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Abstract

In this report, we present the results from a number of signal processing approaches to
analyzing hydroacoustic data measured in test internal launchway flows. The ultimate
goal is to establish features of the data that allow their reliable classification
into one of two categories, namely hydrophone data from a smooth section of
the flow or from the section of the flow near a slot, as these are described in
the report. We applied classification algorithms based on a variety of signal processing
concepts, including modeling via second-order autoregressive equations, power spectrum- and
polyspectra-based features, cepstral feature extraction based on third-order statistics, and
modeling with symmetric, alpha-stable (SaS) distributions. In our analysis, we examined
the transient flows (first half of each data set) separately from the steady-state flows (second
half of each data set) and for each one we established reliable classification features. In
particular, we found that the coefficients of a second-order autoregressive model as estimated
via Gaussian maximum likelihood methods are features providing clear classification power
between smooth and slot section section flow data. However, part of the classification power
is lost if the autoregressive model estimates are obtained via Yule-Walker equations or their
generalizations. It is noteworthy, that improvement was observed in the Yule-Walker approach
when fractional, lower-order moments were employed. The power spectrum was another
feature that allowed data classification, as was the phase of the bispectrum. In particular, it
was observed that wide main lobes in the power spectrum or significant low frequencies in the
phase of the bispectrum corresponded to flow data from the slot section, while narrow main
lobes in the power spectrum or significant high frequencies in the phase of the bispectrum
corresponded to flow data from the smooth section. On the other hand, the magnitude of the
bispectrum did not provide clear classification power. Similarly, the cepstral parameters did
not provide clear classification power either. As a conclusion, high classification power
was provided by the Gaussian maximum likelihood estimates of the parameters
of a second-order autoregressive model and the phase of the data bispectrum.

*This work was supported by the Office of Naval Research under the ONR/SIPI Cooperative Research Program,
contract NO0O14-91-J—1021.



1 Introduction



16 June 15¢&4
MEMORANDUM

TO: George Tsihrintzis, USC / Max Nikias, USC
FRCM: J. Hlllenbrand, Ccde 38322, Naval Undersea Warfare Cencax,
Division Nawport, Newpor:, RI

SUBJ: Slct Flow Noise Experiment

Scott Hassza- (Code 8322) recently finisked conducting slot £
noisea experiments in the NUWC Transient Flow Locp Facilit ty !
attached :;:"Te,. Two tast sections wers used in the exper:is
1} a smeceth test section smoothly transitioni—mg from a 12 =
diameter pipe o & 6 inch diameter pipe and 2) & slot test
saction. The test sectisns were lccated docwnstream of the
rectangulaxr test section 2f the Flow Lcop Facilizy. Schematics
of both test sections are shown in the attached Zigurss.

The flow is ccmputer controlled. The computer concrols the
operation oI a control valve located abeve the control roem.

Flow rate 1s measured by an electrcmagnetic flow meter lozats< irn
the control room. Steady state flow conditions are obtained kv

e

operating the pumg at some parcentage of full pump speed and with
the contro. valve held furlly open. Two types oI transient flow
canditions z2re obtained bv 1} operating the pump at full speec
with the valwve initially held closed; the flow rate is contr
througn the transient valwe positions and 2) holding the va
fully open; the flow rate is controlled by transient pump ¢
ransient data includes acceleration, accustic and Zlow

meZsursmentcs.

Datea sets fcr the two types of transisnt accelerztions ars
available; vaive controlled anc metor controlled. The fellowirng
liszs ths filss that will ke sent (zl1ll measurements were taksn
near the beginning of the 6 inch tes:t sectian as notsd in the

rma

figures):
Smeccoth Test Section

Binary Data filss, 3 ensembles each (total of 18 files), fs5=32783
1/sec

1} Valwve controlled
- velccity: TRVVZLL1.BIN, TRVVELZ.2IN, TRVVEL3.BIN

- hvércpaona: TRVEYDL.BIN, TRVHYD2.23IN, TRVHYD3.BIN
- accelerzticn: TRVACCL.BIN, TRVACC2.BIN, T=VACC3,BIN

2) Motcr cocntrolled
- velccity: TRMVELL.BIN, TEMVELZ.BIN, T=RMVEL3.RIN
- hvdrcrghorne: TRMHEYDL1.BIN, TREMEYLCZ.BIN, TRMHVYD3.BIN
- acceleration: TRMACC1.BIN, TRMACCZ.BIN, TEMACC3.BIN
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Slot Test Section

Binary Daca files, 3 ensemblas each (total of 18 Filss),
1/sec

1) Valve controlled
- velocity: TRSVVELZL.3IN, TRSVVELZ2.BIN, TRSYVEL3.BIN
- hydrophone: TRSYVHYD1.BIN, TRSVHYD2.BIN, TRSVHYD3.BIN
.- acceleraticn: -TRSVACCL.BIN, TRSVACZ2.BIN, TRSVACCI.EBIN

2) Motor coantrolled

- velacity: TRSMVEL1.BIN, TRSMVEL2.BIN, TRSMVELJ.BIN
- hydrophone:  TRSMEYC1.BIN, TRSMIYD2Z.BIN, TRSMHYD3.ZE-N

- accelexation: TRSMACCL BIN, TRSMACC2.BIN, TRSMACCI.BII

The birary datz files wers created to be rsad intc MATLAR. Th
files wers written by a PC (IEEE Little =Zzdian formac) using 32
kit fleating Deint values.

The Zcllowirng ars the first .0 nurbers of TRVVELL.BIN

.70246708352097
.8275€63288137408
.943037C88€75527
.914315249033737
.8949238061504¢%
.78907257318457
.7408583826200¢
.88530087471008
.962283670802258
.323782302608453

DO OOOOOoOOo0n

Let me know when vou haves a zomputer account set up; zTien T wi!
transfer them using FTP.

Thank you for your interest in analvzing the data. We wou‘ﬂ'
interested n seeing any rasults that you get. I will be goi
on vacation June 27 throuch September 6, 1994. I yvou would
to abtain any more ﬁnforma-lcq or discuss the ewuerlment during
this time periocd; please corzact the follewing peopl

Sceott Hassan, Code 8322 (401) 341-3131 xis2
emzil: Hassan@Coded3.nuwc.npT.navy.mil

or
Jim Gutkowski, Code 82322 (401) 841-7210 x122

met Hillenbrand
01) 841-7210 x162
//email: hillenbrand@CodeB83 .nuwc.npt.cavy.mil

<

cc: Dr. Kam Ng ONR 334
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2 Description of Methods for Analyzing the Real Data Sets

In this section, we briefly describe the various methods used to classify the given test data

(smooth and slot tests). Note that we let {y(k)} denote the given data sequences.

2.1 Second-Order AR Models

Assuming that we are given a set of measurement data {y(k), £k = 1,2,..., N}, we want to

model it with an autoregressive (AR) model of order two:
y(k) = —ar y(k = 1) = az y(k - 2) + w(k) (1)

where {a,, m = 1,2} are the AR parameters and {w(k)} is an i.i.d. random input process. Note

that N > 2.

2.1.1 AR Coefficient Estimation Using Gaussian ML methods

We can rewrite Eq. (1) as

2
w(k) =Y amy(k—m) k=3,4,...,N (2)

m=0
where ag = 1. When the order of an AR model is p and the distribution of the input sequence

{w(k)} is fu(w), the likelihood function for estimation of the AR coefficients becomes

(a) = fu(w(p+1)|a) fu(wlp+2)|a) - fu(w(N)]|a)
= fu() amylp+1-m) fu(D amy(e+2-m)) - fu(D amy(N —m)). (3)

m=0 m=0 m=0

Equivalently, the log-likelihood function becomes

N N P
L(a) = z In f,(w(k) |a) = Z In f(z an y(k —m)) (4)
k=p+1 k=p+1 m=0 .
where a = 1, a, a3, ..., g, ]T. The ML estimate & of the parameters a is the corresponding

values at which the likelihood or the log-likelihood function reaches its maximum [Anderson,

1971; Brockwell and Davis, 1987].

Assuming that the input is a zero-mean, white Gaussian process with distribution

w2
fw(w) = \/é—ir? exp {"ﬁ} (5)




where ¢? denotes the variance of the random process {w(k)

}, we estimate the AR coefficients

and the variance of the input random process using the Gaussian likelihood. Note that o2 is

independent of the AR parameters. Then, the log-likelihood function can be expressed as

)

Ly(a,0%) = —Zln\/?'ra z 557
- 2) nvarE - 3 BV

k=3
where
y(k) = [y(k),y(k - 1),y(k-2)]".

a=[1,a1,ag]T and

The ML estimate of the variance o2 satisfies

dL,(a,0?) N=2 1 . 1% 1%
et =3 m s () =0
=3
and, thus, becomes
-2 1 2
6’ =5 > (a"y(k)

The ML estimate of the AR parameter vector a satisfies

N
Y vk y(k)Ta
3L9(a, 0‘2] _ k=p+1
Jda 202

=0.
We can rewrite Eq. (9) in a vector-matrix form as
My-a=-V,

where M, and V, are the 3 x 2 matrix and the 3 X 1 vector, respectively, given by

- pe ; i .
> y(k)y(k-1) > y(k)y(k—2) > v3(k)
k=3 k=3 k=3
N N N
M, = > k-1)  Yyk-yk-2)| V,= Z y(k = 1)y(k)
k--p-}-l k=3
N
Z y(k - 1)y(k-2) > yik-2) Z y(k — 2)y(k)
| k=p+1 k=3 J | k=3

Let & = [, a2 )7 be the least-squares solution to the overdetermined system of Eq. (10):

a=-(MIM,)" MI VI

8

(9)

(10)

(11)

(12)



The lower rank approximation via singular value decomposition (SVD) may also be used in Eq.

(12).

2.1.2 AR Coefficient Estimation Using the Normal Equations

An alternative method to estimate the AR coefficients (order p) is to use the least-squares

solution to the “normal” equations given by
P
z am c2(f—m) =0, £>0 (13)
m=0

for a second-order statistics—based method, where c;(-) is the autocorrelation function of the

measurement; and

P
> amecs(l—m,p)=0, £>0 (14)

m=0

for a third-order statistics-based method, where ¢c3(-, ) is the third—order cumulant function of
the measurement. Note that the AR identifiability condition requires that p = go — p,.. ., qo, for

any goand £ =i+ 1,...,1+ p, where z > 0.

2.1.3 Generalized Yule—Walker Equations

When it is assumed that the input sequence {w(k)} is i.i.d. symmetric a-stable (SaS) random
variables of characteristic exponent & and dispersion v, the stationary process {y(k)} in Eq. (1)
is SaS [Shao and Nikias, 1993]. Note that {y(k)} and {w(k + j)} are independent for any
j > 0. Taking the conditional expectation of both sides of (1) given {y(m)} result in, for
k—2<m<k—1,

E{y(k)ly(m)} = —a1 E{y(k - 1)ly(m)} — a2 E{y(k - 2)|y(m)} (15)

since E{w(k)|y(m)} = 0 if {w(k)} and {y(m)} are independent. Since {z(k)} is stable and
stationary, we have

E{y(k+0ly(k)} = A(€) y(k) (16)
where A(0) = 1 and A(£) is the covariation coefficient of y(k + €) with y(k) defined by

E{y(k +¢) y(k)<P~1>}

E(v(®) ) ()

A(0) =




for any 1 < p < a. In Eq. (17), the operator < - > is defined as
y<*> =|y| - sign(y) (18)

where sign(-) is the signum function. We can therefore, obtain the following system of linear

equations:
Cyr-a=—p) (19)
where
C, = A(0) A(-1) ’ 4 A(1) , e | 4 | (20)
A1) A(0) A(2) as

It is called the generalized Yule-Walker equation that is a direct generalization of the Gaus-
sian Yule-Walker equation. The covariation coefficients can be estimated by several methods:
fractional lower-order moment (FLOM), screened ratio (SCR), or least-squares (LS) estimators.
However, it has been found that the generalized Yule-Walker equations using FLOM or LS esti-
mates result in consistent estimates for the AR coefficients [Nikias and Shao, 1993; 1995] when

the output sequences are not independent.

2.2 Power Spectrum and Polyspectrum Estimation

Spectral analysis is a signal processing method that characterizes the frequency components
of a measured signal [Marple, 1987]. The power spectrum is defined as the Fourier transform
of auto—correlation function and the bispectrum is defined as the Fourier transform of third-
order cumulant function. The Fourier transforms of higher-order cumulant functions are called

polyspectra.

2.2.1 Power Spectrum Estimation

Among a lot of methods for estimating the power spectrum of a process, we use the conven-

tional Blackman—Tukey method described by
S(f) = F{ez(m) * W(m)} (21)

where S(f) denotes the power spectrum estimation, W (m) is a window function, and {cz(m)} is

a biased estimate of the auto—correlation function obtained by

ea(m) = 3 3 y(k) y( + m). 22)
k

10



2.2.2 Bispectrum Estimation

The bispectrum of a process is defined as the Fourier transform of its third—order cumulant
(moment) function when the process is non-Gaussian and has a non-symmetric distribution.
For bispectrum estimation, one of the direct and indirect estimators described in [Nikias and
Petropulu, 1993] can be used. Here we describe the direct bispectrum estimator. When the
sampling frequency is f, and the required spacing between frequency samples in the bispectrum
domain is A = f;/Np, with Ny is the total number of frequency samples, the direct bispectrum
estimator is given by

By(fi, fa) = % Y(A)Y(£) Y*(fi + fo) (23)

where {Y(f;), i = 1,2} is the Fourier transform of the process. If we have independent measure-
ments of the process or use data segmentation technique, after estimating bispectrum for each

measurement (segment) the final bispectrum is estimated by averaging:

L
By(fi, 1) = 53 3 YOUR) YO(R) YO (fi + 1) (24)

=1

where L is the number of blocks.

2.3 Cepstral Parameter Estimation Using Third—Order Statistics

Let us consider an autoregressive moving average (ARMA) sequence {y(k)} whose z-transform
is give by
Y(2)=Az"I(z"') O(2) (25)

where I(z7!) and O(z) denote the minimum and maximum phase components, respectively.
Then the bicepstrum is defined as the inverse 2-D z-transform of the log—bispectrum [Nikias and

Petropulu, 1993]. The z-transform of bicepstrum satisfies

Z{ba(m,n)} = log | A%| +log I(:7") +log I(z5") +log I(z - z2)
+ log O(z1) +log O(z2) 4+ log O (27! - z371) (26)

where {bx(m, n)} is the bicepstrum. Then, the relationship between the bicepstrum and the com-
plex cepstral parameters A(™) and B(™) is given in [Pan and Nikias, 1988; Nikias and Petropulu,

1993], where A(™) and B(™) are cepstral parameters containing information about the minimum

11



and maximum phases. Using partial differentiation with respect to 2; or z;, we can obtain a
direct relationship between the cepstral coefficients and the third—order statistics:

—ney(n8) = E:@wmdn—ga~qm+ae+m

i=1

+ BO[e3(n — i, £~ i) — c3(n +1,0)]}. (27)

Using a finite sum and an overdetermined system of equations, we can obtain the cepstral pa-
rameters.

An alternative method is based on 2-D Fourier transform operation and is given by

where F2{-} and F;'{-} denote 2-D forward and inverse Fourier transforms.

2.4 Parameter Estimation of S&S Random Process

Let {y(k), k = 1,2,..., N} be observed independent realizations of a SaS random variable
Y of unknown characteristic exponent ¢, location parameter §, and dispersion y. We attempt
to estimate the exact parameters of the SaS distribution of Y from the observed realizations.
The estimation procedure we propose has a hierarchical rather than a simultaneous structure, as
explained in the subsequent sections. More details on the rationale behind these estimators and

on their performance can be found in [Tsihrintzis and Nikias, 1994].

2.4.1 Estimator of the Characteristic Exponent

For the estimation of the characteristic exponent « of the probability density function (pdf),
we propose the following algorithm. Consider a segmentation of the data into L nonoverlapping

segments, each of length M = N/L:

{y(1),y2),...,uNM) }={y(1),¥(2),...,¥(L) }, (29)

where y(€) = {y((¢ - 1)N/L + 1),y((¢ - 1)N/L + 2),...,y((N/L) }, £ = 1,2,...,L. This
segmentation is done arbitrarily for the time being and the reason for considering it will become

apparent momentarily. Optimization of the segmentation is a topic of present and future research.

12



Let J, and y, be the maximum and the minimum of the data segment y(¢). We then define

Iy = lOg 5"{ (30)

z, = —log(-y,) (31)

and the corresponding standard deviations

L
1
= _r - 2
5 \ 71 ;(:cg z) (32)
1 L
- a2 — )2
s = ToTx®-d (33)
where
T=—) T z=7) z. (34)
L= L

With these definitions in mind, the estimate for the characteristic exponent a of the SaS pdf

takes the form
T 1 1
y=——=|=-+—-]. 35
=5/ (§+§,) (26)

2.4.2 Estimator of the Location Parameter

For the estimation of the location parameter é of a SaS pdf, we propose the use of the sample

median of the observations, i.e.

§ = median {y(1), ¥(2), ..., y(N)} (36)

where the sample median is defined as follows: If the sample consists of an odd number N of
observations, the median is defined as the center order statistic. If the sample consists of an even
number N of observations, the median is defined as the average of the two center statistics. The
sample median forms the maximum likelihood estimate of the location parameter of a Laplace
(double exponential) distribution and, therefore, enjoys all the properties of maximum likelihood
estimators in that case. Its performance as an estimator for the location parameter § of a SaS

pdf is very robust.

13



2.4.3 Estimator of the Dispersion

For the estimation of the dispersion v of a SaS pdf, we propose the following estimator which

is based on the theory of fractional lower order moments of the pdf:

N R afp
N> ly(k) =6
P k=1
= T cwa o
where C(p, @) has been defined as
Olp,8) = —po 2% (38)

cos(3p) TI'(1-p)

and the choice of the order p (0 < p < %) of the fractional moment is arbitrary.
As we can see, the dispersion estimator requires knowledge of the characteristic exponent and
the location parameter of the SaS pdf. Thus, the dispersion estimate must be computed after

estimates for the characteristic exponent and the location parameter have been obtained.
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3 Experimental Results

We divided each data file into two parts and applied all the methods for data classification.
The first part contains the data samples from 1 to 65,000 and the second one contains the data
samples from 65,001 to 130,000. Note that the total number of data samples in each file is 131,072.
Then, each data part was divided into 13 segments so that each segment contains 5,000 samples
without overlapping except for estimation of the bispectrum and the cepstral parameters. When
the estimates of the bispectrum and the cepstral parameters were obtained, each part was divided

into several segments so that each segment contained 500 samples without data overlapping.

3.1 Second—-Order AR Models

3.1.1 AR Coefficient Estimation Using the Gaussian ML Method

When the data pair is trvhydl (smooth) and trsvhyd1 (slot), the plots of the estimated
AR coefficient clusters and the estimated variances obtained by the Gaussian ML method are
shown in Fig. 1 and Fig. 2, respectively. For the smooth section test data, it is observed that the
corresponding clusters are located at the upper-left corner of the figures. On the other hand, the
clusters from the slot section test data are in the lower-right corner of the figures. The estimated
variances from the smooth section test data begin to increase from segment number three, while
those from the slot section test data noticably increase from segment number six or seven. Also,
note that the former variances increase slower and are less than the latter variances.

Fig. 3 and Fig. 4 illustrate the clusters of the estimated AR coefficients and the estimated
variances for the data sets trvhyd2 and trsvhyd2, respectively. Fig. 5 and Fig. 6 illustrate the
corresponding plots for the data sets are trvhyd3 and trsvhyd3, respectively.

From the results shown in these figures, we can conclude that we can discriminate the smooth

section test data from the slot section test data using clusters of the AR coefficients in the fol-

lowing way: if a cluster is located in the region where @, is around —2 and a; is around unity;
and the estimated variances begin to slowly increase from segment number three, then the data
section is from the smooth section test. If a cluster is located in the region where @; > —1.5 and
dy < 0.5; and the estimated variances begin to rapidly increase from segment number six, then

the data section is from the slot section test.

15
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Figure 1: Results obtained by the Gaussian ML method. Using the first half of trvhyd1: (a-1)

cluster of the estimated AR coefficients and (a-2) estimated variances; using the second half of

trvhyd1: (b-1) cluster of the estimated AR coefficients and (b-2) estimated variances.
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Figure 2: Results obtained by the Gaussian ML method. Using the first half of trsvhyd1: (a-1)
cluster of the estimated AR coefficients and (a-2) estimated variances; using the second half of

trsvhyd1: (b-1) cluster of the estimated AR coefficients and (b-2) estimated variances.
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Figure 3: Results obtained by the Gaussian ML method. Using the first half of trvhyd2: (a-1)
cluster of the estimated AR coefficients and (a-2) estimated variances; using the second half of

trvhyd2: (b-1) cluster of the estimated AR coefficients and (b-2) estimated variances.
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Figure 4: Results obtained by the Gaussian ML method. Using the first half of trsvhyd2: (a-1)
cluster of the estimate the AR coefficients and (a-2) estimated variances; using the second half

of trsvhyd2: (b-1) cluster of the estimate the AR coefficients and (b-2) estimated variances.

17



1 b A R T A 10“ _______________________________________
o ...u ................. § o : 3
= 0.5 : : % i0 n., ..... :.. ;
sbsdaansannnndlammnnrasii 102 e S hopefibunendiasi i
¥ . T e 3 : * : ¥
-2 -1.5 -1 2 4 6 8 10 12
a(1) sagment number
(a-1) (a-2)
ihodee i P O | aspmmsensd
: : 8 .H-M-»t-—*—"‘—!"""—"—"—"_"‘_"
o~ 3 H 5 16 4 £ X
] e S0 R ket
shadnnamsrinsmmmands O™
-2 -1.5 -1 15 20 25
a(1) segment number
(b-1) (b-2)

Figure 5: Results obtained by the Gaussian ML method. Using the first half of trvhyd3: (a-1)
cluster of the estimate the AR coefficients and (a~2) estimated variances; using the second half

of trvhyd3: (b-1) cluster of the estimate the AR coefficients and (b-2) estimated variances.
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Figure 6: Results obtained by the Gaussian ML method. Using the first half of trsvhyd3: (a-1)
cluster of the estimate the AR coefficients and (a—2) estimated variances; using the second half

of trsvhyd3: (b-1) cluster of the estimate the AR coefficients and (b-2) estimated variances.
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3.1.2 AR Coefficient Estimation Using the Normal Equations Based on Second-
Order Statistics

Note that we formulated the normal equations based on second-order statistics using the
maximum auto—correlation lag of 12. For the data pair trvhyd1 and trsvhyd1, the cluster plots
of the estimated AR coefficients obtained by the second-order statistics—based normal equations
are shown in Fig. 7. For the smooth section test data, it is observed that the corresponding
points are located more closely to each other than those obtained from the slot section test data.
This phenomenon can also be observed in Fig. 8 for the data sets trvhyd2 and trsvhyd2 and
in Fig. 9 for the data sets trvhyd3 and trsvhyd3.

In addition, it is observed that the points are more tightly close to each other and clearly
separated for the second half of the data samples than for the first half. However, when we have
the first half of the data, it is not possible to clearly classify whether the data is from the smooth

section test or from the slot section test.
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Figure 7: Clusters of the estimated AR coefficients @, and a; obtained by the normal equations
based on second-order statistics with the data: (a-1) first half of trvhyd1, (a-2) second half of
trvhyd1; (b-1) first half of trsvhyd1, (b-2) second half of trsvhyd1.
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Figure 8: Clusters of the estimated AR coefficients @; and @, obtained by the normal equations
based on second-order statistics with the data: (a-1) first half of trvhyd2, (a-2) second half of

trvhyd2; (b-1) first half of trsvhyd2, (b-2) second half of trsvhyd2.
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Figure 9: Clusters of the estimated AR coefficients @; and a; obtained by the normal equations
based on second-order statistics with the data: (a-1) first half of trvhyd3, (a-2) second half of
trvhyd3; (b-1) first half of trsvhyd3, (b-2) second half of trsvhyd3.
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3.1.3 AR Coefficient Estimation Using the Normal Equations Based on Third-
Order Statistics

We formulated the normal equations based on third-order statistics using the maximum lag of
12. For the data pair trvhyd1 and trsvhyd1, the cluster plots of the estimated AR coefficients
obtained by the third-order statistics—based normal equations are shown in Fig. 10. And, Fig. 11
shows the corresponding plots for the data sets trvhyd2 and trsvhyd2, while Fig. 12 corresponds
to the data sets trvhyd3 and trsvhyd3.

From the results shown in Fig. 10 — Fig. 12, we can conclude that it is not possible to classify
the data sets by using the AR coefficient clusters obtained by the normal equations based on
third—order statistics because the clusters with the smooth section test data are very similar to
those with the slot section test data.

For an additional method, we fitted each cluster into a straight line in least—squares sense.
However, we could not find any significant difference in the values of the slopes and the y-

intercepts of the corresponding straight lines.
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Figure 10: Clusters of the estimated AR coefficients a; and @, obtained by the normal equations
based on third—order statistics with the data: (a-1) first half of trvhyd1, (a-2) second half of
trvhyd1; (b-1) first half of trsvhyd1, (b-2) second half of trsvhyd1.
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Figure 11: Clusters of the estimated AR coefficients a; and a, obtained by the normal equations
based on third-order statistics with the data: (a-1) first half of trvhyd2, (a-2) second half of
trvhyd2; (b-1) first half of trsvhyd2, (b-2) second half of trsvhyd2.
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Figure 12: Clusters of the estimated AR coefficients @; and @, obtained by the normal equations
based on third—order statistics with the data: (a-1) first half of trvhyd3, (a-2) second half of
trvhyd3; (b-1) first half of trsvhyd3, (b-2) second half of trsvhyd3.
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3.1.4 Generalized Yule-Walker Equations

Results with p = 0.5: With the three pairs of real data sets, we estimated the second—order
AR coefficients from the generalized Yule-Walker equations using FLOM estimates of order
p = 0.5. For the independent observations {(z»,¥ys), n = 1,2,..., N}, the FLOM estimator is
given by [Nikias and Shao, 1995]

)::;N:l 2 Y sign (y»)
ZﬂNzl Iyn |p

with 1 < p < a. After estimating the covariation coefficients using the FLOM estimator with

AFLOM = (39)

p = 0.5, we solved the generalized Yule—~Walker equations. The cluster plots of the estimated AR
coefficients are shown in Fig. 13 — Fig. 15 for each pair of the data sets.

According to these figures, each figure using data sets from the smooth section test contains
one or two points that clearly locate far away from the cluster. On the other hand, there is no
such point in the figures using slot test section data sets. But, it seems not a good idea to use
a classification method depending on one or two points rather than clusters, because the points

may not appear if one has different parts or numbers of data.
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Figure 13: Clusters of the estimated AR coefficients @; and @, obtained by generalized Yule-
Walker equation with p = 0.5 and the data: (a—1) first half of trvhyd1, (a-2) second half of
trvhyd1; (b-1) first half of trsvhyd1, (b-2) second half of trsvhyd1.
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Figure 14: Clusters of the estimated AR coefficients @; and @; obtained by generalized Yule-

Walker equation with p = 0.5 and the data: (a-1) first half of trvhyd2, (a-2) second half of
trvhyd?2; (b-1) first half of trsvhyd2, (b-2) second half of trsvhyd2.
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Figure 15: Clusters of the estimated AR coefficients @, and @, obtained by generalized Yule-

Walker equation with p = 0.5 and the data: (a-1) first half of trvhyd3, (a-2) second half of
trvhyd3; (b-1) first half of trsvhyd3, (b-2) second half of trsvhyd3.
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Results with p = 1.0: Fixing the value of p at 1.0, we estimated the covariation coefficients
using the FLOM estimator and solved the generalized Yule-Walker equations. Note that setting
p = 1.0 make the FLOM estimator simpler than any other setting in the sense of computational
complexity. Plots of clusters of the estimated AR coefficients are shown in Fig. 16 — Fig. 18 for
each pair of the given data sets.

Fig. 16 and Fig. 18 illustrate two clearly separated clusters. All the points from the smooth
test section data cluster in the region where a; < —1.5 and a2 > 0.5. On the other hand, all
the points from the slot test section data cluster in the region where a; > —1.5 and a; < 0.5.
In Fig. 17 (b-1) and (b-2), we can observe one point located around (—1.6,0.6) that is far away
from its corresponding cluster and is closely located to the clusters for the smooth section test

data. It is clear, however, that the main clusters are well separated.
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Figure 16: Clusters of the estimated AR coefficients @, and d; obtained by generalized Yule-
Walker equation with p = 1.0 and the data: (a-1) first half of trvhyd1, (a-2) second half of
trvhyd1; (b-1) first half of trsvhyd1, (b-2) second half of trsvhyd1.
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Figure 17: Clusters of the estimated AR coefficients @; and @, obtained by generalized Yule-

Walker equation with p = 1.0 and the data: (a-1) first half of trvhyd2, (a-2) second half of
trvhyd2; (b-1) first half of trsvhyd2, (b-2) second half of trsvhyd2.
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Figure 18: Clusters of the estimated AR coefficients @; and a; obtained by generalized Yule-

Walker equation with p = 1.0 and the data: (a-1) first half of trvhyd3, (a-2) second half of
trvhyd3; (b-1) first half of trsvhyd3, (b-2) second half of trsvhyd3.
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Results with p = 1.5: Next we fixed the value of p at 1.5 and estimated the covariation
coefficients using the FLOM estimator and solved the generalized Yule-Walker equations. Plots
of the clusters of the estimated AR coefficients are shown in Fig. 19 — Fig. 21 for each pair of the
real data sets.

From these results, we can observe clearly improved performance. The clusters from between
the smooth section test data and the slot section test data are clearly separated in all the figures
including Fig. 20 obtained from the pair of data sets trvhyd2 and trsvhyd2 which provide one
outsider point when p = 1.0. All the points from the smooth test section data are located in the
region where a; < —1.5 and a > 0.5. On the other hand, all the points from the slot test section

data are located in the region where a; > —1.5 and a; < 0.5.
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Figure 19: Clusters of the estimated AR coefficients @; and @, obtained by generalized Yule-
Walker equation with p = 1.5 and the data: (a-1) first half of trvhyd1, (a-2) second half of
trvhyd1; (b-1) first half of trsvhyd1, (b-2) second half of trsvhyd1.
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Figure 20: Clusters of the estimated AR coefficients a; and @, obtained by generalized Yule-
Walker equation with p = 1.5 and the data: (a-1) first half of trvhyd2, (a-2) second half of

trvhyd2; (b-1) first half of trsvhyd2, (b-2) second half of trsvhyd2.
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Figure 21: Clusters of the estimated AR coefficients @, and a; obtained by generalized Yule-
Walker equation with p = 1.5 and the data: (a-1) first half of trvhyd3, (a-2) second half of
trvhyd3; (b-1) first half of trsvhyd3, (b-2) second half of trsvhyd3.
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3.2 Power Spectrum and Bispectrum

In this section, we present the classification method using the estimated power spectra and

bispectra of the given data sets.

3.2.1 Power Spectrum Estimation

When the Blackman-Tukey power spectrum estimates are obtained, the maximum auto-
correlation lag was fixed at 64. Note that all the plotted power spectra were obtained by averaging
power spectrum estimates of each segment. Fig. 22 illustrates the power spectra of the first and
second parts of the data sets trvhyd1 and trsvhydl. As observed in the figure, there is no big
difference between the power spectra of the first parts of the smooth and the slot section test
data. On the other hand, a clear difference can be observed in the power spectra of their second

parts of the data samples. The power spectrum of the second part of the smooth section test data

o
1
(b-2)

Figure 22: Estimated power spectra of (a-1) first half of trvhyd1, (a-2) second half of trvhyd1;
(b-1) first half of trsvhyd1, (b-2) second half of trsvhyd1.
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is similar to that of its first part except for increasing sidelobes (see Fig. 22 (a-2)). On the other
hand, the power spectrum of the second part of the slot section test data has a smoothed main
lobe whose bandwidth is quite a large. Thus, we can classify the second part of data samples
(steady state data) using its power spectrum.

This phenomenon can also be observed in Fig. 23 obtined from the data sets trvhyd2 and
trsvhyd2 and in Fig. 24 obtained from the data sets trvhyd3 and trsvhyd3. From the results,
we can conclude that the power spectrum estimation technique can be used to classify the data
obtained from steady state in the following way: if estimates of the power spectrum have a wide
and smoothed main lobe, then the data is obtained from the slot section test. If they have a

narrow main lobe, then the data is from the smooth section test.

-0.5 o 0.5 -0.5 (o} 0.5
1 1
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Figure 23: Estimated power spectra of (a—1) first half of trvhyd2, (a-2) second half of trvhyd2;
(b-1) first half of trsvhyd2, (b-2) second half of trsvhyd2.
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Figure 24: Estimated power spectra of (a-1) first half of trvhyd3, (a-2) second half of trvhyd3;
(b-1) first half of trsvhyd3, (b-2) second half of trsvhyd3.

3.2.2 Bispectrum Estimation

When the bispectrum of each data part was estimated, each part of the data sets was seg-
mented so that each segment contained 500 data samples. After estimating the bispectrum of
each segment using the direct method described in the previous section, the final bispectrum
estimates were obtained by averaging over all the bispectra of teh individual segments.

Fig. 25 illustrates the magnitudes and phases of the bispectra using the first and second
parts of the smooth section test data trvhyd1. Fig. 26 shows those of the slot section test data
trsvhyd1. Fig. 27 and Fig. 28 show those of the data sets trvhyd2 and trsvhyd2, respectively.
And, Fig. 29 and Fig. 30 show those of the data sets trvhyd3 and trsvhyd3, respectively.

First let us compare the magnitudes of the estimated bispectra. Comparing them, we can
observe that the magnitudes of the bispectra of the first parts of the smooth section test data has
several dominant and sharp peaks. On the other hand, those of the corresponding slot section
test data have more smoothed tops and no dominantly sharp peak. Although the magnitudes of
the bispectra of the second parts of the smooth section test data is also different from those of the

corresponding slot section test data, the difference is not clear enough to specify a certain rule
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Figure 25: Estimated Bispectra of the first half of trvhyd1: (a-1) magnitude and (a-2) phase;
estimated Bispectra of the second half of trvhyd1: (b-1) magnitude and (b-2) phase.
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Figure 26: Estimated Bispectra of the first half of trsvhyd1: (a-1) magnitude and (a-2) phase;
estimated bispectra of the second half of trsvhyd1: (b-1) magnitude and (b-2) phase.
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Figure 28: Estimated Bispectra of the first half of trsvhyd2: (a-1) magnitude and (a-2) phase;
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Figure 29: Estimated Bispectra of the first half of trvhyd3: (a-1) magnitude and (a-2) phase;
estimated bispectra of the second half of trvhyd3: (b-1) magnitude and (b-2) phase.
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Figure 30: Estimated Bispectra of the first half of trsvhyd3: (a-1) magnitude and (a-2) phase;
estimated bispectra of the second half of trsvhyd3: (b-1) magnitude and (b-2) phase.
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for classification. There are no common characteristics in the bispectra obtained by the three
smooth section test data sets. Each bispectrum has quite different shape. From the results, we
can conclude that the magnitude of the estimated bispectrum can be used for data classification if
the first part of the data samples (transient data) is given. If its magnitude has several dominant
and sharp peaks, the data comes from the smooth section test. Otherwise, it comes from the slot
section test.

Instead of the magnitudes of the bispectra, let us now observe their phases. It is not difficult
to distinguish the phases of the estimated bispectra of the smooth section test data from those of
the slot section test data. In all the phase contour plots obtained from the slot section test data,
we can observe thick contour lines locating quite densely in the middle (around origin) of the
plots. On the other hand, the corresponding thick lines in all the phase contour plots obtained
from the smooth section test data are sparse and can be found around the boundary of the
contour plots. Therefore, we can use the thick lines in the phase contour plots for classification.

For specifying the thick lines, we need more study on the phase contour plots.

3.3 Complex Cepstral Parameter Estimation

Using the direct relationship between the cepstral parameters and the third-order statistics
described in the previous section, we estimated the cepstral parameters. Note that A(m) and
B(m) contain the minimum phase and maximum phase information, respectively. When the
cepstral parameters of each data part were estimated, each part was segmented so that each
segment contained 500 data samples and the length of each cepstral parameter was fixed at 30.

Fig. 31 illustrates the minimum and maximum phase cepstral parameters and their cluster
plots for the first and second parts of the smooth section test data trvhyd1. Fig. 32 shows those
of the slot section test data trsvhydl. Fig. 33 and Fig. 34 show those of the test data sets
trvhyd2 and trsvhyd2, respectively; and Fig. 35 and Fig. 36 show those of the test data sets
trvhyd3 and trsvhyd3, respectively.

From these plots using cepstral parameters, we can conclude that it is not possible to specify

a certain rule for classification.
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Figure 31: Using the first half of trvhyd1, (a-1) cepstral parameters A(m) and B(m) and (a-2)
their cluster; using the second half of trvhyd1, (b-1) cepstral parameters A(m) and B(m) and

(b—2) their cluster.
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Figure 32: Using the first half of trsvhyd1, (a-1) cepstral parameters A(m) and B(m) and (a-2)
their cluster; using the second half of trsvhyd1, (b-1) cepstral parameters A(m) and B(m) and

(b-2) their cluster.
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Figure 33: Using the first half of trvhyd2, (a-1) cepstral parameters A(m) and B(m) and (a-2)

their cluster; using the second half of trvhyd2, (b-1) cepstral parameters A(m) and B(m) and

(b—2) their cluster.
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Figure 34: Using the first half of trsvhyd2, (a-1) cepstral parameters A(m) and B(m) and (a-2)
their cluster; using the second half of trsvhyd2, (b-1) cepstral parameters A(m) and B(m) and

(b—2) their cluster.
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Figure 35: Using the first half of trvhyd3, (a—1) cepstral parameters A(m) and B(m) and (a-2)

their cluster; using the second half of trvhyd3, (b-1) cepstral parameters A(m) and B(m) and

(b-2) their cluster.
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Figure 36: Using the first half of trsvhyd3, (a-1) cepstral parameters A(m) and B(m) and (a—-2)
their cluster; using the second half of trsvhyd3, (b-1) cepstral parameters A(m) and B(m) and

(b-2) their cluster.

38



3.4 SaS Random Process Parameter Estimation
We applied the algorithms described in the section 2.4 on all the sets of real data. We could

expect, however, that the results would be very poor due to the clear lack of outliers and the

presence of strong dependence in the data.
As an example, we present here the estimates & for the data sets trvhydl and trsvhyd1.
Dividing each part of these data sets into L = 65 segments of length M = 1,000 data sample
each, we estimated the value of the characteristic exponent « as in Table 1. These values are

highly unreliable and, therefore, we did not analyze the data with SaS models any further.

Table 1: Estimated Value of a for the data sets trvhyd1 and trsvhydl

first half of data | second half of data
trvhyd1l &=1.25 & = 2.0575
trsvhyd1l & = NaN & =4.56
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4 Concluding Remarks

In this report, we present the results from a number of signal processing approaches to an-
alyzing hydroacoustic data measured in test internal launchway flows. The ultimate goal is to
establish features of the data that allow their reliable classification into one of two categories,
namely hydrophone data from a smooth section of the flow or from the section of the flow near
a slot, as these are described in the report. We applied classification algorithms based on a vari-
ety of signal processing concepts, including modeling via second-order autoregressive equations,
power spectrum- and polyspectra-based features, cepstral feature extraction based on third-order
statistics, and modeling with symmetric, alpha-stable distributions. In our analysis, we exam-
ined the transient flows (first half of each data set) separately from the steady-state flows (second
half of each data set) and for each one we established reliable classification features. In par-
ticular, we found that the coefficients of a second-order autoregressive model as estimated via
Gaussian maximum likelihood methods are features providing clear classification power between
smooth and slot section section flow data. However, part of the classification power is lost if the
autoregressive model estimates are obtained via Yule-Walker equations or their generalizations.
It is noteworthy, that improvement was observed in the Yule-Walker approach when fractional,
lower-order moments were employed. The power spectrum was another feature that allowed data
classification, as was the phase of the bispectrum. In particular, it was observed that wide main
lobes in the power spectrum or significant low frequencies in the phase of the bispectrum cor-
responded to flow data from the slot section, while narrow main lobes in the power spectrum
or significant high frequencies in the phase of the bispectrum corresponded to flow data from
the smooth section. On the other hand, the magnitude of the bispectrum did not provide clear
classification power. Similarly, the cepstral parameters did not provide clear classification power
either. As a conclusion, high classification power was provided by the Gaussian maximum like-
lihood estimates of the parameters of a second-order autoregressive model and the phase of the
data bispectrum.

The analysis of the data using symmetric, alpha-stable distributions has not been complete.
We studied the data ignoring the apparent high dependencies among them and applying tech-
niques that are appropriate for independent data. A more appropriate approach would be to

analyze the data using alpha-stable autoregressive models. This approach will be followed in the
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Table 2: Classification Methods and Their Classification Power

SECOND-ORDER AR MODELING

CLASSIFICATION PERFORMANCE

Gaussian ML

High for both transient and steady-state data

Normal eq. based on second-order statistics

High for steady-state data only

Normal eq. based on third-order statistics

Low

Normal eq. based on lower-order statistics

High for both transient and steady-state data

POWER SPECTRUM

High for steady-state data only

MAGNITUDE OF THE BISPECTRUM

Low

PHASE OF THE BISPECTRUM High
COMPLEX CEPSTRAL PARAMETERS Low
L.I.D. ALPHA-STABLE MODELS Low

future and the results of our findings will be reported then.
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