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Abstract

With increasing computing power of a chip implemented by silicon technology, an intelli-
gent machine which possesses basic skills of sensing, signal processing, and moving based
on human brain models becomes feasible in the near future. In addition, artificial neu-
ral networks have the potential to solve many complex and time-consuming engineering
and scientific problems with inherently massively parallel processing architectures. To
obtain an optimized solution from a neural network, the paralleled hardware annealing
method can be applied. The results on neural networks with multi-level nonlinearities
are presented. Hardware using parallel architecture could greatly speedup neural network
operations. By using the digital processor design approach, high-precision requirements
for neural network algorithms can be easily achieved. A custom-designed digital VLSI
processing element (PE) for general-purpose neurocomputing is presented. Detailed com-
munication networks, instruction sets and circuit blocks are created for the one-dimensional
ring-connected and two-dimensional mesh-connected systolic array. The reduced instruc-
tion set technique and microprogramming skills can be applied to optimize the software
control of the processor array. A prototype PE has been designed and fabricated in a
6.19 x 5.46 mm? microchip by using the 0.8-m CMOS technology from Hewlett-Packard
Company through the MOSIS Service. By arranging the PE layout in a ring-connected
array architecture, a 20-PE chip is estimated to occupy a silicon area of 2.09 x 1.93 cm?2
by using a 0.5-um CMOS technology. A digital signal processor chip can be used to broad-
cast or pipeline microcodes to all processing elements in an array. This neural PE design
is suitable for image processing. System-level simulation results of applications including
printed character recognition and image compression based on neural network algorithms

using the designed hardware are also presented.

xii



Chapter 1

Introduction

Since the outburst of first-generation computers, machine computation capabilities based
on Von Neumann sequential processing codes have progressed tremendously because of
advances of very large scale integration (VLSI) technologies. Continuous reduction of
feature sizes and acceleration of operating speeds pack more and more complicated and
sophisticated functional units into a smaller silicon real-estate. Multiple copies of hardware
targeting for the same function become possible to be grouped together in a system. The
domain of a group can be multiple boards, multiple chips on a single board or a single
substrate, or multiple functional units on a single chip.

The trend of moving from serial processing to parallel processing follows a natural rule.
Brain cells of animals manipulate things by working cooperatively. One example is animal
can run and catch, see and hear at the same time. Although how a brain really functions
still remains a puzzle to the mankind, the knowledge that we have accumulated through
the research on a brain do give good stimuli to the construction of a new-generation parallel
processing computer.

The arithmetic calculating power of a computer so far has far prevailed over human'’s
capability. But for complicated signal processing problems where large quantity of equa-
tions with massive amount of data need to be solved in real time, computing speed still
need to be improved considerably. In addition, the capability of associating one thing to

the other by a computer so far pale in comparison with that of a human today. To perform



associativity is essential for conducting intellectual activities. The parallel processing ca-
pabilities of artificial neural networks not only accelerate operating speed, but also have a
great potential for associativity. Therefore, importance of research on how to take advan-
tage of properties of artificial neural networks for developing an intelligent machine which

has both large computing speed and profound associativity cannot be overemphasized.

1.1 Intelligent Machines

This dissertation is concerned with the design of components in an intelligent machine. The
machine is an integrated information processing system which can communicate with the
real world through audio and video channels, together with a large database. A configura-
tion of such an intelligent information processing system is shown in Fig. 1.1. High-speed
image processing, vision understanding, and smart graphics provide the systems with vi-
sual capabilities. Speech recognition and synthesis techniques provide the systems with
audio processing capabilities. The system is also equipped with microsensor and controller
units to accomplish physical actions. Such a powerful multi-media data-fusion machine
can be used in many places, and will help people in their business, education, and daily
lives.

An intelligent machine can be equipped with sensors, processors, and actuators [1].
Sensors interact with the environment to capture information relevant to task objectives;
processors perform information processing; actuators execute the resultant outputs from
processors. Intelligent machines must be able to operate successfully in unanticipated
situations. Some decisions might have to be made with incomplete or uncertain information
and competing constraints to solve problems and reach correct conclusions.

Predictably, in the coming years during the 90’s, a multi-hundred-billion-dollar com-
puter and information-processing industry is emerging, together with a generation of ubig-
uitous machine intelligence that works intimately with its human creators. For example,
reliable person identification, using pattern-recognition techniques applied to visual and

speech patterns, could replace locks and keys in many instances [2].



/ Camera

Intelligent Information / Display
Processing System
with Coordinated
Database

N e

Speech | | H ‘ |
| Recognizer

~a| Speech
Synthesizer

|
SN

Sensor

\ Controller

Multi-media

Figure 1.1: An integrated intelligent information processing system with multi-
media capability.

1.2 Promises of VLSI

With the rapid progress of VLSI technologies during the past five years, to construct an
intelligent information processing system which integrates several subsystems for process-
ing different functions becomes highly possible. Currently, multi-million transistors can
be integrated on a single chip; computer processors can operate at speed in the range of
hundred million instructions per second (MIPS). In 1994, the feature size of 0.25 um has
become widely used [3]. Engineers and scientists has already been looking into the next
step of linewidth being 0.18 um and below that will be needed to build 1G-bit dynamic

random access memories (DRAMs).



The range of power supply has decreased from more than 5 volts to less than 2 volts [4].
The original impetus to lower operating voltages was the need to improve the reliability
of fine-geometry devices such as DRAMs. Consumers have two basic complaints about
the portable machines: they are too heavy, and battery life often falls far short of the
all-day operation that would make them practical. Running systems at a lower power
supply can reduce power consumption, extend battery life, and even allow the designer
to jettison some of the heavy battery cells. Devices available in low-voltage versions
include DRAM, flash memory, gate arrays, microprocessors, and digital signal processors.
In addition, lower voltages reduce noise and electromagnetic interference (EMI), factors
becoming increasingly important as the computer devices move off the desktop into harsher
environments. The low-voltage versions typically run slower, however, because the drain-
source current is reduced as the square of the gate-source voltage. Internal capacitors
require longer time to charge at the lower current, which then must run at a reduced
frequency.

The submicron CMOS technology for arithmetic-oriented superchip implementation
and monolithic wafer-scale integration also achieves a functional throughput rate of 10
gate-Hz/cm? [5]. The use of VLSI circuits can greatly reduce the physical size and en-
hance the performance and reliability of microelectronic systems. In the microprocessor
domain, continuous progresses on reduced instruction set computers (RISC) enables the
introduction of the powerful Intel-i860 chip [6], the SPARC chip from Sun Microsystems
Inc.[7], the 400-MIPS Alpha chip from Digital Equipment Corporation (DEC) [8], and the
PowerPC 601 from IBM, Motorola, and Apple Computer over the past few years. In 1994,
a 500-MHz 32-bit processor was announced by NEC Corporation [9]. The 3.1-million tran-
sistor Pentium chip from Intel Corporation [10] represents another design category called
complex instruction set computers (CISC). Several powerful microprocessors have been an-
nounced out of various technologies such as a 300-MHz bipolar ECL microprocessor from
DEC [11] and a 3.3-V 0.6-um BiCMOS superscaler microprocessor from Intel Corporation

(12]. In the digital signal processor domain, the TMS320C40 chip from Texas Instruments



Inc.[13] includes 6 communication ports to facilitate various data communication schemes.
A recent announced TMS320C80 chip includes 4 digital signal processors and employs

programmable MIMD architecture to reach more than 2 billion operations per second [14].

1.2.1 Trends of VLSI Technologies

Intense competition between semiconductor manufacturers expedites the pace of technolog-
ical development. The technology gap between memory LSIs and logic LSIs is becoming
smaller, although the advance of process technology becomes difficult. Along with ad-
vances in silicon fabrication techniques, the ability to produce micromachines on a silicon
substrate is also improved. In this section, progresses of VLSI technologies over the past
decade will be reviewed. From the trend, future prospects of VLSI technologies can be

drawn.

1.2.1.1 Microprocessors

Microprocessors have been one of the most strongly contested areas. While one decade ago,
NMOS technology was the dominant technology, currently, CMOS technology has taken
the lead. The feature size of a transistor continue to shrink and submicron technology
became available in designing microprocessor since 1991. Recently, 0.4-pm technology has
been used to implement a microprocessor. Figure 1.2 shows the trend of transistor feature
size of a microprocessor. The plus signs in the figure are data mainly collected from the
IEEE International Solid-State Circuits Conference. The solid line shown is the line best
fits all data, that is, with minimum distances to all collected data. The dashed line is
the line best fits data from smallest feature size of every year. The circle signs represent
prediction of the next years from the solid line, and the x-mark signs represent prediction
of the next years from the dashed line. Figures below will follow similar conventions. From
prediction, in the year 2000, a feature size of 0.29 um can be widely used in the production

of microprocessors.
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Figure 1.2: Trend of transistor feature size in a microprocessor.

On the other hand, the silicon area of a microprocessor chip available has become
larger and larger as shown in Fig. 1.3. As a transistor feature size keep on shrinking,
and a chip size keep on increasing, the intergration level of a chip becomes enormous.
We started to see chips with more than 1 million transistors in 1990. Nowadays, it has
become quite common to build million-transistor chips. Predictably, a chip with about 10
million transistors will be quite common in the year of 2000. Figure 1.4 shows the trend
of integration level.

Clocking speeds of CMOS microprocessors continuously set tremendous records. Fig. 1.5
shows the increase of clock rates over the past decade, and the prediction of future years
up to the year 2000. As Fig. 1.5 shows, the highest achievable clock rate has increased
about 18 times over the past decade. From prediction, clock rates can possibly go up to
more than 1 GHz by the year 2000. In 1994, low power design becomes a strong design

consideration which should be an integral part of the whole design process to keep up with
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the competition. When considering low power design, clock rates drop as data from 1994
show.

With a higher clock rate, more operations can be performed for the same period of
time. Figure 1.6 shows the trend of MIPS rates. It is expected by the year 1998, more than

1000 MIPS can be reached, and in the year 2000, about 2700 MIPS rate will be possible.

1.2.1.2 Memories

Feature sizes of memories usually are smaller than those of microprocessors. Engineers con-
tinue to exploit smaller devices to construct denser static random access memory (SRAM)
and dynamic random access memory (DRAM). Figures 1.7 and 1.8 show the trends and
predictions of device feature sizes for SRAM and DRAM, respectively. By looking at the
two optimistic lines in both figures, we can find both kinds of memories have possibilities

of being constructed by devices under 0.1 um in the year 2000.
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From the trends of memory cell sizes as shown in Figs. 1.9 and 1.10, we can find that
designers of DRAMs agree in the sizes in 1994. They all design memory cells of 0.72 pm?
with 0.25 pm technologies. By the year of 2000, a DRAM cell with area smaller than 0.1

pm? can be produced to construct 1G or even 4G-DRAM.

1.2.1.3 Power Consumption

VLSI applications involve both high-end and low-end markets. The high-end markets
include high-end workstations with an ultra high-speed CISC/RISC processor, that is,
"hot chip”. The low-end markets include personal digital consumer products using "cold
chip” to realize battery-operated capability. Digital signal processors for digital cellular
phones, whose power dissipation is minimized by optimized circuit desi gn are the beginning
of the "cold chip”. Although the increase rate of clocking speeds will decrease because
of supply-voltage scaling and power constraints. Development of "hot chips” will follow

the trend discussed previously. On the other hand, the "cold chips™ will show a steeper

10
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Figure 1.9: Trend of SRAM cell size.
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Figure 1.10: Trend of DRAM cell size.
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slope in the power reduction as shown in Figure 1.11 [15] resulting from low-power circuit

techniques, optimized architecture and improved system algorithm.
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Figure 1.11: Trend of power consumption of microprocessor and digital signal
processors [15].

1.2.1.4 Packaging

The pin-count of a chip has increased rapidly as Fig. 1.12 shows. Multi-chip modules
(MCMs) in a variety of configurations have emerged over the last few years as a possible
method to raise system speed and reduce weight and volume [16). The predominant focus
has been in the digital arena where the ever-increasing chip 1/0 count has led to poor
surface area of a board due to conventional packaging inefficiencies. In addition, as the
clocking speeds for digital chips move beyond 50 MHz, packaging becomes a major factor
limiting overall system speed. Several benefits result from interconnecting complex chips
using a fine-pitch MCM technology. First, because MCM technologies allow chips to be
placed next to each other, interconnect parasitics due to conventional packaging of sin-

gle components and board interconnect length are virtually eliminated. As a result, such
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Figure 1.12: Trend of pin-count of a chip.

an implementation yields higher operating frequencies. Second, board area and weight
are reduced. An example from General Electric Company is a quad digital-signal proces-
sor module implemented in the high density interconnect process. This design uses four
TMS320C25 processors and contains 36 tile-packed chips in a 1.3 x 1.3 in? array. The
12-gram design executes 180 MIPS at clock rates approaching 100 MHz. Implementations
of the same design using conventional surface-mount packaging techniques are rated for 40
MHz and are about 5 times larger [17]. Another example is a MCM-based CCITT H.261
codec with 50% reduction in the power dissipation and 98% reduction in the total system

area from a board design [18].

1.3 Artificial Neural Networks

The capability of processing massive data parallelly by artificial neural networks (ANNs)
gives the possibility of generating high-quality signals and images for real-time applications.

Also, high performance computing and computer communication networks are becoming
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then conducted to justify whether the requirements such as timing constraints are met. If
some constraint is violated, some portion of the system must be turned into hardware. The
design gradually moves software to hardware. In contrast to this process, a designer can
start from a major-hardware system and gradually moves hardware to software according

to performance evaluation.

1.5 Organization of This Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 introduces the problems in designing a new-generation intelligent informa-
tion processing machine. The methodologies of applying artificial neural networks to solve
these problems will be given together with related work accomplished by other researchers.

Chapter 3 presents the method of applying hardware-based simulated annealing to
artificial neural networks for achieving optimal solutions. Analog/Digital (A/D) decision
networks constructed from Hopfield-type networks with two-level and multi-level neurons
are used in demonstration of the annealing method.

Chapter 4 describes the methodology of using hardware-software codesign techniques
in designing neural hardware. Architecture selections of a system and a processor are
discussed. Several algorithms of neural networks will be mapped onto the neural system.
Details of digital VLSI processing element design is presented.

Chapter 5 covers the software design portion of the processing element. Several real-
world applications are demonstrated to show how to use a proposed multi-PE chip.

Chapter 6 summarizes the results of the thesis, points out the impact of the dissertation
work, and gives pointers to future research that can be based on this exemplary work at
the current status.

Appendix A lists journal and conference publications out of the dissertation work.
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increasingly important to scientific advancement, economic competition, and national se-
curity. The Federal High Performance Computing and Communications (HPCC) Program
has been driven by the recognition that unprecedented computational power and capabil-
ity is needed to investigate and understand a wide range of scientific and engineering
"grand challenge” problems [19]. These are fundamental problems whose solutions are
critical to national needs. Examples of grand challenges addressed include: prediction of
weather, climate, and global changes; improving research and education communications;
and understanding the nature of new materials. The systems which will be discussed in
this dissertation will be good candidates for dealing with the HPCC Programs with its
fundamental properties of high computing power and high speed.

Different implementation methods have been used for constructing neurocomputers
[20)-[22]. Optical and electronic implementations are two main streams. Mature CMOS
VLSI technology and existing successfully implemented microcomputers make the elec-
tronic implementation immediately attractable. On the other hand, optical implemen-
tation has capabilities of achieving high bandwidth, 3-dimensional interconnect ideally.
Whereas, the optical approach has several challenges. Efficient weight storage and com-
putation in pure optics is still difficult to do, although improving. Electro-optics has
significant conversion problems in that creating photons is hard to do electronically with
reasonable cost-performance. Moreover, it is still very expensive to implement optically.

Therefore, no volume to bring prices down like the silicon technology [22].

1.4 Hardware-Software Codesign

In hardware-software codesign, people consider tradeoffs between hardware and software
so as to fulfill behavior and performance goals of a system. Some portions of a system are
more suitable to be hardwired to gain higher speed while some portions are preferred to
be software programmable. The codesign process can also be considered as a partitioning
problem. For example, codesign can start from a system configuration which only consists

of software modules on a standard core processor. Performance evaluation of the system is
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Chapter 2

Neural Network Models

Artificial neural computing has enjoyed a rise in popularity due to advances in VLSI
technology and the inability of previous generation computers to quickly and efficiently
generalize and learn. They are networks of neurons connected together in layers, processing
information asynchronously or synchronously.

Hardware implementation of neural networks utilize a parallel processing structure that
has large number of processing elements (PEs) and many interconnections between them.
A PE is also sometimes called a processor. A PE performs much simpler functions than a
typical central processing unit (CPU) does. In a neural network, each PE is linked to many
of its neighbors so that there are the number of interconnections is much larger than that
of PEs. The power of a neural network lies in the tremendous number of interconnections.

What has triggered the most interest in neural networks is that models similar to bio-
logical nervous systems can actually be made to do useful computations. Furthermore, the
capabilities of the resulting systems provide an effective approach to previously unsolved
problems. However, neural networks can be difficult to train and unsuitable for some
tasks. So why use them? Because they offer valuable characteristics unavailable together
elsewhere. First, they can infer subtle, unknown relationships from data. Second, the net-
works can generalize, meaning they can respond correctly to patterns that are only broadly
similar to the original training patterns. Generalization is useful because real-world data

is noisy, distorted, and often incomplete. Third, they are nonlinear, that is, they can solve

16



some complex problems more accurately than linear techniques do. Nonlinear is common,

but can be difficult to handle mathematically. Finally, they are highly parallel.

2.1 Biological Neural Networks

Neural network architectures are motivated by models of our own brains and nerve cells.
A human brain consists of approximately 10! computing elements called neurons [23, 24].
They communicate through a connection network of axons and synapses having a density
of approximately 10* synapses per neuron. A typical neuron has three major regions: the
cell body, which is also called the soma, the axon, and the dendrites as shown in Fig. 2.1
[24]. The soma provides the support functions and structure of the cell. The axon is a
branching fiber that carries signals away from the neuron, and the dendrites consist of more
branching fibers that receive signals from other nerve cells. The connecting point between
an axon and a dendrite is the synapse. The synapse is where the neuron introduces its
signal which is a pulse to the neighboring neuron. The synapse is capable of changing
a dendrite’s local potential in a positive or negative direction, depending on the pulse it
transmits. The interneuronal transmission is sometimes electrical but is usually effected
by the release of chemical transmitters at the synapse [25]. Therefore, it occurs fairly
slowly.

A neuron is able to respond to the total of its inputs aggregated within a short period
of time. The neuron’s response is generated if the total potential of its membrane reaches a
certain level. Incoming impulses can be ezcitatory if they cause the firing of the response, or
inhibitory if they hinder the firing of the response. If the excitation exceeds the inhibition
by the threshold amount, which is typically 40 mV [26], a firing occur. The characteristic
feature of the biological neuron is that the signals generated do not differ significantly in
magnitude; the signal in the nerve fiber is either absent or has the maximum value. In

other words, information is transmitted between the nerve cells by means of binary signals.
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Figure 2.1: Biological Neuron [24].

By understanding of the basic concepts of a biological neural network (BNN), it is
helpful for the design of a powerful artificial neural network which can solve problems that

today’s machine cannot accomplish.

2.2 Artificial Neural Networks

A traditional Von Neumann machine has a single CPU that performs all of its computations
in sequence. A typical CPU is capable of a hundred or more basic commands, including
adds, subtracts, loads, and shifts, among others. The commands are executed one at a
time, at successive steps of a time clock. In contrast, a neural network processing unit
may do only a few commands. Incremental changes are made to parameters associated
with interconnections. This simple structure nevertheless provides a neural network with
the capabilities to classify and recognize patterns, to perform pattern mapping, and to be
useful as a computing tool.

Some of the operations that neural networks perform include [27, 28].

e Classification - an input pattern is passed to the network, and the network produces

a representative class as the output.
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e Pattern matching - an input pattern is passed to the network, and the network

produces the corresponding output pattern.

e Pattern completion - an incomplete pattern is passed to the network, and the network
produces an output pattern that has the missing portions of the input pattern filled

in.

e Noise removal - a noise-corrupted input pattern is presented to the network, and
the network removes some, or all, of the noise and produces a cleaner version of the

input pattern as output.

e Optimization - an input pattern representing the initial values for a specific opti-
mization problem is presented to the network, and the network produces a set of

variables that represents a solution to the problem.

e Control - an input pattern represents the current state of a controller and the desired
response for the controller, and the output is the proper command sequence that will

create the desired response.

A comparison of biological and artificial neural networks can give us a clearer picture
of what we have achieved and what need to be done in the future. Table 2.1 lists the
comparison. In the table, artificial neural networks are considered in terms of digital
implementation. The major difference between biological and artificial neural networks is
in the complexity of the synapses. The biological synapses contain many components and
active processes. The strength of biological synapses maybe affected by several factors such
as size and number of synaptic vesicles; content of synaptic vesicles; influx and outflow of
ions; release and uptake rates of neurotransmitters, etc [29].

In contrast, artificial neural networks have relatively simple interconnections. For ex-
ample, during the feedforward phase in a standard multi-layer perceptron network, an
operation can be expressed with a simple linear weighted sum combined with a nonlinear

sigmoid function which performs thresholding. Other simple calculations may be done,
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such as inhibition and competition. Sometimes, additional terms are added to the sum-
mation functions, such as a dependency on past changes, or the addition of second-order
terms. However, these do not rival the biological synaptic processes in complexity.

BNNs send signals from one unit to another by means of impulse transmission. ANNs
can transfer precise scalar values from unit to unit. Biological impulse transmission takes
place at any time and its timing is determined by incoming signals. Artificial networks
update their parameters periodically, in discrete time steps. Usually the whole network is
updated during some specific period of time. Thus artificial networks can be considered to
have synchronous updating, whereas in biological systems the updating is asynchronous.
Biological neurons update whenever an impulse arrives, and may also have parameters
that decay or change between arrivals.

One advantage of artificial networks is that the scalar values that are transferred from
unit to unit can be implemented to be relatively precise. In biological neural networks,
a single interconnection does not transfer a precise scalar value. If average firing rate is
considered to be the value transferred, then it has limited precision, especially over a short
time frame. Biological networks have a built-in temporal structure because impulses can
occur at any time, and thus may form temporal patterns. The summation in the two
systems must be done differently as a result of their different signaling characteristics.

Biological networks have predetermined wiring at the system level. For example, the
major fibers and connections in the visual and auditory systems are the same for different
individuals; at a more detailed level the circuitry appears to be different for different
individuals. For example, animals with exactly the same genes do not have corresponding
neurons with the same dendritic branching structure and topology.

ANNs are usually layered and fully interconnected, with all units in a given layer
connected to all units in the layers above and below. Artificial networks can also be
sparsely interconnected, or have connections removed selectively after training. Biological
networks have layered structures. However, the layers are not simple rows of independent

units, as in most artificial networks, and the neurons in each layer or cluster tend to be
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Table 2.1: Comparison between a human brain and artificial neural networks.

Element BNN ANN
Organization network of neurons network of PEs
Components Dendrites and axons Inputs and outputs

Synapses Weights
Summer Summation function
Threshold Threshold function
Architecture fixed gross wiring architec- usually fully intercon-
ture, plus variation in nected
detailed structure
Neurons 100 billion usually up to 100
Synapses complex simple
Interconnections 10,000 within 10
per neuron
Processing analog digital
Technology biological silicon
optical
molecular
Hardware neuron switching device
Switching speed 1 msec 10-100 nsec
Updating continuous or asynchronous synchronous
Leamning as fast as one pass slow to converge
Signal pulse transmission activity value and con-
nection strengths
Reliability redundancy redundancy
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densely interconnected to one another, again in contrast to most artificial networks. The
layers in biological systems are not fully interconnected with layers above and below in the
simplistic way that is found in many artificial systems, as biological connections may be
sparse or may involve more than one synapse. Three-dimensional packing considerations
discourage fully interconnected topologies for biological systems, and also pose a constraint
in designing neurocomputing hardware.

Feature detectors occur in both biological and artificial systems. Distributed repre-
sentation and processing is a characteristic of both biological and artificial networks. A
pattern mapping, for example, uses the entire network, not just a single location in the
network, to determine its output pattern given the input pattern. Redundancy, occurs in
both biological and artificial networks, can increase the reliability of a system, allowing it
to function even when some of the neural units are destroyed. In addition, redundancy
may also counteract sources of noise.

Biological networks have the remarkable property of being able to learn in as little
as one training presentation. In contrast, artificial networks usually require hundreds or
thousands of training presentations in order for learning to take place, and are usually

slow to converge.

2.2.1 Data Representation

Neural networks are made out of neuron-like nodes that are arranged in layers. Data as
passed through weighted connections between nodes. The networks learn by changing the
values of their weights. With suitable weights, a network can model any computable func-
tion. Figure 2.2 shows a typical three-layer fully-connected feedforward neural network.
A neuron and a synapse are two fundamental components in an artificial neural network.
Depending on the architecture and dynamics of a network, some additional components
may be added. The synapse represents connection between two neurons with a weight
value indicating the strength of the connection. The neuron does operations on input data

and synapse weights.
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Figure 2.2: Architecture of a typical three-layer fully-connected neural net-
work.

2.2.1.1 Two-Level Neuron

A typical two-level neuron can be modeled by
S(x) =cf(z - 0). (2.1)

The transfer function f transforms an input value 2 into one of two output levels. Here, 6
is the threshold value of the neuron, and the scaling factor c is typically one. The transfer
function f is continuously and monotonically increasing [25, 30]. The sigmoid function has
been widely used in the neural network research community. This function is a bounded
differentiable real function that is defined for all real input values, and it has a positive
derivative value everywhere. By using the sigmoid function as the transfer function, (2.1)

becomes

c

i

(2.2)

Most neural networks in the literature use two-level neurons to classify input signals.

A two-level neuron produces output with 1-bit accuracy. As the number of input signals
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increases, the number of synapse weights increases accordingly. A large number of synapse
weights will complicate the interconnection wiring between neuron layers, and significantly

limit the size of a network to be implemented by a VLSI chip.

2.2.1.2 Multi-Level Neuron

The output of each multi-level neuron represents multiple bits. Therefore, the total net-
work size of a neural network composed of multi-level neurons can be significantly smaller
than a conventional network with two-level neurons. The reduction in network size is a
highly desirable feature in VLSI neuroprocessor implementation for large-scale applica-
tions. Recently, a neuron circuit performing multi-level transfer function has been pro-
posed [31]. To represent a multi-level neuron with m threshold values, 6 to 6,,_;, a neuron

transfer function of the form [31]

m—1

M’(:r) = Z ijj(x a 95) (23)

j=0
can be used. The scaling factor for the p-th level is ¢g + ¢, 4 - - 4+ ¢,. Therefore, the output
level has a step size of Ak, = ¢,. In addition, 6, < Op41 holds for 0 < p < m— 1. The
accumulation function M(z) is a monotonically increasing function. Again, by replacing

f; with the sigmoid function, (2.3) becomes

m—1

M,(z) = z

j=0

]

==t (24)

2.2.2 Major Network Architectures

Over the decades of the exploitation of biological neural networks, several different types
of models have been highly discussed and developed. In this section, some major types
of neural network architectures will be described. The way of realizing these networks by

digital VLSI will be discussed in later chapters.
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2.2.2.1 Iterative Networks

In an iterative network, the output nodes of neurons feedback to the input nodes of neurons
through interconnecting weights. Typically, iterative networks are started at some initial
state, and then are converged to one of a finite number of stable states. There are three
basic goals in the design of iterative networks. First, given any initial state, a network
should always converge to some stable state. Second, the stable state to which the network
converges should be the one closest to the initial state, as measured by some metric. Third,
it should be possible to have as many stable states as desired. Some examples are the
Hopfield network [32, 33], the Bidirectional Associative (BAM) network [34], the Brain
State in a Box (BSB) network [35].

Figure 2.3 shows the architecture of a Hopfield network with two-level neurons. The
output of the network changes until a stable state is reached. The initial state of the
output has influence on the final output. Some initial states can cause nonconverging
outputs. An external input z, can be added to the input nodes of neurons to direct the

operation of the network.
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Figure 2.3: Architecture of a Hopfield network with two-level neurons.



The Hopfield network has two major limitations when used as a content addressable
memory. First, the number of patterns that can be stored and accurately recalled is
severely limited. If too many patterns are stored, the network may converge to a novel
spurious pattern different from all exemplar patterns. Such a spurious pattern will produce
a "no match” output when the network is used as a classifier. Hopfield [36] showed that
this occurs infrequently when exemplar patterns are generated randomly and the number
of classes is less than 0.15 times the number N of input elements or nodes in the network.
Therefore, the number of classes is typically kept well below 0.15N. A second limitation
of the Hopfield network is that an exemplar pattern will be unstable if it shares many
bits in common with another exemplar pattern. This problem can be eliminated, and

performance can be improved by a number of orthogonalization procedures [30].

2.2.2.2 Multi-Layer Perceptron Networks

The network is usually structured as shown in Fig. 2.2. A neuron in such a network
typically multiplies each input by its weight, sums the products, then passes the sum
through a nonlinear transfer function to produce an output. The fundamental computation
for a neural network is therefore the vector dot-product, and its computational speed
depends on executing the underlying multiply-and-accumulate operations efficiently. Each
neuron has an extra input called the threshold input, which acts as a reference level or
bias for neurons. The intermediate hidden layer enhances the network’s ability to model
complex functions. The transfer function is usually a sigmoid function. The attenuation at
the upper and lower limbs of the S-shape curve constrains the raw sums smoothly within
fixed limits. The transfer function also introduces a nonlinearity that further enhances the
network’s ability to model complex functions [37].

The most popular training algorithm used in these networks is the back-propagation
training. Synapse weights are adjusted by the back-propagation technique in the direction

opposite to the instantaneous error gradient. Because it is possible to calculate the errors,
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the training data must contain a series of input patterns labeled with their target output
patterns.

During the training time, a network adjusts its synapse weight values through consec-
utive cycles of feedforward and back-propagation phases until predefined requirements are
reached. During the running time, the trained network uses its weight values to obtain
outputs through a feedforward phase.

Operations of a feedforward phase can be formulated as,

SHE) = 3 wi(E) - as(L — 1) (25)
i=1
and
a;j(L) = f;(S;(L),0;(L)), (2.6)

where L represents the layer number, wj;(L) is the weight between the neuron Jj in the
L' layer and the neuron i in the (L — 1)* layer, and my, is the total number of neurons
in the L!" layer.

During a back-propagation phase, a network passes derivatives of output errors back
to a hidden layer, using the original weighted connections. Each hidden neuron then
calculates the weighted sum of the back-propagated errors to find its indirect contribution
to the known output errors. After each input and hidden neuron finds its error value, the

neuron adjusts its weights to reduce its error. The weight updating rules can be formulated

as follows:
Awji(L+1) = 96;(L +1) - a;(L) (2.7)
wi(L+1) = wi(L + 1) + Awji(L +1). (2.8)

The calculations for §;’s are different in the output layer and in the hidden layers.

For the output layer:

8i(L) = (t;(L) - a5(L)) - £5(85(L)), (2.9)
and for each hidden layer:

8;(L) = ¢;(L) - £;(S;(L)), (2.10)
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where

mp g

ei(L)= Y &(L+1)- wi(L+1). (2.11)
k=1

Here, 6; is the error term in the present layer, & is the error term in the next layer, tj
is the corresponding desired output for the j** neuron, 7 is the updating rate and can be
either a local variable or a global constant. The equations that change the weights are
designed to minimize the sum of the network’s squared errors. This minimization has an
intuitive geometric meaning. To see it, all possible sets of weights must be plotted against
the corresponding sum-of-squares errors. The result is an error surface shaped like a bowl,
whose bottom marks the set of weights with the smallest sum-of-squares error. Finding
the bottom of the bowl-that is, the best set of weights-is the goal during training,.

Back-propagation achieves the goal by calculating the instantaneous slope of the error
surface with respect to the current weights. It then incrementally changes the weights in
the direction of the locally steepest path toward the bottom of the bowl. This process
resembles rolling a ball down a hill and is called gradient descent. Since gradient descent
always follows the locally steepest path, the back-propagation algorithm can train a net-
work into a local minimum that it cannot escape. This effect depends on the exact path
down the gradient, which in turn depends on the initial values of the weights and other
factors.

Back-propagation training is a kind of supervised learning. We call it supervised be-
cause the desired results are known in advance before learning, weight updating of a
network can be directed by minimizing the difference between the actual output and the
desired output. On the other hand, there are many cases that we don’t know what are
the correct responses of a network. Unsupervised learning is performed under these cases.

The next network we will discuss is a kind of unsupervised learning.

2.2.2.3 Kohonen Self-Organizing Feature Map

The feature mapping algorithm is supposed to convert patterns of arbitrary dimensionality

into the responses of one- or two-dimensional arrays of neurons [38, 39, 40]. Learning within
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self-organizing feature maps results in finding the best matching neuron cells which also

activate their spatial neighbors to react to the same input. Such collective and cooperative

learning tunes the network in an orderly fashion by defining some feature coordinates over

the trained network. After learning, each input causes a localized response having a
i 5 . e

position on the neurons’ array that reflects the dominant feature characteristics of the

input. A basic structure of the self-organizing feature map is shown in Fig. 2.4.
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Figure 2.4: A basic structure of the self-organizing feature map.

The Kohonen self-organizing feature map has been shown to be quite effective for vector
quantization (VQ) codebook design [41, 42, 43, 44]. For a full-search VQ, N distortion
measures between an input vector and N code vectors are computed, and then the code
vector, which is nearest to the input data, is chosen. Let X = x; represents the k-
dimensional input vector, and C; = cij represents the i-th code vector in the codebook.

The required computation is to find the minimum of the distance:

min {d(i”,d), 1<i< m}, (2.12)
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where

Eod

n'(f. é,'} = Z(;z:j = :',-J-]"Z

j=1

is the distortion measure between X and C;.

2.2.2.4 Comparison

In the following, the three types of neural architectures discussed previously along with
perceptron, and Boltzmann machine are compared. The perceptron is primarily of histori-
cal interest, although it is still occasionally used. It receives inputs from several resources,
and determines the output to be either logical-0 or logical-1 depending on the sum of
the inputs being smaller than or greater than zero. The Boltzmann machine will be dis-
cussed further in the next chapter. Table 2.2 lists the strengths. limitations, and primary

applications of the five types of artificial neural networks [45].

Table 2.2: Comparison of various neural network models.

Neural models ~ Example applications Strength Limitation

Perceptron linear filters early neural network  cannot recognize
complex patterns

Hopfield retrieval of data/images  large-scale integra-  weights not adapt-
from fragments tion able
Multi-Layered ~ wide range: speech most popular, work  supervised training
Perceptron synthesis to loan-appli-  well, simple learn- with abundant
cation scoring ing rules examples
Self-organizing  pattern classification better performance  extensive learning
Map than many algorith-

mic techniques

Boltzmann pattern recognition for  simple network that  very long training
Machine radar/sonar uses noise function  time

to jump out of local

minimum
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Chapter 3

Multi-Level Neural Networks with Optimal Solutions

Search for fast optimization in scientific and engineering applications has drawn researchers’
interest in the field of engineering neural networks. A typical neural network for solving
optimization problems multiplies input signals with synapse weights, and the summed
results are processed by the output neurons.

The gradient descent method is a conventional approach for optimization. It finds the
gradient of the cost function to determine the direction for the next processing step. This
method suffers from the inherent problem of possibly converging at a local minimum in
the cost function. Recently, Yuh and Newcomb [31] presented a method using a correction
logic circuit to obtain the optimal solutions for multi-level Hopfield networks. Alspector
et al. [46] have pioneered the analog electronic implementation of the Boltzmann machine
by adding uncorrelated noise to find the globally optimal solution. Simulated annealing
[47, 48] is another important method for searching for the optimal results on digital com-
puters. It is a stochastic process modeled after metallurgical annealing. The metallurgical
annealing consists of heating a raw material such as silicon to its melting point, then slowly
cooling it based on a predetermined cooling schedule. If the raw silicon is cooled slowly,
and a single-crystal seed is provided, atoms will fit into the lattice sites and reach a lower
energy equilibrium. The slow decrease of the cooling temperature and the natural ten-
dency towards a minimum-energy state are the key factors of metallurgical annealing and
the Czochralski growth of purified semiconductors [49]. Due to a slow cooling schedule in

software execution, the simulated annealing method on digital computers requires a lot of
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computing time for a complex optimization problem. By constructing a hardware-based
parallel annealing technique in analog electronics, the processing speed can be significantly
improved.

A high-quality semiconductor crystal can be formed by providing a seed as a guidance
in the process of metallurgical annealing. On the other hand, if no seed is provided,
the melting semiconductor will be cooled down to an amorphous condition. In hardware
annealing, which is an analog hardware version of the mean-field annealing [50, 51], an
external bias voltage provides a similar effect as the seed in metallurgical annealing. During
the whole annealing process, the constant external bias directs the outcome of a network. If
no bias is applied, the output of the network undergoes influence from residual capacitances
of the output nodes initially. These capacitances constitute the initial states of the network.
Outputs of the network becomes unpredictable if the network goes through the annealing

process without the external bias.

3.1 Simulated Annealing

The Hopfield network is a recurrent network which finds the stable solution through it-
erations. Due to the nonlinear property of the network, the output could be stable at
one of the local minima. Simulated annealing helps to escape from local minima by us-
ing the Boltzmann distribution function as the transfer function of a neuron. Software

implementation of simulated annealing uses the the following procedure:

Simulated-Annealing(init_state)
begin
stop := false;
while (stop = false)
begin
while (equilibrium is not established)
begin
Temp := some high temperature;
current_state := init_state;
new.state := selection_function(neighborhood of
current_state);
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AE := E(current_state) - E(new_state);
if (AE <= 0)
current_state := new_state;
else
if (e 2E/kTemp 5 random([0, 1)))
current_state := new_state;
end
if (Temp < Tfina1)

stop true;

else

Temp Temp - AT;

end
end /* End of Simulated_Annealing */

3.2 Paralleled Hardware Annealing

In the Hopfield A/D network, a neuron with m-bit resolution is realized by 2™ ampli-
fiers connected in parallel with their output currents summed together [31]. The summed
current can be converted to the output voltage of the neuron by a current-to-voltage
converter. The output voltages are connected back to the neuron inputs through inter-
connection conductances. An analog input value and a reference voltage are applied to all
neurons. In hardware annealing, we change the voltage gain of the neurons in a contin-
uous manner to achieve a similar effect as changing temperature in simulated annealing.
Recently, some researchers have discussed methods of how to construct a gain-adjustable
amplifier [52, 46, 53].

In the following, an analog-to-digital (A /D) decision network is used to illustrate the
properties of using hardware-annealing in Hopfield networks with multi-level neurons be-
cause the optimal solution of an A /D decision network is always known [32, 33, 54].

A schematic diagram of a 6-bit A/D decision network by using three 4-level neurons
are given in Fig. 3.1. A governing equation for the i-th neuron in an N-neuron network

can be expressed as

- N-=-1
C‘sdf;l +Gui(t) = Y Gijui(t) + L), (3.1)
¢ j#ij=0
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Figure 3.1: A Hopfield 6-bit neural A/D decision network with 4-level neurons.
and
I:'(t) = Grixr(r) + Gaiza(t)- (32)

where C; and G; are the equivalent total capacitance and conductance at the input node
of the i-th neuron, Gij is the conductance between the i-th and the j-th neurons, z, is
the reference voltage, z, is the input analog voltage, G,; and G,; are the conductances
connecting @, and @, to the i-th neuron. The voltage at the input node of the i-th neuron
is u;(t), and the output voltage of the j-th neuron is v;(t).

The energy function for the network can be expressed as

1 N-1 N-1 N-1 N-1 vi
E=-5Y Y Gyuj- Y Lty G,-/ g7 (v)dv, (3.3)
i=0 j#ij=0 i=0 i=0 0

where g(-) is the voltage transfer function of the amplifier. The time derivative of the

energy function is

de _ THdy | &
E = — E Z G,;jb‘j - Gu; + I; | . (3‘1}
i=0 j#i,j=0
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Substituting (3.1) into (3.4), we can obtain

dFE '\_ldir, 'du‘ il i [d r
it | -

—_— i 3.5
dt = df Vdt L Cq* 4 k3:5]

Since C; is a positive value, % < 0 if gi(:) is chosen to be a monotonically increasing

function. The operation of the network evolves in the direction of decreasing the energy
of the network until the equilibrium state is reached.

The function of an A/D decision network is to find a digital word which is a best
representation of the analog input signal x,. The synapse weight values can be determined
by minimizing the squared value of the difference between the input analog value and the

corresponding digital representation [31]

= (za - Z m'v;)?. (3.6)

2

After expanding (3.6) and dropping the constant term z7%, we obtain,

i Z Z f'f‘J U vj — Z mt 3-{1’-": + Z (37)

i=0 j#i,j=0

By assuming uniform spacings between the neighboring threshold values and the output
levels in the decision network, i.e., Af and Ak as defined in page 24 are constants, (3.3)

can be reformulated as

N-1 N-1 N-1 N-1
=__z Y Gijuivj - Z(f——G_\am Joi + ZGAMLU (3.8)
i=0 j#i,j=0 i=0 =0

By equating corresponding items in (3.7) and (3.8), we can obtain
Gij = —-m'td, (3.9)
i = mize + GidM:Ak; = Guita + Gritr,

and
GiAO;Ak; = m*.

Here, Af; is the increment in the threshold value, and Ak; is the increment in the output-

level value at the i-th neuron. The weights, inputs and thresholds for the neurons from
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(3.9) are clearly labeled in Fig. 3.1. The negative conductances G;;’s are implemented
by taking results from the inverted outputs of the neurons. The G,;’s are determined by
setting x, to be one.

Let us carefully examine the transfer function of the A/D decision network. Assume
that all neurons are biased in the linear region. In the steady state condition,

- Zjv#_l}}:{} G:JUJ + GriZy + GaiTa
— Gi

u; (3.10)

and

Oik < Ui < 0 kg1 (3.11)

for the k-th level at the i-th neuron. Substituting (3.10) into (3.11), we can obtain

- Zj;_,-:,-ﬂ Gijv; + Gibi . — Grizy e g E;'\;ﬁ—,“lj:g Gijv; + Gib; k41 — Grizy
G = Gai

(3.12)

Figure 3.2 shows the plot of the transfer function of a three-neuron A /D decision network.

All the possible states determined by (3.12) are included. The output value of each neuron

FOp=

$

g

s
(=]
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2
ll‘

Digital Output
|
i

Figure 3.2: Transfer function of a 6-bit A/D decision network with. 4-level
neurons.

can be classified into one of four distinct levels. Please note that for some analog input

values, the network can converge to different digital representations which correspond to
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multiple local minima in the energy function. For example, when the input value is 19.8.
the output value may be 15, 19 or 20 depending on the initial conditions of the network.

A multi-level Boltzmann neuron function [31] can be modified from (2.4):

m—1

M, = ; m (3.13)
where 7 is a gain-controlling factor which controls the slope of a multi-level transfer func-
tion. With a large gain value, the slope of the transfer curve around the threshold value is
quite steep. A smaller gain value gives a smoother transition. When the threshold values
are close to each other as shown in Fig. 3.3(a), the transfer curve for a high voltage gain
still shows distinct levels, while that for a low voltage gain shows no distinct levels. By
assigning 1 to Ak;, the three threshold values for the least-significant-bit neuron are 1/21,
2/21, and 1/7, respectively. The threshold values for the most-significant-bit neuron are
8/3, 16/3, and 8, respectively, as shown in Fig. 3.3(b).

05
2 o1 é o7 a:z 03 4 % 2 r o B 0
Uy Uy
(a) (b)

Figure 3.3: Plots of the 4-level neuron functions with different controlling gains
used in a 3-neuron A/D decision network. (a) Least-significant neuron. (b)
Most-significant neuron.

The sum and product of eigenvalues of the system matrix M of a Hopfield A/D decision

network have the properties [55]

N
> A0 (3.14)
=1

and
N
[T Xi = det(M) £ 0 (3.15)
=1



when the voltage gain of neurons is sufficiently large. A;’s represent eigenvalues of the
system matrix M. With the constraint that G;; = Gj;, all eigenvalues will lie on the
real axis of the s-plane. Thus at least one positive real eigenvalue exists, and the neuron
outputs are saturated at digital values. Tables 3.1 and 3.2 list the eigenvalues for 6-bit

and 8-bit A/D decision networks, respectively, at a very large neuron gain. The second

Table 3.1: Eigenvalues of a 6-bit A /D decision network.

[ 6-bit (25)  II: 6-bit (43)

By 668.63 67.01
¥ -534.96 -65.13
/9 -104.64 -1.88
A -22.65
As -5.19
% -1.22

I: Conventional Hopfield network
II: Multi-level Hopfield network

Table 3.2: Eigenvalues of an 8-bit A/D decision network.

I: 8-bit (2%)  II: 8-bit (4%

A 10,707.21 1,075.11
Ay -8,560.58  -1,043.25
A3 -1,675.09 -30.44
R -362.95 -1.48
As -83.43

Ke -19.78

My -4.77

Ag -1.16

I: Conventional Hopfield network

II: Multi-level Hopfield network
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columns in both tables list eigenvalues of networks consisting of two-level neurons, and
the third columns list eigenvalues of networks consisting of multi-level neurons. The single
positive value Ay in a conventional two-level neuron decision network is much larger than
that in a multi-level neuron decision network. In the multi-level G-bit case, A\; + A + )3 is
equal to 0, and A; - Ay - A3 is equal to 8,205. These results agree with (3.14) and (3.15).

In a conventional Hopfield network, the output of an A/D decision network is stablized
at an equilibrium state which corresponds to one of the local minima of the energy function.
When the voltage gain is reduced to a critically low value, all neurons operate in the linear
condition. The output of the A/D decision network is not fully digital. When the voltage
gain reaches

Gi
Sitoses Gisl

where S contains linear-region neurons, only (N — k) neurons operate in the linear region.

,4'_\,4:171&1‘{ for0<i<N-1,0< ks.-’\"—.’i}v (3.16)

As the voltage gain is increased, fewer number of neurons operate in the linear region.

When the voltage gain reaches a critically high value,

.42=-mar{1[ﬁ, Vp,q € [0, N —1], P?éQ}- (3.17)
GpeGop

Only two neurons operate in the linear region [55). When the voltage gain is slightly larger
than Ay, only one neuron could be in the linear region. Although at this point the neuron
output is still an analog value, the digital output of the amplifier can be easily determined.
Tables 3.3 and 3.4 list the different critical voltage gains for 6-bit and 8-bit A/D decision
networks, respectively. The A, values for the 4-level neural networks are smaller than

those for the 2-level networks.

3.3 Analysis Results

In metallurgical annealing, a certain high temperature was first applied to highly mobilize
the atoms. It is then slowly decreased to allow atoms to fit into lattice sites in a minimum-
energy fashion. In this section, experiments of hardware annealing on Hopfield networks

with multi-level neurons are discussed.
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In the experiment, an A/D decision network which consists of three neurons was ana-
lyzed. Each neuron has four distinguishable levels which correspond to the 2-bit accuracy.
The analog input has a nominal range of 0 to 64 which can be scaled to the range of 0 to 5 V'
if electronic hardware implementation is considered. The network output is reconstructed

by a D/A converter.

Table 3.3: Critical amplifier gains of a 6-bit A/D decision network.

I: 6-bit 2%)  II: 6-bit (4°)

A, 44.72 10.37
As 20.67 2.80
Aq 8.57
As 3.73
Ag 1.55

I: Conventional Hopfield Network
IT: Multi-level Hopfield Network

Table 3.4: Critical amplifier gains of an 8-bit A/D decision network.

I: 8-bit 2%  II: 8-bit (4%

A, 180.49 4237
As 84.67 15.60
A4 36.00 2.57
As 16.53

Ag 7.74

A, 3.56

Ag 1.51

I: Conventional Hopfield Network
IT: Multi-level Hopfield Network

The voltage gain of neurons is decreased first and then gradually increased. The analog

input value x, was chosen to be 7.9 which has one local minimum at digital representation
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(013) besides the global minimum at (020). When the voltage gain value was low, all
neurons operated in the linear region. Then, the voltage gain was increased until all
neuron outputs became saturated into digital representation. The input and output values

of neurons are shown in Figs. 3.4 and 3.5, respectively. Initially, the output state of the
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Figure 3.4: Time domain responses of the voltages at the neuron input nodes
in the A/D decision network when the analog input value x, is 7.9. (a) Neuron
gain. (b) Neuron 0. (c) Neuron 1. (d) Neuron 2.

A /D decision network was at (013) which corresponds to the local minimum. After the
hardware annealing process, the output state changed to (020) which is the desired digital

output. The trajectory of the output state is plotted in Fig. 3.6. Plots of energy surfaces
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Figure 3.5: Time domain responses of the output values of neurons when the
analog input value x, is 7.9. (a) Neuron 0. (b) Neuron 1. (c) Neuron 2. (d)
Combined output.
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Figure 3.6: The output state trajectory of the A/D decision network.

and contours which correspond to different voltage gain values are shown in Figs. 3.7, 3.8,

and 3.9. Two energy minima occur when the neuron is at a high voltage gain value of

100. When the voltage gain is reduced to 10, only one energy minimum left. At a low

voltage gain value of 2.5, the minimum energy corresponds to a solution which is not a

fully digital representation.

8

1 =75, Gan = 100

Figure 3.7: (a) The energy contour. (b) The energy surface. The voltage at
the input node of neuron ug is kept as 0. x, is 7.9 and amplifier gain is 100.
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Figure 3.8: (a) The energy contour. (b) The energy surface. The voltage at
the input node of neuron uj is kept as 0. x5 is 7.9 and amplifier gain is 10.
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Figure 3.9: (a) The energy contour. (b) The energy surface. The voltage at
the input node of neuron u; is kept as 0. x, is 7.9 and amplifier gain is 2.5.



Chapter 4

Digital Neural Processing Element

In practical applications, the algorithms of artificial neural networks must be executed
in real time. Therefore, a very fast hardware using parallel architecture is desirable to
efficiently exploit the intrinsic parallel processing properties of ANNs. It can be conceived
that a neural unit is made of a processing element. An ANN consists of a number of inter-
connected processing elements which perform weighted accumulation of inputs and level
evaluation of outputs. The feature of the network is characterized by the network topology.
interconnecting weights, and the transfer function. The transfer function determines the

output activation levels,

4.1 Hardware-Software Codesign Methodology

The hardware-software codesign techniques were applied during this design process of neu-
ral coprocessors. The codesign task is to produce an optimal hardware-software design that
meets the given specifications, within a set of design constraints such as real-time require-
ments, performance, speed, area, code size, memory requirements, power consumption,
and programmability.

Figure 4.1 shows a generic codesign flow. Given a system specification, the designer
develops an algorithm, using high-level functional simulations, without any assumptions
about implementation such as available instruction set or register precision, circuit design

style. The designer then partitions the algorithm into hardware and software, guided by
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Figure 4.1: A general codesign strategy.

speed, complexity, and flexibility requirements. Components that need field programma-
bility or that are inherently better accomplished in software are assigned to software im-
plementations. Operations with critical execution speed are allocated to hardware. Of
course, to explore the design space, the designer would iterate the partitioning process.
Partitioning is followed by hardware, software, and interface design. The three are
closedly linked. Changing one has immediate effects on the others. Hardware design deci-
sions include selection of a programmable processor which directly affects selection of the
code generator. If the designer prefers to create a new processor by herself/himself, more

issues including selection of design style, clocking strategy, etc are involved. In designing
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custom data paths, the designer must choose the register word lengths. Some hardware
structures (for example, filter realizations [56]) may meet performance requirements with
smaller register widths than those estimated for other structures. Determination of the
number of processors and their connectivity influences code partitioning and hardware-
software interface design. On the software front, in the case of fixed-point processors,
some algorithmic modifications might be necessary to minimize the effects of finite pre-
cision such as limit cycles and quantization errors. Software design involves partitioning
and scheduling the code on multiple processors and creating the code for interprocessor
communication. These decisions depend on the architecture selected. The designer parti-
tions among different processors by optimizing cost functions such as communication cost,
memory bandwidth, and local and global memory sizes.

Interface design involves adding latches, FIFOs, or address decoders in hardware and
inserting code for I/O operations and semaphore synchronization in software. The typical
way of solving this cyclic problem is to start with a design and work on it iteratively to
explore different options.

Once the hardware and software components are designed, the next step is to run
the resulted software on the resulted hardware. This involves interaction of a number of
different simulators if various specification languages are used. The designer then uses the
simulation results to verify whether the design meets the specifications. Having performed
the hardware and software design, the designer can then estimate area, power, critical
path, component and bus utilization, and other factors. After using these estimates to
evaluate the design, the designer may repartition the system to try out different options.

Thus, the entire process is iterative.

4.2 System Architecture

To fully utilize the substantial parallelism in an ANN, a multi-PE system should be con-

sidered. Since each processor must communicate data to each other in this system, the
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architecture which explores efficient communication between processors will deliver most
computational power per unit area.

Systolic arrays typically combine intensive local communication and computation with
decentralized parallelism in a compact package. They uses regular, modular, synchronous,
and concurrent processing units to execute intensive and repetitive computation. Ad-
vances of VLSI technologies complement qualifications of the systolic array. Smaller and
faster gates allow a higher rate of on-chip communication because data has a shorter dis-
tance to travel. Higher gate densities permit more complicated cells with higher individual
and group performance. Granularity increases as word length increases, and concurrency
increases with more cells. Economical design and fabrication processes produce less ex-
pensive systolic chips, even in small quantities. Better computer-aided design (CAD) tools
allow arrays to be designed more efficiently.

A digital systolic implementation of connectionist networks greatly speeds up intensive
computations in the networks in terms of data pipelining [57, 29, 58]. Several pipeline
routes can coexist in a network with systolic architecture. The ring-connected PE array
[59] and mesh-connected PE matrix [60] are two example architectures suitable for sys-
tolic implementation. In the realization of a multi-layer perceptron network, the same
architecture is shared by both feedforward propagation and backward error propagation
phases. This greatly suggests the feasibility of a digital design. Compared with analog
neural circuits, the systolic architecture offers better flexibilities, higher precision, and full
pipelinability.

The system architectures for a ring-connected systolic multi-PE system and a mesh-
connected multi-PE system are shown in Fig. 4.2(a) and Fig. 4.2(b). All processing ele-
ments are microcode-controlled and a dedicated controller is used to provide a microcodes
during each clock cycle. The microcodes and addresses for memory accesses can be re-
ceived by the PEs through either a broadcast or a pipelined fashion which is selected by
the multiplexer as shown in the figures. For the ring connection, I/O operations only oc-

cur on the right- and left-most PEs and the system memory is a two-port memory shared
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Figure 4.2: System architecture for systolic networks. (a) 1-D ring-connected
array. (b) 2-D mesh-connected matrix.
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by the PE array. During initialization, every PE stores its local data from the system
memory through local buses shown as dashed arrows. For the mesh connection, each PE
comununicates with its four nearest neighbors and I/O operations occur on the four bound-
aries. In addition, the system memory is a four-port memory shared by the PE matrix.
Similarly, during initialization, local data of PEs come from local buses on the left and
right boundaries of the PE matrix. A PE in the middle columns received its local data
through pipelining. The ring-connected PE array can be considered as a special case of
the mesh-connected PE matrix. Therefore, we can design a mesh-connected PE matrix
which can also perform ring-connected systolic operations.

The system memory receives data from the host computer when a host call is received
by the controller. The host computer serves as the interface between the user and the
systolic array. It provides problem-specific information, such as input patterns, initial
weights, convergence-controlling parameters, etc. The controller specifies and monitors
executions of each PE and also governs data communication between PEs. The controller

has its dedicated memory to store microcodes from the host computer.

4.3 Algorithm Mapping

Various algorithms of artificial neural network applications can be mapped onto the multi-
PE architecture described in the previous section. In this section, mappings of two popular
learning rules, a back-propagation learning in a multi-layer perceptron network (27, 28, 61]
and a self-organizing learning network [38, 39, 40, 43, 44], onto the mesh-connected PE
matrix are described. The mappings are based on an assumption that the dimensions of
available PE matrices are larger than a learning network needed, i.e., a network does not

have to be partitioned into several subnetworks to fit into PE matrices.

4.3.1 Back-propagation Learning

A multi-layer perceptron network can be constructed by using multiple PE matrices as

shown in Fig. 4.3. When a neural system starts to operate, weight values are loaded



from the host computer to the system memory. The weight value wj;’s are then stored
into data caches of PEs through interprocessor pipelining. Equation (2.5) is executed by
the whole PE matrix while equation (2.6) is computed in only one row (column) of PEs.
Figure 4.3(a) shows the data flow during a feedforward phase when the size of the PE
matrix is equal to or greater than the required number of neurons in a layer. The left
block is for operations in the L layer. Incoming data a;(L — 1)’s move downward and
are multiplied by w;;(L)’s. The products move rightward and are accumulated to produce
S;j(L)’s. After the neuron transfer function operation, values of a;(L)’s move rightward
and perform multiplication with wj;(L + 1)’s. The products move downward to form
Sj(L+1)’s. Then, the newly created a;(L + 1)’s proceed to the next layer. When the size
of the PE matrix is smaller than the required number of neurons in a layer. the original
neural net has to be partitioned to let a processing element represents several neurons
to efficiently utilize the existing hardware. A processing element in this case represents
several neurons. All of the information regarding processing element assignment, partition
strategies and data routing are provided by the calling procedure from the host computer.

During the back-propagation phase, each processing element has a value of 1 stored
in the data cache. Equations (2.9) and (2.10) are executed by one column of PEs, while
equations (2.7), (2.8), and (2.11) are executed by the whole matrix of PEs. Figure 4.3(b)
shows the mapping of a back-propagation phase onto the PE matrix. The right block is
for updating weights between the output layer and the hidden layer. The left block is for
updating weights between the hidden layer and the input layer. For a multi-layer neural
network with more than one hidden layer, the left block can be repeated to form multiple
hidden layers.

Calculations of a back-propagation phase start from the right PE block. The error
calculation box generates f;-(Sj(L))’s. The bottom row of PEs calculate §; values and
send them back to the system memory. Then a j's propagate leftward and §;’s propagate
upward. After receiving a; and 6;, a PE calculates Awj; and updates wj; using (2.8).

Notice that the ;s at this block are also the §;’s at the left block. Therefore, before a 6;
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value moves upward from a PE, the PE also calculates é,wy; and accumulates it with the
partial sum of the similar terms from the preceding PEs and moves it leftward. Finally.
the e;’s are obtained at the leftmost column of the PE matrix and is sent through the
error calculation box for calculating é;’s of the hidden layer.

At the left block, §;'s move leftward and a;’s move upward. If there is only one hidden
layer, each PE only performs (2.7) and (2.8). On the other hand, if there are more than one
hidden layer, each processing element has to perform (2.7), (2.8), and (2.11) , to calculate

the 6;’s for the following hidden-layer weight adjustments.

4.3.2 Self-organizing Feature Map

Vector quantization has emerged in recent years as a powerful technique that can provide
large reduction in bit rates while preserving the essential signal characteristics. The map-
ping of the self-organizing learning algorithm for vector quantization onto a PE matrix is

shown in Fig. 4.4 and is described as follows:
1. Input vectors zj, j = 1, 2, ..., k, are sent to k rows of PEs.

2. Weight vectors, which are also called codevectors, ¢;’s, moves downward to perform
distortion calculation E; = d(zj,¢;j). A newly calculated minimum distortion Yj
moves to the right. An index pointer p; indicating the current winner also passes to
the right PE. If the distortion calculated in a PE is the same as the original minimum

distortion, the index pointer will not change its value.

3. After calculations in the first row is completed, p; indicates the unit in the first row
with the smallest distortion. Label this unit as the winner and its weight vector as

ch.
4. Adjust the selected weight vector
ci(r+1) = cjy(r) + e(r)[x1(r) = iy (r)] (4.1)

and write it back into the system memory, where r is the training time index.
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Figure 4.4: Mapping diagram of a self-organizing neural network onto a mesh-
connected PE matrix.

5. Repeat steps (3) to (4) for all the other rows.

Because of pipelined propagation of c;;’s, completion of the j** row will be two clocks later
than that of the (j — 1)** row. The chosen value for the learning rate parameter £(t) does
not depend on the magnitude of the data. The learning rule moves the synapse weight
toward the training vector by a fractional amount. Typically, 0 < £(t) < 1 and the £(t)

value decreases as learning progresses.

4.4 Processing Element Design

Digital electronic implementation of neural networks has four major approaches: the
microprocessor-based approach, the digital signal processor (DSP)-based approach, the
custom-designed neuroprocessor approach, and the dedicated processor approach. The
first two approaches use available processors from the market to build a system. The third

approach uses a custom-designed hardware to perform general-purpose neural computing.
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We can apply this hardware to various applications including digital signal processing,
digital image processing, etc. The last approach is to build a dedicated hardware for some
special neural network algorithms. Table 4.1 lists the comparison of these different ap-
proaches. To achieve a cost-effective design, the third approach is adopted. In this section,
detailed design of a digital VLSI processing element will be discussed from architecture se-
lection to circuit design, and then to physical layout design. Real-world application based

on the designed circuits will be demonstrated in the next chapter.

Table 4.1: Comparison of digital electronic design approaches.

Properties General-purpose DSP-based Custom-designed  Dedicated Processor
microprocessor-based Neuroprocessor
Parallelism Lowest Low High Highest
Flexibility Highest Low High Lowest
Precision Highest High Low Lowest
Programmability Highest Low High Lowest
Integration/Scalability Low High Highest Lowest
Processing Speed Lowest Low High Highest
Design Cycle Lowest Low High Highest
Manufacturing Cost Highest High Low Lowest
Applications General Purpose Digital Signal Various Areas Very Limited
Processing

The existing digital VLSI implementation examples show some common properties.
For example, they all have on-chip learning, on- and off-chip weight memory, generally
not more than 16-bit precision, and arrays of DSP-like processing elements (PEs). The
CNAPS chip which consists of 64 PEs, from the Adaptive Solutions, Inc., is implemented
in a 0.8-um CMOS technology with 11 million active transistors and operates at 25 MHz
(62, 63]. The MA-16 chip and SYNAPSE-X system from Siemens Corporation have 4 PEs
per chip and the maximum clock rate is 50 MHz [64]. An 8-PE digital processor chip from
British Telecom Research Labs uses a 0.7-um CMOS technology and operates at 20 MHz
[65]. The initial design of the SPERT chip from International Computer Science Institute

also contains 8 PEs per chip [66]. A wafer-scale LSI neural network, achieving 2.3 giga



connection updates per second (GCUPS) in peak performance, has been developed by the
Hitachi Central Research Labs [67). The SNAP-G4, which consists of 4 processor boards,
from HNC, Inc. [68] can deliver 2.56 giga floating-point operations per second (FLOPS)
computational performance. Each board includes 4 gate-array chips to implement 32-bit
IEEE floating point operation. Intel announced in 1993 a 3.5 million transistor digital
neural chip for classification based on radial basis functions. The classification rate is 400
patterns per second. A summary table of these existing examples is listed in Table 4.2
[53],[62]-[75].

Image processing applications have the desirable feature of moderately simple oper-
ations, yet they demand high performance and throughput. Furthermore, exploring the
cost and performance trade-offs between different implementations is critical for consumer
products and portable applications, where DSP is being widely used. We are focusing on
the design of the hardware and software for such systems. The digital VLSI processing
element described in this chapter can be efficiently applied to artificial neural networks
with various interconnect configurations such as ring systolic arrays [59], mesh-connected
matrices [60], and cellular neural networks [76, 77] in which the feedforward and learning
operations can be expressed in terms of matrix and vector computations. The networks
can be used for image processing applications. The design result can be extended to wafer-
scale integration (WSI) or multi-chip module technology to achieve machines of small size

and light weight.

4.4.1 Chip Architecture

Figure 4.5 shows the block diagram of the proposed PE. During initialization of the sys-
tolic array, initial parameters of training algorithms in an ANN are down-loaded into the
system memory. Each PE consists of a data cache memory to facilitate data processing.
A multiplier and an adder are main computing units of a PE. The register file provides
temporary data storage. The design is based on the mesh-connected architecture as shown

in Fig. 4.2(b). Each processing element uses the four I/0 ports to communicate with its
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Figure 4.5: Building blocks and bus distribution of a processing element.

neighbors. A total of 145 I/O lines is required for a PE to perform one-direction ring-
connected communication. A memory management unit determines memory allocation
policies which include block replacement schemes, fetch and main memory update strate-
gies. The memory management unit, residing in the controller, is shared by all PEs The
system clock is synchronized for a PE array.

A table-look-up method is used to provide neuron transfer functions. Addresses from
the external address bus are passed through the peripheral address bus to both the data
cache memory and the next PE. The addresses can be either broadcast or pipelined de-
pending on the user-specified instructions from the host computer. High level languages
from the host computer are first compiled into macroinstructions which are sent to the con-
troller. The controller decodes these macroinstructions into microinstructions and broad-

cast them to all PEs via the 43 microcode lines specified as "Mcode” in Fig. 4.5. The
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reduced-instruction set approach has been used in designing the required instruction set.
Our goal is to explore an optimal instruction set through microprogramming.

In order to increase the processing speed, the register bus has been separated into
four bus segments: the REG1, REG2, CPUI, and CPU2. More steps can be overlapped
because they do not occupy the same portion of the bus. A multiplexer is used to multiplex
these four buses into the internal data bus. When data is sent between the data cache and
the register file, the CPU1 bus is used. Figure 4.6(a) and 4.6(b) show the control circuitry
for the data cache to communicate with other blocks through the buses.

For both the multiplier and the adder, one operand comes from either the CPU1 bus
or the REG1 bus, the other operand comes from either the CPU2 bus or the REG2 bus
depending on the addressing mode. The output of the multiplier is sent to the register
file through the REG1 bus and the output of the adder is sent to the register file through
the REG2 bus. Figure 4.7(a) and 4.7(b) show the bus control circuitry of the adder and

registers, respectively.

4.4.2 VLSI Design Considerations
4.4.2.1 Design Process

An initial system-level design based on specification must be first verified by a simulator.
Models of individual functional units created by language constructs are used to simulate
the behavior of the design. After register-transfer language (RTL) level verification is
finished, logic synthesis and logic optimization can be performed followed by gate-level
verification. Timing analysis is an important step to determine the critical path and the
performance of the design. To facilitate product measurement and accelerate design cycle,
test vector generation and fault simulation is also performed in the design stage. Chip
layout can be accomplished by different design styles. Post-layout verification including
design rule checking (DRC) and electrical rule check (ERC) is necessary before a chip
is sent for fabrication. Each step in the design process involves iterative modification to

match design specifications.
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4.4.2.2 Physical Design Style

Currently, the popular integrated circuit design styles are standard cells, gate arrays, and

full-custom design. A comparison of these styles is shown in Table 4.3. Full-custom design

Table 4.3: Comparison of different design styles.

Full Custom Gate Array Standard Cell

Performance 1 3 2
Modularity 3 2 1
Area 1 3 2
Flexibility 1 3 2
Design Time 3 1 2

1: Best; 2: Middle; 3: Worst

usually requires a handcrafted level of automation since the lack of constraints makes
synthesis tools difficult to develop. Design rule checking and verification are mandatory
because of inevitable errors. Full-custom design is very time-consuming. However, it is
used when exploiting a new circuit design technique to achieve high performance goal.
The gate array design style combines the programmable array fabrication method and
the cell-based design method. In this approach, a cell-based design is mapped onto a
prefabricated, two-dimensional array of uncommitted transistors. Gate array foundries
usually fabricate large numbers of wafers containing identical, unwired arrays. These
arrays are then personalized for a particular circuit function by adding interconnection
wires. Several popular floorplans for gate array design are rows, columns, islands, and
sea-of-gates [78]. Row floorplans have routing channels running horizontally while column
floorplans have routing channels running vertically. Island floorplans have routing channels
running both horizontally and vertically. The cell sites form the islands. Sea-of-gates
floorplans either have no routing channels or the channels are small compared to the gates

sites, and wiring must be routed over the cells.
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The advantage of gate array design is clear for prototyping and low-volumn production.
Applying the interconnection layers is a low-risk, inexpensive operation; yields are high
and fabrication time is short. However, for higher volume production, other design styles
are usually more area-efficient and less costly to manufacture.

Circuit design with standard cells is similar to gate array design. Both use cell-based
design methods where the cells are small- and medium-scale integration gates. However, a
circuit designer has an extra degree of flexibility from a full mask set. For a given circuit,
area is almost always smaller compared to gate arrays. Interconnection area is smaller
since the routing and the cells can be positioned to accommodate the specific circuit being
designed. Basic cells are smaller because they do not have to mapped onto a predefined

array of transistors.

4.4.2.3 Logic Style

The choice of using static or dynamic logic is dependent on many criteria. When low-
power performance is desired, it appears that dynamic logic has some inherent advantages
in a number of areas including reduced switching activity due to hazards, elimination of
short-circuit dissipation, and reduced parasitic node capacitances. Static logic circuits

have advantages on reduced charge sharing and elimination of precharge operations [79].

4.4.2.4 Complementary Pass-Transistor Logic

A complementary pass-transistor logic (CPL) gate is constructed by using an nMOS pass-
transistor network for logic function, and eliminating the pMOS latch [80]. It consists of
complementary inputs and outputs, an nMOS pass transistor logic network, and CMOS
output inverters. The pass-transistors function as pull-down and pull-up devices. Thus
the pMOS latch can be eliminated, allowing the advantage of differential circuits to be
fully utilized. One attractive feature of a CPL gate is that complementary outputs are
produced by the simple four-transistor circuits. Because the logic-1 value level of the

pass-transistor outputs is lower than the supply voltage Vpp by the threshold voltage of
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the pass-transistors. the signals have to be amplified by the output inverters. In addition,
the CMOS output inverters shift the logic threshold voltage and drive the capacitive load.
The logic threshold shift is necessary because that of the output inverter is lower than half
of the supply voltage, due to the lowering of the logic-1 value.

Arbitrary Boolean functions can be constructed from the CPL network by combining
the four basic modules: (1) AND/NAND module (2) OR/NOR module (3) XOR/XNOR

module (4) wired-AND/NAND module. The four features are shown in Fig. 4.8. Because

X vy ¥ X X Y ¥ X
Y ¥
¥ Y
XY XY
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¥ z
Y z
XY Xz YZ

Figure 4.8: CPL circuit modules.

inverters are unnecessary in CPL circuits, the number of critical-path gate stages can be
reduced. However, because the logic-1 input value at the regenerative inverters is not Vpp.,
the pMOS device in the inverter is not fully turned off, and hence direct-path static power

dissipation could be significant. To solve this problem, reduction of the threshold voltage
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has proven effective, although if taken too far it will incur a cost in dissipation due to

subthreshold leakage and reduced noise margins [79].

4.4.3 A Design Example

A prototype PE has been fabricated in a 6.19 x 5.46 mm? microchip by using a 0.8-
pm three-metal CMOS technology from Hewlett-Packard Company through the MOSIS
Service of USC/Information Science Institute. The minimum drawn size is 1.0-pm. A
132-pin PGA package is used. A PE chip runs at a clock rate of 50 MHz. In this neural
processing element design, full-custom style has been applied to achieve a higher processing
speed which is very important for neural network applications due to large amount of

training cycles typically.

4.4.3.1 Clock Distribution Scheme

From performance point of view, it is critical to keep skews small and edge rates sharp, so
special attention has to be paid to clock generation and distribution. In the coprocessor
chip design, the master clock is received from an off-chip controller. Therefore. the clock
generation will not be discussed here. The clock distribution goals are to minimize clock
skew, inductive ground bounce, and power consumption. These goals are achieved using
three techniques. The first is maintaining a high degree of synchronous logic throughout
the chip, so only one clock network is needed. The second is driving the network with
one large clock buffer. To reduce effects of inductive ground bounce, the clock buffer is
powered with isolated power and ground pads and isolated with a p*-doped guard ring
[81]. The third is reducing capacitive load on the main clock line. A single-phase flip-flop
with a clock input load of a minimum-sized inverter is implemented.

A highly-regular metal three layout scheme is used to distribute power and clocks across
the chip from the periphery, and clock buffers are placed within unused spaces in power
pads. Both of these techniques minimize die area for power and clocking. To minimize

power consumption, the clock distribution system can selectively power down sections of



the chip when they are not in use by using the clock enable signals [12]. Figure 4.9 shows

the clock distribution scheme used in the design. The clock buffers and routing is balanced

Master Clock Input Nodes
I | Serpentine for RC matching

to global clock driver to global clock driver

local clock enable

local clock enable

Figure 4.9: Clock distribution scheme with selectively power down capability.

by tuning the buffer size and dummy loads are added to the more lightly-loaded phases.
An on-chip decoupling capacitor of 20 nF is distributed throughout the buffer layout to
minimize Vpp/Vss noise when the clocks switch rapidly. Internal clock skew is controlled

to within 1 ns via a combination of matched buffering and low impedance interconnect.

4.4.3.2 Computing Units

The extensive development of high-performance signal processors in the past few vears
has naturally been accompanied by a corresponding development of the mathematical
techniques required for the most efficient use of these processors. With expanding computer
applications, the demand for high-speed processing has been increasing. Higher clock-rate
operation is a key to enhancing system performance, especially in digital signal and image
processing. To satisfy such a demand., many high-speed processing elements have been

developed. A multiplier and an adder are two main computing units in a signal processor.

A. Adder
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Integer addition is the simplest yet the most important operation in the computer
arithmetic because a floating point operation eventually reduces to an integer operation.
Therefore, to increase the speed of integer operation would also benefit floating point
operations. Even for programs which don’t do explicit arithmetic. addition also needs
to be performed for address calculations. The design example presented here is a carry
look-ahead (CLA) adder which has a speed of O(logn).

An n-bit adder can be constructed by using a logic formula whose form is a sum of

products and can be computed by a circuit with two levels of logic. The formula for the

i'" sum bit and carry bit are
si = a;ibi6; + a;biG; + aibici + aibici (4.2)
Ci+1 = a;b; + aic; + bic; = a;bi + (a; + bi)ci = g; + pic; (4.3)

If gi is true, c;y is certainly true, and a carry is generated. Thus. g is for generate. If
pi is true, then if ¢; is true, it is propagated to ¢;y;. ¢; can therefore be expressed as
gi-1 + pi-1ci-1. Recursively expanding equation (4.3) gives the result

Cit+1 = gi + Pigi-1 + piPi-19i-2 + ** + PiPi-1 - P1go + PiPi-1 " * P1PoCo (4.4)

From (4.4), a carry-lookahead adder requires a fan-in of n 4+ 1 at the OR gate as well as
the rightmost AND gate. In addition, the p,_; signal must drive n AND gates.
Improvement can be accomplished by building up the p’s and ¢’s in steps and creating

a simple, regular structure [82]. We have already seen that
€1 = go + copo (4.5)

This says that there is a carry from the 0" position (¢;) when either there is a carry
generated in the 0" position, or there is a carry passed into the QU position and the carry

propagates. Similarly,
2 = (914 p1go) + (P1o)eo = Gor + Porco (4.6)
The general equations for any j with i < j, j+ 1 < k are as follows,

ckt1 = Gik + Pici (4.7)



Git = Gk + Pip14Gy; (4.8)
Py = Py Py i (4.9)

These equations will also hold for i < j < k if we set G; = g; and P;; = p;. A diagram of
the data flow in a 12-bit adder is shown in Fig. 4.10, where the numbers to be added enter
at the top, flow to the bottom to combine with ¢, and then flow back up to compute the

sum bits.
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Figure 4.10: Block diagram of a 12-bit CLA adder.

The two blocks, A and B, shown in Fig. 4.10 consist of two groups of logic functions.
Block A is used to perform (4.2) and (4.3). As shown in Fig. 4.11, three CPL circuit mod-
ules are used: s; bit, XOR/XNOR module: p; bit, OR/NOR module; g; bit, AND/NAND
module. Figure 4.12 shows the circuits in block B, (4.7), (4.8) and (4.9) are performed in

this block. Figure 4.13 shows the irsim (an event-driven logic-level simulator) simulation
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Figure 4.11: Circuits in block A.

results of a 12-bit CLA adder. This adder will be used as the carry propagate adder in a
multiplier which will be described later. The 20-bit CLA adder which is one of the main
computing units in a PE also adopts the CPL technique. The silicon area and speed of
the 20-bit adder is 4,502 x 1,307 jun? and 5.4 ns, respectively.
B. Multiplier

The speed of the proposed PE is determined by the multiplier. In order to increase
the operation speed, the Wallace multiplier is used. Because a Wallace structure can be
separated into Wallace tree blocks, a pipeline procedure can be added and the speed of
the PE can be very high. The circuit technique of complementary pass-transistor logic is

employed to further increase the speed performance. Figure 4.14 is the functional block
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Figure 4.12: Circuits in block B.

diagram of an 8-bit Wallace multiplier. A signal and its complement both have to exist
during computation in order to apply the CPL technique. The partial product generator
produces 64 partial products and their complements from the two 8-bit inputs. The
outputs from the partial product generator then are sent to the Wallace adder array for
performing carry save additions. The final stage is a Carry Propagate Adder (CPA) whose
output is the final product. A detailed description of 8-bit Wallace multiplication is shown
in Fig. 4.15. Six carry save addition (CSA) are performed as indicated by alphabetical
order A through F. The carry generated in each CSA are “saved” and later becomes
the input of another CSA. A 12-bit CLA was chosen to be the CPA necessary in the

final stage of a Wallace multiplier and the adder discussed in the previous section can be
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Figure 4.14: Functional block diagram of an 8-bit Wallace multiplier.
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Figure 4.15: 8-bit Wallace multiplication.

used. The partial product generator can be constructed by using an AND/NAND module.
Figure 4.16 shows the circuit diagram of a 1-bit CSA unit. The result of irsim simulation
is shown in Fig. 4.17. The silicon area of an 8-bit multiplier is 4,206 x 3,066 pm?, and the

speed was measured to be 7.6 ns.

4.4.3.3 Cache Memory

One on-chip cache memory with 256 words of 8-bit data is included in each PE to facilitate
data processing. The on-chip data cache was made of SRAM. Data in the local memory
are communicated to the 64K system memory through pipelining. Sixteen address lines
can be either pipelined or broadcast so that data in the consecutive PEs are stored to
the consecutive words or to the same words of different PEs. Eight memory sub-blocks
constitute the data cache. Each sub-block has 32 word x 8 bit. and has an associative tag

field. Figure 4.18 shows the schematic diagram of the control circuitry of the cache. Bit 5
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Figure 4.16: Circuit diagram of a 1-bit CSA unit.

to bit 7 of the address lines are used to determine which sub-block is used for data access.
Bit 8 to bit 15 will be written to the tag when a data is to be stored in a memory location.
Bit 0 to bit 4 are used to select a location in the cache memory. When a memory location
is to be read, the address lines are compared with the content of the tag.

In case of cache miss, the "hit” signal will trigger the memory management unit to
load the missed data. The circuit diagram of the SRAM with a high-speed current-mode
sense amplifier is shown in Fig. 4.19. The 2.5-ns memory access time and 5-ns cycle time
for 32 words x 32 bits are achieved. Figure 4.20 shows the timing diagram of a 32 word

x 2 bit memory block.

4.4.3.4 Register File

The circuit for the register file is the same as that for the cache memory except that its
address lines are part of the microcodes while the address lines of the cache memory need

to be calculated. Eight 20-bit general-purpose registers are used in a PE.
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Figure 4.17: Result of 8-bit multiplier after running irsim simulation.

4.4.3.5 Input/Output Buffer and Microcodes

Both the input and output buffers are 8-bit single-phase-clocked shift registers. Four input
and four output buffers are employed to facilitate mesh-connected PE matrix architecture.
When a clock arrives, data in an output buffer of one PE is shifted to an input buffer of the
next PE. When bi-directional communication is preferred, additional control signals for
the direction of data flow must be added to control the transfer of addresses, microcodes.

and data.

4.4.3.6 Power Estimation

Estimates of power are required for several reasons: avoiding metal migration in power
and ground routing, and understanding the design trade-off between power versus area
and power versus performance. The power and ground lines are never run in polysilicon
since it has large resistance, carrying considerable voltage drops. The width of the metal
lines is calculated as follows [83]: Calculate the maximum average current drawn by all
the active devices connected to a supply line at the lowest level of the tree. Add these

currents and then calculate the required width of the power and ground lines as follows.
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Figure 4.18: The control circuitry in the cache memory block.

The maximum current rating for a metal line is about 1 mA/um. At the next highest
level of the tree, the width must correspond to the sum of all currents flowing into all its
lower level branches, and so on.

The critical objective in arranging the power supplies is to insure that power bus voltage
noise spikes are small enough so that they have no significant effect on chip operation. In
the frame of the chip, I/O switching is the principal source of noise. This noise was

suppressed through the use of multiple power supply pads. Also, the output drives were
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designed to have only enough drive capability to meet external requirements. Excess drive

capability tends to make noise problems worse and must be avoided [84].

4.4.3.7 Layout Design

The layout of the PE chip was generated by the Magic layout editor from University of
California, Berkeley for maximum design flexibility. Additional capacitors were added
between the power and the ground lines in any open space in order to decrease the power-
on spark and switching glitches. In the prototype PE design. the data bus is 8 bits and
the address bus is 16 bits. If the 16-bit accuracy is needed for some applications, two
bytes of data will be sent consecutively. The floorplan of a PE is shown in Fig. 4.21. The
die photo of the single PE chip is shown in Fig. 4.22. By arranging the PE layout in a

ring-connected array architecture, a 20-PE chip is estimated to occupy a silicon area of
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2.09 x 1.93 em? by using a 0.5-yum CMOS technology, and to achieve a speed of 2 billion
calculations per second. A more compact layout can be designed by using advanced design
automation tools, and a 35-PE array can be accommodated in the same area. The relative
performance of the proposed multiprocessor chip and the performance requirements of
the Grand Challenges on High-Performance Computing [19] are shown in Fig. 4.23. The
speeds of the single-processor/superpipelining Alpha chip from DEC [8] and the TMS-

320C40 DSP chip from TI [13] are also shown. Table 4.4 summaries the characteristics of
a PE.
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Figure 4.21: Floorplan of a PE.

Table 4.4: Characteristics of a PE.

Design Rule

Chip Size

Operating Frequency
Transistor Count
Supply Voltage
Power Dissipation
Accuracy

No. of I/O

Design Style

Signal Representation

Data Cache

HP 0.8-um CMOS, 3-metal

6.19 mm X 5.46 mm

50 MHz (Simulated)

42K

3V

625mW@sV

8 bits and 16 bits

145

full custom design

digital

256 word per PE




e i el S

........... el
e b st s i ﬂ'[ ’ ll [ |
== T T Il -1 i :

I
o e
B e yeliad

L(—
[I,C
g@ _
Ol k ¢
un
o
Ul
[T
—J—|-—~._
“hnﬂn_“"‘; oW e ke e e=s OB

] It
it I |
o =] =

gocoococoooee:

ISl
L -

Figure 4.22: Die photo of the single PE chip fabricated by a 0.8-ym CMOS
technology.
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Chapter 5

Neural Network Applications

The neural processing element design described in the previous chapter can be connected to
form a multi-PE array to assist processing for a symbolic processor. A symbolic processor
accesses data from different resources, such as digital data from its cache memory. the
main memory and the disk memory. In addition, it can also receive processed data from an
optical neural network processor, or an electronic neural network processor. The electronic
neural network processor can consist of some digital multi-PE chips and analog front-end
neural network chips. The results from the symbolic processor can be used as control
signals. Figure 5.1 shows the schematic diagram of an integrated intelligent-processing

system.

Al Processing

Symbolic Processor Fuzzy-Logic Inference
| Machine Intelligence
Cache Memory

Main Memory

| Digital Multi-PE
+ Neural Chips
Motion Disk Optical Electronic

Controller Memory Neural Network Neural Network

Preprocessor Preprocessor Analog Vision Chips
@f\ — Motion Detection
— Segmentation
etc.
e o 8

Figure 5.1: Architecture of an integrated intelligent processing system.



The artificial neural networks have made significant impacts in pattern recognition,
classification, image analysis. system modeling, plant control, optimization. and robotics.
This chapter describes the usage of a 20 ring-connected PE chip for both the back-
propagation learning rule and the self-organizing feature map. The instruction set for
neural network algorithms has been created and is listed in Table 5.1. The instructions
are based on the 43 microcodes mentioned in chapter 4. Detailed functions of the mi-
crocodes are shown in Table 5.2.

There are four instructions IN, OUT, INOUT and PIPE for inter-PE communication.
All the other instructions are for intra-PE data manipulation. The four instructions ADD.
SUB, MUL and MOV can be used for different numbers of operands. The two. or three
operands of these four instructions come from either the local cache memory or from the
register. Every instruction can be set by the controller to be either pipelined or broadcast

to a PE array.

5.1 Printed Character Recognition

Suppose there are m layers in a neural network and the number of neurons in the i*
layer is n;. Let the maximum number of n;’s be N4z, then n,,., is the number of ring-
connected processing elements. If ny,q, is too large, each processing element represents
several neurons in the same layer [59].

During initialization, the synapse data and bias values are stored into the PEs by
setting PIPE, INOUT and LDM instructions to be broadcast. The learning ratio is stored
in every PE by setting PIPE, INOUT, and LDM instructions to be pipelined. Commands
are pipelined during the feedforward phase of a neural network. The instructions for one

neuron are shown as follows,

CLR ri1

ADD  M(addry), ri /* add the bias value */
Loop-1:

PIPE

INOUT



Table 5.1: A compact instruction set for artificial neural networks.

Instruction Functions
IN Sin — InBuf
ouT OutBuf — Sout
INOUT InBuf — OutBuf
PIPE Sin — InBuf,

OutBuf — Sout

ADD m1, r2 mil+r2—-r2
ADD 1, r2 r+r2—-r2
ADD m1, m2, r3 mi1+m2 —r3
SUB m1, r2 mil-r2 -r2
SUBr1, 2 rn-r2—-r2
SUB m1, m2, r3 mi1-m2 —r3
MUL m1, r2 mixr2—r2
MUL r1, r2 rxr2—-r2
MUL m1, m2, r3 mi1+m2 — 3
MOV r1, r2 rn—-r2
MOV m1, r2 mi1 - r2
MOV r11, m2 ri - m2
CLR r1 0—-rl
LDM m1 InBuf — m1
LDR r1 InBuf — r1
SRM m1 m1 — OutBuf
SRR r1 r1 — OutBuf
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Table 5.2: Descriptions of the 43 Mcodes.

Name Functions
Sna the select signal for connection between a register bus and operand A of the multiplier
Sms the select signal for connection between a register bus and operand B of the multiplier
Emit the signal to enable the multiplexer of the register buses for data transmission to the multiplier
Emi2 the signal to enable data to the operands of the multiplier
Emw the signal to enable memory write from the internal data bus
Emici the signal to enable connection from the internal data bus to the CPU1 bus
Emte2 the signal to enable connection from the internal data bus to the CPU2 bus
Eciim the signal to enable connection from CPU1 bus to the internal data bus
Ecom the signal to enable connection from CPU2 bus to the internal data bus
Eioim the signal to enable connection from the input buffer to the intemnal data bus
Emtio the signal to enable connection from the internal data bus to the output buffer
Eior the signal to enable connection from the input buffer to the peripheral data bus
Ejow the signal to enable connection from the peripheral data bus to the output buffer
Ep the signal to enable loading of the result of the multiplier to the REG1 bus
Saa the select signal for connecton between the register buses and the operand A of the adder
Sas the select signal for connection between the register buses and the operand B of the adder
Eaj the signal to enable the multiplexer of the register buses for data transmission to the adder
Ea the signal to enable data to the operands of the adder
Eg the signal to enable loading of the result of the adder to the REG2 bus
Sg the signal to enable subtraction
ARO register address decoding line
AR1 register address decoding line
AR2 register address decoding line
Ry register decoder enable line
Eiry the signal to enable data from the REG1 bus to a register
EoRy the signal to enable data to the REG1 bus from a register
Eirz the signal to enable data from the REG2 bus to a register
Eopo the signal to enable data to the REG2 bus from a register
Eicy the signal to enable data from the CPU1 bus to a register
Eoct the signal to enable data fo the CPU1 bus from a register
Epy enable the first level decoder
Epz enable the second level decoder
Seqr the precharge signal for reading data from the register
Eny the write signal for the register
Seqm the precharge signal for reading data from the memory
Eceorn the signal to enable tag comparison
Seqt the precharge signal for reading data from the tag
Epy the write signal for the tag
Eaddin the signal for receving address
Eaddout the signal for sending address
a1 clock 1 for address transmission
$az clock 2 for address transmission
Odata clock for data transmission




LDR r2
MUL  r2, M(addry), r3 /* synapse multiplication */

ADD r3, rl
JNZ  Loop-1, countl /* loop handled by the local controller */
SRR i

According to the back-propagation learning rule, the instructions for the PEs are de-
scribed as follows,
(1) Output Layer:

By setting instructions to be broadcast. the desired output data are piped into the
PEs. The differences between the desired data and the actual output data are calculated.
Synapse weight values are updated by applyving the following procedure and setting all

instructions to be pipelined:

PIPE /* pipe in the previous output data of

neurons in the (m— 1)*® layer =/

INOUT

LDR ri1

MUL r1, r2 /*input data multiply the difference value
between the desired output data and the
actual data */

MUL  M(addr;), r2 /* multiplied by the learning ratio */

ADD  M(addry), r2 /* added by the old synapse data */

MOV r2, M(addr) /* update the synapse data */

(2) Hidden Layer:

By setting MUL and SRR instructions to be broadcast, the propagated error from each
synapse connection is calculated. The summation from each propagated error is performed
by setting PIPE, INOUT, LDR, ADD, and SRR instructions to be pipelined into PEs.
The synapse updating procedure is the same as the one shown previously in the section of
the output layer.

As an example, a neural network which contains G4 input neurons, 20 hidden neurons.

and 5 output neurons is selected. nyqr is 20 in this network and therefore the network



can be implemented by 20 PEs in the form of linear array. Each PE contains 64 svnapse
values. After 1,000 iterations, 30% of instructions are for input/output operations. In
the feedforward phase, both SUB and MOV instructions are not used. The profile of the
instruction set for the 3-layer neural network using back-propagation learning is listed in
Table 5.3. Figure 5.2 shows results of applying this network to recognize five characters.

Table 5.3: Profile of the instruction set for a 3-layer neural network using
back-propagation learning rule after 1,000 iterations.

Profile Feedforward Feedforward & backward training
Instruction Number Percentage Number Percentage
PIPE 125,406 24.64% 825,406 30.44%
INOUT 125,406 24.64% 825,406 30.44%
LDM m1 87 0.02% 1,087 0.04%
LDR n 84,000 16.51% 288,000 10.62%
CLR n 2,000 0.39% 22,000 0.81%
ADD ** 86,000 16.90% 270,000 9.95%
SuB ** 0 0 1,000 0.04%
MuL ™" 84,000 16.51% 272,000 10.03%
SRR 1 2,000 0.39% 122,000 4.50%
MOV ** 0 0 85,000 3.13%
Note : The neural network contains 64 input neurons, 20 hidden neurons, and
5 output neurens.

=+ A collection of similar instructions

Each character is represented by a 8 x 8 frame which consists of 64 binary values. After

training the 3-layer network for 1,000 times, each character can be recognized as one class.

5.2 Image Compression

Self-organizing feature map is a two-step procedure that couples the feedforward process
with the learning process in a two-layer neural network. The network consists of an input

layer and an output competitive layer. In the competition process, only the synapses
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Figure 5.2: Application of the back-propagation network to printed character
recognition. 1,000 iterations were performed during training.
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connected to the winning neuron are to be modified by the training sample. The number
of neurons in the competitive layer can be the number of the ring-connected processing
elements. If the number of neurons in the competitive layer is too large, each processing
element can be arranged to represent several neurons.

The synapse data are first stored in the PEs by setting PIPE. INOUT. and LDM
instructions to be broadcast. The network is then feedforward propagated by setting all
instructions to be pipelined. The procedure for one PE in the feedforward operation are

shown as follows,

CLR r1
Loop-2:
PIPE
INOUT
LDR r2
SUB  M(addry), r2 /* synapse data minus the input data */
MUL  r2, r2 /* square the difference */
ADD r2, ri /* accumulate the squared difference */

JNZ  Loop-2, count2 /* controlled by the local controller */
RR

By using broadcast instructions, the learning ratios are piped into the processor array.
The learning ratio of the winning neuron is nonzero while all the other neurons are zero.
The synapse values associated with this winner are updated. The following procedure

updates the synapse value and is pipelined.

Loop-3:
PIPE
INOUT
LDR rl
SUB  M(addry), ri /* synapse data minus the input data */
MUL r2, ri /* multiplied by the learning ratio */
SUB  MC(addry), ri /* subtracted by the synapse data */
MOV r1, M(addry) /* update the synapse data */

JNZ  Loop-3, count3 /* controlled by the local controller */

oo
o0



Table 5.4 lists the profile of the instruction set for the neural network using self-

organizing learning rule. The network topology consists of 16 input neurons, and 256

Table 5.4: Profile of the instruction set for a self-organizing network after 4,096
iterations.

Profile Feedforward Feedforward & network training
Instruction Number Percentage Number Percentage

PIPE 1,921,024 26.11% 2,068,480 2591%
INOUT 1,921,024 26.11% 2,068,480 2591%
LDM m1 208 0.003% 208 0.003%
LDR 1 851,968 11.58% 921,600 11.55%
CLR n 53,248 0.73% 53,248 0.67%
ADD ** 851,968 11.58% 851,968 10.67%
SuUB ** 851,968 11.58% 983,040 12.31%
MuL ** 851,968 11.58% 917,504 11.49%
SRR 53,248 0.73% 53,248 0.67%
MOV ** 0 0 65,536 0.82%
Note : The neural network contains 16 input neurons, and 256 output neurons.

** A collection of similar instructions

output neurons. After 4,096 iterations, 25% of the instructions are for input/output op-
erations. In the feedforward phase, the MOV instruction is not used since there is no
synapse updating operation. When mapping this network to the 20-PE chip, 16 active
PEs are for operation and 4 PEs are reserved for fault tolerance. Each PE represents 16
output neurons.

Figure 5.3 shows the result for applying the self-organizing network to vector quanti-
zation. Sixteen input neurons are used to represent the 4 x 4 window vector, 256 output
neurons represent the codebook. The 256 x 256-pixel Pepper image needs 4,096 iterations

for the codebook training to achieve a mean-squared error of 155.
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(b)

Figure 5.3: Image compression on the multi-PE chip using a self-organizing
neural network. (a) The original image. (b) The reconstructed image.
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Chapter 6

Impact of Dissertation Work and Future Directions

Artificial neural networks provides solutions to certain complex problems. However, for
time-critical applications such as real-time signal and image processing. the highly parallel
neural network architectures must be implemented in parallel hardware in order to be
real-time. The overall objective of this research was to develop and demonstrate a parallel
neural network hardware with the ability of learning from examples.

Under the environment of accessing available technologies, a digital VLSI neural pro-
cessing element has been designed. This processing element can be cascaded to achieve
higher degree of parallelism. The design is based on a full-custom design approach to create
high-speed modules by dint of hardware-software codesign. A prototype chip was fabri-
cated through the MOSIS service of USC/Information Science Institute by using a 0.8-um
CMOS technology. The chip allows us to demonstrate possible embeddable neuropro-
cessors which offer orders-of-magnitude speed enhancement in the required functionality.
Furthermore, some of the hardware technology can be transferred to the industry.

At every step of the research work, significant results were documented and presented to
the research community in the form of referced publications and conference presentations.
Also presented at the end is a list of publication which has resulted from the work carried
out as a part of this research.

In future research, further investigation and understanding of brain functions can be
conducted, and thereby creating better neuron models to solve problems of massively par-

allel processing. A flexible representation system of information from raw sensory data
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such as visual images and auditory signals to high-level symbolic languages can also be
investigated. Efficient neural network architectures and new hardware design techniques
need to be explored further for large-scale real-world applications. Building resuable soft-
ware and hardware modules can help the goal of creating one-million-unit neural networks
to interact with external environment and to change structures adaptively In consider-
ation of constructing an intelligent machine, besides neural networks, several hardware
and software issues are involved including methods of massively parallel computing. logic
and fuzzy programming, device and packaging technologies, and low-power design. Fur-
ther, optical interconnection through optical fiber or optoelectronic components provides

another scheme for intelligent inference machine and information processing system design.
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