intraframe compres-
sion, the proposed adaptive vector quantization is used to enhance the performance of
intraframe (I-frame) compression. According to the MPEG standard [A.20], the motion-
detection scheme is used for the predicted frame (P-frame) and bi-directionally predicted
frame (B-frame). In the P-frame and B-frame, the reconstruction performance can be
improved by combining the motion-detection scheme with the AVQ method. Each 8x8
subimage block in the P-frame or B-frame is used to find the best matched data from the
[-planes or the interpolated data from these best matched data. If the best matched data

or interpolated data cannot meet performance requirement, this 8x8 subimage block is
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partitioned into four 4x4 subimage blocks. Each 4x4 subimage block can be compressed
by using the AVQ method in order to meet the reconstruction performance. Therefore,

the AVQ method can be suitably used for video applications.

A.3 Computer Analysis Results

In our computer analysis experiments, the sum of the buffer-1 size and the buffer-2 size is
set to 512. The individual sizes of buffer-1 and buffer-2 are selected according to image
statistics. The frequency threshold is set to 2 for a moderate buffer-2 size. It makes the
codevectors in buffer-2 easy to survive and migrate to buffer-1. The initial codebook is
created from a random number generator. The distortion threshold is chosen such that the
performance of reconstruction can be similar to the results from the LBG method [A.4]
for an 8-bit codebook. Here, the distortion threshold of buffer-1 is the same as that of
buffer-2. The simulation results are listed in Table A.1. The original Girl image and its
reconstructed images using the AVQ and the LBG methods are shown in Fig. A.3. In the
LBG method, the original image is used to generate the codebook, and then this codebook
is used to encode and decode the original image. Figure A.4 shows the difference images
between the original Girl image and its reconstructed images for the AVQ and the LBG
methods. The error contour of the difference image using the LBG method is clearer than
that by using the AVQ method. In other words, edge information is well preserved by using
the proposed AVQ method since most edges are estimated by the block-data interpolation
method. Similar simulation results for the Pepper image are shown in Figures A.5 and A.6.
If similar source vectors occur in sequence, the encoded data for each source vector can
be the same. The redundancy of encoded data by using the AVQ method can be further
compressed by an entropy coding. The UNIX command "compress” (LZW) [A.21,A.22]
was performed. The mean-squared errors and compression ratios for the images in Figures
A.3 and A.5 are listed in Table A.2.

In order to reduce the block-data interpolation frequency and maintain a good image

fidelity, the distortion threshold of buffer-2 can be assigned to the average distortion value
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Figure A.3: Image compression on the 4 x 4 subimage block. (a) Original Girl image;
512 x 512 pixels. (b) Reproduced image using the LBG method. (c) Reproduced image
using the AVQ method.
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(a)

(b)

Figure A.4: Difference image between the original Girl image and the reconstructed image.
(a) Difference image with inverse illuminance for the LBG method. (b) Difference image
with inverse illuminance for the AVQ method.
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Figure A.5: Image compression on the 4 X 4 subimage block. (a) Original Pepper image;

512 x 512 pixels. (b) Reproduced image using the LBG method. (c) Reproduced image
using the AVQ method.
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(b)

Figure A.6: Difference image between the original Pepper image and the reconstructed
image. (a) Difference image with inverse illuminance for the LBG method. (b) Difference
image with inverse illuminance for the AVQ method.
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Table A.2: Mean-squared errors and compression ratios for Fig. A.3 and Fig. A.5.

Algorithms LBG AV Q

Images MSE | SNR | CR! | MSE | sSNR | CR? | CR3

Fig. A3 |45.04|26.63| 16 [49.44|26.22{10.24|15.75

Fig. A.5 [64.83|24.67| 16 |62.92(24.80| 8.99 |13.25

Note: Vector size: 4x4 window.
CR! : compression ratio without codebook data.
CR? : compression ratio with codebook data.
CR? : compression ratio with codebook data and entropy reduction.

Table A.3: Mean-squared errors and compression ratios versus buffer-2 distortion thresh-
olds for Girl and Pepper images.

Images Girl Pepper
— Thifmnce MSE | CR |5 | MSE |CR |je=
1000 1000 4895 | 9.13|0.187| 62.92 |8.99|0.143
1000 1200 49.08 | 9.29]0.189| 63.77 |9.13|0.143
1000 1400 4974 | 9.41|0.189| 64.61 [9.19]0.142
1000 1600 50.79 | 9.58|0.189| 65.21 |9.32|0.143
1000 1800 5222 | 9.63|0.184| 64.84 |9.43|0.145
1000 2000 53.28 | 9.81(0.184| 65.57 |9.52(0.145
1000 2200 54.67 | 9.99|0.183| 66.11 [9.55|0.144
1000 2400 56.60 [10.18(0.180| 66.41 |9.64(0.145
1000 2600 59.24 |10.37|0.175| 67.90 |9.67|0.142
1000 2800 61.21 |[10.43|0.170| 68.63 |9.72|0.142

Note: MSE : mean-squared error.
CR : compression ratio.

Thrd. 1 : distortion threshold of buffer-1.
Thrd. 2 : distortion threshold of buffer-2.
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of the reconstructed data by using the block-data interpolation method. The distortion
threshold of buffer-1 can be different from the distortion threshold of buffer-2. The distor-
tion threshold of buffer-1 is chosen according to the performance requirement. Table A.3
lists the compression performances for different distortion thresholds of buffer-2. The av-
erage distortion values by using block-data interpolation are 1,350 and 2,460 for the Girl
image and the Pepper image, respectively. Usually, a higher compression ratio, faster
compression speed, and lower distortion between the original image and the reconstructed
image are pursued in the data compression schemes. The good distortion thresholds of
buffer-2 can be around 1,400, and 2,400 for the Girl image and the Pepper image, respec-
tively, after optimizing against the compression ratios and mean-squared errors. Here,
the criterion for selecting the good performance is proportional to %, where C'R is the
compression ratio, and M SE is the mean-squared error. After encoding a image frame or
subparts of the image, the distortion threshold of buffer-2 can be periodically updated by
the average distortion value.

The codebook search of VQ method is an intense computation operation. If the squared
error is used for the distortion measure, each codevector search consists of 31 additions
and 16 multiplications for a 4x4 window. On the other hand, the distortion measure
is performed by using the absolute error scheme. Since there is no multiplication for a
codevector search, the computation speed can be improved and the complexity of VLSI
hardware design can also be reduced. The absolute error scheme for distortion measure is

defined as

n

Weay) = D | ar—yn | - (A.5)
k=1

Table A.4 illustrates the simulation results by using the AVQ method based on the absolute
error scheme. The reconstructed Girl and Pepper images using the AVQ method with the
distortion threshold of 100 are shown in Fig. A.7. The proposed AVQ method still can
provide the good performance for the distortion measure using absolute error scheme.

From the above computer analysis, the all simulation results show that the AVQ method
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has several great outstanding features such as local adaptivity, less complexity, and fairly

good compression ratio.

Table A.4: Mean-absolute errors and compression ratios versus distortion thresholds for
Girl and Pepper images by using the absolute error scheme for distortion measure.

Images Girl Pepper
erformance
Distortion CR |MAE | MSE | SNR | CR |MAE| MSE | SNR
Thrd. (MAE)
90 7.43 | 5.35 | 51.02/26.09| 8.39 | 4.89 | 62.42 |24.83
100 8.76 | 5.31 | 49.48|26.22| 8.97 | 4.96 | 63.28 [24.77
110 10.04 | 5.40 | 50.32{26.15| 9.52 | 5.26 | 67.82 |24.47
120 11.05 | 5.54 | 52.41(25.97 [10.07 | 5.36 | 69.78 |24.35
130 11.72 | 5.81 | 58.03|25.53(10.74 | 5.54 | 73.05 |24.15
140 12.22 | 6.14 | 65.81]24.98 |11.13 | 5.92 | 81.74 |23.66
150 12.64 | 652 | 74.27(24.45[11.51 | 6.26 | 87.83 [23.35

Note: The same distortion threshold is used in buffer-1 and buffer-2.
CR : compression ratio, MAE : mean-absolute error.
MSE : mean-squared error, SNR : signal-to-noise ratio.

A.4 The VLSI Architecture

The high speed and high throughput of digital systems are pursued in the VLSI design
methodology. Nowadays, the technologies can possess huge computing capabilities which
make possible powerful personal workstations, sophisticated computer graphics, and mul-
timedia system such as real-time digital video and speech recognition [A.23]. The proposed
VLSI architecture for the AVQ method is shown in Fig. A.8. Major functional blocks are
the array controller, move-to-front vector quantizers, and index generator. The array con-

troller interprets control instructions from the host computer to set up the adaptive vector
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(b)

Figure A.7: Image compression using the absolute error scheme for distortion measure
on the 4 x 4 subimage block. (a) Reproduced Girl image using the AVQ method. (b)
Reproduced Pepper image using the AVQ method.
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quantizers and generates timing and control signals. The array controller can be imple-
mented on standard DSP chips such as the TMS320C30/40 chip from Texas Instruments
[A.24] or the DSP-56000/96000 chip from Motorola Inc. [A.25]. The two move-to-front
vector quantizers function as the buffer-1 and buffer-2 of the Gold-Washing method. The
indices, differential distortions, and signal-valid bits from the two MFVQs are applied to
the index generator. The signal-valid bit Syqiq is used to show the status of distortion
measure for the best-matched codevector in the MFVQ. If the signal-valid bit is equal to
Logic-1, the best-matched codevector in the MFVQ meets the distortion criterion. Other-
wise, no codevector can match the distortion threshold requirement. The OR-gate function
for the two signal-valid bits from the buffer-1 and buffer-2 are used to generate a decision
signal I,,1;4 back to the host machine to show the output index I, valid or invalid. The
output index I, is generated according to the magnitudes of the differential distortions.
If the differential distortion from buffer-1 is larger than that from buffer-2, the buffer-1
index with an extra bit of logic-1 forms the output I,,; of the index generator. If the
differential distortion from buffer-1 is smaller than or equal to that from buffer-2, then the
buffer-2 index with an extra bit of logic-0 forms the output I,,; of the index generator.
The signal Load,, is generated for updating the priority value of each PE in buffer-1.
The proposed move-to-front vector quantizer consists of two major functions: vector
quantization and codevector index updating. The codebook search and encoding proce-
dure of the vector quantization can be expressed in a general matrix-vector multiplication
form, where the multiplication operator represents the evaluation of scalar distortion and
the addition operator is the sum of the scalar distortions. Therefore, systolic architectures
can be implemented for this matrix-vector operation [A.26,A.27]. A dependence graph of
vector quantization is shown in Fig. A.9 to illustrate the dependence of the computations.
The linear systolic architectures of vector quantization can be classified into the distortion-
stay systolic array and the distortion-move systolic array. In the distortion-stay systolic
array, the distortion value u; is associated with the i** processing element (PE) in which the

distortion is computed. In the distortion-move systolic array, the distortion value moves
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while the source vector component stays in the processing element. The throughput rate
of the distortion-move VQ designs [A.28-A.31] are slower than the optimized throughput
rate of 1 pixel/clock since codebook size is usually much larger than the codevector size.
To achieve the optimized throughput rate, the distortion-stay VQ design [A.12] requires
2™ processors, where 2™ is the codebook size. The distortion-stay VQ can be further
classified into the source-pipeline architecture and the source-parallel architecture. In the
distortion-stay source-pipeline VQ shown in Fig. A.10 (a), the source vector is pipelined
into a linear PE array. The distortion comparison is also performed in a pipelined ar-
chitecture. In the distortion-stay source-parallel VQ shown in Fig. A.10 (b), the source
vector is parallelly distributed into all processing elements for distortion calculation. The
distortion comparison is performed in a parallel architecture. The numbers of the PEs
and comparison (CP) units for the source-pipeline and the source-parallel architectures
are the same. The throughput rates of these two architectures are also the same. The
source-pipeline architecture reduces the connections between source vector and PEs, and
increases the dependence between the PEs. If one codevector needs to be updated during
encoding, the source-parallel architecture will lose only one source vector search but the
source-pipeline architecture will lose many source vector searches depending on the loca-
tion of the new codevector. Therefore, the distortion-stay source-parallel architecture is
preferred in the proposed AVQ method.

Since the MFVQ explores parallelism in the direction of codebook size and pipelining
in the direction of vector dimension, it is the distortion-stay source-parallel architecture.
Block diagram of the MFVQ is shown in Fig. A.11. The major functional modules are
SRAM [A.32] for codebook data, two counters for the codebook memory address, a source
vector pipeline buffer, distortion-computation processing elements, a winner calculation
module, an index calculation module, and an priority updating module [A.33]. The input
data sequence continuously flows through the MFVQ. The source vector pipeline buffer
is h-bit wide and n-word deep, where h is the bit number for representing the intensity

value of a pixel, and n is a vector length. It serves as a first-in-first-out buffer for every

98



el Yog b You bl Ya 1 b eee —{Yomo

»{Yom.q 1

I Y2I1'Il1

\

Uamay  yUamigy yUsmy

»{Yom.1 2

ol Yigl—a Yoo |l Y2 e eee —lYomp

N S TR

*Uam-z,z +U2m-1.2 +Uam,a

;

Yomz

.
.

;

X
in-1 Y1 Yo Yana[# *o* —>Noman Y 2m.q 8= 2m o.q
y Y1 | J Uz 01 ] Uz n-1 L Uam.o n-1 1{“2’“—1.n-1 v Uzm g
X
Ll Yin | Yon || Yon b ooe —]Yompd—aYomg ol —alYom
Dist \ i Ut / Uz L ] Usn L Uom.z pUEm-Ln | J Uam
ISt.
— e
cP cP [ eP[™ sws ™| CP ce ™ cp
L - - — - — -
Index

Y

X;
—»| PE{ —» PE; PEs | +eo —»PEym PEom.4

> PE2I1'1 -

Distortion-stay source-pipeline systolic array

Figure A.9: Dependence graph of vector quantization.

Distortion-move systolic array

99



Y4 Y2 Ya e's Yomap|  |Yomy Yom

—»| PEj || PEs| ! PEj - +os —PE;m g mlPEom.{ ! Pom |-

R e N T

Dist. Thrd. D,
Index—>| CP [ CP l—»! CP |-~ +++ —»t CP [—»| CP || CP|-» bl

(a)

Y-‘ YE Ya sae Yzm.g Y2m-1 YEITI

PE, L PE, L P::, LPEfm.zLPEL1 LPEL.

S I S S
g s

v v

%

| -1

—

.
.
.

oy

cP

1

cP

Dist. Thrd.
—-
Index

Dwin lwin
(b)

Figure A.10: Distortion-stay systolic architecture for vector quantization. (a) Distortion-
stay source-pipeline architecture. (b) Distortion-stay source-parallel architecture.

100



input vector which consists of n elements. The first latch of this pipeline buffer distributes
the component of source vector into each PE during encoding. The pipeline buffer also
distributes the source vector into the SRAM during codebook updating. In order to set
up the initial priority entry for each codevector, the Reset,, signal is issued before starting
the encoding operation. The two counters generate the codebook memory addresses for
the two memory bands. The host computer will reset the counters before the PE starts to
calculate the distortion error between source data and each codevector.

Figure A.12 shows the major functional blocks of each processing element (PE), which
consists of data latches, distortion-computing data path, and a comparator. According
to Davidson’s method [A.29], the mean-squared error calculation can be reduced to the
inner product calculation. However, the multiplication still is required for the distortion
measure. In our method, the good performance listed in Table A.4 can also be achieved by
using the absolute error scheme. Here, distortion computation in the PE is the absolute
error calculation in terms of mean-squared error calculation. The advantages are that a
multiplier is not required and the intermediate data dimensions are reduced in the PE
design. During encoding, the codevector components are addressed by the counter. An
accumulator collects the intermediate result from the absolute differential value between
an element of codevector and an element of source vector. After n clock cycles, The
accumulator will consecutively contain the total absolute differential value between the
source vector x; and the codevector y;. In order to reduce the VLSI implementation
complexity of the MFVQ, each PE can calculate two or more distortion values for each
source vector so that the total number of PEs in the MFVQ can be decreased with the
tolerable reduction of throughput rate. Here, each PE matches the source vector with the
two codevectors sequentially. The control instructions (Select; and Selecty) are used to
load the total absolute differential values into the latches, respectively. The comparator
selects the minimum distortion from the two absolute differential values. The results in
each PE are stored in the sign-bit register and distortion register while Load; instruction

is active.
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The winner calculation module shown in Fig. A.13 uses the sign bits, the distortion
values, and distortion threshold to determine the winner. The minimum distortion is
obtained by using the hierarchical comparison from the distortion results of the all PEs
and the corresponding index address is also produced from cascading the sign bits of
the comparators in each layer. The subtractor performs the comparison between the
minimum distortion and the distortion threshold. If the minimum distortion is larger than
the threshold, the register for storing the differential distortion is set to zero. Otherwise,
the differential distortion and its index address are stored in the registers. The sign bit of
the subtractor is the signal-valid bit Syqiiq¢ of the MFVQ. In the index calculation module
shown in Fig. A.14, the index address from the winner calculation module are decoded
by a m-bit decoder. The output signals of the m-bit decoder are used to control the pass
transistor gates. Only the winner priority value goes through the pass transistor gates to
the output index register. In order to achieve the scalability of the codebook size, the total
bits of priority value can be larger than that of the index address by m*. The additional m*
bits are used for the multichip design. The maximum 2" MFVQ chips can be performed
in parallel for buffer-1 or buffer-2. Functional block diagram of the priority updating
module is shown in Fig. A.15. The priority updating module compares the output index
I value from the index calculation module with values P from the priority table. If the
difference is zero, the priority value is set to the value of codebook size minus one, which
is used as a high priority. If I is smaller than P, the old priority value is decreased by one.
Otherwise, there is no change in the priority value. The priority updating is performed
only while the Load, instruction is active. In the encoding operation, the Load, signal for
buffer-1 is active while the new priority value is ready. According to the Gold-Washing
method, the Load,, signal is not active for buffer-2 during the encoding operation. On the
other hand, the Load, signal is active for both buffer-1 and buffer-2 during the codebook-
updating operation. In this case, the Ctl signal selects the zero value as the input of
the comparator. All the priority values which are larger than zero are decreased by one.

The priority value, which was equal to zero, is assigned to the high priority and the
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corresponding codevector will be replaced by a new value. The C,, signals from the all
comparators of the priority updating module are encoded by the 2™-to-m encoder which

is used to generate the address of the new codevector for the host machine.
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Figure A.14: Index calculation module. (Note: PTG: pass transistor gates.)

Since the computation complexity of the block-data interpolation method is very low,
it can be implemented by the custom VLSI or the standard DSP chips. The source vector
is not only pipelined into the MFVQs but also into the block-data interpolation module
simultaneously. If the signal-valid bit I from the index generator is equal to logic-1,
then the Huffman code for this index value and an identification code form the encoded
data. If the signal-valid bit I 44 from the index generator is equal to logic-0, then a new
codevector and the encoded result are generated from the block-data interpolation module.
In this situation, the host machine will issue the C'tl instructions to the priority updating

modules of the MFVQs for updating indices and generating codebook memory addresses.
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By using these codebook memory addresses, the codebooks of buffer-1 and buffer-2 will
be updated by the host machine according to the Gold-Washing method.

In the MFVQ, the number of processing units is 2™~1. If each PE addresses two
codevectors, the pipeline latency for encoding one codevector equals 2n clock cycles. The
input data rate is 0.5 pixel per clock cycle, e.g., % bits per clock cycle. In the computer
simulations for the AVQ method, the number of codebook updating is around 10% to 20%
of the number of the source vectors, where the codebook size is 256 for buffer-1 and buffer-
2, and the vector dimension is 16. The host machine will be noticed by the index-valid bit
Iatid of the index generator after 15 clock cycles for processing next source vector. If there
is no codevector to match the distortion criterion, the new codevector data are pipelined
into the MFVQs. It requires 16 clock cycles to fill the source vector pipeline buffer. At
the same time, the host machine issues the C'tl signal to the MFVQ of buffer-2 to get the
codebook memory address. The frequency of the last entry of buffer-2 is also used by the
host machine to determine the codebook updating of buffer-1. If the codebook updating
is required, the C'tl signal is also issued for buffer-1. The generations of codebook memory
addresses are overlapped with the operations of codevectors pipelined into the MFVQs.
The Write-Enable signal for the SRAMs is performed to update the codebook data at one
clock cycle. After the codebook updating, the MFVQ needs additional 4 clock cycles to
fill the pipelining latency for encoding next source vector. The total processing time for
codebook updating is 36 clock cycles. Therefore, the throughput rate is reduced to 0.45
pixel/clock for 10% codebook updating or 0.41 pixel/clock for 20% codebook updating.
In the applications of high-definition television, the proposed AVQ method can be used to
compress a 1408x960-pixel color video source according to the Digicipher system [A.34].
Empirically, the 20% codebook updating is a worse case in the intraframe compression.
Since the neighboring frames in the video source are similar, the frequency of codebook
updating will be reduced. If the 20% codebook updating is assumed for all video frames
and the three quantizers using the AVQ method are performed for the three different colors

individually, the processing speed can reach 30.3 frames/sec at a system clock 100 MHz.
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In the proposed architecture, the codebook size for one MEVQ can be scaled down
by half. In this situation, each PE only addresses one codevector. The counter for the
codebook memory address will be reset to zero after its value is equal to n — 1. In the PE,
the latch for storing the second total absolute differential value is set to a high distortion
value, and the Select; signal is never active. Therefore, the MFVQ can operate at 1
pixel/clock in the encoding operation. Due to additional m™ bits used for the priority value,
the codebook size can be scaled to 27", If each MFVQ performs with the codebook size
of 2™ the maximum 2™" MFVQs can be arranged in a parallel architecture for high-speed
processing. Such an architecture for the MFVQ has the advantages of modularity, regular
data flow, simple interconnection, simple global control, pipeline processing, and parallel

processing [A.26,A.27]. Hence it is well suited for VLSI implementation.

A.5 Design of Modules

For signal processing applications, one appropriate measure would be the numbers of
operation per second, where an operation is defined as data access, store, add, shift or
multiply. When both buffer-1 and buffer-2 have 256 codevectors, the required indices
are 8-bit data. If the intensity of each pixel is represented by an 8-bit datum and the
4x4 subimage block is used, the total bits of the absolute differential error between the
source vector and codevector will be 12 bits. Hence, the latches for the codevector index
and differential distortion are 8-bit and 12-bit data latches, respectively. In the MFVQ,
the pipeline buffer is used to store all the components of a codevector. The 7-bit column
decoders are used for the two memory bands which consist of 128 codevectors individually.
Since the vector dimension is 16 and each PE addresses two codevectors, the counter in
the MFVQ is a 5-bit synchronous counter. The SRAM for storing the codebook data
is implemented by the two-port memory cells with one read port and one write port.
The high-speed current-mode sense amplifier is implemented in the SRAM design [A.35].
According to the SPICE simulation results [A.36], the 5-ns memory access time and 10-ns

cycle time for 16 words x 16 bits can be achieved by using a 0.8 um CMOS technology from
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Hewlett-Packard Co. through the MOSIS Service of USC/Information Sciences Institute
at Marina del Rey, CA [A.37,A.38]. The total memory size requires 4.08 K bytes.

Major functional units of the PE are the data latches, an 8-bit subtractor, 8-bit and
12-bit multiplexers, a 12-bit adder and a 12-bit comparator. The accumulating operations
are performed in a single processor cycle that is overlapped with the codebook memory
read cycle. Each functional unit is simulated by the SPICE circuit simulator and its
corresponding physical layout is generated. The delay time for the 12-bit carry lookahead
adder is around 4.5 ns. The encoding rate is constrained by the codebook memory access.
The silicon area for the custom PE design is about 1.8 x 2.4 mm? in a 0.8-um CMOS
technology. It can provide a computing capability of 50M pixels per second at a system
clock 100 MHz. Each pipelining operation in the PE consists of memory fetch, subtraction,
and accumulation. The computation power can reach 300 million operations per second
(MOPS) The total transistor count is about 5K. The performance estimation of the PE

unit is illustrated in the Table A.5.

Table A.5: Performance estimation of the PE unit.

Design Rule HP 0.8-um CMOS, N-well, 3-metal
Chip Size 1.8 mm x 2.4 mm
Operating Frequency 100 MHz (Simulated)
Transistor Count 5K
Supply Voltage 5V
Power Dissipation Imwe sV
Pin Count 40
Signal Representation digital
Processing Speed 300 MOPS
Desgin Style full custom design

The winner calculation module consists of a 12-bit subtractor, 12-bit comparators,

multiplexers, and data latches. The 128 comparisons are performed in 7 hierarchical
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Table A.6: Computation power estimation.

Processing Unit Processing Speed
128 PEs 38,400 MOPS
winner calculation module 400 MOPS
index calculation module 3 MOPS
priority updating module 1,600 MOPS

layers. The numbers of comparisons in each layer are 64, 32, 16, 8, 4, 2, and 1. The
cascaded sign bits from the comparators are stored in the data latches of each layer. The
functional units of the index calculation module is an 8-bit decoder and the pass transistor
gates. If the value of the additional m™ bits is equal to zero, the registers for storing the
priority values are 8-bit data registers. In the priority updating module, the major function
units are 8-bit multiplexers, 8-bit comparators, 8-bit subtractors, 8-bit data latches, and
a 256-to-8 encoder. The computation speed for each module in the MFVQ is listed in
Table A.6. The processing power of the MFVQ at a system clock 100 MHz can reach
40 billion operations per second. The total transistor count in the MFVQ can be about
1.8 million and the silicon area can be about 40 x 45 mm?. The power consumption is
around 7 W. Such a system with a very large transistor count can be achieved by using
either MCM (multi-chip module) technology [A.39] or by ULSI technologies with built-in
fault tolerance [A.40]. This VLSI design meets light-weight, small-volume, high-speed, and
user-transparent requirements and can play a crucial role in the high-performance data

processing systems.
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