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Abstract

A general LD metric, p,q >0, on the probability space is defined and the corresponding
optimality criterion derived. This criterion 1is adopted to the estimation problem of
complex impulsive interference in linear systems presented by state-space equations. The closed-
form a posteriori density of the state (interference) is computed recursively for both arbitrary i.i.d.
state noise and any discrete-type measurement noise (multi-level complezx signal), and the optimal
L9 _metric interference estimators based on different values of p and q are developed. As a test,
the proposed algorithms are effectively applied to estimate highly impulsive state processes driven by

noise with symmetric a-stable distribution.
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I. INTRODUCTION

The detection and estimation of impulsive interference have been the subject of research by
many investigators. We mention, for example, the work by Poor et al. [1, 2], in which the approx-
imate conditional mean(ACM) filter [3] was developed for estimating the state of a linear system
with Gaussian state noise and non-Gaussian measurement noise. For the early works in this area,
it is worthwhile to mention Middleton et al. [4, 5] who proposed the Class A impulsive interference
model, for which the p.d.f. of the interference was given by a weighted sum of Gaussian distri-
butions with increasing variance, and the corresponding coherent binary detection scheme [5] and
a recursive decision-directed algorithm (MBDD) for on-line identification the class parameters [6)
were developed. However, all previous work on the interference mitigation problem was mainly
done under the assumption that the noise sequence was Gaussian or Gaussian mixtures, so that
the a posteriori density function could be approximated by Gaussian density function(s) [3, 7].
Since the interference sequence is usually very impulsive or obeying a heavily tailed distribution,
the family of exponential distributions (e.g. Gaussian) are decaying too fast to adequately describe
the impulsiveness of the interference. So, it is desirable to choose more appropriate models for the
impulsive interference other than the Gaussian or Gaussian mixtures. Another disadvantage for
these approaches is that, the a posteriori density functions could only be approximated so that the
interference estimators are not optimal. It is also need to point out that these previous schemes
are interference-model dependent and their applications in the real world are limited. To overcome
the shortcomings of the above algorithms, Shen and Nikias [8, 9] proposed the general conditional
mean (GCM) and absolute value criterion (AVC) for the development of impulsive interference
mitigation algorithms. However, these new algorithms were developed only for the case of real time
series.

In this paper, we first define a general metric on the probability space and derive the corre-
sponding optimality criterion which involves n-dimensional random vectors. Then, we apply this
general metric optimality criterion to the complex dynamic systems described by the state space
equations and the optimal estimators for complex interference sequence are obtained. Hence, we

extend the results of [8, 9] to the complex interference sequence. And for this interference model,



it is assumed that the complex noise sequence has arbitrary density function and the signal can
be any discrete-type complex sequence so that the impulsive interference can be modeled properly
according to the interference observed in real world applications. In the simulation, we choose
the symmetric a-stable (SaS) process [10, 11, 12, 13] as the impulsive interference model. Then
the proposed algorithms are applied to estimate and cancel the interference from the measurement
data.

This paper has the following structure. Section II describes the setting of the problem to be
solved. In Section III, a new general metric optimality criterion is introduced to accommodate the
n-dimensional random vectors and the objective function is derived for the optimal estimators.
Section IV is devoted to the design of interference estimator based on new general metric criterion.
Some simulation results are presented in Section V. Finally, the proposed new algorithms are
summarized in Section VI.

Some notations used in this paper are defined as follows.

e RR: the real line;

e R*: the set of non-negative real numbers, i.e., RT = {z: 2 € R,z > 0};

Q: a sample space;

Fq: a o-field of subsets of Q;

e R™: the n-dimensional real space;

e Bpn: the Borel o-field of the subsets of R";

e C: the complex plane, i.e., C = {21 + jao : 21,22 € R};

e Bc: the smallest o-algebra containing the sets

{y:y=a1+jz2,21 € (a1,b], 22 € (a2,bs),a1,a2,b1,b2 € R} C C;

Operation A: (a A b) = min{ae,b},Va,b € R;

A complex random variable Y is a measurable function on the space (2, Fq) to

the space (C,B¢) and is denoted by Y (w) = Y (w) + jY2(w), Vw € Q,

where Y] (w) and Y3(w) are two real ordinary random variables.



II. PROBLEM STATEMENT

We consider the following scalar linear system

Xiy1 = ApXp + Wi, k=1,2,-- (1)

Zr = HipXp+ Vi, k=1,2,--- (2)

where the following assumptions are made.

[A1]:

[A2]:

[A3]:

[A4]:

[A5]:

[A6]:

{Wi, k=1,2,---} is the i.i.d. complex noise sequence, i.e., at time k, Wj = W/,f2 +jW,£ is a
complex random variable, where W} and W/ are two real random variables with arbitrarily
chosen joint density function fyryr(wf, wl). For simplicity, we adopt the notation [14]

fw (i, wi) = fw (wf + jwj).

{Vik, k = 1,2,---} is the complex signal sequence with any discrete-type distribution, i.e.,

Vi = V8 + jV! is a complex random variable with V and V)! being two real discrete-
type random variables, Vk. At each time Fk, Vf and V! take the values from the two real
sets {¢; : i = 1,2,...,0}and {d; : j = 1,2,...,J}, respectively. The joint distribution is

Pr(VRB=c,Vf =dj) = qij, i=1,2,.u, ], §=1,2,....,J, T; T @15 = 1, VE.

The two sequences {Wi,k = 1,2,...} and {Vi, k = 1,2,...} are assumed to be mutually

independent at any time k.
For the system parameters, it is assumed that A, Hy € R, Vk.

The complex interference sequence (state) is, defined in (1), {X} = Xf+jX,{, s R .,

with Xf and Xi, Yk, being two real ordinary random variables.

Let Z* = {Z,,Z,,...,Z;} be the set of possible observations (complex random variables)
from past up to time k. At any fixed time k, the set of past complex measurement (data)

F={zn: Zi=2,2= zf +jzf, l=1,2,..,k} are known to the observer.

At time k, for the true complex random variable X}, define X} as the filtered estimator for the

observation Z*. Our objective is to find X such that the error between X and X} is minimized

under some criterion.



I11. GENERAL L®9)-METRIC AND OPTIMALITY CRITERIA

In this section, we will first introduce the general £(P%)-metric (GLM), which is the generaliza-
tion of the classic £LP-norm to incorporate the case for p € (0, 1) and can also be applied to random

vectors. Then we formulate the optimal interference estimation problem under the GLM criterion.

A. General £®%-metric
Let (92, Fq) and (R",Bgrs) be measurable spaces. We say a function X : 2 — R" is a

n-dimensional random vector if
{{“‘J we Qr X(w) = (Xl(w)!-X2(w)s 'H:Xﬂ(w)) € B} € }-ﬂv VB € B'R"l

where X} (w) is an ordinary random variable which is the projection of X(w) on the kth coordinate
axis of R". Notice that, if » = 2, a random vector is equivalent to a complex random variable.

Next, let us introduce two operators.

Definition 3.1 Let x = (21,22, ...,2,) be a fixed point in R™. Define the operator || - ||, on
R" as

(1Aa1/p)
] , p>0. (3)

n

1[I, = lz ||
i=1

O

By the Minkowski inequality and the following elementary inequality ([15], pp.155)
la+bf" < cp(lal” +[b"), Va,beR, p>0, (4)
where ¢, = 1if 0 < p < 1 and ¢, = 2P~! if p > 1, we can easily show that
Ix+yll, < lIxll, + I¥ll,, Vx,y € R", for p>0, (5)

and d(x,y) = ||x — y||,, defines a metric on R".

Definition 3.2 Let the n-dimensional random vector be X = (X, X5,...,X;) with the
distribution function Fx(zy,22,...,2,) and density fx(zi, 22, ...,2n). For the fixed real numbers

p,q > 0, define the operator (- D{p!q) on the n-dimensional Borel space (R", Brn) as

axb(p‘q) _ {/Rn [“x“p]qdpx}[lr\lhl 6)

4



(1n1/q)

- (1A1/p)] 4
or { j? “[(leelp) ]fx(ml.wz,...,mn)dwndmz---dwn} (7)

1=1
with the assumption that X is equivalent to the n-dimensional zero vector 0 if X = 0 almost
surely. O
With the operator { - D(p‘q}, a induced metric space is defined and stated in the following

theorem.

Theorem 3.1 For the fived real numbers p,q > 0, let L7 = £(P9) (R™, Brn) be the space of
the n-dimensional random vectors X with (X}, .y < co. Then L) is a metric space and for any

two random vectors Xy, Xo € L9, the corresponding L9 -metric d(p,q) s defined as

d(p'q}(XhXQ) = qX]_ - Xzb(p‘q)- (8)

Proof: For any given random vectors X;,X, € L9 it is easy to verify that,
l) d(p'q)(Xl,Xz) € ‘R+; Ii) d(p‘q}(Xl,Xg) = d(p‘q}(XQ,Xl); and 111) ri(p‘q)(Xl,Xg) =0 X; =
X, (a.s.). Now, we want to show that the triangle inequality also holds.

Let Fx,x, be the joint distribution function of X; and Xs. Then,

(1n1/q)
(X1 = Xobpg = {/R?n [|x1 — x2||ngX1x2} (by the definition)

IA

(1n1/q)
([ Ull,+ Il P, x, (due to (5))

Now, if 0 < ¢ < 1, then (1A 1/¢) =1 and by (4) we have

Lo liall, + Il Farxx, < [ aliarxx, + [ elidixx,

= qxlb(m} + X2y

and for ¢ > 1,s0 (1A1/q) = 1/g and by the Minkowski inequality ([15], pp.161) it follows that

1/q 1/q
[ aliarx ) +{ [ Ixaliar,x, |
= (X + (Xabgpg

IA

1/q
L[ Ol + Il P, x, |



Finally, we have
(X1 = Xsbpg) S (Xibpg) + {Xab(pq)  for p,g>0.

Q.E.D.

Remarks:

1. For the definition of ( - D(p,q) in (6), the [| - ||, operator may not necessarily be the form in (3)

as long as (5) is valid.

2. It can be shown that the space £ is also complete in the metric d(p,q), and for p,q > 1,

the operator ( - D(p.q) defines a norm. Thus, £®9), p,q > 1, is a Banach space.

3. For the one-dimensional random variable X with symmetric a-stable distribution [10, 12],

the number (X)) for p,q € (0,2], is similar to the so-called dispersion of X.

(p.a)

B. GLM optimality criterion

Here, we start by considering GLM criterion for the design of optimal interference estimator.
To be general, here it is assumed that X} and Z; in (1) and (2) are n-dimensional random vectors.
In symbol, let X = X and Zj the same. At time k, given the measurement set Z¥ = z*, let the
random vector Xk(Zk}, which is a function of Z*, be the estimator of the true interference Xj.

The objective is to find the optimal estimator XZ’” € L) such that
(X = K0 = min {4Xe = Kih g+ i € LED} 9)

where ( - D(p.q) is the GLM operator, p, g € (0,00). By the definition of (6) and notice that Xy is a

function of Z*, we have

R R 1 (1A1/q)
(X — Xkb{p,q) = {f] Ik — Xk”;kazk (xk,zk)dxkdz"} .

Since
. P . (1A1/q)
{[ [0 = 5l gy 0, ) ez

is the monotonically increasing function of
- Re||? F)dxydz*
lIxx — Xkl fx, 2 (xk, 27) dxpdz",

6



to minimize (X — Xﬁ:b(p,q) is equivalent to minimize
]/ |Ixx — ﬁkllgkazk (xk, zk)dxkdzk.
Now,
f f lxk — Rl fx, 72 (ks 2*)dxpd sk = / (M) d* / Ik — Rell2fx, 2% (k] 2% dx.
From the above it is clear that we only need to minimize the functional
RGck(24)) = [l = % () Gl e (10)
So, the final GLM optimization problem of (9) can be stated as
~optye k n .,
Xp (") eR™:
copte kyy _ s ~ . kyn? k . 3 k n
R(%;7*(z")) = min {/HmL — Xk(z )”pkalzk (xk|2%)dxr : %k(z") € R } . (11)

This objective functional R(x), obtained from the GLM criterion, will be used in the sequel as

the performance criterion for the impulsive interference estimators.



IV. OpTIMAL IMPULSIVE INTERFERENCE ESTIMATORS

With the GLM criterion available, we can now attack the original problem stated in section
IL. In this section, the results for the general L®P9)_metric will be applied to the complex random
variables, i.e., the 2-dimensional random vectors. From (11), to estimate the state X} , we have
to find the a posteriori density function fx, |z« (zx|2*) first. Then the corresponding estimates can

be determined.

A. Computation of the a Posteriori Density Functions
Given the state space equations (1) and (2), according to the Bayesian law, the a posteriori

density can be determined recursively by the following set of equations [7].

IXMZ-“—I (mkfzk_l)fzk”fk (Zklﬂ?k}

Ixulz (a4]2") = fz,25-1 (26| 2%1) )
Fxy\ze-1 (2] 271) = ff,\',‘_,er—l(mk—llzk_l)fx,c|,\',‘_1 (2k|Tk-1)dT)—1 (13)
Sz (@) = [ Ixgzams (@1l fygx, (el da (14)
with the initial density
Ptz fuili) = fz1%, (21]21) fzy (21) (15)

fz: (zl)

where fz,|x,(zk|zx) in (12) can be determined by the signal density fy(vk) and (2),
and fx,x,_, (zk|ex-1) in (13) is defined by the noise density fw(wi) and (1). In general, it is
impossible to get the closed form of kalz;.--:(xﬂzk'l), so the a posteriori density can not be
obtained for most applications. However, for the system described by (1) and (2), the following

statement holds.

Theorem 4.1 Let the complezr linear system be defined by (1) and (2). Given the initial
a priori density fx, (2%, 21), the a posteriori densities al each time k are uniquely determined by

the recursions

L. Z};l rk—t,i; fw (R — Ap_18k—1,i, of— Ap—1ti—1,j)
T 7
=t 2=t TR ds

k=2,3,..

(16)

Fxy\ze-1 (ar]z*71) =



Y Sy v (2R — ski)8(2f - tr )

Fxpz (@rl2®) = (17)

wl Zf;l Ef=1 Tk,ij

k=12
where
R 1
Sk,i = Hy :, l; = Hy Js Tkij = qij f};k|Z'- 1(3L=1tk,_1|z l) (18)
1=12,..,1, 5=12,...,.J, k=1,2,
Proof: Notice that the density function for the complex variable V; = V;f + jV/[ is

v (vf,vf) = quué(va — c)8(vk ~ d;) (19)

i=1j=1

where §(-) is the Dirac’s delta function. By (2), (19) and the property for the delta function §(-),

i.e., §(at) = ET(cﬁl' Ya # 0, we have

I J R I
1 Y o i O(2yt — sk)0(ah — L ;
kalxk(zklmk) - fV(ZE _ Hk-i'ikR,Z;{ _ Hkx,{c) o=: Y iy ZJ-—] qi; ( ;}2 ki) (Ik k,J) (20)
k

where s ; and t ; are defined in the above theorem. From the above equation and (14),

- Z L o G Sxpizeo (ks thil 2~
Sy v (z|2F1) = ZEL=EL }'{2 A (21)

and from (1),
FxpXios (@rlzr-1) = fw (@ — Aprofy, of — Agoiziy) (22)
Finally, (17) is obtained from (12), (20), (21), and (13), (17), (22) lead to (16).
Q.E.D.

Based on Theorem 4.1, we will consider how to compute the a posteriori densities of the state
X at any time k. It is assumed that we know the initial a priori density fx,(zi), the noise
density fw(wy), the measurements 2*¥ = {z1, 22, ..., 2}, and the levels {¢; : ¢ = 1,2,...,1} and
{d; : j=1,2,...,J} of the signal sequence {Vi, k= 1,2,...}. In order to compute the a posterior:
density functions kaizk(l'klzk) and fA»k+:iZk($k+1|zk) at time k, the density ka|zk_1(xk|z""l) at
time (k — 1) has to be known. It means that the whole function fy,|zs-1(2k[2*~") has to be
stored at time (k — 1) for retrieving at time k. It would demand a large amount of computing

memory and also require longer computing time. Fortunately, by carefully examining (16) in

9



Theorem 4.1, we find that the function fy,|zx-1(zx|2*~!) can be completely defined at time (k —1)
by using only (I 4+ J 4+ I-J) numbers, i.e., {sx-1;: i = 1,2,...., 0}, {t-14, 5 = 1,2,...,J} and
{f,\'*_lgzk—Q(Sk—l.h‘k—l,j|zk_2) : 1=1,2,..,1, j = 1,2,...,J}, together with the known levels
{ei: i=1,2,..,1},{d; : j=1,2,..,J} and the function fw(-), where sp_1; and t;_;; fix the
“locations” of the fw (-) functions and fy, | |zx-2 (Sk—1,iy te—1,7125"2) serve as the “weights”. So,

the following algorithm is obtained.

Algorithm 4.1 Computation of the a posterior: densities

For k =1,2,..., N, do the following steps:
1. From the known measurement 2z and the level set {¢; : i =1,2,...,1}
and {d; : j = 1,2,...,J} of the multi-level complex signal, obtain the
measurement set Ty, = {(sg.i,tk;): 1=1,2,..,1,j=1,2,...,J}.
2. Use (16) to compute weights fx,|zx—1 S5, b2 N d = 1,2 dy J =042
3. By (16) and (17), define functions kalzk('lzk), ka_i_lEzk('le)

with initial conditions (k= 1): fx,(s1,i,t1,5), 1=1,2,...,1,j=1,2,...,J

/11

B. Optimal GLM Estimators
By (17) in Theorem 4.1, the objective function of (10) becomes

I J
LT rrii 8(aR — ska)d(ek — )
dz;,

1 J
i Ej:l Tkij

R(ex) = [ llow = 2l

Since YL, Zle Ik, is a constant in the above integral, by the definition of || - ||, and the basic

properties of the §(-) function, we can formulate the GLM minimization problem as

jzpt — :ﬁi{opt +J-£i’:opt .
I J
i P rpl(IAL/p)a g
min {ZZ Phii [|sk,,‘ — &R + |ty — mﬂp] 7 ?2} . (23)
i=1 j=1

For different values of p,q € (0,00), the above general objective function will take various forms.
To simplify the problem, now we only consider the p, g values which belong to the curve specified

on the (p, ¢)-plane such that (1 A1/p)g =1 (see the figure below).

10



0 1 P
Figure 1: The p and ¢ values on the (p, ¢)-plane.
Then, the GLM optimization problem becomes

~opt ~ R opt .« I opt |
5 =&, T 445,

I J
min {zz Tkij [|sk"- = j?]p + |£k.j = ﬁl‘;l?] ? i‘f, :iti ER, p> U} . (24)
=1 j=1

This is a 2-D unconstrained nonlinear programming (NLP) problem and the optimal solution

:332"’t always exits. An example of the above NLP objective function is shown in Figure 2.

MNormalized 2-D Objective Function J{x y)/max[J{x.y}}

Figure 2: An example of the 2-dimensional normalized objective function J(z,y) =
Yo lailsi — 2| + bilti — y[P]1AL/P)a, Parameters: n = 2, p = 0.3, ¢ = 1.0, a; = 5.0, az = 4.0,
by = 1.5, by = 4.0, s; = 1.0, s3 = 5.0, t; = 2.0 and ¢, = —3.0.

11



Remarks:

1. In the literature, there has been great amount of research devoted to the NLP problem similar
o (24). Generally, the optimal solution (global minimum) &** of (24) has no closed form

and requires special techniques to approximate the minima (usually the local minima) [16].

2. For p — oo, &% becomes the so-called Min-Max solution. If p = ¢ = 1, then (- is the
k (1,1)

ordinary £'-norm and GLM criterion is the same as the absolute value criterion (AVC) [9].

3. The optimization problems (23) and (24) are not equivalent if (1 A 1/p)g # 1. It is easy to

see the influence of the factor (1 A 1/p)q for the 1-D case [9].

Based on (24) and the discussion above, let us consider the interference estimator for the
important special cases where p € (0,1] and p = 2, i.e., the optimal L®PY)-metric, p € (0,1], and

L£22)_metric/norm solutions.

a) L2 -metric/norm estimators

Suppose that the £(*?)-metric/norm exits for the given random variable, by taking the first
derivative of (24) with respect to #f and 2 and setting the results to zero, we can easily ob-
tain the following optimal solution, which is the complex version of the general conditional mean
(GCM) [9] estimator E[Xi|Z*] = E[XF|Z*] + jE[X}|Z*]. From (17) we have the following

complex GCM interference estimate

1 I I g
_ Di=1 Lj=1ThiiSki | . Li=1 2 =1 Tk,ijlk,i

& = E[Xy| 2% = 2% = j ’ (25)
{:1 Zj:l ?‘k'ij g:]_ Z_l?}:] rk,f_’,"
where s, tr; and ry;; are defined in (18). Since Xy41 = E[Xp41|2%], by (1) the
complex GCM predicted interference estimate is
Ty = Ak, (26)

where it is assumed, without loss of generality, that the mean of the i.i.d. noise sequence {Wj, k =
1,2,...} is zero. Known & in (25) and by the definition of si; and ¢ ;, from (2) we can also

estimate the value of the signal Vj. using the complex GCM signal estimate

I J i I J T,
Z{:l Zj:l Tk,ijCi ] Ei:l 2j=1 rkv‘JdJ

I oo I e 2T

i=1 Zj:l Tk,ij i=1 Zj:l’k.u

U =z — Hi2p = (27)

12



All the above estimators can be easily implemented by the following algorithm.

Algorithm 4.2 Complex GCM estimators

For k =1,2,...,N, do the following steps:
1. Use Algorithm 4.1 to compute the a posterior: densities at each time k;
2. Use (25), (26) and (27) to compute estimates Zj, Tyy1, U.
with initial conditions (k= 1): fx,(s1,i,t1,5), 1=1,2,..,1, j=1,2,...,J

/11

b) LPY) metric, 0 < p < 1, estimators

Now we will consider how to find the optimal solution of (24) for 0 < p < 1.

Lemma 4.1 For any two vectors X = (L1,22,...,Zn)y, ¥ = (Y1,¥2, -y ¥Yn) € R™ and non-
negative real numbers w; € RY, i = 1,2, ...n, the function d, : R* x R" = R* defined as

dp(x,y) = Y wilzi — yil", Vp € (0,1] (28)

=1

is a melric on R™.

Proof We first show that the function d, satisfyes the triangular inequality. Fix the vectors

X= (371,582,...,55',1), Y= (yl'ryZ}"':yn): zZ = (Z],ZQ,...,Zn) (S an

n

dp(x,2) + dp(2,y) = D willwi — z|P + |z — yil”).

=1

By (4), we have |z; — %P + |z — yi|? > |2i — wil?, p € (0,1], Vi. Thus,

dy(x,2) + dp(2,¥) > D wilzi — yil” = dp(x, ).

i=1
It is also easy to verify that d, meets the other axioms of a metric.

Q.E.D.

Lemma 4.2 [17, 18] For the fived set S = {s; : s; € R, i = 1,2,...,n}, let s = (51,52, ..., Sn)
and x = (z,z,...,x) be two n-tuples in the metric space (R",d,) defined in Lemma 4.1. Then,

A%, = (T, ey s o) ER® and %, € 8 such thal
dp(s,%,) = min{d,(s,Xc) : X = (2,2, vy ) € R}

13



We can extend Lemma 4.2 to get the following theorem which will be used to derive the optimal

LP1)-metric, p € (0, 1], interference estimator.

Theorem 4.2 For the fivzed sets S = {s; : 8; € R, i = 1,2,.,0}, T = {t; : t; €
R, i = 1,2,...,n} and non-negative real numbers a;,b; € R*, i = 1,2,...,n, define the function
J:R? 5 Rt as

T

J(z,y) =) lailsi = 2" + bilt; — y[], Vp € (0,1], (29)

1=1

then 3(zo,y,) € T X S such that

J{xmyo) = mi“{‘}(mmy) : B,y € R} (30)

Proof: For the given subsets S,7 C R and any fixed real numbers z,y € R, define the four
n-tuples s = (51,82, ..., 8n), t = (b1,82y o0y tn)y Xa = (2,2, ...,2), ¥b = (¥, ¥, ..., y) € R™. By Lemma

4.1, choose the two metrics on R" as

n

da(s,xa) = Y _ailsi — " and dp(t,ys) = D bilti — y|", ¥p € (0,1],

i=1 =1

then
J(z,y) = da(s,%q) + db(t’sYb)'

min{J(z,y) : =,y € R}
— min{da(51xa) +db(ts)’b) : Xg = (x,:c,...,.’c), Yo = (yvyl-"ly) € Rn}
> min{d,(s,X,) : Xa = (2,2, ...,z) € R"} + min{ds(t,ys) : ¥» = (v,¥,...,y) € R"}.

By Lemma 4.2, for the fixed s and t, 3 x, = (20, 20,y %0)y Yo = (Yos Yoy ¥o) € R™ and
(z5,Y5) € S X T such that

J(20,Yo) = min{J(z,y) : ,y € R} = da(s,X,) + dp(t,¥,),

h
L da(s,%,) = min{d,(s,Xa) : %, = (z,2,...,x) € R"},
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dy(t,y,) = min{dy(t,ys) : ¥» = (¥, ¥,---,y) € R"}.

Q.E.D.
Remark: Theorem 4.2 can be extended to the m-dimensional function J : R™ — R*t.

Now, for the optimization problem of (24) with p € (0, 1], at time k, suppose that 3“:;:’” is the
optimal solution. Let the data sets be S = {sx; : i =1,2,..,n}and Tp = {t);: i =1,2,...,n}.
Then, according to Theorem 4.2, we known that :E*ft € Sj X T}, i.e., on the 2-dimensional complex
plane C, the global minimum point belongs to the set of complex data points. So, the optimal
LP ) metric, p € (0,1], estimates can be easily obtained using the following algorithm, which is

the complex version of the absolute value criterion (AVC) [9] estimators.

Algorithm 4.3 Complex AVC estimators

For k =1,2,...,N, do the following steps:
1. From the known measurement z; and the level sets {¢; : i =1,2,...,1} and
{d; : j =1,2,...,J} of the multi-level complex signal, obtain the measurement set
Se={sk;: i=12,...I}and Tp = {t; : §=1,2,...,J} by (18).
2. Use Algorithm 4.1 to compute the a posteriori densities at each time k.
3. Evaluate the objective function of (24)
1 J
Je(z,y) =D reij [Isks — 2P + e — yI°)
1=1 j=1
on Sj X Tj. Find the minimum value of Jj(z,y) and the corresponding point in
Sk X Ty say (Sk,io, lk,j,) (may not unique), then define the optimal solution
:E;pt = Sk“.o +j£k:jo‘

with initial conditions (k= 1): fx,(s1,i,t1,5, 1 =1,2,...,1,7=1,2,...,J.

/1]

Remark:
Complex GCM estimator is locally optimal and complex AVC estimator is globally optimal
(may not unique). For computational complexity, the later is approximately [-J times more

complex.
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V. SIMUuLATION RESULTS

As mentioned in introduction, the Gaussian distribution is not a proper model for impulsive
interference. To simulate the impulsive interference, we assume that the interference has symmetric
a-stable (SaS) distribution [10, 11, 12, 13] which has been shown to characterize a general class of
man-made and natural impulsive interference. The characteristic function of the SaS distribution
is given by ¢(t) = e~"M", where a € (0,2] is the characteristic exponent and ~ € (0,00) the
dispersion. The signal sequence is chosen to be the most widely used binary random sequence. The
proposed algorithms were tested for this special case (I = J = 2) and the results were described
below.

The system of (1) and (2) are specified as follows. System parameters are fixed to be constants
(time invariant), i.e., Ax = 0.7, Hy = 1.0, Vk. For the complex noise sequence {W; = IV,{{ +jPV,f -
k=1,2,..,N}, the real part and the imaginary part are both assumed to be SaS processes with
the same characteristic exponent a = 1.2 and the dispersion ¥ = 0.5, and they are mutually
independent. The complex signal sequence {Vi = V{f +jV{ : k = 1,2,..., N} consists of the two
real binary random processes defined as Pr(Vfl=+1) = Pr(Vl==1) = 0.5 and Pr(V!=+1) =
Pr(Vf{=-1) = 0.5, k = 1,2, ...N, where V;* and V)! are also assumed to be mutually independent.
The following approach were taken in the simulation. N samples of the signal sequence {Vj : k =
1,2, ..., N} are randomly generated only once and then fixed. N samples of the interference sequence
{Xk: k=1,2,..,N} are randomly generated at each independent run while using the same N
signal samples. This independent run is repeated M times.

For each independent run, given the measurement data z* at time &, both complex GCM and
complex AVC estimators were applied and the estimated interference Z, was computed for both
real and imaginary parts. From the experiment we found that these two estimators performed
almost equally good under the specified conditions and the results obtained by the complex GCM
estimator is plotted (see Figure 3 for a typical realization). To evaluate the performance of the
algorithm, the distance between interference realization z; and its estimate &, and the estimation
error e = x) — &} are both shown in Figure 4, which contains the information about the estimation

error. The classic performance indices such as the mean, variance and signal-to-noise ratio (SNR)
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are not used to evaluate the estimators because the second moment of the SaS process is infinity
for @ < 2 and the input “SNR” in our simulation is —oo dB. Once the estimated interference &, is

obtained, it can be removed from the measurement data so that the signal is estimated.

(a) Real part (b) Imaginary part
25 T T T T 80 T T T 1
20 -
60 -
15+ .

10

Ampiitute of the interference X(k) and its estimate XA(K)
(=]

Amplitute of the interference X(k) and its estimate X*(k)

-10 -
-15} Interference X(k): solid g Interterence. X(k): solid
Estimated X~(k): dotted -40 Estimated X~(k): dotted -
20+ =
25 1 1 ' 1 -60 1 1 ' 1
(5} 50 100 150 200 250 (5} 50 100 150 200 250
Time k Time k

Figure 3: Original interference and its complex GCM estimate: (a) real part, (b) imaginary part.
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Figure 4: (a) Distance between interference zj and its estimate &, (b) Interference estimation
error e, = &y — Tf.

In the simulation, we also compared the complex GCM/AVC estimators with the approximate
conditional mean (ACM) estimator [3] and the conventional direct threshold detection (DTD)
method [19] by first detecting the signal from the estimate 9; and then computing the correct
detection probability. The decision regions, according to the nearest neighbor rule, are the four
quadrants [-1V for the complex signal (see Figure 4(b)). If the error is within the square region
with the four signal points as its vertexes, then there is no detection error. For the DTD scheme,
the measurement data z is treated as the estimated signal and then fed directly to the threshold
detector. The complex version of the ACM estimator, under the given simulation conditions, can
be performed by the recursions below for both real(R) and imaginary(I) parts of the time sequence.

A

XB = (A -1 X+ 2T - tanh(%———
k

1

RIT _ RIT
Mﬁ{!f = Aﬁsechz(%) +od,
k

where 2, = 27,, when the interference Wy is SaS. The following block diagram (Figure 5) is used
to test the complex GCM, AVC, ACM and DTD algorithms. N = 1000 samples were taken from

each random process realization and the complex GCM, AVC, ACM, DTD algorithms were applied.

18



M = 10 independent runs were executed and the average correct detection probability computed.
The results are summarized in Figure 6. Notice that in the worst case when no action is taken, the

average correct detection probability will be about 0.25.

s | £ ]
Zy = Hp Xy + Vi > > "

Z

X, Vi I_ ﬁkc;cw,wc,mcm
GCM/AVC/ACM > —I " >

Figure 5: Comparison of the complex GCM, ACM, AVC and DTD algorithms
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Figure 6: (a) Correct detection probability for different values of «, (b) Correct detection proba-
bility for different values of ~.
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When the output correct detection probability is used as the performance measurement, we

observed the following behaviors of the complex GCM/AVC interference estimators (see Figure 6).

e The complex GCM and complex AVC estimators are robust with respect to the value of a.
This property is very important since it allows the proposed algorithm to be used in the
situation when the impulsiveness of the interference is unknown, which is the case for most

of the real physical interference sequences.

e When the interference “power” is weak, i.e, the small v, all the estimators performed well.
And for all the situation, the complex GCM/AVC estimators are superior over the ACM and

DTD estimators.
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VI. CoNCLUSION

Impulsive interference cancellation problem has been of great concern in the communication
community for a long time. Such interference is and will become more and more a major limiting
factor in the successful functioning of communication systems which play the crucial role in the
modern information era.

To attack the interference mitigation problem in a broad sense, we introduced the general
LP9)_metric space and derived the £P?)-metric optimality criterion. For the interference, we do
not constrain ourselves to the specific model. Our new approach to the interference problem has
the following advantages. First, the interference can take arbitrary density function, which give us
an unlimited flexibility to model the real physical processes as accurately as possible. Second, the
a posteriori density function has analytical closed form so that the further study of the properties
of the estimators and other theoretical concerns become easier. Third, the algorithm to compute
the a posteriori density function and the corresponding estimators is recursive and straightforward,
which is very crucial in the implementation. Forth, the interference algorithm is robust with respect
to the impulsiveness of the interference which means the @ prior: of the interference can be unknown.
All of these features will allow us to apply the proposed method to a wide range of problems in

communications and signal processing.
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