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Chapter 1

Adaptive Filters and
Interference Mitigation

1.1 Introduction and Motivation

When the characteristics of the data to be processed are stationary,
the linear filter solution is the design of a Wiener filter that is optimal
in the minimum mean square error (MMSE) sense [Kailath, 1974; 1981;
Mendel, 1987]. The filter design requires a priori information about the
statistics of the data. The filter is optimal only when the statistical char-
acteristics of the input data match the a priori information on which the
design of the filter is based. When this a priori information is not known
completely, however, it may not be possible to design the Wiener filter
or else the design may not be optimal. In such situations, a straight-
forward approach is the “estimate and plug” procedure [Haykin, 1991].
This is a two-stage procedure. First, the statistical characteristics of the
data to be processed are estimated and then the obtained parameters are
plugged into a nonrecursive formula for computing the filter parameters.
For real time operation, this procedure has the disadvantage of requiring

excessively complex and costly hardware.



2 CHAPTER 1. ADAPTIVE FILTERS AND INTERFERENCES

A more efficient method is to use an adaptive filter [Widrow and
Stearns, 1985; Haykin, 1991]. The adaptive filter is a self-designing
scheme based on a recursive algorithm, which makes the filter perform
satisfactorily in an environment where complete knowledge of the rele-
vant signal characteristics is not available. In a stationary environment,
it is found that after successive iterations the filter converges to the op-
timum Wiener solution in some statistical sense. In a nonstationary
environment where the statistics of the input data is time-varying, the
algorithm provides a tracking capability, provided that the variations are
sufficiently slow. Usually, an adaptive filter is more complex and diffi-
cult to analyze than a non—adaptive filter. It should be noted that the
adaptive filter can be considered as either a nonlinear device or a linear
device. It is nonlinear in the sense that it does not obey the principle of
superposition. Since the adaptive filter parameters are updated at each
iteration, the parameters become data dependent. On the other hand, it
is linear in the sense that the interesting estimate is obtained adaptively
(at the output of the filter) as a linear combination of the filter inputs
weighted by the filter coefficients.

Relying upon their “self-adjustable” property and “programmable”
property by a training process, the adaptive filters have been success-
fully used in many fields such as control, communications, radar, sonar,
seismology, mechanical design, navigation systems, etc. In this book, we
restrict ourselves to the adaptive interference mitigation problem which
is one of the most important applications of adaptive filtering. Although
interference mitigation problems can be easily found in many books and
journals of signal processing and communications, there is still no text-
book addressing specifically the adaptive interference mitigation meth-
ods. This observation has motivated us to write this monograph on

adaptive interference mitigation.
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1.2 Historical Evolution

The earliest work on adaptive filter algorithms may be traced back
to the 1950s. Widrow and Hoff have devised the least mean square
(LMS) algorithm as a simple algorithm for adaptive transversal filters in
1959. Robbins and Monro [1951] have developed stochastic approxima-
tion methods. Plackett [1950] and other several researchers have worked
on the recursive least squares (RLS) algorithm. Another algorithm re-
lated to the LMS algorithm is the gradient adaptive lattice (GAL) algo-
rithm by Griffith [1977; 1978] using lattice filters instead of transversal
filters. Godard [1974] used Kalman filter theory to propose a new class
of adaptive transversal filtering algorithms. Gentleman and Kung [1981]
have introduced another procedure using systolic arrays, the so called
recursive QR decomposition least squares algorithm using Givens rota-
tions. The most comprehensive textbook on adaptive filter theory was
written by Haykin [1991].

1.3 Adaptive Algorithms

When the information of the statistical characteristics of the input
data is not known completely, an efficient method to design the corre-
sponding optimal filter is to use an adaptive algorithm. Although a wide
variety of algorithms have been developed for adaptive filters, the choice
of one algorithm versus another would be determined by various factors:
convergence rate, misadjustment, computational complexity, tracking ca-

pability, robustness, algorithmic structure, and so on.
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1.3.1 Development of Adaptive Algorithms

Although there is no unique classification for adaptive algorithms,
we may identify the following typical four groups of adaptive algorithms

depending on the basis of their development.

Algorithms Based on Mean—-Squared Error

A tapped delay line or transversal filter is used as the basis for im-
plementing the adaptive filter. The finite impulse response (FIR) of such
a filter is defined by the number of tap weights (filter coefficients). To
adaptively adjust the filter coefficients, we first modify the system of
Wiener-Hopf equations using the method of steepest descent and then
use instantaneous values for the autocorrelation of the tab inputs and
cross—correlation between the desired response and the tab inputs to de-
rive an estimate of the gradient. The resulting algorithm is known as the
least mean square (LMS) algorithm [Widrow and Stearns, 1985; Haykin,
1991; Clarkson, 1993]. The LMS algorithm is simple and capable of
achieving satisfactory performance under the right conditions. Its ma-
jor drawbacks are a relatively slow convergence rate and a sensitivity to
the eigenvalue spread defined as the ratio of the maximum to minimum

eigenvalues of the correlation matrix of the tap inputs.

Algorithms Based on Kalman Filter

When a linear dynamic system is described by the state-space model
consisting of two basic equations: the plant equation and the measure-
ment equation, the Kalman filter solution can be expressed as time-
update recursive equations [Kalman, 1960; Kalman and Bucy, 1961;
Sorenson, 1970]. With a transversal filter used to provide the struc-

ture base, we may identify the filter coefficient vector as the state vector.
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By adopting the idealized state model and by making identification of
the corresponding parameters, we may use the recursive solution to the
Kalman filtering problem to derive a number of different recursive al-
gorithms for updating the filter weights [Haykin, 1991]. The algorithm
provides faster convergence rate, is insensitive to the eigenvalue spread,
and deals with a stationary or nonstationary environments. Its major

limitation is high computational complexity.

Algorithms Based on Least Squares

In algorithms based on least squares, we minimize a performance
index that consists of the sum of weighted error squares, where the error is
defined as the difference between desired response and filter output. Note
that the method of least squares differs from the two previous algorithms
in the sense that the former algorithm is deterministic in its formulation
and the latter ones are based on statistical concepts.

There are two basic categories for methods of least squares [Haykin,
1991]: block estimation approach and recursive estimation approach. In
the block approach, the input data is arranged in several blocks and the
filter coefficients are updated on a block-by-block basis. In the recursive

approach, the filter coefficients are updated on a sample-by-sample basis.

e Recursive Least Squares (RLS) [Morf et al., 1976; Falconer and
Ljung, 1978]: The algorithm uses a transversal filter and its deriva-

tion relies on a basic result from the matrix-inversion lemma.

o Least Squares Lattice (LSL) [Friedlander, 1982b; 1982c; Lev-Ari
et al., 1984]: The issue of computational complexity is resolved
by using a multistage lattice predictor as the structural basis for

implementing the adaptive filter. An important property of the
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multistage lattice predictor is that its individual stages are decou-

pled from each other in a time-averaged sense.

e QR Decomposition Least Squares (QRDLS) [Haykin, 1991]: The al-
gorithm consists of an iterative open—loop configuration while the
other algorithms use iterative closed-loop configurations. At the
first stage, the input data matrix is recursively transformed into
upper triangular form by the QR decomposition method. The QR
decomposition is a matrix factorization to express a matrix as a
product of an orthogonal matrix and an upper triangular matrix.
Then the special structure of the data matrix is exploited to com-
pute the least squares weight vector. This algorithm is stable, ro-
bust, rapidly convergent, and computationally efficient. It may be
implemented using systolic arrays well suited for VLSI implemen-

tation.

Algorithms Based on Nonlinear Criteria (Non-MSE)

Mean-square error (MSE) or least-squares criteria used in adaptive
filtering lead to second-order statistics of the signals associated with
the adaptation process. The limitation of second-order statistics is that
they are phase blind and that they cannot extract information related to
nonlinear and/or higher—-order statistics. When the input data is non-
Gaussian, using a nonlinear cost function, the filter is enabled to extract
information (particularly phase information) from the input signal in a
more efficient manner. An important example of an adaptive filter with
non-MSE creteria is blind deconvolution (or equalization). This problem
can be found in the literature of [Benveniste and Goursat, 1984], [Godard,

1980], [Chen and Nikias, 1991], [Hatzinakos and Nikias, 1991], etc.
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Another method that overcomes the limitation of second—order statis-
tics is to use higher-order statistics (HOS) when the input data has
non-zero higher-order cumulants. The use of HOS has drawn a lot of at-
tention due to the fact that they preserve phase information, are blind to
any Gaussian process, and detect and characterize nonlinear properties
in time series [Nikias and Petropulu, 1993; Nikias and Mendel, 1993].

Recently, many researchers devoted themselves to studying impulsive
phenomena. Especially, when the input data is characterized by a stable
process [Shao and Nikias, 1993; 1995], the use of second-order or higher-
order statistics is not possible because of the high or infinite variance of
impulsive-like signals. In such situations, fractional lower order moments
(FLOM) may play an important role instead second— and higher—order
moments. Also, new criteria based on the FLOM could be considered for

stable signal processing.

1.3.2 Adaptive Filter Structures

To implement an adaptive filter, we can use the transversal or finite
impulse response (FIR) filter, the infinite impulse response (IIR) filter ,

and lattice structure filter.

Transversal Filter

The transversal filter is also referred to as a tapped delay line. It
consists of three elements: unit delay element, multiplier, and adder. The
number of delay elements used in the filter determines the duration of its
impulse response [Widrow and Stearns, 1985; Haykin, 1991; Clarkson,
1993].
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Lattice Filter

A lattice filter is modular in structure in that it consists of a number
of individual stages, each of which has the appearance of a lattice. Each
stage of the lattice filter is described by the pair of input—output relations
among the corresponding forward prediction error, backward prediction
error, and reflection coefficients [Makhoul, 1977; Haykin, 1991; Clarkson,
1993].

IIR Filter

The feature that distinguishes an infinite impulse response (IIR) filter
from finite impulse response (FIR) filters that are previously described
is the inclusion of feedback paths [Johnson, 1984; Widrow and Stearns,
1985; Clarkson, 1993]. On the one hand, the presence of feedback makes
the duration of the impulse response of an IIR filter infinitely long. On
the other hand, it may introduce instability of the filter. It is possible
for an IIR filter to become unstable, unless the feedback coefficients are
chosen very carefully. To avoid the IIR filter from being unstable, a
stability test should be performed at each iteration. If unstable, the

corresponding parameters need to be projected back into a stable region.

1.4 Applications of Adaptive Filtering

Adaptive filtering has been successfully applied in many fields: com-
munication, radar, sonar, seismology, biomedical engineering, and so on.
Depending on the desired response, we may distinguish four basic classes
of adaptive filtering applications: identification, inverse modeling, pre-
diction, and interference cancellation [Haykin, 1991]. Among many ap-

plications of the adaptive filtering, we describe a few selected topics.
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e System Identification: When we have an unknown time invariant
(or time varying) dynamic system with sets of discrete time sta-
tionary input signal and its corresponding measurements, the re-
quirement is to identify the unknown system [Goodwin and Payne,

1977] in the form of a transversal filter.

e Equalization: The transmission of digital signal through a linear
communication channel is limited by the following two factors: in-
tersymbol interference and additive thermal noise. The intersymbol
interference is usually the major concern. Since the characteristics
of the channel is unknown/random in practice, an adaptive equal-
izer is desired to adequately reduce intersymbol interference [Lucky,
1965; 1966; Godard, 1980].

e Speech Processing: There are two broad classes to represent speech
signals: source coders (vocoders) and waveform coders. An exam-
ple of source coding is linear predictive coding (LPC) in which
linear prediction is used to estimate the speech parameters [Ra-
biner and Schafer, 1978]. A linear prediction of the present sample
of a speech signal is adaptively obtained by using a set of its past
samples. An example of waveform coding is adaptive differential
pulse code modulation (ADPCM) that is DPCM [Cutler, 1952] uti-
lizing an adaptive quantizer and an adaptive predictor for further
reduction in the transmission rate [Cummiskey et al., 1973; Noll,
1975).

e Spectrum Analysis: In parametric spectrum analysis, the power
spectrum is estimated by assuming a model for the process. One
of practical models is the autoregressive (AR) model excited by
a white noise process [Marple, 1987; Kay, 1988]. When the AR

parameters are assumed to be nonstationary, an adaptive prediction
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error filter can be applied to determine the AR parameters and the

instant power spectrum.

Detection: In several environments, there may be inadequate infor-
mation on the signal, and noise statistics to design a fixed optimal
detector like Bayes or Neyman—Pearson detectors [Helstrom, 1968;
Van Trees, 1968]. An adaptive detector exploits some knowledge
of general characteristics of the signal and noise, and adjusts it-
self in response to changes in the received signal. One example of
the adaptive detection is the detection of narrowband signal using
an adaptive line enhancer in a background of additive broadband
noise [Widrow et al., 1975; Zeidler et al., 1978; Nehorai and Malah,
1980].

Noise Cancellation: The noise canceler subtracts noise from a re-
ceived signal and improves output signal-to-noise ratio (SNR). An
adaptive noise canceler is a dual-input (primary and reference in-
puts), closed loop adaptive control system. The structure of the
adaptive noise cancellation will be described in Chapter 3 in de-
tail. Useful applications of the adaptive noise cancellation include
canceling 60 Hz interference in elctrocardiography [Widrow et al.,
1975), reducing background (acoustic) noise in speech [Boll and Pul-
sipher, 1980; Clarkson, 1993], canceling echo in a long distance call
made on hybrid telephone connection [Sondhi, 1967; Rosenberger
and Thomas, 1971], and etc.

Beamforming: This is a spatial form of adaptive signal processing
that finds applications in radar and sonar. A number of indepen-
dent sensors, which are placed at different points in space, receive
the signal. A beamformer distinguishes between the spatial proper-

ties of signal and noise. In order to enable a beamformer to respond
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to an unknown interference, it has to be adaptively performed so
as to automatically place nulls in the directions of the sources of

interference [Widrow et al., 1967; Frost, 1972; Compton, 1988].

Among these several applications, we have restricted ourselves here

to the adaptive interference cancellation problem throughout the book!

as shown in Fig. 1.1. Although there are three categories of interference

System
Identification

Equalization

Detection Beamforming

Broadband
Interference
Mitigation

Figure 1.1: Configuration of adaptive interference (noise) mitigation
problems among the applications of adaptive filtering.

Traditionally, the terms adaptive noise cancellation and adaptive noise canceler
have been used. Throughout the book, however, we use adaptive interference mitiga-
tion and adaptive interference canceler instead because it is desired to clearly distin-
guish between interference and background (thermal) uncorrelated noise.
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mitigation problems: broadband interference mitigation, narrowband

interference mitigation, and impulsive interference mitigation as shown

in Fig. 1.1, the book covers narrowband and impulsive interference mit-

igation problems only.

1.5 Types of Interference Models

To represent a signal a variety of models has been used in the litera-
ture. Here, we divide interferences into two large groups: Gaussian inter-
ferences and non—-Gaussian interferences. Non—Gaussian interferences in-
clude any signal that is not Gaussian. Each group contains two members
categorized by the bandwidth of the signal: narrowband and wideband
(or broadband). The spectrum of a narrowband signal is smaller than
the passband of the receiver, i.e., the spectrum of the signal of interest
(SOI). The spectrum of a wideband signal is broader than the passband
of the receiver. The configuration of the types of interference models is
illustrated in Fig. 1.2. Note that the generalized Gaussian and stable

interferences are special forms of non—Gaussian signals.

1.5.1 Gaussian Interference

The most popular model for interference or noise is a Gaussian model
due to its simple form of the distribution and its justification from tae

use of the central limit theorem [Davenport and Root, 1987].

Narrowband Gaussian Interferences

One way to model a Gaussian narrowband interference or noise is
to use a colored Gaussian process occupying a small bandwidth in the

frequency domain. An example for this mode! is a narrowband Gaussian
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INTERFERENCE
MODELS
Gaussian Non-Gaussian

A N

Narrowband | | Wideband Narrowband | | Wideband | | Others

S\

Generalized || Sable
Gaussian

Figure 1.2: Categorization of types of interference models.

interference expressed as [Iltis and Milstein, 1984; Masry and Milstein,
1986]

I(k) = I.(k) cos((wo + dw)k) — I,(k) sin((wo + dw)k) (1.1)

where I.(k) and I;(k) denote the in—phase and quadrature terms, re-
spectively. In (1.1), éw denotes an interference offset from the carrier
frequency.

Another way to present a wide class of narrowband Gaussian interfer-
ences is by using an all-pole (or AR) filter. The narrowband interference
is generated by an autoregressive (AR) process of order p excited by a
Gaussian white process:

P
I(k)=>" ¢iI(k— i)+ e(k) (1.2)
i=1
where {e(k)} is a white Gaussian process. In the expression, {¢;, i =

1,2,...,p} denotes the AR parameters. The model for a narrowband
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interference can be found in [Vijayan and Poor, 1990; Garth and Poor,
1992].

Wideband Gaussian Interferences

The most popular way to model a Gaussian wideband interference
or noise is to pass a white Gaussian process through a wideband filter.
Another way is to use a colored Gaussian process occupying a broad
bandwidth in the frequency domain [Milstein and Das, 1983].

1.5.2 Non—Gaussian Interference

For many signal processing or communication problems, the usual
Gaussian assumption is inadequate due to the occurrence of high ampli-
tude “spikes” with low probability. These impulsive components of the
interference have been observed in many real world applications. Exam-
ples include atmospheric noise, where lightning discharges in the vicinity
of the receiver can cause such spikes [Watt and Maxwell, 1957; Ibukun,
1966], and underwater problems such as sonar and submarine commu-
nication, where the ambient acoustical noises may include impulses due
to noisy aquatic animals such as snapping shrimp or due to ice cracking
in arctic regions. There is a great variety of man-made non-Gaussian
noise sources [Middleton, 1972; 1973] such as automobile ignitions, neon
lights, and other electronic devices.

For modeling these non-Gaussian, impulsive phenomena, the follow-

ing two approaches can be used:

e Empirical models: They are developed to fit collected data often
with little regard for the underlying physical mechanisms [Trunk,
1970; Sorenson and Alspach, 1971; Miller and Thomas, 1976]
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e Physical models: They attempt to model these mechanisms di-

rectly.

We concentrate here on a number of various physical models for non—

Gaussian interferences,

Narrowband Non—-Gaussian Interferences

The most popular model for narrowband signal representation is to

use a finite sum of sinusoidal signals as follows.

M
I(k) =) am cos(27 fm k + ¢m) (1.3)

m=1

where M is a positive integer. In the expression, a,, and f,, denote the
amplitude and frequency of each sinusoid, respectively. The phase ¢, is
a value over the interval of [—m, 7). This model can be found in [Hsu and
Giordano, 1978], [Milstein and Das, 1980], [Ketchum and Proakis, 1982],
[Proakis, 1982], [Milstein, 1988], etc.

Another way is to use a zero-mean wide-sense stationary process

with the following covariance sequence [Masry, 1984; 1985].
pi(k) = o} ol (1.4

where o7 is a positive constant and 0 < & < 1. The spectral density of
the interference exists and is given by
(07/27) (1~ a?)
|1 - aew|?
(o7/27) (1 - o?)
T 140®-2xcosw’

Sr(w)

Il

(1.5)

Note that as the value of a approaches to unity, the spectral density

becomes more sharply peaked.
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We can also model a non-Gaussian narrowband interference or noise
using the Middleton Class A model [Middleton, 1977; 1979a, 1979b]. The
associated probability density function (pdf) is given by

X Am ¢ e—c2f2&3"

fa(e) e Z-—u ~r (1.6a)
where € is the normalized envelop and
&2 = Mfl
m T 2(14-Ty)
= W (1.6b)

V2Q4(1+T,)
In the expression, the parameter E denotes the instantaneous envelope

and the parameters (A,'4,Q4) are called “global” parameters briefly
stated as follows:

e A (overlap index) is defined as the average number of source emis-
sion “events” impinging on the receiver per second, times the mean
duration of a typical interfering source emission. The smaller A,
the fewer such events and/or their duration. As A is made large,
the statistics or the instantaneous amplitude approaches Gaussian

statistics.

e I'y (Gaussian factor) is defined as the ratio of the intensity of the
independent Gaussian component of the input interference to the

intensity of the non—-Gaussian component.
e (4 is defined as the intensity of the impulsive non-Gaussian com-
ponent.

Wideband Non—Gaussian Interferences

The Middleton Class B model [Middleton, 1977; 1979a; 1979b] can be

used for wideband non-Gaussian signals and requires two characteristic
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functions. One is for small and intermediate values of the envelope and
the other is for the large values. The associated pdf’s are given by, for

an appropriate threshold value of the envelope ¢g,

co —
2621—}—_‘::’; r(L ;““)IFI(-i—z ;"";1;—62) 0<e<ep

fBlO=q ™% - (1.7a)
e—A 5:11 —e* [28,
VTezd o € g_c‘r-mi_ eg<e<oco
m=0

where 0 < a < 2, 1 F} is a confluent hypergeometric function [Middleton,
1960; 1977], and

. blaag)“ £ o 1
Aa = A( G /' “BT20p(1+4Tp)
2 _ m/Ap+Tp : _(2—a)
m = A+Tp) Ap = — A (1.7b)
G‘.”. = %:_g—l-PB-
4(14Tp)

There are six “global” parameters (Aq4, @, A, ', Qp, N1) briefly stated

as follows:

e The subset (A,I'p, ) are just as for Class A narrowband inter-

ferences.

e by, is the structure factor given by

by — 1 =c/2)
107 2a/2-1(1 + a/2)

where < Bg > is the a-moment (fractional moment) of the envelop

< (Bo/V2)* > (1.8)

By of the typical emission at the output of the front-end stages of

the receiver. The structure factor influences the shape of the pdf.

e « is the spatial density—propagation parameter given by

2=p
5 J

surface

3-p
o

vol
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where p and v are the power-law exponents associated with the
range dependence of the density distribution of the possibly emit-
ting sources and their propagation, respectively. It provides an

effective measure of the average source density with range.
e Ny is a scaling factor on e.

Note that there is the Middleton Class C interference which is the
sum of the Class A and the Class B interferences. But, it can be shown
to be reducible to an equivalent Class B form [Middleton, 1979a).

Other Non—Gaussian Interferences

A non—-Gaussian family of symmetric probability distributions is the

generalized Gaussian distribution defined as [Gray, 1979]

o ()"

f(z,0,B) = 2‘3[‘(:7) e (1.10a)
where
-0 <T<00
TOT T Blegmtudin g
>0 is the scale parameter.

The generalized Gaussian family covers a wide range of distributions
including those having heavier tails than the Gaussian distribution. The
double exponential distribution (Laplace distribution), Gaussian distri-
bution, and uniform distribution are special cases of the generalized
Gaussian distribution. The generalized Gaussian distribution will be
revisited in Chapter 6.

Some impulsive interferences can be characterized by stable processes

[Shao and Nikias, 1993; 1995] whose characteristic function is given by
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P(t) = exp{ jat — v |t|* [1+ jBsign(t) w(t,a)]} (1.11a)

where
1 fort >0

sign(t) = 0 fort=0 (1.11b)
-1 fort <0
_ J tan(%) fora#0
wika) = { 2 log |¢| fora=1. (L)

The stable distribution has four parameters: location parameter (a), in-
dex of skewness (), characteristic exponent (a), and dispersion param-
eter (y). The stable distributions are called symmetric a—stable (SaS)
distributions when the distribution with the characteristic exponent o
is symmetric. The value of & is constrained to be 0 < a < 2. They
are smooth, unimodal, and bell shaped. When o = 2, the distribution
becomes Gaussian. The smaller ¢ is, the heavier the tails. One of their
important characteristics is their infinite variance unless @ = 2. The
important definitions and useful properties of the SaS distributions are

described in Chapter 7.

1.6 Organization of the Book

It is assumed that the reader is familiar with fundamental knowledge
and tools of signal processing such as discrete time sequences, linear
system, convolution, Fourier transforms, linear algebra, etc. It is also
assumed that the reader has knowledge of basic probability and random
variables.

This book deals with a number of techniques of interference mitiga-
tion. As shown in Fig. 1.1, the book covers narrowband and impulsive
interference mitigation using digital filters. The digital filters consist
of fixed and adaptive filters. After introducing fixed digital filter tech-

niques, we concentrate, however, on the use of adaptive filters illustrated
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in Fig. 1.3. The adaptive digital filters may be divided into three groups
as shown in Fig. 1.4, depending on the availability of reference signals,
filter structures, and criteria. The reference signal availability group con-
sists of single sensor and multiple sensor problems. The filter structure
group may be divided into transversal, IIR, and lattice filters. The cri-
terion may be based on linear, nonlinear, second-order statistics, and
higher-order statistics (HOS) criteria. For example, the adaptive noise
canceler is using the LMS algorithm (second-order statistics criterion),
a transversal filter realization, and multiple sensors.

Chapter 2 introduces the narrowband interference mitigation problem
using conventional fized notch filters. When the additive interference is
stationary sinusoidal with a priori known characteristics (e.g., amplitude
and frequency), digital fixed notch filters are described. The realization
structures and the corresponding critical design parameters of a second-

order and a sixth-order notch filters are considered. In addition, their

Figure 1.3: Configuration of types of filters.
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Second Order Higher Order
Statistics Statistics

Nonlinear

Transversal || IIR | | Lattice Single Multiple
Sensor Sensor
Problem Problem

Figure 1.4: Configuration of adaptive digital filters.

performance with different sets of the critical design parameters are pre-
sented through computer simulations when the interference is stationary
(time invariant). We include an example of nonstationary (time varying)
interference mitigation problem and justify the need of adaptive interfer-
ence mitigation (AIM) methods in practice.

Chapter 3 considers AIM methods based on second-order statistics.
The AIM methods are categorized into two different classes. One class
assumes availability of two inputs: primary and reference inputs. The
other class is the AIM problem when only a single sensor receives the sig-

nal of interest (SOI) corrupted by additive interference and background
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noise. The structures of these AIM methods are transversal, IIR, or
lattice filters. Note that all the AIM algorithms described in Chapter
3 are linear and are based on second-order statistics. We present the
description of each algorithm, its computational complexity, and its cor-
responding advantages and disadvantages. In addition, we demonstrate

the performance of each AIM algorithm through computer simulations.

Chapter 4 describes AIM methods based on nonlinear cost functions
(criteria). These are AIM methods based on Taylor series expansion,
nonlinear error, least mean fourth, median filter, constant modulus algo-
rithm (CMA), and criterion with memory nonlinearity (CRIMNO). The
advantages and disadvantages of each method are discussed as well as
the corresponding computational complexity. In addition, their perfor-
mance of narrowband interference mitigation is presented through com-

puter simulations.

Chapter 5 deals with AIM methods based on higher—order statis-
tics (HOS). When the interference can be considered as a non-Gaussian
process whose nth-order (n > 2) statistics are not identically zero, the
HOS-based AIM algorithm is derived from a “criterion of goodness” in
nth—order cumulant domains. The criterion consists of three components:
the cross—cumulants between the primary and reference input measure-
ments, the auto-cummulants of the reference input measurement, and
the adaptive filter coefficients. To minimize the criterion, the gradi-
ent type algorithm is employed. Although using HOS requires more
computational complexity, the HOS-based AIM techniques have the fol-
lowing advantages over the second-order statistics-based ones: (1) the
filter coefficient update equation is independent from uncorrelated noise
sources that are assumed to be Gaussian, (2) the performance is less
sensitive to the statistics of the reference signal, and (3) the convergence

rate is faster and excess error is smaller. We develop the AIM method
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based on fourth—order statistics and present its required computational
complexity. In addition, we demonstrate and compare the performance
of the AIM method based on fourth—-order statistics with second—order
statistics-based AIM methods.

Chapter 6 covers single sensor AIM techniques when a narrowband
interference corrupts the broadband DSSS SOI transmitted over a noisy
channel. The reference signal for the interference is not available and
the transmitted SOI is received by a single sensor. The noise channel
distributions are Gaussian or generalized Gaussian. Since the received
signal is not Gaussian, linear AIM methods cannot be optimal. Thus,
nonlinear AIM methods are introduced to effectively mitigate the inter-
ference. The nonlinear AIM methods are derived from the approximate
conditional mean (ACM) filter. We present the nonlinear AIM method
for generalized Gaussian noise channels as well as those for Gaussian and
mixed Gaussian noise channels. Their performance is compared to that
of linear AIM methods in terms of the improvement of signal to interfer-
ence plus noise ratios and the error curves between the restored SOI and
the original SOI, when the narrowband interference is a single sinusoidal

signal or a signal generated by an AR system.

Chapter 7 considers AIM methods for mitigating impulsive interfer-
ences characterized by symmetric a—stable (SaS) distributions. First, the
definitions and useful properties of SaS processes are briefly described.
When the interference is characterized by SaS distributions, the usual
criteria and analyses for AIM methods described in the previous chapters
cannot be applied because a SaS process does not have a finite variance.
To mitigate the impulsive interference we then describe AIM methods
based on pth order criterion, where p < «, as well as a variety of AIM
methods based on LMS algorithm. Note that the AIM methods based
on LMS-typed algorithm can be used because of an instant gradient es-
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timate. The performance of each AIM method is presented when the
impulsive interference is characterized with different value of the charac-

teristic exponent a.

Chapter 8 is devoted to the concluding remarks and future works on

adaptive interference mitigation problems.



Chapter 2

Conventional Notch Filters

2.1 Introduction

In many signal processing applications we frequently encounter the
problem of removing additive sinusoidal interference without seriously
distorting the signal of interest (SOI). When the characteristics of a si-
nusoidal interference (e.g. amplitude and frequency) are stationary and
their estimation is precisely available, we can use a fixed digital notch
filter to effectively mitigate the interference. In this chapter we introduce
the problem definition and representation of digital notch filters as well
as their design techniques and properties. In particular, second— and
sixth-order digital notch filters are described, and several examples that

demonstrate their performance are given.
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2.2 Problem Definition and Preliminaries

Let us assume that the SOI, {s(t)}, is corrupted by an additive sinu-
soidal interference, {I(t)},

z(t) = s(t) + I(t) (2.1)
where the interference {I(t)} can be represented by
I(t) = A sin(wgt). (2.2)

Note that the amplitude (A) and frequency (wp) of the sinusoidal inter-
ference are assumed to be constants. The ideal interference cancellation
filter should have a response {s(t)} to the input {z(¢)}. In the frequency
domain, the required ideal linear filter, H;4eqi(jw), should have unity
gain for all frequencies except at wg where its gain is zero as illustrated
in Fig. 2.1. This ideal filter processor is called a noich filter with notch
at wp. Unfortunately, the ideal notch filter is not physically realizable
and must be approximated in practice as illustrated in Fig. 2.2. If one
would attempt to implement a notch filter approximation using analog
devices (resistors, capacitors, and inductors), the futility of the approach
would be quickly realized because of component tolerances, component
drift, accuracy, physical size, and reliability. On the other hand, one may
easily design a digital filter whose frequency response closely resembles
that of the ideal filter.

Assuming that the sampling period T is small enough so that little
distortion results from the analog-to-digital (A/D) conversion of the
desired signal {s(t)}, we use the sample sequence of the signal, {z(k)},
where t = Tk as the input to a digital filter governed by

m

y(k) = 3 bizlk = i) = 3 aj (k- 5) (2.3

1=0
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|H ()| : 0# 0,
(linear scale) } gl = [0 =0,
1 {
0 P
Wy frequency (@)

Figure 2.1: Frequency characteristics of an ideal notch filter.

where {y(k)} denotes the filter output. The problem is to select the
coefficients {a;} and {b;} so that the frequency response of the resulting
digital filter will be similar to that of the ideal notch filter. Figure 2.2
illustrates the frequency response of a practical notch filter with a 3-dB
rejection bandwidth b and notch frequency wg. As we see later in this

chapter, both b and wq are critical design parameters.

[H G| 4
(dB)

ig [i—— —

W, frequency ()

Figure 2.2: Frequency characteristics of a digital notch filter with a 3-dB
rejection bandwidth b and a notch frequency at wp.
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2.3 Gain of a Digital Notch Filter

Let us consider the transfer function, H(z), of the digital filter de-

scribed in (2.3), then it becomes

H(z) = 2ot biz7t +baz™? 4 - 4 bz
T 14 a1z 4 az 24 F a2z’

(2.4)

After multiplying the numerator and denominator of the transfer function

by z™ and factoring, we obtain

B2 i) wies i
H(z) = o(z —z1) (2 — 23) - (2 — z) (2.5)
(z—p1)(z—p2) -+~ (2 —po)
where k and £ denote the number of zeros and poles of the transfer
function, respectively. The steady—state system gain factor of the digital
filter H(z) is given by
|bo] - [T — 21| -| €T — 25| - -+ | 8T — 2|
|e7T —py | - |eiT —py| -« [T — pe|

|H(eT)| = (2.6)

As shown in (2.6), the system gain at frequency w depends on the dis-
tances from the system transfer function’s zeros and poles to the point
eT which is a vector of unit length and angle wT. Thus, if we wish to
completely remove the sinusoid sin(kwT'), it is required that the transfer
function should have a zero at z = e#0T, Note that the transfer function
must have zeros at z = €T and z = =707 for the difference equation

(2.3) to have real coefficients.

2.4 Location of the Poles and Zeros of a Notch
Filter

It is apparent from the previous section that when the transfer func-
tion of a digital filter has zeros located at e/T and e=7“07, the filter

having real coefficients will have a notch at wy. In addition, one more
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requirement of an ideal notch filter is that the value of its frequency
response is near unity for frequencies sufficiently close to the notch fre-
quency wg. To satisfy this requirement, we must properly locate poles
that tend to cancel the effects of the zeros. Although it is desired for
a notch filter that the poles be located as close as possible to the zeros
at wp and the unit circle, we have to take into account practical design
considerations. Since all digital systems are based on finite word lengths,
the desired filter coefficients according to the ideal location of the zeros
and poles will be truncated and thus the resulting truncated filter coef-
ficients may lead to an unstable notch filter. Therefore, it is important
to decide the location of the zeros and poles so that the resulting digital
notch filter not only has the frequency response close to that of the ideal

notch filter but also becomes a stable filter.

2.5 Design of Digital Notch Filters

Various design methods to obtain a stable digital notch filter with
suitable notch characteristics have been considered quite extensively in
the literature by Abu-El-Haija and Perterson [1979], Antoniou [1983],
Cadzow [1973, 1974], Hirano, Nishimura, and Mitra [1974], Mitra and
Sherwood [1973], and Yan [1984]. In this section, we describe the two
most popular design methods that yield a stable digital notch filter.

2.5.1 Second-Order Digital Notch Filter

The transfer function of an analog notch filter is given as

H(s)= 3 T bs+ A2

(2.7)

where A\ and b denote, respectively, a notch frequency and the 3—-dB

rejection bandwidth: i.e., within the frequency band of width b centered
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at A, all signals are attenuated by more than 3 dB. Note that the DC gain
is 0 dB (see Fig. 2.2). To develop a transfer function for the digital notch
filter, we apply the bilinear transformation [Lam, 1979; Oppenheim and
Schafer, 1975]

BT (2.8)
to H(s). This yields
H(z) = H(s) - (2.92)
(14 2% —2(1 =A%)z~ 4 (14 A?)z2 (2.9b)
(14+A24b) —2(1 = A2)z-1 4 (1+ A2 —-b)z"2
1 (14a) — 241271 + (14 ag)2~?
T2 1-a1z7! 4+ apz~2 (2:9¢)
where
2(1 - A%
“ = Ty¥+h (2.102)
1+A2—b
a; = m (2.10b)

Neglecting the constant 1/2, which is equivalent to that of adding a flat
6 dB gain to the frequency response, we rewrite (2.9¢) in the desired form

as
(z7241) — 20127 +ax(z72 +1)
1—ayz7 !+ ayz~2 '

H(z) = (2.11)

Note that this notch filter transfer function is characterized by two dis-
tinct parameters a; and a;. To get the relationships among the constants
a; and ag, the notch frequency wg, and the 3—-dB rejection bandwidth €,
we need to find the relationships among the parameters A, b, wp, and Q.
Let us first consider the magnitude of transfer function H(z) described

in (2.11), then it becomes

2 {(1 + X?) cos(wT) — (1 — A?))?

% N .
[ ()] (0 + 2?) cos(wT) — (1= A)}2 + b2sin? (0T)

(2.12)



2.5. DESIGN OF DIGITAL NOTCH FILTERS 31

By setting the numerator of (2.12) equal to zero, the notch frequency wo

is given as w
14 A2
For the frequencies (w; and w;) where the magnitude is down 3 dB from
its DC value, we solve

cos(woT) = (2.13)

{(142) cos(or) - (1= V) } = sin’(@D).  (2.14)
That yields

(14 A%)% - p2

COS(QT) = COS(&JQ — wl)T = m

(2.15)

After solving (2.13) and (2.15) for A? and b, we can easily get the following

relationships:

A2 = tan?(weT/2) (2.162)
b = (1+?)tan(QT/2). (2.16b)
Using these relationships and the expressions of a; and a; given by

(2.10a) and (2.10b), we can obtain the following relationship among the

parameters a;, a;, wo, and  [Hirano et al., 1974]:

2 cos(woT)
i 1+ tan(S;Tﬂ) (i)
_ 1-tan(Q7/2)
2 = {Itan(QT/2) )

It is observed that the notch frequency can be changed while keeping
the 3—dB rejection bandwidth and DC gain constants by varying a;; and
that the rejection bandwidth can be changed by varying only as. Various
realizations of the transfer function of (2.11) have been described by Hi-
rano, Nishimura, and Mitra [1974] by taking into account multiplication

roundoff errors and hardware requirements.
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Ezample 2.1

Assuming that the sampling frequency is 1/T = 10 kHz, let us design
two second-order digital notch filters having a notch at 1,000 Hz having
different 3-dB rejection bandwidths: 100 Hz and 250 Hz. Note that the

normalized notch frequency is 0.1.

3—-dB rejection bandwidth: 100 Hz

Assuming the desired 3-dB rejection bandwidth of 100 Hz and using

the specifications of the given problem, we obtain

weT = 27 x 1000 x

10[1]00 = 0.27 (notch frequency)

= 0.027 (3-dB rejection bandwidth).

1
QT = 27 x 100 x 10000

Then, using (2.17a) and (2.17b), we obtain the parameters, a; and a; as

2 cos(0.27)
SO — 1.56873452
% = TTten(©015] 56873452036162
g = 1=tan(00Im) g oa006250581749.

1+ tan(0.017)

Hence the notch filter transfer function with 3-dB rejection bandwidth
of 100 Hz, H}Z}(z), becomes

HP(2) =
1
(272 4 1) — 3.13746904072324 z~! + 0.93906250581749 (22 + 1)
1 — 1.56873452036162 2= + 0.93906250581749 z—2 '

Its magnitude response shown in Fig. 2.3 (a) illustrates a notch at the

normalized frequency 0.1.
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Figure 2.3: Magnitude response of the transfer functions of the second-
order digital notch filters using the bilinear transformation with (a) 100
Hz rejection bandwidth and (b) 250 Hz rejection bandwidth.

3-dB rejection bandwidth: 250 Hz

When the desired 3-dB rejection bandwidth is 250 Hz, using the

problem specifications, we obtain

1
== 1 = .
wo T 2w x 1000 x 10000 0.2m
1
QT = 2mx 250 x 10000 = 0.05.
and the parameters, a; and as as
2 cos(0.27)
14 4
a T+ tan(0.0257) 9998278348230
_ 1—1tan(0.0257)
43, = 7 Ftan(0.025m) 0.85408068546347.

Hence the notch filter transfer function with 3-dB rejection bandwidth
of 250 Hz, H{?(z), becomes

H(z) =
(272 4+ 1) — 2.99996556696459 2~ + 0.85408068546347 (2~2 + 1)
1 —1.49998278348230 2~ + 0.85408068546347 z2—2 ’
The magnitude response of the transfer function is shown in Fig. 2.3 (b).

From Fig. 2.3 (a) and (b) we observe that the transfer function Héz}(z]




34 CHAPTER 2. CONVENTIONAL NOTCH FILTERS

has a wider 3—-dB rejection bandwidth, but a deeper notch than Hl(z)(z).

Ezxample 2.2

Let us consider the following six sinusoidal signals with different fre-

quencies
zi(k) = V2 sin(2n f; kT +7/3) fork=0,1,2,...,K -1

where K = 200, T = 1/10,000 is the sampling interval, and f; for i =
1,2,3,4,5,6, are different frequencies given by

fi=10004 (i—1)-Af

with Af = 5 Hz. Each sinusoidal signal is assumed to be the input to
a second-order digital notch filter with either 100 Hz or 250 Hz as 3-dB
rejection bandwidths (designs obtained in Example 2.1).

Let {ygz)(k)} and {yéz}(k)} be the corresponding outputs obtained
by the previously designed digital notch filters Hl(z)(z) and ng}(z), re-
spectively. Each input—output pair using the two designed second-order
digital notch filters is illustrated in Fig. 2.4. Although the sinusoidal
input with the exact notch frequency is almost completely eliminated,
the output obtained by the digital notch filter Héz)(z) with 250 Hz rejec-
tion bandwidth vanishes faster than that obtained by the filter H{z}(z)
with 100 Hz rejection bandwidth. As the difference between the input
signal frequency and the notch frequency increases, both filters allow
more signal to pass through. Since the transfer function Héz)(z) has
deeper notch and wider rejection bandwidth than H}z}(z), the transfer
function Hf}(z) mitigates more frequency components close to the notch

frequency. That means that a digital notch filter with a wide rejection



2.5. DESIGN OF DIGITAL NOTCH FILTERS 35

2
I
=
g D
Syfieinnaigaaiaindy
100 200
time (k)
(c-1)
2 T
S S—
= = wﬁm‘
= g0
-1 .......... .
2 100 200
time (k)
(c-2)
2 2 Y
1 ..................... 1 ..........; .......... -
< < ﬁ"
=9 TR :
|| o SO -1 ...........
2 100 200 2o 100 200 2% 100 200
time (k) time (k) time (k)
(a-3) (b-3) (c-3)

Figure 2.4: Six different sinusoidal inputs and corresponding outputs
obtained by Hltz}(z) and Hz(z}(z). The first column shows the sinusoidal
input {z(k)} whose frequency is (a-1) 1,000 Hz, (a-2) 1,005 Hz, and
(a-3) 1,010 Hz; the second and third columns show the corresponding

outputs {y{z)(k)} and {yéz)(k)}, respectively.
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Figure 2.4: (Continued) Six different sinusoidal inputs and corresponding
outputs obtained by H{z)(z) and H;zl(z). The first column shows the
sinusoidal input {z(k)} whose frequency is (a-4) 1,015 Hz, (a-5) 1,020 Hz,
and (a—6) 1,025 Hz; the second and third columns show the corresponding
outputs {ygz}(k)} and {ygz)(k)}, respectively.
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bandwidth removes not only the sinusoidal interference, which we want
to mitigate, but also other valuable signal components whose frequencies

are near the notch frequency.

2.5.2 Sixth—Order Digital Notch Filter

Let us consider a sixth—order notch filter with notch at wg. To
avoid the possibility of an unstable digital notch filter due to finite word
lengths, the required sixth—order notch filter is factored by cascading
three second-order digital filters whose individual transfer functions are

given by [Cadzow, 1974]
(z — e?“0T)(z — e~3woT)

Hi(z) = GG for i=1,2,3 (2.18)

where the poles, p;, are located as shown in Fig. 2.5. Using the geomet-

rical pole representation, the pole locations are described by

p], — ejon s A ej{on_sl)
pr = (1-A)eiT (2.19)
ps = T _ A eiloT+02),

The relationship between the input and output of the ith filter is
yi(k) = ui(k) — 2cos(woT) ui(k — 1) + ui(k — 2)
+ (pi + 07) yi(k = 1) — pipj yi(k — 2)  (2.20)
where {u;(k)} and {y;(k)} denote the input and output of the ith filter,

respectively, for i = 1,2, 3 (see Fig 2.6). The coefficients of the difference

equations for ¢ = 1,2, 3 are determined by

pi+p; = 2[cos(woT’) — A cos(woT + ¢;)] (2.21a)
pi-pf = 14A%-2A cos¢; (2.21b)



38 CHAPTER 2. CONVENTIONAL NOTCH FILTERS

unit circle

z-plane

to origin

Figure 2.5: Pole and zero locations of the transfer function of a sixth—
order digital notch filter.

where ¢ = —0;, ¢ = 0, and ¢3 = 0.

When we implement the difference equation (2.20), the coefficients
2 cos(woT'), pi +p7, and p;p} will be stored with corresponding truncation
errors. When the error due to truncation is €g, the coefficient 2 cos(woT’)

is stored as

2 cos(woT) + €o- (2.22)

This truncation error causes a shift in the desired zero locations. Let us

assume that instead of the ideal zeros at /0T and e=7“°T we have the

Y1) = uy(k) Yo (k) = uy(k)
x(k) = uy (h— Hy(2) » Hy(z) » Hiz

S—

Y3 (k) = y(k)

Figure 2.6: The cascade realization of a sixth-order digital notch filter
using three second-order digital filters.
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zeros located at e/(@oT+9) and e~7(«0T+9) dye to ¢, i.e.,
2 cos(woT + 8) = 2 cos(woT) + €o. (2.23)

When both the errors, ¢ and §, are very small, the approximation for &
can be obtained [Cadzow, 1974]

€0

O~ — m‘j‘. (2.24)

Since the magnitude of this rotation must be significantly smaller than

A, a design criterion for A is

A>|d|=

(o] 2.2
The parameters A, ; and 6, can be selected to ensure that the truncation
errors of the coefficients p;pf for ¢ = 1,2,3 are zero. Note that the
remaining coefficients p; + p} for ¢ = 1, 2, 3 specifying the poles also have
truncation errors and one may similarly argue that the deviation from
the ideal pole locations becomes a rotation of —¢;/ [2sin(woT)] where ¢;
is the corresponding truncation error of coefficient p; + pf. Then the
gain factor at the ideal notch frequency wg for the actual filter becomes

approximately

3

2 . (2.26)

2A sin(wpT)

gain at wp = I

It is important to note that the parameter A specifies both the width of
the filter’s notch and the speed of response characteristic. As A becomes
smaller, the width of the notch decreases while the filter’s response time
increases because the poles of the notch filter move closer to the unit

circle.
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Ezample 2.3

Considering the same problem specifications as in Example 2.1, we’ll
design four sixth-order notch digital filters using different values of the
design parameter A. Note that we assume 6; = 0; = %:rr for all the
following design cases. Let us first consider A = 0.0075 w. Then, using

the specifications of the given problem, (2.21a), and (2.21b), we obtain

2 cos(woT') = 1.61803398874989

p1+ p] = 1.57990996105753  p; - pT = 0.98599308245712
p2 + p5 = 1.57990996105753  p2 - p; = 0.95343127544371
p3+ p3 = 1.63259607154034  p3 - p3 = 0.98599308245712

where woT = 0.2r. When {z(k)} is the input to the sixth-order digital
notch filter, the difference equations given by (2.20) become

y1(k) =z(k)=biz(k — 1)+z(k— 2)+ayyi(k — 1) —azy1 (k — 2)
y2(k) =y1(k)—biya(k — 1)+y1(k — 2)+agyz(k — 1) —aay2(k - 2)
ya(k) =ya(k)—biya(k — 1)+y2(k — 2)+asya(k — 1) —asys(k — 2)

where y3(k) is the final filter output and the coefficients b; and a;’s are

given by

b; = 1.61803398874989

a; = 1.57990996105753 a; = 0.98599308245712
az = 1.57990996105753 aq = 0.95343127544371
as = 1.63259607154034 ag = 0.98599308245712.

The magnitude response of the overall transfer function of the sixth—
order digital notch filter is shown in Fig. 2.7 (a). When the values of the
parameter A are 0.009, 0.0125, and 0.02, we can obtain the required pa-

rameters through the same procedure. When A = 0.009, the coefficients
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Figure 2.7: Magnitude response of the transfer functions H(®)(z) of the
sixth—order digital notch filters with (a) A = 0.0075, (b) A = 0.009, (c)

A = 0.0125, and (d) A = 0.02.

a;’s are given by

a; = 1.57228515551906
az = 1.57228515551906
as = 1.63550848809842

a; = 0.98332493860796
a4 = 0.94425077019187
ag = 0.98332493860796,

when A = 0.0125, the coefficients a;’s are given by

a; = 1.55449394259595
a3 = 1.55449394259595
as = 1.64230412673396

az = 0.97727198770360
aq = 0.92300230934793
ag = 0.97727198770360,

and when A = 0.02, the coefficients a;’s are given by

a; = 1.51636991490359
az = 1.51636991490359
as = 1.65686620952440

az = 0.96511562098593
ay = 0.87828413561684
ag = 0.96511562098593.



42 CHAPTER 2. CONVENTIONAL NOTCH FILTERS

Note that b; = 1.61803398874989 in all the design cases because it de-
pends on the notch frequency only. Their corresponding magnitude re-
sponse of transfer functions are also shown in Fig. 2.7. As we can see
from this figure, as the value of A increases, the depth of the notch in-
creases and the rejection bandwidth increases. With a very small value
of A we can obtain a digital notch filter whose transfer function has the

gain—frequency behavior of an ideal notch filter.

Ezample 2./

Let us compare the performance of the three sixth—-order digital notch
filters designed in the previous example: Hztsi(z) with A = 0.009, Héel(z)
with A = 0.0125, and H‘gs)(z) with A = 0.02, using the six sinusoidal
input signals with different frequencies given in Example 2.2.

Let {ygs)(k)}, {ygej[k)}, and {ysﬁ)(k)} be the corresponding out-
puts obtained by the designed digital sixth-order notch filters Hgﬁ)(z),
H_.gs)(z), and His)(z), respectively. Each output obtained by the three
sixth-order digital notch filters is illustrated in Fig. 2.8. Note that the
six different sinusoidal inputs are shown in Fig. 2.4. Since the transfer
function Hgs)(z) has the narrowest rejection bandwidth, it passes more
input signal components than the other transfer functions as the bias
between the notch frequency and the input frequency increases; however,
its output produces quite large oscillations that vanish slowly. As the
value of A increases, these oscillations vanish faster. For fast mitigation
of the interference, it is required to design the sixth—order digital notch
filter using a large value of A at the expense of a wider rejection band-
width which may cause larger distortion on different signal components

from the interference which we want to mitigate.
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Figure 2.8: Using the six different sinusoidal inputs, the corresponding
outputs obtained by Hés)(z), H:E’e)(z), and His}(z). The first column
show the outputs {ygs}(k)} when the frequency of the sinusoidal input
is (a-1) 1,000 Hz, (a-2) 1,005 Hz, and (a-3) 1,010 Hz; the second and
third columns show the corresponding outputs {ygs)(k)} and {yﬁs}(k)},

respectively.
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Figure 2.8: (Continued) Using the six different sinusoidal inputs, the
corresponding outputs obtained by Hzts)(z), H:gﬁ)(z), and Hf)(z). The
first column show the outputs {yga)(k)] when the frequency of the sinu-
soidal input is (a-4) 1,015 Hz, (a-5) 1,020 Hz, and (a—6) 1,025 Hz; the
second and third columns show the corresponding outputs {ygg)(k)} and

{y&e)(k)}, respectively.
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Ezample 2.5

Assume that the SOI {s(k)} is a BPSK signal satisfying Pr{so =
—1} = Pr{s; = 1} = 0.5 and that the sinusoidal interference frequency
is 1,000 Hz. Then, the input {z(k)} can be represented as the sum of
the SOI and the interference signal such as

z(k) = s(k) + I(k)

where

I(k) = 5 sin(2n fr kT + 7 /6)

with f; = 1,000 Hz and T = 1/10,000. The SOI {s(k)} and the input
sequence {z(k)} are illustrated in Fig. 2.9.

— it
%D | I:- I'!.':: ) | | {
i
-5}
400 o 200 600
(a) ()

Figure 2.9: (a) Interference—free BPSK SOI {s(k)} and (b) input se-
quence {z(k)} consisting of the SOI and the additive interference.

To mitigate the sinusoidal interference using a digital notch filter,
let us consider the second-order digital notch filters HP}(z) with 3-
dB rejection bandwidth of 100 Hz and H{?(z) with the 3-dB rejection
bandwidth of 250 Hz which are designed in Example 2.1. Then, their
corresponding outputs with {z(k)} as input are shown in Fig. 2.10 (a) and
(b), respectively. Comparing Fig. 2.10 (a) and (b), it is apparent that the
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output obtained by a digital notch filter with the deeper notch and wider
rejection bandwidth shows faster interference-mitigation performance at
the expense of a larger distortion on the BPSK signal of interest.

Now, to mitigate the interference let us also use the sixth—order dig-
ital notch filters H®(z) with A = 0.0075 and H{®(2) with A = 0.0125
which are designed in Example 2.3. Their corresponding outputs with

{z(k)} as input sequence are shown in Fig. 2.11 (a) and (b), respectively.

00 400
time (k)
(b)

Figure 2.10: With the BPSK SOI and the sinusoidal interference, the
output sequences obtained by the second-order digital notch filters (a)
H1(2J(z) with 100 Hz rejection bandwidth and (a-2) Hg(zj(z) with 250 Hz
rejection bandwidth.

Figure 2.11: With the BPSK SOI and the sinusoidal interference, the
output sequences obtained by the sixth-order digital notch filters (a)

HO(2) with A = 0.0075 and (b) H¥(2) with A = 0.0125.
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Again, we can observe the similar phenomena which is that the output
obtained by a digital notch filter with the deeper notch and wider rejec-
tion bandwidth shows faster interference-mitigation performance at the

expense of a larger distortion on the SOIL

Example 2.6

Let us assume that the sinusoidal interference has a slowly time-
varying frequency. The purpose of the example is to demonstrate the
performance of the second-order and sixth-order digital notch filters in
the case of a nonstationary interference. Let us assume that the input

{z(k)} having time-varying frequency is given by
z(k) = V2 sin (27 f(k) kT + =/3)

where

f2(k) = 1000 + 10 sin(0.0175 k + 7/12).

This particular frequency modulating function and the corresponding
input sequence are illustrated Fig. 2.12 (a) and (b), respectively.

Let us consider the second-order digital notch filter Hég}(z) with
3-dB rejection bandwidth of 250 Hz and the sixth-order notch filter
Hisl(z) with A = 0.02 designed in the previous examples. When we
apply the input sequence {z(k)} with the time-varying frequency to these
two digital notch filters, their corresponding outputs are illustrated in
Fig. 2.13.

Let us compare the performance of the second-order digital notch
filter Hgg)(z) shown in Fig. 2.13 to that shown in Fig. 2.4. When the
interference is stationary, the maximum value of the outputs in Fig. 2.4

is much less than unity even when the bias between the filter’s notch
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1010

1005

Figure 2.12: (a) Time-varying frequency of the sinusoidal input and (b)
input sequence.

frequency and the interference frequency is as large as 25 Hz. On the
other hand, when the interference is nonstationary, the maximum value
of the output in Fig. 2.13 is larger than unity. Note that the maximum
frequency bias is 10 Hz in the nonstationary interference case. When we
compare the performance of the sixth-order digital notch filter Hf}(z)
shown in Fig. 2.13 to that shown in Fig. 2.8, it is apparent that the digital
notch filter H Ea)(z) can mitigate a stationary sinusoidal component more
effectively than a nonstationary one. Note that some values of the output
obtained by H‘Eﬁ) (z) are larger than the maximum value of the input
which is V2 in Fig. 2.13. This example illustrates that we can not use a
digital notch filter with a fixed notch, when the interference frequency is

slowly time-varying or non-stationary.
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Figure 2.13: When the input is a sinusoidal signal whose frequency is
slowly time-varying, the erformance of the digital notch filters (a) Hz(z)(z)
with 3-dB rejection bandwidth of 250 Hz and (b) H.”(z) with A = 0.02.

2.6 Summary

In this chapter, we introduced the two most popular design techniques
for digital notch filters based on either second— or sixth-order transfer
functions. We demonstrated that the performance of a designed notch
filter depends on many parameters: desired notch depth, desired 3 dB re-
jection bandwidth, finite word length and roundoff errors, and realization
structure. The major disadvantage of fixed digital notch filters is that
their performance is very poor when the characteristics of the interfer-
ence is not stationary, i.e., time-varying. Consequently, the use of fixed

digital notch filters is very limited due to the fact that it is not always
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possible in practice to know in advance or estimate the time-varying
characteristics of the interference. These limitations naturally lead us to
develop and use adaptive digital notch filters that can be applied on both

stationary and non-stationary environments.



Chapter 3

Adaptive Notch Filters

3.1 Introduction

When the characteristics of narrowband interference are unknown or
nonstationary, we cannot use a conventional fixed notch filter described
in Chapter 2 to cancel the interference. In such situations, an adap-
tive filter design technique should be employed. In this chapter, we are
concerned primarily with the description, performance assessment, and
computational complexity of adaptive interference mitigation (AIM) fil-

ter algorithms based on different realization structures and constraints.

3.2 Preliminaries

We can divide the AIM filter algorithms into two categories. The first
category consists of adaptive AIM algorithms using two inputs: primary
and reference inputs shown in Fig. 3.1. The primary input, {z(k)}, re-
ceives the signal of interest (SOI) and the interference. The reference

input, {z(k)}, receives a signal which is highly correlated with the inter-
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Figure 3.1: Block diagram of the adaptive interference mitigation filter
with the reference signal belonging to the first category.

ference only, viz:

2]
=
I

s(k) + I(k) + np(k) (3.1a)
w(k) + e (k) (3.10)

A
&
I

where {s(k)} and {I(k)} denote the SOI and the interference, The ref-
erence signal {w(k)} should be uncorrelated with the SOI. We assume
that the characteristics of the interference source are unknown or non-
stationary; or that the relationship between the reference signal and the
interference is assumed to be partially known, fully unknown, or time—
varying. The uncorrelated noise sources {n,(k)} and {n.(k)} are assumed
to be uncorrelated with the SOI, the interference, the reference signal,
and with each other. It is important to note that the uncorrelated noise
sources could not be removed. Since our major concern is to mitigate
the strong interference, we would assume that the powers of the uncor-
related noise sources are negligible or very small. The filter in the first

category will be adaptively designed to be able to change the reference
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input into the best fit of the interference. The filter output is then sub-
tracted from the primary input and the system output would be the SOI
only. The AIM filter using the reference input usually has a finite impulse
response (FIR). The block diagram of an AIM problem belonging to the
first category is illustrated in Fig. 3.1.

In the second category, the reference signal is not available or not
accessible, What we have is only the primary input {z(k)} which is
the SOI corrupted by the interference. To mitigate the interference, we
have to use the characteristics of both the SOI and the interference and
adaptively adjust the filter coefficients. The AIM filter belonging to the

second category usually has an infinite impulse response (IIR).

3.3 Adaptive LMS Filter as a Notch Filter

When the primary input consists of the SOI with an additive unde-
sired sinusoidal interference, an AIM filter can be realized by an adaptive
noise canceler using the least mean squares (LMS) algorithm [Widrow et
al., 1975; Widrow et al., 1976; Widrow and Stearns, 1985]. In LMS-based
noise canceling systems, the system output is fed back to the adaptive
filter and the filter is adjusted through an adaptive algorithm to min-
imize the total system output power. Note that the LMS—based AIM
filter belongs to the first category.

When the reference input is a single sinusoidal wave C cos(Qpt +
¢) and the primary and reference inputs are sampled at intervals of T'
seconds, we can use a two—weight notch filter based on the LMS algorithm
and the delay between the two reference input components is equivalent
to a 90° phase shift at the reference frequency shown in Fig. 3.2. Then,

the transfer function from the primary input to the system output can
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Figure 3.2: Two-weight configuration of adaptive notch filter using the
LMS algorithm to mitigate a single-frequency interference.

be obtained [Widrow and Stearns, 1985]

22 —22coswy + 1
22 —2(1 — pC?)zcoswp + 1 — 2uC?

H(z)= (3:2)

where wy = 27 foT and u is the step size of the LMS algorithm. The

zeros of the transfer function locate at
z = etiwo (3.3)
and the poles locate inside the unit circle at a distance
1
(1-20c7)? (3.42)
from the origin and at angles of

+ cos™! [(1 — G (1~ 2uC%) 3 cuswg] . (3.4b)

The 3—-dB rejection bandwidth of the notch filter is seen to be

2
2uC* rad = % Hz. (3.5)
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Note that this two—weight configuration is preferred only when separate
reference signals can be obtained for each of multiple interfering sinusoids.
Glover [1977] has presented and analyzed the LMS-based notch filter
when the reference input consists of more than one sinusoidal signals
whose frequencies are not separable. The linear and time-invariant notch
filter response has been derived from the primary input {z(k)} to the
system output {e(k)} when the reference signal is pure sinusoid without
noise. Shensa [1980] has discussed the problem when there is a white
noise in the reference input and showed that a time-invariant transfer
function, in general, does not exist and the output spectrum depends
explicitly on the primary input, not just its power spectrum.

The standard LMS algorithm is summarized in Table 3.1. Although
we describe here only the standard LMS algorithm, note that a number
of different algorithms have been developed which can be classified as
LMS variants. They include the normalized LMS, leaky LMS, pilot LMS,
clipped LMS, zero-forcing LMS, averaged LMS, momentum LMS, median
LMS, and block LMS algorithms [Clarkson, 1993].

When the number of filter taps is M, the required number of multi-

plications per iteration for the standard LMS algorithm is given by
2M+1. (3.6)

The advantages of the LMS algorithm as an adaptive notch filter are as

follows:
e The LMS algorithm is simple and easily understandable.
e The computational complexity of the LMS algorithm is very low.
e The LMS algorithm is easy and simple in implementation.

The disadvantages of the LMS algorithm as an adaptive notch filter are

as follows:
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Table 3.1: Summary of the Adaptive Notch Filter Based on the Least
Mean Square (LMS) Algorithm

Parameters H=[hy,ha...,~hx]T filter coefficient vector
M number of filter taps
[T step size

Initial Condition H(0)=0

Data at k z(k) primary input
z(k) = [ z1(k), z2(k) ..., zar(k) ]T reference vector

Computation fork=0,1,2,3,...
e(k) = z(k) — HT (k) z(k)
H(k + 1) = H(k) + pz(k) e(k)

e The average time constant for the LMS algorithm is inversely pro-

portional to the step size parameter.

e The misadjustment is directly proportional to the step size param-

eter.

e The misadjustment increases linearly with the number of filter taps

for a fixed average time constant.

e When the eigenvalues of the correlation matrix of the reference in-
put are widely spread, the excess mean—-squared error is determined
by the largest eigenvalues and the convergence time for the average

filter coefficient vector is limited by the smallest eigenvalues.

e When the eigenvalue spread is large, a large number of iterations

are need for the convergence of the LMS algorithm.
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Ezample 3.1

Let us assume that the primary input {z(k)} consists of the sum of

the sinusoidal SOI and an additive sinusoidal interference as follows.
z(k) = s(k) + I(k)

where {s(k)} and {I(k)} denote the SOI and the interference, respec-
tively, given by

V2 sin(27(0.4) k + 7/3)
V2 sin(27(0.3) k + 7/4).

s(k)
I(k)

Assume that the reference input is given by
z(k) = sin(27(0.3) k + ¢)

where ¢ is a random phase uniformly distributed over [—-m,7]. When
the number of filter taps M is 8 and the step size parameter p is 0.0125,
Fig. 3.3 shows the averaged magnitude response over 32 transfer func-
tions, the averaged power spectrum |E(jw)| over 32 estimated power
spectra of the system outputs {e(k)} after convergence, and a typical
error curve between the system output and the SOI, {e(k)}, defined as

e(k) = e(k) — s(k).

Note that we do not use the special two—weight configuration shown in
Fig. 3.2. Note that we use the last 256 system output data samples to
estimate the power spectra.

As we can observe in the figure, the AIM filter based on the LMS
algorithm has a notch at the frequency of the reference input sinusoid
and mitigates the sinusoidal components related to the reference input

from the primary input.
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Figure 3.3: (a) Transfer function of the AIM filter based on the LMS
algorithm, (b) the average of estimated and normalized power spectra of
the system outputs, {e(k)}, obtained by the LMS-based AIM filter, and
(c) an error curve {e(k) = e(k) — s(k)}.

3.4 Adaptive Notch Filter Using Lattice Struc-
ture

It is well known that the mean—convergence of the filter coefficients
of an adaptive LMS filter described in the previous section is dependent
on the eigenvalue spread of the filter input signal autocorrelation matrix
[Clarkson, 1993; Haykin, 1991; Widrow and Stearns, 1985] To overcome
this dependence the lattice structure adaptive filter has been proposed by
a lot of researchers: Ding and Yu [1986], Griffiths [1977; 1978], Makhoul
[1978], and Satorius et al. [1979]. The basic structure of the lattice form
implementation of an AIM filter is illustrated in Fig. 3.4. Note that the
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Figure 3.4: Basic structure of the lattice form implementation of adaptive
interference mitigation filter using the reference input.

lattice structure AIM filter belongs to the first category. The forward
and backward error sequences fg(k) and b¢(k) at the £ stage have the

following relationships.

f(k) = boK) = =(k)
fg+1(k) = fg(k)—rg(k) bg(k—l) (3.7)
bena(K) = —Te(k) (k) + ek —1)

where z(k) = [z1(k), z2(k), . . ., 2p(k)]T and I'¢(k) is the reflection coef-
ficient or partial correlation coefficient matrix. The reflection coefficient
matrix update equation is given by

Ty(k+1) = Te(k) + % [£e(k)bI, (k = 1) + be(R)EL, (k)] (3.8)

where o is a normalized adaptive step size parameter and o7(k) is a

measure of the power of the reference input at the ¢th stage updated by

1-5
M

o3 (k) = B o (k — 1) 4+~ [i7 (R)Fe(k) + B (k = D)be(k ~ 1)] (3.9)
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where M is the dimension of fg(k) and b(k—1). In (3.9) the parameter §;
satisfies 0 < 1 < 1 and controls the resulting power averaging time. The
power estimate is required at each stage in the lattice due to the fact that
the powers of the forward and backward error sequences decrease with
increased stage numbers. Due to orthogonalization of the entire inter-
ference canceling structure, each coefficient vector G¢(k), which provides
the interference canceling subtraction path in Fig. 3.4, can be determined
independently of G, (k) for m > £. Thus, the optimal G} that minimizes
E{e?(k)} is given by

G; = (B{be(T (1)) Bleca (Bbe(k)).  (310)

The appropriate LMS algorithm and associated power measurement
vZ(k) are given by

Gik+1) = Gg(k)+;%eg(k)bg(k) (3.11a)

72 (k +1)

I

B () + L2 bT()be(t)  (3.11b)

where ay and f3; are step sizes. Due to the orthogonality of successive
stages, increasing the time dimension from L to L+1 does not result in a
change of the coefficients associated with the first L stages. The time con-
stant of any one stage is determined only by the correlation statistics of
that particular stage. The frequency tracking behavior and the narrow-
band interference mitigation performance from direct sequence spread
spectrum (DSSS) signals of the adaptive stochastic gradient (SG) lat-
tice filter have been discussed in [Zeidler et al., 1991]. The performance
of the interference mitigation performance from recursive least squares
lattice (RLSL) and the normalized step-size SG lattice algorithms have
been compared to the LMS algorithm for sinusoidal interference cancel-

lation in [North et al., 1992]. The adaptive lattice filters usually shows
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little harmonic distortion and their performance is not influenced by the
reference power.

The adaptive notch filter algorithm based on the lattice structure is
summarized in Table 3.2. When the number of stages is L and the number
of filter taps at each stage is M, the required number of multiplications

per iteration of the lattice structure AIM filter algorithm is given by
L (5M*+4M+9). (3.12)
The advantages of the lattice structure adaptive notch filter are as follows.

e More fast convergence speeds are achievable than the LMS algo-

rithm.

e The time constant of convergence of the mean of the filter coeffi-
cients is independent of the eigenvalue spread of the input autocor-

relation matrix.

e For approximately the same amount of primary signal distortion,
the lattice structure adaptive notch filter produces less harmonic
distortion than the LMS algorithm.

The disadvantages of the lattice structure adaptive notch filter are as

follows.

e The computational load increases linearly with the number of di-

mensions in the reference channel.

e Additional computations are needed for power estimate at each
stage in the lattice due to the fact that the forward and backward

error sequence have decreased power with increased stage number.

e The step size must be normalized by the power level to maintain
the same adaptive time constant and misadjustment at each stage

in the lattice.
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e The performance is depending on a lot of parameters: a;, a2, fi,

[2, and initial conditions.

Table 3.2: Summary of the Lattice Structure Adaptive Notch Filter Al-

gorithm
Parameters G, filter coefficient vector at stage £
T, reflection coefficients at stage £
M number of filter taps
L number of stages
ai, az, f1 and B step sizes
Initial for£=1,2,...,L
Conditions f2(0) = b,(0) =0
G(0)=T,(1)=0
o3(0) = 7;(0) =c¢ where c is a small positive constant
Data at k z(k) primary input
z(k) = [z1(k), z2(k), ..., zp(k) ]T reference vector
Computation fork=1,2,3,...
fo(K) = bo(K) = 2(k)
eo(k) = z(k)
for£=1,2,...,L
fe(k) = feoa(K) = T5(k) becs (k = 1)
bz(k) = —l";(k) fr_1 (k) + by (k - l)
of(k)  =Bioz(k—1)+ 150

[£7 (k)fe(k) + bZ (k — 1)be(k — 1))
Te(k +1) =Te(k) + 555
[fe-1(k)b7 (k) + bea (k — DT (k)]

(k) =B 77 (k=1)+ 57 (k — 1be(k - 1)
G(k) =Ge(k—-1)+ ?;'{‘ﬁc:(k — 1) be(k —1)

eelk) = ee1(k) — G (K) be(k)
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Ezample 3.2

Let us consider the same SOI {s(k)}, interference {I(k)}, and refer-
ence input {z(k)} with those in Example 3.1. The number of filter taps
M is 4 and the number of stages L is 2. The step size parameters are
oy = 0.011, a = 0.0105, f; = 0.995, and B2 = 0.995. The transfer
function of the lattice structure adaptive notch filter, the averaged power
spectrum |E(jw)| over 32 estimated power spectra of the system output
{e(k)} after convergence, and an error curve between the SOI and the sys-

tem output, {e(k)}, are illustrated in Fig. 3.5. Note again that we use the

| H(jw) | | EGiw) |

10

107}

107k

H H H H -3 H H 2 g
10
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Figure 3.5: (a) Transfer function of the AIM filter using lattice structure
with M = 4 and L = 2, (b) the average of estimated and normalized
power spectra of the system outputs, {e(k)}, obtained by the AIM filter
using lattice structure, and (c) an error curve {¢(k) = e(k) — s(k)}.
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last 256 system output data to estimate their power spectra. Although
Satorius, Smith, and Reeves [1979] have discussed and implemented the
sinusoidal interference algorithm with two-tap configurations, we con-
sider here more general configuration that can be used in non-separable
multiple interference sinusoids. Fig. 3.6 shows the transfer function of
the adaptive notch filter and the average of 32 estimated power spectra
of the system output after convergence when M =4, L = 3, a; = 0.008,
oy = 0.00775, B; = 0.975, and B, = 0.985.

| H(jw) | | E(jw) |

10°}

10
107},

10°

al’

10

0.1 0.2 0.3 0.4 0.5
frequency (f)

(b)

Figure 3.6: (a) Transfer function of the AIM filter using lattice structure
with M =4 and L = 3 and (b) the average of estimated and normalized
power spectra of the system outputs, {e(k)}, obtained by the AIM filter
using lattice structure.

Through computer simulations, we notice that the convergence speed
of the algorithm depends not only o and a3, but also §; and §;. Note
that the values of a; and as are usually much less than unity and that
the values of 3; and [, are close to unity. We observe that the larger
the values of a’s are, the faster the convergence speed is at the expense
of larger excess error; and also that the algorithm might diverge when a
value of B’s is too close to unity. Sometimes, it is not easy to find proper
values of these parameters in order to achieve fast convergence and small

excess error of the algorithm.
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3.5 Adaptive Notch Filter via Sequential Re-
gression

We present in this section an adaptive notch filter which is derived
via a sequential regression (SER) formulation [Soldan and Ahmed, 1978].
Let us consider an adaptive digital filter whose transfer function is given
by

Hi(z) = ho(k) + hy(k)z 4 - - + hpr(k) =™ (3.13)

where k is the time index and h;(k) denotes the ith filter coefficient.
When the input to the filter is {2(k), z(k—1),...,2(k— M)}, the output
{y(k)} can be expressed as

y(k) = HT (k) z(k) (3.14)

where
H(k) = [ho(k),ha(k),- -, hm(k)] (3.152)
z(k) = [z(k),z(k—1),...,2(k—M)]T. (3.15b)

Note that the SER-based AIM filter belongs to the first category. When
{z(k)} denotes the primary input at time k, the cost function is defined
as

k
VHE+D) = ¢ [o6) - BT (k+1)2()]

i=1

+HT(k+1)H(k+1)  (3.16)

where ¢ is a scalar. We want to minimize the cost function with respect to
the filter coefficient vector H(k +1). When we assume Vg(x41)2(i) = 0,
the relation Vg(x41)V (H(k + 1)) = 0 results in
k
H(k+1) =P;' Y z(i)z(i) (3.17)

i=1
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where

k
P =1+q Y z(i)z" (i). (3.18)

i=1

The matrix Py is called a weighted input data correlation matrix. After

applying some manipulations to (3.17), we obtain the recursive equation

for the filter coefficient vector H(k + 1) [Parikh and Ahmed, 1980] given
by

H(k+ 1) = H(k) + ¢ P! z(k) e(k) (3.19)

kth

where e(k) = z(k) — y(k) is the error (system output) at the itera-
tion. The matrix P;l can also be computed recursively using the matrix

inversion lemma
1
Pl =Pl - " Pilz(k)z" (k)PRL, (3.20)

where v = 1/q + 2T (k)P;},z(k) and Py' = I. The equation (3.19) is
referred to as the SER algorithm. When the reference signal is

2(k) = C cos(wokT + 6) (3.21a)
h

where 7' denotes the sampling interval, the ith component of z(k) may

be expressed as
z(k) = z(k — i) = C cos(wokT + 6;) fori=0,1,...,M. (3.21b)

In this case, Parikh and Ahmed [1980] have showed that the output
of the SER-based AIM filter contains the corresponding time-invariant
and time-variant terms. When the time-varying terms can be small and
discarded by increasing the number of filter input signal M, the overall
transfer function is represented by [Parikh and Ahmed, 1980]

2% — 2z cos(woT) + 1
229 (1 — ﬂ%'i) zcos(woT') + (1 = g%{)

H(z) = (3.22)



3.5. AIM FILTER VIA SER 67

where
M M
€ = DY bim Pim cos((i — m)woT) (3.23a)
=0 m=s
bi, = 4 W A=m 3.23b
imo =2, i#m (8:230)

In this expression, P;,, denotes the (i, m)t'h element of P;'. Note that
the overall transfer function is of a second-order notch filter whose notch
frequency is wo and 3-dB rejection bandwidth is

g€C?
2T °

(3.24)

The adaptive notch filter based on the SER algorithm is summarized
in Table 3.3. When the number of filter taps is M, the required number
of multiplications per iteration for the adaptive notch filter using SER
algorithm is given by

3M?%+3M + 1. (3.25)
The advantages of the adaptive notch filter based on the SER algorithm

are as follows.

e The convergence rate of adaptation is substantially faster than the
LMS algorithm with the same number of filter tabs.

e The SER-based notch filter can realize a sharper notch over a large
bandwidth than the LMS-based notch filter with the same number
of filter tabs.

The disadvantages of the adaptive notch filter based on the SER algo-

rithm are as follows.

e The AIM filter based on the SER algorithm needs the high compu-

tational complexity per iteration and large storage requirements.
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Table 3.3: Summary of the Adaptive Notch Filter Using Sequential Re-
gression (SER) Algorithm

Parameters H=[hy,h2,...,hn]T filter coefficient vector
M number of filter taps
q constant

Initial H(0)=10

Conditions Prl=1

Data at k z(k) primary input
z(k) = [ z1(k), z2(k), ..., z2m (k) ]T reference vector

Computation for k=0,1,2,3,...

e(k) = z(k) — HT(k) z(k)
(k) =Pt z(k)

H(k +1) = H(k) + ¢ ['(k) e(k)

o =%+ 2T(k) (k)

P! =P;L, - LT(k)I7(k)

Ezxample 3.3

Let us consider the same SOI {s(k)}, interference {I(k)}, and refer-
ence input {z(k)} with those in Examples 3.1 and 3.2. When the number
of filter taps M is 8 and the constant parameter ¢ = 1, Fig. 3.7 shows
the transfer function of the notch filter based on SER algorithm, the av-
eraged power spectrum over 32 estimated power spectra of the system

output {e(k)} after convergence, and an error curve {¢(k) = e(k) —s(k)}.

From this figure, we can observe that the SER-based AIM filter mit-
igates the sinusoidal interference. Compared to Fig. 3.3, the SER-based
AIM filter converges faster and has smaller excess error than the LMS-
based AIM filter at the expense, however, of larger computational com-

plexity and storage requirements.
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Figure 3.7: (a) Transfer function of the AIM filter based on the SER
algorithm, (b) the average of estimated and normalized power spectra of
the system outputs, {e(k)}, obtained by the SER-based AIM filter, and
(c) an error curve {e(k) = e(k) — s(k)}.

3.6 Adaptive IIR Notch Filter

Adaptive infinite impulse response (IIR) filters have also been studied
as an AIM filter in the second category by many researchers: Bhaskar
Rao and Kung [1984], Friedlander and Smith [1984], Hush et al. [1986],
Kwan and Martin [1989], Kung and Bhaskar Rao [1982], Nehorai [1985],
Nishimura et al. [1989], and Petraglia et al. [1990a]. An adaptive
IIR notch filter exhibits a performance similar to that of the adaptive
FIR notch filter, but it requires significantly fewer coefficients and less
computational complexity. A tutorial-style discussion including cur-

rent results and open issues on adaptive IIR filters has been presented
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in [Johnson, 1984]. We summarize in this section the most important

AIM filter techniques based on IIR realization structures.

3.6.1 Constrained Adaptive IIR Notch Filter

Bhaskar Rao and Kung [1982; 1984] have proposed a constrained IIR
filter employing a frequency domain and time domain for the enhance-
ment and tracking of sinusoids in additive noise. The proposed transfer

function of the notch filter is

2p
H (1 - z,-z_l)

H(z)="3 (3.26)
1l (- ")

where p is the number of narrowband signals. The poles and zeros of the
transfer function are constrained to lie on the same radial line with the
poles {p;} lying in between the zeros {z;} and the origin. This constraints

on the poles and zeros can be represented as
pi=az fori=1,2,...,2p (3.27)

where 0 < a < 1 is called the debiasing parameter whose role has been
discussed in [Bhaskar Rao and Kung, 1984]. Using the relationship be-

tween the zeros and the poles, we can rewrite (3.26) as

G
H(z) = Wiaz) (3.28)
where
W(z) = 1=hiz7t —hgz™2 — oo — hgpz™?P (3.292)
W(az) = 1—ahiz7! —a? hpz™? — ... —a® hy,z7%P. (3.29b)

Note that when o = 0 for a special case, the transfer function becomes

the popular linear prediction filter. Defining the following intermediate



3.6. ADAPTIVE IIR NOTCH FILTER 71

term

z(k)
W(az)

e

(k)

2p )
= z(k)+ Y o hjE(k - j), (3.30)

i=1
we can obtain the system output {e(k)} as
e(k) =W(2)z(k)

=F(k) — haZ(k — 1) — ho&(k — 2) — -+ - — hop&(k — 2p). (3.31)
The stochastic Gauss—-Newton method has been used to adaptively adjust

the filter coefficients {h;}. Using an approximate Hessian matrix and the

matrix inversion lemma [Soderstrom et al., 1978], we obtain

H(k) = H(k-1)+K(k)e(k)

0= 3w +Z§(;)2Efc(ﬁ)1)¢(k)
i = st -SR]
Ak) = BAk-1)+(1-25)
b = -2 = s -
where
H(k) = [hi(k),ha(k), ..., hop(k)]T (3.33a)

x(k) = [#(k-1),3(k-2),...,5(k-2p)]7 (3.33b)
&k) = [é(k—1),é(k—2),...,é(k—2p) )" (3.33c)
A = diag (a,0%...,0%). (3.33d)

In the expression of (3.33c), (k) is given by

é(k) = wf((z)z) = e(k)+ HT A&(k). (3.34)
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Although the gradient (k) in (3.32) is a complete one, a simplified
gradient has been proposed

B(k) = (k). (3.35)

Bhaskar Rao and Kung [1984] have also discussed several related prob-
lems: the complete and simplified gradients, convergence analysis, effect
of filter length, existence of local minima, and cascade and parallel imple-
mentation forms. Although the complete gradient need a heavy compu-
tational complexity, it leads the IIR filter to the Wiener-Hopf equation
for @« = 0 and to the optimum notch filter for a ~ 1. Although gradient
truncation often simplifies computations and improves stability, the IIR
filter may not always converge to the optimal estimates. The simplified
gradient in (3.35) is more appropriate for the white noise case. When
the filter length exceeds the required length, the excess pole-zero pairs
tend to go inside the unit circle till they become ineffective. On the other
hand, when the order of the IIR notch filter is lower than required, the
filter removes sinusoidal interferences as half as the number of filter order
(existence of local minima). The cascade and parallel implementations
using second-order filters have been proposed with several advantages:
alleviating the polynomial deflation problem, using multiprocessors for
real-time processing, and easily incorporating a priori information and
constraints on the location of the roots.

The constrained adaptive IIR notch filter algorithm is summarized in
Table 3.4. When the number of filter taps is M, the required number of
multiplications per iteration for the constrained adaptive IIR notch filter
algorithm is given by

5M?+8M +2. (3.36)

The advantages of the constrained adaptive IIR notch filter algorithm

are as follows.
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Table 3.4: Summary of the Constrained Adaptive IIR Notch Filter Al-
gorithm

Parameters  H =[hy,hz,...,h2p]7 filter coefficient vector
P number of poles
a debiasing parameter
B step size

Initial H(0) =0

Conditions A = diag (a, iy azp)
P(0)=cl where cis a constant
A(0) =c2 where c; is a constant

Computation fork=0,1,2,3,...

i{k) =[i(k—1),5‘()0—2),...,5(’&‘—2;)) ]T
(k) = z(k) + HT (k)Ax(k)

e(k) = (k) — HT (k)x(k)

&(k) =[&(k —1),&(k —2),...,é(k—2p)]1"
(k) =e(k) + HTA&(K)

oK) =%(k) - A&(k)
AMk+1) =BAEK)+(1-5)

- Pxyu(x)
K(k+1) = A(k+1)+9T (R P (k) v (k) P

iz 1 () ¢(k) T () P (k)
P(k+1) = A(k+1) rP(k) - A(k+1}+¢T(k]P(k)¢[k}]

H(k + 1) = H(k) + K(k) e(k)

e The constrained adaptive IIR notch filter requires few parameters. -

e The closer the debiasing parameter « is to unity, the flatter the
notch filter (ideal notch filter) response will be.

e When the filter length exceeds the required length (overestimation
cases), the excess pole-zero pairs tend to go inside the unit circle

till they become ineffective.
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e When the order of a filter is lower than required (underestimation
cases), the notch filter of order 2r will remove r of the p sinusoidal

interferences for r < p.

The disadvantages of the constrained adaptive IIR notch filter algorithm

are as follows,

e Although the constrained adaptive IIR notch filter becomes an ideal
notch filter as the debiasing parameter o approaches to unity, due
to the nonlinearity of the gradient, the resulting notch position has

a large bias and variance if « is too close to unity.

e As the value of « increases, the DC gain decreases.

Ezample 3.4

Let us assume that the input consists of a wideband SOI and an

additive sinusoidal interference as follows:
z(k) = s(k) + I(k)

where {s(k)} and {I(k)} denote the SOI and the interference, respec-
tively. We assume that the SOI is a zero-mean white Gaussian random
process with unity variance and that the interference is the sinusoidal
signal given by

I(k) = Ay sin(2m(0.3) k + ¢)

where A; is the amplitude and ¢ is a random initial phase uniformly
distributed over [—m, 7). Then, the signal-to-interference ratio (SIR) is

defined as
1
SIR (dB) = 10 log,, _A§/2'
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Table 3.5: The Mean and Standard Deviation Values of the Deepest
Notch Positions Obtained by the Constrained Adaptive IIR Notch Filter

value of @ mean standard deviation

0.5 0.2865 0.0553
0.75 0.2991 0.0067
0.9 0.2998 0.0017
0.95 0.3010 0.0024

decreases and that if the value of « is too close to unity, the depth of
notch reduces and the bias and variance of the obtained notch position

increase.

3.6.2 Recursive Maximum Likelihood Adaptive IIR Notch
Filter

Many adaptive IIR notch filters have a rational transfer function

_A2) 14a1z27 -t apz™

Hiz) = C(2)  cotc1z7l4-+-+cp2-"

(3.37)

where {a;} and {¢;} are the adjustable parameters. This filter is an
optimal predictor for the input time series {z(k)}, when the time series
is assumed to be an autoregressive moving average (ARMA) process of
order (m,n). However, the filter will not have the desired characteristics
of a notch filter. To obtain the desired notch response, Friedlander and
Smith [1984] have developed the following transfer function
H(z)=1+p2z™" % (3.38)

where 0 < p <1, v is a nonnegative integer, and

C(2) = 1+eaz ' + ez 4o cpz™” (3.39a)
C(z) = ecn+en1z 442" = z"C(z7"). (3.39b)
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The three lemmas providing the necessary information of the zero lo-
cations of H(z) have been presented in [Friedlander and Smith, 1984].
When the time delay parameter v equals to unity, the filter becomes the
one-step ahead prediction error filter. For v = 0, the adaptive algorithm
may converge to the trivial solution. And, the case v > 1 is useful to
notch filtering of signals in correlated noise, but introduces superfluous
notches. The parameter p is introduced to control the depth of the notch.
Setting p to a value slightly less than unity moves the zeros slightly inside
the unit circle and let H(z) have a stable inverse 1/H(z). The parame-
ter n is related to the number of notches. When v = 1, there will be a
fixed notch at w = , in addition to the g adaptive notches related to
C(z). To derive the recursive maximum likelihood (RML) algorithm for
adaptively adjusting the parameters of the notch filter, let us consider

the sum of squared prediction error

Vi = m gez(k) (3.40)
where &
e(k) = [1 +pz7" -C%] z(k). (3.41)
We can rewrite (3.41) as
e(k) = (z(k) +pz(k—n—-v)) - ¢T (k)0 (3.42)
where
o(k) = [$1(k), ba(k),--., 4 (k)]" (3.43a)
¢i(k) = —z(k—i)—pz(k—n—v+i)+elk—i) (3.43b)
0 = [e1,¢0...,6n]7. (3.43c)

Using a general Gauss-Newton algorithm for minimizing the squared

prediction error in [Ljung, 1981], we have
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R (k) R(k — 1)+ (k)$” (k)
e(k) = (z(k)+pz(k—n—-v))-¢T(K)O(k—-1) (3.44)
o(k) O(k — 1) + R (k) (k)e(k)

where and (k) is the vector of the current estimate of 8 and (k) is the
gradient vector given by

_Oe(k) e(k)  Be(k) 1"

1Ib(k) = 6(‘:1 ! 30‘.’.‘2 LA 6&,1

(3.45)

An expression for (k) can be obtained [Friedlander and Smith, 1984]

Bk = z— 54 (3.46)

where Cy(2) is the C (2) polynomial with {c;} replaced by their estimates
{¢;(k)} at time k. Equations (3.44) and (3.46) summarize the basic RML
algorithm for the adaptive IIR notch filter. However, in order to improve
the convergence, tracking capability, computational aspects, and notch
bandwidth of the RML algorithm, we need the following several modi-
fications on the basic RML algorithm [Friedlander and Smith, 1984]: (i)
It has been observed that the convergence rate of the algorithm improves
when the vector 1(k) is computed by the the following a posteriori pre-
diction error

e(k) = (z(k) + pa(k—n—v)) - gT(R)BK).  (3.47)

(ii) To make the algorithm capable of tracking nonstationary signals, the
forgetting factor can be introduced by using a weighted least-squares

criterion given by

1 K-k 2
1% k 4
“ K+1 ing ‘ ( ) (3 8)
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where 0 < A < 1 is the forgetting factor. The following time-varying
forgetting factor is useful in applications involving either stationary or

nonstationary signals.
Ak)=BAk-1)+(1-75) (3.49)

where 0 < B < 1. (iii) Defining P (k) 2 R~1(k) and using the matrix
inversion lemma, we can avoid the inversion of R(k) at every iteration.
(iv) To ensure the convergence of the RML algorithm, it is necessary
to keep 1/Ci(z) stable. Thus, the stability should be tested at each
iteration. If unstable, the parameters need to be projected back into a
stability region. For example, we can replace {&;(k)} by {n'é&(k)}, where
0 <7 < 1. (v) It has been found to be useful to replace the prefilter
1/Ck_1(z) in (3.46) by 1/Cx_1(z/a), where

Cr (g) =1+aé&(k)z"" +a? (k)22 + -+ a" &a(k)z™"  (3.50)

where 0 < a < 1. The effect of the parameter o tends to reduce the
number of times the polynomial Ci(z) becomes unstable and accelerate
the convergence of the RML algorithm. The zero value of « leads to the
so called extended least-squares (ELS) algorithm [Friedlander, 1982a).
Moreover, it has been found to be useful to let a be time varying as
follows

alk+1)=vyak)+ (1-17) (3.51)

where 0 < 7 < 1. (vi) To avoid consistently wide notches, the prediction

error in (3.44) is replaced by
e(k) = e(k) +p (&n —En(k—1)) (3.52)

where 0 < ¢, < 1, and &, is chosen to unity. It causes the following new

gradient vector given by

(k) = ¢(k) +[0,0,...,0,u]". (3.53)
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After these modifications, the final RML algorithm for a notch filter
becomes

e(k) = (a(k)+po(k—n—v))—dT(k)B(K)

f(k) = e(k)+p (Cn "'én(k -1))

_ 1 oy P(k=1)9(k)p"(F)P(k-1)
Bl = 3 |P(-1) AT (K)P(k — 1)v (k) (8:54)
O(k) = O(k— 1)+ P(k)p(k)e(k).

$(k) = ¢(k)+[0,0,...,0,p]".

Table 3.6 summarizes the adaptive IIR notch filter using the final RML
algorithm. When the number of filter taps is M, the required number of

multiplications per iteration for the RML algorithm is given by
4 M?*+7M +6. (3.55)

Note that the given computational complexity excluded the required com-
putational complexity for stability test and stabilization procedure. The

advantages of the adaptive IIR notch filter based on the RML algorithm

are as follows.

e The RML-based adaptive notch filter performing a constrained
estimation of the parameters of a general ARMA process is ex-
pected to be more accurate than an unconstrained estimator for
the ARMA parameters.

e The introduction of the specific penalty function results in much

sharper notches.

e The variance of the adaptive IIR notch filter parameter estimates
approaches the Cramer-Rao lower bound (CRLB) under certain

conditions as the number of data increases.
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e The delay parameter v > 1 is useful for notch filtering of signals in

correlated noise.

The disadvantages of the adaptive IIR notch filter based on the RML

algorithm are as follows.

e The RML algorithm may converge to a local minimum.

Table 3.6: Summary of the Modified Recursive Maximum Likelihood

(RML) Adaptive IIR Notch Filter Algorithm

Parameters

Initial
Conditions

Computation

n twice the required number of notches

p contant to control the depth of the notch

v delay parameter

o constant to move the roots towards the origin
B and v step sizes

u and &, constant parameters

8(0) = 4(0) = $(0) = 0

Po =0l with ¢ > 1

z(k) =0 fork=-1,-2,...,—n—v
fork=1,2,3,...

(k) =z(k)+pz(k—n-v)
—¢T(K)8(k —1) +p (&n —&n(k—1))

— 1 AN P[k—lw(kw"'(k]P(k—ll]
P(k) =% [P(k 1) A+¢T (k) P (k=1)y (k)

(k) =0(k—1)+P(k)y(k)e(k)

Check stability of 1/C(z) and perform stability projections
e(k) =z(k)+pz(k—n—v)—¢T(k)i(k)

'é'(k) =e(k) =Y o, a'(k) &(k) é(k — 1)

ot &

B(k) =z(k)— o ot (k) &k) 2(k — i)

¢i(k) = —z(k —i) — pz(k —n—v+i) +e(k—i)
Vi(k) = —5(k —i) — pE(k —n — v +i) + &(k — )
o(k) =[¢1(k),$2(k),...,éa(k)]"

'p(k) = [¢l|{k),\bz(k),...,¢"(k)]T '!'[01---!0!”]11
A(k) =BAk—1)+(1-58)
alk) =valk=1)+(1-17)
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e The delay parameter » = 0 may lead the RML algorithm to the

trivial solution.
e The delay parameter v > 0 may introduce superfluous notches.

e To ensure the convergence of the RML algorithm, the stability must

be tested at each iteration.

e The numerical problems may occur for high order filters and for

near pole-zero cancellations.

e A quite long data is generally required for the convergence of the

algorithm.

Ezample 3.5

Let us consider the same SOI and interference with those in Example
3.4. When the number of data samples is 1,000, the SIR is —3 dB,
and the values of the parameters and the initial conditions for the RML

algorithm are given by

n=2 p=1 vr=1
p=0.5 ch=1

«(0) =0.8 A(0) =0.99 P(0)=1001I
B = 0.998, v = 0.995,

Fig. 3.9 (a) illustrates the averaged magnitude response over 32 transfer
functions of the adaptive IIR notch filters using RML algorithm. Now,

let us consider that there are two sinusoidal interferences given by
I(k) = A; sin(27(0.1) k + ¢1) + A2 sin(27(0.3) k + ¢3)

where A;’s are the amplitudes and ¢;’s are independent random initial

phases uniformly distributed over [—7,7]. When the number of data
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samples is 1,000, the SIR is —3 dB per sinusoid, and the values of the
parameters and the initial conditions for the RML algorithm are the same
as the previous ones except for n = 4, u = 0, and A(0) = 0.95, Fig. 3.9 (b)
illustrates the averaged magnitude response over 32 transfer functions of
the adaptive IIR notch filters using RML algorithm.

From Fig. 3.9 (a), we observe that the magnitude response of the
transfer function exhibits a notch at the corresponding interference fre-
quency, but the DC gains are quite a low, when there is a single sinusoidal
interference case. On the other hand, when the interference is the given
multiple sinusoidal signal, the transfer function exhibits sharp notches
at the corresponding interference frequencies and has much higher DC

gains than in the single interference case.

| H(jw) |

10°

ST

Figure 3.9: Averaged transfer functions of the RML-based adaptive IIR
notch filter, (a) when there is a single sinusoidal interference and (b)
when there are two sinusoidal interferences.

3.6.3 Minimal Parameter Adaptive IIR Notch Filter with
Constrained Poles and Zeros

Nehorai [1985] has suggested an adaptive notch filter to mitigate mul-
tiple narrowband or sine waves in an additive broadband process. The

algorithm is of recursive prediction error (RPE) form and uses a special
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constrained model of IIR with a minimal number of parameters. Other
techniques require 2n parameters, when the number of input sine waves
or narrowband signal components is n. However, this method developed
by Nehorai uses the minimal number of parameters equal to n. Let us
consider the following IIR notch filter

c(z?)

Clpz1)

_ 14ciz7 4oz 4 ooz 2ntl 4 =20

T 14 perzl 4ot phepz™ 4o o p2n—ley z-2tl 4 pinz—2n
where 0 < p < 1. Note that the coefficients of the numerator polynomial

H(z"Y) =

(3.56)

C(z71) have a mirror symmetric form to locate the zeros of the transfer
function on the unit circle and that the poles are on the same radial lines
as the zeros, but slightly displaced towards the origin. Let {z(k)} be the
input time series, then the system (error) output of the filter becomes
-1
e(k) = %z(k). (3.57)
The adaptive estimation algorithm will adjust the coefficients {c;} so as

to minimize the cost function

Vk = i e*(k). (3.58)
The predicted error in (3.57) can 1:’.: 1rewritten as
e(k) = z(k) + z(k — 2n) — p*™e(k — 2n) — ¢ (k)0 (3.59)
where
60 = [c1,€2.-r¢n]" (3.60a)
$(k) = [$1(k), ba(k), .-, $a(k) ] (3.60b)
and

ple(k — i) +p*"e(k—2n+1), 1<i<n—-1 (3.60c)

{—x(k—i]—x(k—2n+i)+
¢i(k)=
—z(k — n) + pe(k — n), =
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After rewriting (3.57) as
C(pz Ve(k) = C(z7Y)z(k) (3.61)

and differentiating both sides of (3.61) with respect to {c;}, we can ob-
tain, for1 <i<n -1,

Clpz ") ——= ( ) + ple(k — i) + p™le(k — 2n + 1)
= z(k—1)+z(k-2n+1) (3.62a)

and for ¢ = n,

C(p '1) ( ) + pe(k — n) = z(k — n). (3.62b)
From these expressions we find the gradient of e(k) with respect to the
model 8 as
k
$) = Ba(8), balb), o ) = oL (369)
where 3 "
(k) = ‘3( ), (3.64)

Since the filter 1/C(p 2~1) is unknown, we have to replace it by its latest
available estimate 1/W(p z~1,k). In order to improve the filter sensi-
tivity, filter estimates, computational aspects, tracking capability, and
convergence rate, the following modifications are needed on the RML
algorithm based on the above modeling [Nehorai, 1985]: (i) At the be-
ginning of the algorithm, the algorithm with too narrow notch bandwidth
may not sense the presence of input sinusoidal signals; and the estimate
of C(z™1) is usually not good. For these two reasons, it is useful to apply
the algorithm with a small value of p at the beginning of the algorithm
and increase its value later. To do this procedure we can use the following

time-varying p(k) given by

p(k+1) =7 p(k) + (1 = 7)p(c0) (3.65)
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where 0 < 4 < 1 and p(o0) is very close to unity. (ii) Defining P (k) =
R~1(k) and using the matrix inversion lemma, we can avoid the inversion
of R(k) at every iteration. (iii) The following time—varying forgetting fac-
tor is useful in applications involving either stationary or nonstationary
signals

AK) = BAk = 1) + (1 - 6) (3.66)

where 0 < § < 1. (iv) To improve the convergence rate, it has been found
to be useful to replace the prediction error by the a posteriori prediction

error given by

e(k) = z(k) — 2(k | (k). (3.67)
After these modifications, the minimal parameter adaptive IIR notch
filter algorithm with constrained poles and zeros is summarized in Ta-
ble 3.7. When the number of filter taps is M, the required number of
multiplications per iteration is given by

% (9M2+25M+10). (3.68)

Ng [1987] has presented the approximate maximum likelihood (AML)
algorithm to adaptively adjust the filter coefficients {c;}. Although the
AML algorithm is not asymptotically efficient algorithm, it has proven
convergence property for the ARMA and the ARMAX model [Solo, 1979]
and does not require on-line monitoring.

The advantages of the minimal parameter adaptive IIR notch filter

with constrained poles and zeros are as follows.

e The number of parameters for the adaptive IIR notch filter is the

same as the number of narrowband interferences.

e Although the RPE class of algorithms must be incorporated by

stability monitoring, the model for the minimal parameter adap-
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Table 3.7: Summary of the Minimal Parameter Adaptive IIR Notch Filter
Algorithm with Constrained Poles and Zeros

Parameters

Initial
Conditions

Computation

n number of notches

p contant to control the depth of the notch
B and ¥ step sizes

0(0) = $(0) = ¥(0) = 0

Py =0l with ¢ > 1

A(1) = c1; p(1) = c2; p(c0) = ca where ¢; are constants
z(k)=0 fork=-1,-2,...,—-2n

fork=0,1,2,3,...

e(k) ==z(k)+ z(k-2n)- N
#(k)a(k — 2m) —47 (K)O(K — 1)

— Pik—1) (k)T (1) P(k=1)
P() =x@m [P(k_ 1) = S0+97 1) Plr-1) 9 () ]

8(k)  =8(k—1)+P(K)p(k)e(k) )

&k) = z(k)+ z(k — 2n) — p*"(k) é(k — 2n) — ¢T (k)8 (k)

(k) = (k) = P (k)és (k = 2n) = p" (k)2 (k — m)en(k) -
Z [P (k)2s (k = i) + P>~ (K)és (k — 2n +1)] &(k)

zy(k) = r-(k) P (K)z 1 (k — 2n) — p"(k)z s (k — n)én(k)—
Z [p (K)zg(k = 8)+ p> ' (k)zs(k = 2n + :)] éi(k)

=_z(k_,)_:(k 2n + i) + p(k)-
di(k) _{

ék—i)+p" (k) é(k—2n+i), i<n

—z(k —n) + p"(k) €(k —n), ) i=n
—zy(k —i) —zs(k — 2n + 1) + p'(k)-

Gilk) =4  &(k—i)+ s (k) &gk —2n+i), i<n
—zy(k —n)+p"(k) €;(k —n), i=n

¢(k + 1) - [él(k)ﬂs?(k)’ =i ¢'ﬂ(k) ]T

Ok +1) = [1(k), 2(k), ..., ¥a(k)]”

Ak+1) =pAK)+(1-8)

p(k+1) =y p(k)+ (1 —7)p(c0)
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tive IIR notch filter provides high stability and saves computations
needed to monitor the stability of RPE algorithms.

e The variance of the estimated frequency of the narrowband or si-
nusoidal signal is of the same order of magnitude as the CRLB for

sufficiently large data samples.

e The algorithm does not have any superfluous notches.

e The parameter estimates exhibit smoother and faster convergence

than those arising in general ARMA system identification schemes.

Stoica and Nehorai [1988] have presented the performance analysis of the
RML algorithm for the adaptive notch filter with constrained poles and
zeros: analyses of the narrow notch property, the model stability, the
bias, and the mean square error including comparison to the CRLB. The
disadvantages of the minimal parameter adaptive IIR notch filter with

constrained poles and zeros are as follows.

e We may encounter some realizations that give outlier performance,

i.e., the estimates are not close to the typical behavior.

e The number of the outliers increases significantly as the SIR de-

creases.

e If the filter order is overdetermined, it is required to monitor the
filter stability. And, its performance is less good than that using

the correct order.
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Ezample 3.6

Let us consider the same SOI and interference with those in Example
3.5. When the SIR is —3 dB and the values of the parameters and the
initial conditions for the RML algorithm are given by

n=1 v =0.99 B =0.99
p(0) =0.8 p(o0) = 0.995 A(0) = 0.95
P(0) =0.011,

Fig. 3.10 (a) illustrates the averaged magnitude response over 32 transfer
functions of the minimal parameter adaptive IIR notch filter with con-
strained poles and zeros. Now, let us consider the same two sinusoidal
interferences as in the previous exmaple 3.5. When the SIR is —3 dB
per sinusoid and the values of the parameters and the initial conditions
for the algorithm are the same as the previous ones except for n = 2,
Fig. 3.10 (b) illustrates the averaged magnitude response over 32 trans-

fer functions of the minimal parameter adaptive IIR notch filter with

[H(Gw) |

10°

i

0.1 02 03 0.4 0.5 0.1 0.4 0.5

02 0.3
frequency (N frequency (f)

(2) (b)

Figure 3.10: Averaged transfer functions of the minimal parameter adap-
tive IIR notch filter with constrained poles and zeros, (a) when there is
a single sinusoidal interference and (b) when there are two sinusoidal
interferences.
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constrained poles and zeros.

Note that we use 1,000 data samples in both of the cases and that
we test the filter stability and perform stability projections if unstable,
although Nehorai [1985] argued that it would not be necessary. The av-
eraged magnitude responses shown in Fig. 3.10 illustrate sharp notches
with narrow rejection bandwidths at the corresponding interference fre-

quencies in both the cases of single and two sinusoidal interference cases.

3.6.4 General Adaptive IIR Notch Filters

A general structure of an adaptive IIR notch filter is illustrated in
Fig. 3.11. Several transfer functions of the bandpass (BP) filter, Hgp(2),

have been proposed.

Hush et al. [1986] have proposed

(3.69)

where 0 € r < 1 and —2r < w < 2r. The poles of Hgp(z) form a
complex—conjugate pair locating on a circle of radius r. The magnitude
response of Hgp(z) has unity peak gain and zero phase at an angular
frequency v = cos™!(w/1+r?). It guarantees that an input sinusoid with
frequency v will be exactly canceled. The optimum value of w in (3.69)
that minimizes the mean squared error E{e?(k)} is (14 r?) coswp. The

following normalized gradient algorithm has been suggested to adjust the

parameters.
o(k) = 1o elk-D+y(k-1)
wk+1) = wk)+p % (3.70)

Y(k) = Ap+(1-2) (k)
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Figure 3.11: General structure of an adaptive infinite impulse response
(IIR) notch filter.

where p is a step size and 0 < A < 1 is a forgetting factor. Note that
the reason why the normalized gradient algorithm has been suggested
is that the error surface, which is a plot of E{e?(k)} versus w, becomes
less uniform and extremely flat in areas away from the minimum as r
approaches 1 or as the input SIR gets smaller [Hush et al., 1986].
Kwan and Martin [1989] have proposed
—ks 1+2"H)(1-21)
2 1—-2-ky—k})z 4+ (1= kg)z~2%

This filter can be realized by the transfer function of a bilinear trans-

Hpp(z) = (3.71)

formed second-order filter given by

r2—1 1+zYH)1-271)
Hpp(z) = 2 1-2r coswp 27! 412272 (918
by letting
k= \/1 4+r2—2r cosw, and kp=1-r? (3.72b)

where 0 € r < 1 is the pole radius and w, is the normalized pole
frequency. Then the transfer function has a peak gain of exactly unity

at the frequency given by

i k1
Wpeak = 2 arcsin (— (3.73)
2,/1 ~ ‘-;1)
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and the transfer function of the notch filter becomes

A FE(z
Hmtch(z) = %
2k 1-MgheHlty

2 I-@- R ifi-k)2 &M

The notch frequency can be selected by varying k; and the 3 dB rejec-
tion bandwidth is kept constant by choosing a fixed value for k;. The

coefficient k; is updated by the following gradient algorithm
e(k)s,(k)

ki(k+1) = ki(k) — p Ts®) 2 (3.75)

where {s,(k)} is a sensitivity function. The sensitivity function is ob-

tained by letting the filter output go through a sensitivity filter given

by
2k - ia
1— (2= ky—k2)z=1 4 (1 = kp)2z~2"

H,(Z) = (376)

The convergence properties of the adaptive IIR notch filter have been
analyzed in [Petraglia et al., 1990b].

3.6.5 Adaptive IIR Notch Filter Using a Sign Gradient
Algorithm

Nishimura, Kim, and Hirano [1989] have proposed the following trans-

fer function of a second-order notch filter given by

14+ ap 1-20y(k) 27 4 272
2 1-o(k) (14 a) z7t+ag 22

Hnotch (z) - (3.77)

where oy (k) is a variable coefficient and the notch angular frequency
has the relation of cos(woT') = a;(k) with a sampling period T. The
notch frequency can be changed by varying «; (k) and the 3 dB rejection
bandwidth can be changed by varying ag. For an adaptive notch filter,
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a1(k) is chosen to minimize the the square value of notch filter output.

Its gradient with respect to a; (k) is given by

0€*(k)

e = 20 ¥ (3.78)
where
(k) = (1+oao)P(k—1) aa(k) — a0 P(k—2) +
. (1+a) (e(k=1)—z(k-1)) (3.79a)
W(k—1i) = %. (3.79b)

The differential 1 (k) is generated by the transfer function given by

(1 + 00)2“1
1- (14 ap) a1(k) 271 + ap 272"

i) (3.80)

The input to the transfer function is Z(k) = e(k) —z (k). For the gradient

algorithm, the update equation becomes
o (k+1) = ay (k) — p e(k) (k) (3.81)
and for the sign gradient algorithm, it becomes
ca(k +1) = oy () — p e(K) sign((K)). (3.82)

where p is a constant controlling the convergence rate and sign(-) des-
ignates the sign of a signal. In spite of its slow convergence rate, a sign
gradient algorithm is often used for real time applications. When the in-
put is {z(k) = C cos(wok + 0) +n(k)} where {n(k)} is a white Gaussian
random process with zero-mean and variance o2, the gradient is given
as, for the sign gradient algorithm [Nishimura et al., 1989; Martin and
Sun, 1986],

(k) = —sign ( sin(wok +6) ). (3.83)
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Then, a time-varying ordinary difference equation with respect to Aa; (k)

becomes

Aoy(k+1) = (1 - pBC |sin(wok +6) |) Aay(k)
+ uC (k) sign( sin(wok + 6) ) (3.84)

where {#1(k)} is the noise term due to the input noise {n(k)}. Taking the
average of | sin(wg+0) |, we obtain the following time-invariant difference

equation
peuth+1) = (1 #29)
.

+pCalk

Aoy

o0

Z 57 + N sin( (2 + 1)wok +6). (3.85)
=0

From the above equation we can obtain the steady-state variance of

Aay (k) as

o2 = % 3 Hl(e-’“')| P(w) dw (3.86)
where
jwy 4 p./?f
Hy(e) = 1 (L= 2uCh/m) o (3.87a)

=0

with V(w) as the power spectrum of 7i(k). Note that the steady-state
variance of Aa; (k) for the gradient algorithm has been also presented
in [Nishimura et al., 1989].

The adaptive notch filter algorithm using a sign gradient is summa-
rized in Table 3.8. The required number of multiplications per iteration
for the second—order adaptive IIR filter algorithm shown in Table 3.8 is
given by 10. The advantages of the adaptive IIR notch filter using sign

gradient algorithm are as follows.
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Table 3.8: Summary of the Adaptive IIR Notch Filter Using a Sign
Gradient Algorithm

Parameters  ao constant to control the 3-dB rejection bandwidth
ay constant to control the notch frequency
7 step size

Initial ao 3-dB rejection bandwidth

Conditions a1(0) =c1  where c; is a constant

Computation fork=0,1,2,3,...

e(k) =(1+ao) a1(k) e(k — 1) — o e(k — 2)
+ 1320 [2(k) — 2 () (b — 1) +2(k — 2)]
(k)  =(1+a0)ar(k) Y(k - 1) —ao (k- 2)

+ (14 ao) fe(k = 1) = z(k - 1)]
ca(k+1) = an(k — 1) — p e(k) sign{w(k)}

e The algorithm using sign gradients provides a simpler algorithm.

e The variance of Aa; (k) of the sign gradient algorithm is indepen-
dent of ag, while that of the gradient algorithm increases as the

value of ap approaches unity.

e The algorithm using sign gradients provides better stability by al-
leviating the problem due to the update size dependency on the

power of the input signal.

The disadvantages of the adaptive IIR notch filter using sign gradient

algorithm are as follows:
e The algorithm using sign gradients usually converges very slowly.

e The algorithm using sign gradients may give poor resolution as the

update step size does not go to zero.



96 CHAPTER 3. ADAPTIVE NOTCH FILTERS

e Since the filter notch location is highly dependent on the value
of ay (k) related to the interference frequency and the convergence
rate is very slow, we need a priori information of the interference

frequency for good performance.

Ezxample 3.7

Let us consider the same SOI {s(k)} and single interference {I(k)}
with those in Examples 3.4. For all computer simulations, the following

initial conditions are used:
0;(0)=-03 and p=10"%

When the number of data is 1,000 and the SIR is —3 dB, Fig. 3.12 shows
the average magnitude response over 32 transfer functions of the adaptive
IIR notch filter using the sign gradient algorithm when oo = 0.92 and

Qg = 0.7.

[ H(jw) | | H(jw) |

0.1 02 03 04 05 01 02 03 04 05
fraquency (f) trequency (f)

(a) (b)
Figure 3.12: Transfer functions of the adaptive IIR notch filter using the
sign gradient algorithm when (a) ag = 0.92 and (b) ap = 0.7.

When ag = 0.92, the mean and standard deviation values of the

deepest notch positions are 0.2955 and 0.0071, respectively, and when



3.7. SAMPLE RATE/DECIMATION AIM FILTERS 97

ag = 0.7, the mean is 0.2979 and the standard deviation is 0.0071. From
the Fig. 3.12 we can observe that the transfer function has deeper notch

and wider rejection bandwidth as the value of ap decreases.

3.7 Adaptive Sample Rate/Decimation Notch
Filters

Strandberg, Soderstrand, and Loomis [1992] have proposed adaptive
sample rate filter and adaptive decimation filter. To describe these two
adaptive filters, the following assumptions are required: (i) the A/D con-
version is ideal (no quantization errors), (ii) the sampling frequency f,
must be exactly four times the frequency of the narrowband interference.
When the input X (f) extends from DC to the highest frequency of in-
terest frigh, the minimum sampling frequency f, would be 2fh;n and
frigh/2 would be the lowest frequency where narrowband interference is
filtered out. If we specify X (f) to lie between fion, and frigh = 2fiow,
sampling at 4 fy;on will filter components at fpion and sampling at 2 frign

will filter components at fj,,, without aliasing the input.

3.7.1 Adaptive Sample Rate Filter

The proposed adaptive sample rate filter is illustrated in Fig. 3.13.
For the adaptive sample rate filter, we need to calculate the following

parameters
N = Shigh = fiow
Af
fso = 4 fiow (3.88)
fsi = foot4Af-i

where A f is a notch width and fs and f,n are the lowest and highest

sample rates required. There are N + 1 possible sample rates and the
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Figure 3.13: (a) Adaptive sample rate filter and (b) adaptive decimation
filter.

adaptive algorithm must find the optimum sample rate among the N +1

possible sample rates.

The adaptive algorithm is initialized with an initial sample rate fs,
which is one of the N + 1 possible sample rates, and an initial direction
d = 41 or d = —1. Then, after calculating the error, e(0) at the initial
sample rate, we adjust the sample rate by i = k+d in (3.88) and calculate
the error with the new sample rate. As long as the new error is less than
the old error, we keep d the same and keep changing the sample rate.
When the error increases, we use the other direction —d. The algorithm

will search until it finds the correct sample rate to minimize the output

e(k).
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3.7.2 Adaptive Decimation Filter

The block diagram of the adaptive decimation filter is also illustrated
in Fig. 3.13. Let f;maz and f, be the fixed sample rate of the A/D
converter and the sample rate after decimation, respectively. We will
decimate by M, where M goes from m; and m,. The criteria for selecting

fsmaz and my are as follows

fa.ma: _ fa,mnz s

i, Ty 2 (8:8%2)
fa.ma: _ .
—H_4m1 = fhigh- (3.89b)

Solving for m; and f; ez yields

S PELY
_ Afnigh (frigh =2 Af)
Jomaz = > 3 7 (3.90)
o fs,mn:
"™ = 4fiow

If there is not sufficient coverage within the band, one may increase either
the filter width Af or f; maz and calculate m; and my.

The algorithm is initialized with an initial decimation between m;
and mgy, and an initial direction d = 4+1 or d = —1. As in the adaptive
sample rate algorithm, As long as the error decreases, we keep d the
same and keep changing the decimation. If the error increases, we use
the other direction —d.

The advantages of the adaptive sample rate/decimation notch filters

are as follows.
e The digital filters do not need to be adapted.

e The filtering process can be accomplished using a wide variety of

digital filters.
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e Adaptation is easy because there is only one adaptive parameter:

sample rate or decimation value.

e The low cost H/W implementations and real-time applications are

available because of computationally efficient algorithms.

The disadvantages of the adaptive sample rate/decimation notch filters

are as follows.
e The required ideal A/D conversion is not realizable in practice.

e We must know or estimate the interference frequency in advance

to set the sampling frequency to be exactly four times that.

e The algorithms cannot be used to mitigate nonseparable multiple

- interferences.

3.8 Summary

In this chapter, we described several popular adaptive notch filters
belonging to two categories: one with the reference input and the other
without the reference input. We also presented the structure, critical de-
sign parameters, algorithm, computational complexity, advantages and
disadvantages of each adaptive notch filter, and demonstrated their per-
formance through examples related to mitigate sinusoidal interferences.
Table 3.9 summarizes these all important factors of each algorithm.

The major disadvantage of these adaptive digital notch filters is that
all they are based on linear algorithm and second-order statistics. There-
fore, we can easily predict that their performance will be very poor when
either the relationship between the interference and the reference input
is nonlinear or the interference contains any nonlinear components, and

also when higher-order statistics, whose order is larger than two, are
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involved. Since the use of the AIM filter algorithms described in this
chapter is also limited, we need to consider another group of AIM filter
algorithms that can be applied on nonlinear or higher-order statistics

environments.



Chapter 4

Methods Based on
Nonlinear Cost Functions

4.1 Introduction

In the previous chapter, we have described linear adaptive interfer-
ence mitigation (AIM) algorithms based on mean-square error (MSE)
or least-squares criteria. Since these AIM methods employ second—order
statistics, they are limited to tracking linear variations in the second-
order statistics domain. In this chapter, we consider AIM methods suited
for problems where tracking of nonlinear variations is needed. This class
contains algorithms having a nonlinear structure or is based on nonlinear
error criteria.

When the relationship between the interference and the reference sig-
nal in Fig. 3.1 is not linear due to noise—corrupted transformations, non—
invertible transformations, or nonlinear transformation, it is necessary
that a nonlinear AIM method be used. Among AIM algorithms having
a nonlinear structure, we describe the nonlinear AIM method based on

Taylor series expansion; the nonlinear AIM method using a nonlinear



104 CHAPTER 4. METHODS BASED ON NONLINEAR COSTS

function of the system output sequence; and, the nonlinear AIM method
based on median filters in the frequency domain. Among algorithms
based on nonlinear criteria, we describe the AIM method based on least
mean 2K-th algorithm; the AIM method based on the constant modu-
lus algorithm (CMA); and, the AIM method based on the criterion with
memory nonlinearity (CRIMNO).

4.2 Nonlinear AIM Method Based on Taylor
Series Expansion

Assuming that we employ an FIR filter structure, let its output be

y(k) = f(z(k)) (4.1)

where z(k) = [ 21(k), z2(k), - .., zp (k) ]7 is the input vector of the adap-
tive filter at time k and f(-) is generally a nonlinear scalar function. The

Taylor series expansion for f(z) about the vector 0 is given by

%© 1 M 9 n
f(z)=ZE(Esz) f(z) (4.2)

n=0 m=1

using differential operator notation. This expression can be represented
as [Coker and Simkins, 1980]

M M M .
f(2) = 0O+ 3 0z + 3 3 0, 2z
m=1

m=1{=m

M M M
+ Y XY wnhatmnzat e (43a)

m=1{=m n=¢



4.2. AIM METHOD BASED ON TAYLOR SERIES 105

where
w® = f(0)
W _ 9f(z)
i - azm z=0
_l_azf(z) form=1{¢
= =
w(z) _ 2 azm z=0 (4.3b)
m,{ =
0'f(=) form#¢
32,,;2( 2=0

Assuming that the desired function f(z) may be approximated suffi-
ciently closely by truncation equation (4.3a) to L terms, we can rearrange

the elements of the weighting structure to form a “super” weight vector
H= [ w(©®), w{”, wgl}, e wgf), wﬁ), w%}, o5y wg}'M, wﬁ},l, o .]T (4.4)
and a “super” argument vector
Z(k) = [1, 2 (k), za(k), . . ., 2p(K), 22 (k), 21 (k) z2(k), 21 (k) 23(K), . . .,
AK), 2RV 7(k), 2 (R)A(R), 21 (B) 22 (R)zs(k), .. ] (4.5)

containing all possible cross products of {z,,(k), m=1,2,...,M} up to

order L — 1. Then we can write
f(z)=f(z)=H"Z=y (4.62)
and
E{e?} = E{ (d - y)? } = E{d*} - 2E{d 2} + HTE{2ZT}H  (4.6b)

where {d} denotes the desired signal. Since this equation shows that

the expected value of the squared error is a quadratic function of H, the
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LMS algorithm can be used for adaptation.
H(k+1)=H(k)+2pe(k) Z(k) (4.7)

where p is the adaptive step size and {e(k)} denotes the system output.
Then, the nonlinear AIM algorithm will converge to a solution providing
the maximum output SNR possible with the given filter structure. In
practice, the nonlinear AIM algorithm based on linear and quadratic
terms has been widely applied [Coker and Simkins, 1980].

The only difference between the linear AIM method based on the LMS
algorithm and the nonlinear AIM algorithm based on Taylor series ex-
pansion is the filter tap input vector Z(k). As such, by replacing the filter
tap input vector in Table 3.1 with (4.5), we can easily get the nonlinear
AIM method. The required number of real multiplications per iteration
for the nonlinear AIM algorithm is the sum of the required complexity of
the LMS algorithm and the required complexity for generating the input
vector that depends on the chosen order and terms. Some of advantages

of the nonlinear AIM method based on the Taylor series expansion are:

e The update equation of the nonlinear AIM algorithm uses the LMS

algorithm.

e The nonlinear AIM algorithm can represent a class of nonlinear
systems and be superior in some cases to conventional linear AIM

algorithms.
Some of disadvantages of the nonlinear AIM method are:

e The convergence characteristics of the nonlinear AIM algorithm are
not very well documented, especially, with signals whose statistics

change appreciably with time.

e The nonlinear AIM algorithm using Taylor series requires more

computations than the equivalent linear algorithm.
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Ezample 4.1

The primary input consists of the sum of two signals
z(k) = s(k) + I(k)

where {s(k)} and {I(k)} denote the SOI and the interference, respec-
tively. The SOI {s(k)} is a BPSK signal satisfying Pr{so = —1} =
Pr{s; = 1} = 0.5 whose power spectrum is illustrated in Fig. 4.1 (a).

The reference signal is given by
w(k) = 1.3 sin(27(0.3) k + 7 /4).

We assume that the relationship between the interference and the refer-

ence signal is nonlinear, as follows

I(k) = 1.25w?(k) — 1.5w?(k — 3) — 0.95 w?(k — 4)
+ 0.5w(k) +0.25 w(k — 1) — 0.4 w(k — 2) — 0.75 w(k — 3).

Then, the power spectrum of the primary input is illustrated in Fig. 4.1
(b). Note that the power spectrum has large values not only at the nor-
malized reference frequency 0.3, but also around 0.4 due to the nonlinear
relationship between the reference signal and the interference. Also, note
that we use the last 256 data to estimate power spectra. We assume that
there are no uncorrelated noises at the primary and reference inputs, i.e,
{z(k) = w(k)}, and that the input vector of the nonlinear AIM method

Z(k) = [ 1,2(k), 2(k = 1),...., 2(k = 5), 2(k), 22(k = 1),...., 22(k - 5) | .

When the number of filter taps is 13 and the step size parameter p
is 0.005, the linear AIM method based on the LMS algorithm and the
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Figure 4.1: (a) Power spectrum of the SOI {s(k)}, (b) power spectrum
of the received signal {z(k)}, (c-1) error curve {s(k) — ec(k)}, (c-2)
power spectrum of the system output {e;(k)} obtained by the linear AIM
method, (d-1) error curve {s(k) — e;(k)}, and (d-2) power spectrum of
the system output {e;(k)} obtained by the nonlinear AIM method.

nonlinear AIM methods based on Taylor series expansion are used to
mitigate the interference and recover the SOI.

Fig. 4.1 (c-1) and (c-2) show the error curve between the SOI and
the system output (recovered SOI) {e/(k)} obtained by the linear AIM
method and the power spectrum of the system output, respectively. We
can observe large values around 0.4 in the power spectrum of the system
output (Fig. 4.1 (c-2)). Large errors in time domain shown in Fig 4.1 (c-

1) results from the existing interference components. Thus, it is apparent
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that the linear AIM algorithm cannot effectively mitigate the interference
components due to nonlinear relationship. On the other hand, Fig. 4.1
(d-1) and (d-2) illustrating the corresponding error curve and power
spectrum of {e;(k)}, respectively, obtained by the nonlinear AIM method
indicate that the nonlinear AIM method based on Taylor series expansion
can effectively mitigate the interference because the nonlinear method
takes into account the nonlinear relationship between the interference

and the reference signal.

4.3 Nonlinear Error AIM Method

Previous studies [Glover, 1977; Conolly and Su, 1986] have shown
that when the AIM method based on the LMS algorithm centered at
w; is excited by a sinusoid of different frequency ws, the resulting co-
efficients oscillate at the sum and the difference frequencies of the two
sinusoids. To reduce the time-varying steady-state behavior of the AIM
filter coefficients based on LMS algorithm, Douglas and Meng [1991b]
have inserted a memoryless nonlinearity into the error update equation
of the stochastic gradient method, as shown in Fig. 4.2. This nonlinear-
ity is chosen to optimize a non-mean-square error criterion matched to a
given problem. The use of non-mean-square error criteria in stochastic
gradient adaptation has been used to improve the performance of the
algorithm [Walach and Widrow, 1984; Douglas and Meng, 1990; 1992]
or to simplify the computation of the stochastic gradient estimate [Dut-
tweiler, 1982; Xue and Liu, 1986; Douglas and Meng, 1991a]. Under
slow adaptation conditions near convergence, it has been shown that the
optimum error nonlinearity in stochastic gradient method is given by

pi(ex) (4.8)

f(ek) :7m:
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Figure 4.2: Nonlinear error AIM filter structure using a nonlinear func-
tion of the error.

where v is a constraint parameter, the prime denotes functional differen-
tiation, and py(-) is the probability density function of the interference
{I(k)}. The stochastic gradient algorithm with this nonlinearity achieves
the smallest MSE for a given adaptation rate, as the step size tends to
zero [Douglas and Meng, 1990]. The reduction in excess MSE that the
nonlinear algorithm provides over the LMS algorithm can be expressed

as an improvement factor « defined by

o = final excess MSE of LMS algorithm (4.90)
" final excess MSE of modified algorithm )

EXf/(1)} E{I)
B2 (1)

(4.9b)

where the constraint parameter 7 is chosen such that the adaptation

speeds of the two algorithms are the same. Using the calculus of vari-
ations, it can be shown that the nonlinearity in (4.8) maximizes the
performance factor in (4.9b) for all continuous nonlinearities f(-) de-
fined over the region of support of the interference probability density
p1(-) [Douglas and Meng, 1991b].
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Let the interference {I(k)} be a pure sinusoidal signal given by
I(k) = C sin(wok + 65). (4.10)

Since the phase 6 is initially unknown, we can consider any one inter-
ference sample to be generated from a uniform random variable u; over

the range [0, 1] as follows
I(k) ~ C sin(2mug). (4.11)

Thus, the density function of the interference becomes
1
m/C? — z?’

and the optimum nonlinearity in (4.8) can be obtained

pr(z) = |z |<C (4.12)

x
f@) =7 g7z |z |<C. (4.13)
Since the quantities E{f'(z)} and E{f?(z)} are found to be infinite, the
following nonlinearity should be considered.

T |z (1-96)C

f"(z):{ Y oy (1-0)C <lzl< C. (414

Note that as § — 0, the nonlinearity fs(z) in (4.14) approaches the
nonlinearity f(z) in (4.13). Using fs(z), we have

E{fs(z)} = @% {§ﬁ3 + Bx + /X (% —sin™! ﬁ)} (4.15a)
2

B} = G {§ﬁ3+ﬁ+

% (% il D ﬁ)} (4.15b)

where # =1—§ and x = §(2 — §). Plotting o as a function of 4, it can
be shown that lims_,o @ = co [Douglas and Meng, 1991b]. Douglas and
Meng [1991b] have chosen the nonlinearity to be

f(z)={°‘ =

z,

C
o (4.16)

vV A



112 CHAPTER 4. METHODS BASED ON NONLINEAR COSTS

so that adaptation for the modified algorithm is the same as LMS adap-
tation when the error is large. When the error is small, the deadzone
about the origin effectively turns off the adaptation when the weights
are close to the steady-state Wiener solution. However, the large tails of
the probability density function pr(-) near the edges of the deadzone keep
the solution near the optimum for small but nonzero step size. Since the
interference amplitude C is, in practice, generally unknown a priori, it is
difficult to decide the width of the deadzone. To estimate the amplitude,
the power of {e(k)} in Fig. 4.2 can be estimated as follows

P.(k+1) = (1= p)Pe(k) + p €* (k) (4.17)

where 0 < p < 1. Using the instantaneous estimate of the interference
amplitude /2P, (k), the width of the deadzone will be chosen. To sim-
plify computation, the square root is replaced by a divide using a Taylor
series expansion upon the right hand side of (4.17).

The nonlinear error AIM method is summarized in Table 4.1. When
the number of filter taps is M, the required number of multiplications

per iteration for the nonlinear error AIM algorithm is given by
2M +4. (4.18)

In addition to the number of multiplications, note that we need the square
root calculation per each iteration. The advantages of the nonlinear error

AIM method are as follows.

e It can remove the sinusoidal variations in filter coefficients that

result from reducing the rejection effects at the notch frequency.

e It improves the rejection at the notch frequency and enhances track-

ing performance.
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Table 4.1: Summary of the AIM Method Based on the Nonlinear Error
Algorithm

Parameters H=[hi,h2,...,hn ]T filter coeflicient vector
M number of filter taps
p and p step sizes

Initial Condition H(0) =0

Data at k z(k) primary input
z(k) = [z1(k), z2(k), ..., 2m (k) T reference vector
Computation fork=0,1,2,3,...
e(k) = z(k) — HT(k) z(k)
Pe(k+1) = (1= p)Pe(k) + p € (k)
_[H@, le(k)] < v/2P(F)
Bk 1) = { H(k) + p z(k) e(k), otherwise

The disadvantages of the nonlinear error AIM method are as follows.
e It is sensitive to the variations in the deadzone width.

e Its performance is sensitive to choices of values of both the param-

eters p and p.

e It introduces a number of aperiodic components in the spectrum

domain due to the nonlinear nature of the filter update equations.

Ezample 4.2

Let us assume that the primary input {z(k)} consist of the sum of

the sinusoidal SOI and an additive sinusoidal interference as follows.

z(K) = s(k) + I (k)
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where {s(k)} and {I(k)} denote the SOI and the interference, respec-
tively, given by

s(k) = V2sin(27(0.4) k + 7/3)
I(k) = V2 sin(2n(0.3) k + n/4).
The reference input is given by
z(k) = sin(27(0.3) k + ¢)

where ¢ is a random phase uniformly distributed over [-m,7]. When
the number of filter taps M is 8 and the step size p is 0.0125, Fig. 4.3
shows the averaged magnitude response over 32 transfer functions of the
nonlinear error AIM filter and the averaged power spectrum | E(jw) |
over 32 estimated power spectra of the system output {e(k)} after con-
vergence. Note that we use the last 256 system output data samples to
estimate the power spectra. An typical error curve between the system
output and the SOI is also illustrated in Fig. 4.3. Note that the other
step size p in (4.17) for estimating the amplitude of the system output is
0.0195.

It can be observed that the nonlinear error AIM method converges
faster and eliminates the interference more effectively than the LMS-
based AIM method shown in Fig 3.3 and that the power spectrum of the
system output shown in Fig 4.3 (b) have components around 0.2 which
is not related to either the SOI and the interference. This seems because
of nonlinear nature mentioned before. Through computer simulations,
we observe that the performance of the nonlinear error AIM algorithm
is very sensitive to a choice of value of the parameter p. If the value of p
is relatively small, the nonlinear error AIM algorithm performs similarly
to the AIM method based on the LMS algorithm as far as excess error is
concerned. If the value of p is relatively large, the nonlinear error AIM

method might not eliminate the interference at all.
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Figure 4.3: (a) Transfer function of the nonlinear error AIM filter after
convergence, (b) the average of estimated and normalized power spec-
tra of the system outputs, {e(k)} obtained by the nonlinear error AIM
algorithm, and (c) an error curve {e(k) — s(k)}.

4.4 AIM Method Based on Least Mean Fourth
Algorithm

When {z(k)} and {e(k)} denote the input and output of a system,

respectively, let us consider the general K-th order problem of minimiz-
ing
E{e*X (k)} (4.19)

for K = 1,2,.... Extending the Widrow-Hoff algorithm to be able to
minimize E{e?X(k)} for an arbitrary choice of K and using the instan-
taneous gradient, the new filter coefficient vector update equation be-
comes [Walach and Widrow, 1984]

H(k+1) = H(k) — p Vg (2€(k)) (4.20)
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where H(k) denotes the filter coefficient vector and Vg denotes the in-

stantaneous gradient operation with respect to H given by
U (K (k) = —2 K K1 (k) (k). (4.21)

In these expressions, z(k) denotes the filter input vector at time k. Note
that for K = 1, the update equation (4.20) becomes that of the LMS
algorithm. The sufficient conditions for convergence of the mean and
the variance, the time constants, and the misadjustment M(K) for a
arbitrary value of K are given in [Walach and Widrow, 1984; Nikias
and Petropulu, 1993]. The least mean fourth (LMF) adaptive algorithm
can be viewed as a special case of the general K-th order algorithm for
K = 2. The LMF adaptive algorithm has the form of

H(k + 1) = H(k) + p (k) z(k) (4.22)

where p is a step size constant.

The only difference between the general least mean K-th algorithm
and the LMS algorithm is the filter update equation. Therefore, replacing
the filter update equation for the LMS algorithm in Table 3.1 with (4.20),
we can easily get the general K-th order algorithm. When the number of
filter taps is M, the required number of real multiplications per iteration

for the general least mean K-th adaptive algorithm is given by
oM +2K — 1. (4.23)

The advantages of the AIM method based on the least mean K-th order

algorithm are as follows.

e When oK) 2 ;;—((Il()-)ﬂ

misadjustment for the same speed of convergence compared to the
LMS algorithm.

> 1, the algorithm with K > 1 has lower
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e The required computational complexity is insignificantly more than
that of the LMS algorithm.

Its corresponding disadvantages are as follows:

e The optimal choice of K can be determined when the moments of

the noise are known.

e Even when a(K) > 1, the choice of large K is generally associated
with decrease in the degree of stability of the algorithm for the

given initial conditions.

Example 4.3

Consider the same SOI {s(k)}, interference {I(k)}, and reference in-
put {z(k)} with those in Example 4.2. When the number of filter taps
M is 8 and the step size parameter p is 0.004167, Fig. 4.4 illustrates
the averaged magnitude response over 32 transfer functions of the LMF-
based AIM algorithm, the averaged power spectrum over 32 estimated
power spectra of the system output {e(k)} after convergence, and a typ-
ical error curve between the system output (recovered SOI) and the SOIL.
Note that we use the last 256 system output data to estimate the power
spectra.

As shown in this figure, the AIM method based on the LMF algo-
rithm mitigates the sinusoidal components related to the reference input
from the primary input. Compared to Fig. 3.3, the LMF adaptive algo-
rithm can have smaller excess error when the LMF adaptive algorithm
converges as fast as the LMS adaptive algorithm. The expected im-

provement of the LMF adaptive algorithm is almost 6 dB [Walach and
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Figure 4.4: (a) Transfer function of the AIM filter based on the LMF
algorithm, (b) the average of estimated and normalized power spectra of
the system outputs, {e(k)}, obtained by the AIM method based on the
LMF algorithm, and (c) an error curve {e(k) — s(k)}.

Widrow, 1984]. Note that its nonlinear structure of update equation in-
troduces components around 0.2 in the power spectrum of the system

output which is irrelevant to the frequencies of the SOI and interference.

4.5 AIM Methods Based on Median Filters

Since the spectrum of the SOI corrupted by narrowband interferences
usually contains large amplitude impulses around the center frequency of
each interference, frequency domain processing is suitable for interference
suppression.

Filters based on order statistics usually have good edge preservation
properties and good behavior in the presence of heavy tailed additive
noises. The best known and most widely used filter based on order

statistics is the median filter [Pitas and Venetsanopoulos, 1990]. When
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the window size of a median filter is M = 2L 41, the conventional median
filter is defined by

y(k) = Median { z(k— L),z(k— L+ 1),...,z(k-1),
z(k),z(k+1),...,z(k+ L—-1),z(k+ L) } (4.24)

where {z(k)} and {y(k)} denote the input and output of the median
filter, respectively. The fundamental properties of the median filter are
that it preserves signals with smooth transitions and that it eliminates
impulses narrower than L. Therefore, if the spectrum of the SOI is
sufficiently smooth, the conventional median filter is an ideal filter to
mitigate impulsive components in frequency domain. The median filter,
its modifications, and other nonlinear filters based on order statistics are
presented and analyzed in [Pitas and Venetsanopoulos, 1990].

In the cases of several SOIs whose spectra are not smooth, the con-
ditional median filter, however, should be used. The conditional median
filter is a median filter that selectively eliminates impulses depending on
both their relative width compared to the window size and their relative
amplitude compared to adjacent amplitudes. The conditional median
filter is defined as [Kasparis, 1991; Kasparis et al., 1991]

z(k), when |y(k)—=z(k)|<C

be(k) = { y(k), when |y(k) - 2(k)| > C

where {y.(k)} denotes the output of the conditional median filter, {y(k)}
denotes the output of the median filter according to (4.24), and C is

(4.25)

a threshold constant. Therefore, the conditional median filter will not
affect any component that dose not meet the threshold condition and will
eliminate any impulse that meets both the maximum bandwidth imposed
by the window size and minimum amplitude set by the constant C.

To mitigate narrowband interferences by using a median filter scheme,

one has to get the power spectrum of the received signal and pass its
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values in the frequency domain through a median filter. The advantages

of the AIM technique based on median filters are as follows.

e Since the median filter approach replaces a range of frequency com-
ponents where interferences are expected to be with adjacent com-
ponents rather than eliminating, we can reduce distortion and ar-

tifacts on the recovered SOI in time domain.

e It is not necessary to know the center frequency, bandwidth, phase,

and total power of each interference in advance.

e We can selectively eliminate only those frequency components that

meet the minimum power and maximum bandwidth conditions.

e There are only one or two filter parameters to determine the max-

imum bandwidth and minimum power requirements.
e The adaptation time is not needed.
Its corresponding disadvantages are as follows:

e It is important to choose a proper window size. A small window
size can eliminate impulsive frequency components close together,
but increase complexity. On the other hand, a large window size

cannot eliminate impulsive frequency components close together.

e The conventional median filter is not suitable for SOIs whose power

spectra are not sufficiently smooth enough.

e There is no theoretical way to choose the threshold constant C for

the conditional median filter.

e A small value of the threshold constant C for the conditional me-

dian filter results in eliminating larger components of the SOI, while
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a large threshold value fails to eliminate smaller components of the
interference. Consequently, a priori information of the SOI and the
interference is required for satisfying performance of the median fil-

ter.

Ezample 4.4

We assume that the SOI is a BPSK signal satisfying Pr{sy = -1} =

Pr{s; = 1} = 0.5 and the narrowband interferences are given by
I;(k) = a; sin(27 f; k+ ¢)

where
a; =10 a;=0.7 az = 0.85
i=01 f,=015 f3=03

and ¢;’s are independent random variables uniformly distributed over
[-m, 7). The estimated power spectra of the SOI and the received signal
{z(k) = s(k) + I(k)} are illustrated in Fig. 4.5 (a) and (b), respectively.
When the window size of a median filter M is 7, the power spectrum of
the output obtained by the conventional median filter defined by (4.24)
is illustrated in Fig. 4.5 (c). When the threshold constant C is set to
200 and M = 7, Fig. 4.5 (d) shows the power spectrum of the output
obtained by the conditional median filter defined by (4.25).

Although the conventional median filter can eliminate the impulsive
components in the frequency domain, the spectrum of its output be-
comes over-smoothed, because the spectrum of the SOI is not sufficiently
smooth. The over-smoothed spectrum of the recovered SOI results in
large errors in the time domain. Thus, it is not suitable to use the
conventional median filter on the given SOI. On the other hand, the

spectrum of output obtained by the conditional median filter not only
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Figure 4.5: (a) Power spectrum of the SOI {s(k)}, (b) power spectrum of
the received signal {z(k)}, (c) power spectrum of {y(k)} obtained by the
conventional median filter with M = 7, (d) power spectrum of {y.(k)}
obtained by the conditional median filter with M =7 and C = 200, and
(e) the recovered SOI by the conditional median filter in time domain.

eliminates impulsive peaks that meet the threshold condition, but also
preserves valuable SOI components that do not meet the condition. The
recovered SOI obtained by the conditional median filter in time domain
is illustrated in Fig. 4.5 (e) that is very similar to the given SOI. Thus,
this example demonstrates that a proper choice of the threshold can im-
prove the performance of the conditional median filter over that of the

conventional median filter.
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4.6 AIM Method Based on Constant Modulus
Algorithm

When the SOI, {s(k)}, has a constant envelope, such as FM or QPSK
signal, the constant modulus algorithm (CMA) can be used to compen-
sate the effects of multipath and interferences [Treichler and Agee, 1983].
Since both multipath propagation and additive interference disrupt the
constant envelope property of the SOI, the CMA can adaptively adjust
the filter coefficients to remove the variations by sensing the received
envelope variations. In the process, the CMA can suppress the various
interferences.

Assuming that the input signal is available as a complex, discrete—
time process and that the filter coefficients are updated with each input

sample, the filter output {y(k)} may be written as
y(k) = x" (k) H(k) (4.26)

where x(k) and H(k) are M x 1 vectors of the input data and the filter

coefficients, respectively, given by
x(k) = [z(k),z(k—1), -, a(k—M+1)]T (4.272)
H(k) = [ho(k),ha(K), - har—1 (k)" (4.27b)

Note that M denotes the number of the filter taps. The objective of
the CMA is to restore {y(k)} having a constant instantaneous modulus

(envelope) on the average. A general criterion is given by
J = d[F{y(k)}, F{s(k)}] (4.28)

where d(-) and F(-) are length metrics to be defined for a specific algo-
rithm. Assuming that the SOI is scaled so that | s(k) |= 1, the length

metrics are chosen to yield the following criterion

r=2{ 1y P -1]"} (4:29)
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where E{-} denotes the statistical expectation. Although there are many
possible approaches for adjusting the filter coefficients, a simple gradient
search algorithm can be employed to minimize J for simple hardware

implementations. Assume that the filter coefficient vector is updated by
H(k+1)=H(k) — p Vg Jx (4.30)

where u is a step size and Vg J}. is a gradient. The adaptive algorithm is
obtained by replacing the true gradient with an instantaneous gradient

estimate given by
Vadi = (|y(8) [* =1) - y(k) x"(k) (4.31)

where “¥” denotes the complex conjugation. With the scalar term ¢(k)
defined by

e(k) = (I y(k) |? —1) -y(k), (4.32)

the CMA can be compactly written as
H(k + 1) = H(k) — p e(k)x™ (k). (4.33)

Note that the CMA in (4.33) is very similar to the complex version of the
LMS algorithm. The CMA has been analyzed by a number of research
groups: Jamali and Wood [1990] have shown the error surface analy-
sis for the complex CMA to be quadratic in the parameter kronecker
product space and derived closed—form analytical expressions similar to
the Wiener type for the optimum filter coefficients. Treichler, Wolff,
and Johnson [1991] have described several situations in which misconver-
gence of the CMA occurs and suggested that a firmer understanding is
needed for its behavior in the presence of cyclostationary and/or quasi-
periodic, non-white inputs. Swaminathan and Tugnait [1993] have used

the estimated FIR channel impulse response to initialize the CMA-based
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adaptive filter in order to avoid undesirable equilibria and saddle points.
Chan, Petraglia, and Shynk [1989] have presented several efficient block
implementations of the CMA in the frequency domain using convolution,

filter banks, and multirate signal processing.

When we use the CMA to mitigate narrowband interferences, two
problems can arise [Treichler and Agee, 1983]: (i) notch compromise and
(ii) interference capture. The notch compromise means that we cannot
use a deep and wide notch for interference mitigation because the com-
plete notch process not only removes the interference but also distorts
the SOI. For instance, when the SOI is a FM signal, the deeper the notch
is, the more AM is induced into the FM signal. The second problem is
more serious. When both the SOI and the interference have constant
envelopes and are spectrally non-overlapping, it is possible to find two
different filter solutions, one which suppresses the interference and the
other which captures the interference and suppresses the SOI. Various
methods have been suggested to avoid the interference capture such as
the linearly constrained constant modulus (LCCM) approach [Rude and
Griffiths, 1989; 1990], approaches using both by properly initialization
and by adding a term which penalizes “un-needed” gains in the impul-
sive response [Gooch and Daellenbach, 1989], and approaches through
whitening [Treichler and Larimore, 1985]. There are a lot of versions of
the CMA for interference mitigation through modifications and hybrid
structures suggested by a lot of researchers: Goldberg and Iltis [1987;
1988], Satorius et al. [1988], and Mendoza, Reed, Hsia, Agee [1989a;
1989b]. While the CMA has been developed for constant modulus sig-
nals, it has been shown that the algorithm is useful for a wider range of
transmitted signals [Godard, 1980; WolfT et al., 1988].

The AIM method based on the CMA is summarized in Table 4.2.

Note that the initial condition of the filter coefficient vector H(0) is not
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a zero vector as usual, because the adaptation process will stop when
H(k) = 0. So, it is important not to use the traditional all-zero initial
vector for the CMA. When the number of filter taps is M, the required

number of real multiplications per iteration for the CMA is given by

2 M + 4. (4.34)

The advantages of the AIM method based on the CMA are as follows.

e The required computational complexity is very low, because the

CMA is similar to the complex version of the LMS-based algorithm.

e In the vicinity of convergence, the CMA filter will converge to the

Wiener filter.

Table 4.2: Summary of the AIM Method Based on the Constant Modulus
Algorithm (CMA)

Parameters H=[hy,hs,...,hm o filter coefficient vector
M number of filter taps
I step size

Initial Condition H(0)=[1,0,0,...,0]"

Data at k x(k) = [ z(k),z(k = 1),...,z(k=M +1)]T  input vector
y(k) filter output
Computation fork=0,1,2,3,...
ok =T (k) H(K)

e(k) = (ly(®)* =1) y(k)
H(k +1) = H(k) — p e(k) x* (k)
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The disadvantages of the AIM method method based on the CMA are

as follows.

e If the interference has a constant modulus, the CMA-based AIM
filter may capture the interference rather than the desired SOI.

e There is no explicit way to prevent interference capture.

Ezample 4.5

We assume that the input signal {z(k)} is given by
z(k) = s(k) + I(k)

where {s(k)} is the SOI that is the BPSK signal satisfying Pr{sp = —1} =
Pr{s; = 1} = 0.5 and {I(k)} is the narrowband interference given by

I(k) = 3.5 sin(27 (0.3) k + 7 /4).

When the number of filter taps M is 31 and the step size p is 2.5 X 107°,
Fig. 4.6 shows the estimated power spectrum of the SOI corrupted by
the interference and the transfer function of the CMA-based AIM filter.
Note that we use 512 input data for estimating the power spectrum and
that we use the filter coefficients at the last iteration for the transfer
function. In addition, the error signal between the SOI and the system
output {y(k)} in time domain is shown in Fig. 4.6 (c).

This figure shows that the CMA can provide a sharp notch at the
frequency of a narrowband interference and be used to mitigate a nar-
rowband interference. Compared to other linear or nonlinear algorithms,
the CMA, however, converges slowly and has quite large excess errors.
Also, the performance of the CMA is sensitive to the amplitude of the

interference and the choice of the step size.
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Figure 4.6: (a) Power spectrum of the input data {z(k)}, (b) the transfer
function of the adaptive filter based on the CMA after convergence, and
(c) error curve {y(k) — s(k)}.

4.7 AIM Method Based on the CRIMNO Al-
gorithm

Using the fact that the transmitted data are statistically independent,
Chen, Nikias, and Proakis [1991; 1992] have developed the new criterion
with memory nonlinearity (CRIMNO) for blind equalization. When the
transmitted SOI is considered as a statistically independent process, we
can adaptively adjust the coefficients of an interference mitigation filter
using the following criterion for the CRIMNO algorithm with memory
size L given by

V) = wo Jo+wy Jy + -+ wp Ji (4.35)
where

Jo = E{(y(k)P -R,)} (4.362)
Je = |E{y(k)y (k- 0} (4.36b)
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for £=1,2,..., L. In the expression of (4.36a), R, is defined as

E{ |s(k)|* }

B = Esmry 480

To find the minimum point of the criterion, we differentiate the cost

function and use the steepest descent method given by

av(»)

(4.38)
where p is the step size and H(k) is the filter coefficient vector given by
H(k) = [ hy(k), h2(K), ..., har—1(K) ] (4.39)

where M is the number of filter coefficients. When p = 2, the filter

coefficient update equation becomes [Chen, et al., 1992]

H(k+1) = H(k) - p [ 4woB{x"(K)y(%) (ly(K) > ~R2)}
+ 2w (E{x"(k - 1)y(k)) E{y" (K)y(k - 1)}
+ E{x"(K)y(k - 1)} E{y(K)y"(k - 1)})
+ .- (4.40)
+ 2wp (B{x"(k - L)y(k)} B{y"(K)y(k - L)}
+ E{x*(K)y(k - L)} E{y(K)y*(k - 1)}) |

where x(k) is the M x 1 vector of the received signals constructed by
x(k) = [z(k),z(k—-1),...,z(k— M +1)]. (4.41)

Instead of the ensemble averages in (4.40), we can use the empirical
averages, at each iteration, over a sliding window with length P defined

as

P
EO(f(K) = 5 3 f(k—p+1) (4.42)
p=1
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or can use single point estimates. When we replace the ensemble averages
by the single point estimates, we obtain the stochastic gradient CRIMNO

algorithm as follows.

H(k+1) =H(k) - p [ 4wox"(£)y(k) (ly(k) > ~Rz)
+ 2wy (x*(R)y(k) |y(k = 1) 2 +x"(k = Dy(k - 1) [y(R)[*) (4.43)
v
+ 2ug, (x* (R)y(k) |y(k = D) [P 4" (k = L)y(k - L) [y(R) ) |

Note that the filter outputs {y(k—#£), £=1,2,...,L} can be calculated
by either y(k — €) = xT(k — £)H(k — £) for the CRIMNO version I or
y(k — €) = xT(k — €)H(k) for the CRIMNO version II which requires
extensive computation time [Chen, et al., 1992]. When we use a small
step size, it is noticed that the difference between the two versions of the
CRIMNO algorithm is negligible. Therefore, we will use the CRIMNO
version I that requires less computational complexity. When we use the
stochastic gradient CRIMNO algorithm, a constellation eye shrinkage
problem may occur. To solve the problem, we can use an automatic gain
control (AGC) unit defined as [Chen, et al., 1992]

/2
E{ |s(k) [ })‘
Gl =l sy ’ 4.44
®=(Eem .
In (4.44), E{ |y(k)|* } is obtained by the following update equation.

E{ |y(k)|*} = (1-B) E{ly(k = 1) }+ B [y(k)|? (4.45)

where 0 < # < 1 is the forgetting factor. There are various exten-
sions of the CRIMNO algorithm, such as adaptive weight CRIMNO algo-
rithm, colored CRIMNO (CCRIMNO) algorithm, and higher—order cor-
relation CRIMNO algorithm. When the weights {we, £=0,1,2,...,L}
in the adaptive weight CRIMNO algorithm are adjusted by an ad hoc
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way, it has been shown that the convergence of the adaptive weight
CRIMNO algorithm is faster than that of the fixed weight CRIMNO
algorithm [Chen, et al., 1992]. Chen and Nikias [1992] have applied the
fixed—weight and adaptive-weight CRIMNO algorithms to fractionally-
space blind equalization problem and shown that the fractionally-spaced
CRIMNO algorithm converges faster than the synchronous CRIMNO al-
gorithm. Tsakalides and Nikias [1993] have developed the CCRIMNO
algorithm that can be used for blind deconvolution problems when the
input signals are colored.

The CRIMNO-based adaptive interference mitigation method is sum-
marized in Table 4.3. When the number of filter taps and the mem-
ory size are M and L, respectively, the required number of real mul-
tiplications per iteration for the version I CRIMNO algorithm is given
by [Chen, et al., 1992]

A4M+3L+5 (4.46a)

and the required real multiplications per iteration for the version II
CRIMNO algorithm is given by

ML+4M+8L+5. (4.46b)

The advantages of the AIM method based on the CRIMNO algorithm

are as follows.

e The AIM method based on the CRIMNO algorithm does not ex-

hibit the interference capture phenomena.

e The adaptive weight CRIMNO algorithm improves the convergence

speed rate.

The disadvantages of the AIM method based on the CRIMNO algorithm

are as follows.
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Table 4.3: Summary of the AIM Method Based on the CRIMNO Algo-
rithm with p=2

Parameters H=[hy,hz,...,hum]T filter coefficient vector
M number of filter taps
L memory size

Initial Condition H(0)=[1,0,0,...,0,0]7

Data at k x(k) = [z(k),z(k = 1),...,z(k =M +1)]T input vector
y(k) filter output
Computation fork=0,1,2,3,...
y(k)  =x"(k)H(k)
ei(k)  =2wo [y(k)|* +wr |y(k=1)[* + ---
+w Jy(k—L)|> = 2wo R>
ez(k) = x*"(k—1yk-1)+ .-
+wrx*(k—L)y(k—L)
e(k) =2 (x"(k) y(k) ea(k) + e2(k) |y(K)[*)

H(k+1) = H(K) — p e(k)

o When the SOI is not independent but colored, we need more infor-
mation of the SOI for the CCRIMNO-based algorithm.

e We need extra calculation for the AGC unit for the CRIMNO-based
algorithm.

Example 4.6

Let us consider the same SOI and interference as in the previous
example 4.5. When the number of filter taps M is 31 and the step size
pis 0.5 x 1075, Fig. 4.7 illustrates the estimated power spectrum of
the SOI corrupted by the interference and the transfer function of the
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(e}

Figure 4.7: (a) Power spectrum of the input data {z(k)}, (b) the transfer
function of the CRIMNO-based AIM filter with L = 4, and (c) error

curve {y(k) — s(k)}.

CRIMNO-based adaptive filter with memory size L = 4. The weights
for the CRIMNO algorithm are set as follows.

wred b =0
=Y 05-(0.7)% £#£0.

Note that we use 512 input data for estimating the power spectrum and
that we use the filter coefficients at the last iteration for the transfer
function. In addition, the error signal between the SOI and the system
output {y(k)} in time domain is shown in Fig. 4.7 (c), when the gain of

the AGC unit is set by
1/2
G(k) = (,} ) .
y*(k)

k)= (1-8)y2(k-1)+8 |y(k) .
with 2(0) = 1.5 and S = 0.05.

where
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This figure shows that the CRIMNO-based adaptive algorithm can
provide a sharp notch at the frequency of a narrowband interference and
be used to mitigate a narrowband interference. The performance of the
AIM based on the CRIMNO is very similar to that of the AIM based on
the CMA algorithm. The convergence speed is relatively slow and the

excess error is relatively large.

4.8 Summary

We have described a number of nonlinear AIM methods and their
algorithmic properties. For a good performance, with any nonlinear AIM
method, more computational complexity and a priori knowledge of the
SOI and the interference are required. For example, we need the proper
order L for which the nonlinear function may be approximated sufficiently
closely by truncation equation in the nonlinear AIM method based on
Taylor series expansion and we need the proper size of window and the
proper threshold constant in the nonlinear AIM method using a median
filter. Although the AIM methods based on the CMA algorithm and
the CRIMNO algorithm for blind equalization can be used to mitigate
narrowband interferences, these algorithms generally converge slowly and

have relative large excess error.



Chapter 5

Higher-Order
Statistics-Based Methods

5.1 Introduction

In the previous chapters, we have assumed that there is no addi-
tive noises at the primary and reference input measurements because the
additive interferences are usually much more stronger. However, this as-
sumption is not valid in practice. When there exist additive noises at the
given measurements which are uncorrelated from each other, the perfor-
mance of an adaptive interference mitigation (AIM) method developed
under the “no additive noise” assumption deteriorates substantially.

When the interference and the additive noises are assumed to be non—
Gaussian and Gaussian, respectively, by addressing the AIM problem
in a higher-order statistics (HOS) domain we have a certain advantage
based on the fact that HOS-based techniques are blind to any kind of
a Gaussian process (white or colored). Therefore, for problems where
tracking of HOS variations is required or for AIM algorithms whose up-

date equation is not affected by Gaussian noises, we are better off using
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AIM algorithms based on HOS. After briefly reviewing the useful defi-
nitions and properties of cumulants and polyspectra, we describe AIM
algorithms based on HOS (AIM-HOS) which belong to the first cate-
gory of interference mitigation problems where a reference signal for the

interference is available.

5.2 Definitions and Preliminaries on Higher—
Order Statistics

Given a set of n real random variables {z,,z2,...,2,}, their joint
cumulants of order r = k; + ko + - - -+ ky,, are defined as [Papoulis, 1984]

0" In ® (wy,...,wn)
o - 0k

Cum{z¥,... 2k} & (=j) (5.12)

wy=-=wn=0

where ® (w;,ws,...,w,) is their joint characteristic function defined as
P (w1, w2, ... wn) = E{exp[j (w121 + -+ wnzn) ] } (5.1b)

where E{-} denotes the expectation operation. Let us note that the joint

moments of order r of the same set of random variables are given by

Mom{z¥,.. ., okn } & B{ah b2 ghny
wr 070 (w1,wy,...,wy
= (e ae) (5.2
a"“113“"2 - Qwn™ Wi ==t =0,

The general relationship between moments of {z;,z2,...,2Z,} and joint

cumulants of order n is given by

Cum{z1 ,zz - ,xﬁ“}

> (1Pt (p— 1)1 E{ I =Y E{ [] i} ---B{ ] =i} (5.3)

1€s i€s2 'leﬁp

where the summation extends over all partitions (s1,$2,...,8p), P =

1,2,...,n, of the set of integers (1,2,...,7). When the random variables
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have zero mean, then the relation becomes
Cum{ z1,z2, } = Mom(z1,22) = E{z122} (5.4a)
Cum{ z1,z9,23} = Mom{ 21,232,253} = E{z1z223} (5.4b)
Cum{ 21, 9, 23,24 } = Mom{ 1, 22,23,24 } — E{z122}E{z3z4}

- E{zlza}E{zgz4} - E{$134}E{Igm3}. (5.48)

The cumulants have several useful properties as follows [Nikias and
Petropulu, 1993]:

Property 1 If {1, Ag,...,An} are constants and {zy,z2,...,2,} are

random variables, then

Cum{ Alzl, Agzg, . .,/\nmn} = (H A,) ClllTl{ T14L2y.:49Tn }.

i=1

Property 2 Cumulants are symmetric in their arguments, t.e.,
Cum{ 23, Zg; - -y Zn } = Cum{ z¢,, 24y, -, 24, }
where (€y,£,...,%,) is a permutation of (1,2,...,n).

Property 3 If a subset of the random variables {z1,23,..., 25} is inde-

pendent of the rest, then
Cum{ z1,Z2,...,25 } = 0.

Property 4 If the set of random variables {z,z2,...,2,} are indepen-

dent of the random variables {y1,Y2,-.-,Yn}, then

Cum{ z; + y1,--yZn+yn } = Cum{ z1,...,2n } + Cum{ y1,...,yn }.
Note that in general

Mom{ z1 + Y1,---,Tn + Yn } # Mom{ zy,...,2, } + Mom{ y1,.--,¥n }
and that

Mom{ z; + y1,Z3,-.-,Zn } = Mom{ z1,...,2, } + Mom{y1,z2,...,2n }.
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Property 5 If the set of random variables {z;,zs,...,Z,} is jointly
Gaussian, then all the information about their distribution is contained
in the moments of order n < 2. This leads to the fact that all joint cumu-

lants of order n > 2 are identical to zero for Gaussian random vectors.

Suppose that the process {z(k), k = 0,%1,42,...} is real, strictly
stationary, with n-th order cumulants sequence c2(¢y,%s,...,4,—1) de-

fined as
cz(ly,82y ... 8py) = Cum{ z(k),z(k+€1),...,z(k+ 1) }.  (5.5)

Assuming that the cumulant sequence satisfies the condition

[==] (o]
Z e E |'32(31132,---,fn—1) | <o (5'6)
dy=—00 ln1=—00
the n-th order cumulant spectrum C? (wy,ws, . ..,wp—1) is defined as
oo oo
C:(wls---vwn—l) == Z e Z 32(21182’”-!&1—1)'
lh=—o0 ly_1=—00

exp{—7 (w1l1 + wolo + -+ +wp_1€—1)} (5.7)

where |w; | <m,fori=1,2,...,n=1and |wy +we+ -+ wh1 | <.
Note that the cumulant spectra is also called as higher-order spectra or
polyspectra. When n is two, the cumulant spectrum becomes the power
spectrum. When n is three and four, the cumulant spectra are called
bispectrum and trispectrum, respectively.

For those who are not familiar to or are interested more deeply in
HOS, we refer to the tutorial papers and books by [Nikias and Ragnu-
veer, 1987], [Mendel, 1991], [Nikias and Mendel, 1993], and [Nikias and
Petropulu,1993].
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5.3 AIM Algorithms Based on Higher—Order
Statistics

Let us consider the first category of interference mitigation problems
illustrated in Fig. 3.1 and defined as

z(k) = s(k)+I(k)+ np(k) (5.8a)
(B) = wk)+ (k) (5.8b)

where {z(k)} and {z(k)} denote measurements of the primary and ref-
erence sensors, respectively. The signal {s(k)} is the signal of interest
(SOI) and any kind of a signal, i.e., deterministic or random, or a com-
bination of both. The SOI is uncorrelated with the interference and the
reference signal. The additive interference {I(k)} is a non-Gaussian sig-
nal (narrowband or wideband). The reference signal {w(k)} is assumed
to be also non-Gaussian and highly correlated with the interference only.
The measurement noise sources {n,(k)} and {n,(k)} are assumed to be
zero-mean, white or colored Gaussian random processes. They are un-
correlated with each other and uncorrelated with the SOI, interference,
and reference signal. Moreover, we assume that the relationship between

the interference and reference signal can be represented by
1) = 3 gk mw(k — m) (5.9)

where {g(k;m)} is either unknown or time-varying. Let {y(k)} denote
an AIM filter output given by

M-1

y(k) = D hm(k)z(k—m)

M-1
= Y (k) [k = m)+ 0 (k-m)]  (5.10)

m=0
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where M denotes the number of taps and {hy,(k), m=0,1,...,M -1}
is the AIM filter coefficients. These filter coefficients can be represented
by a vector form:

P

H(E) = [ ho(k), ha(K), ., hara (K) | (5.11)

Then, the AIM system output {e(k)}, which is the recovered SOI, is
obtained by
e(k) = z(k) — y(k) = s(k) + ne(k) (5.12)

where {n.(k)} is the AIM system output noise. We can represent the

system output noise as

M-1 M-=1
ne(k) =(I(k) = hm(k)w(k - m))-}-np(k)—z b (K)ny(k—m). (5.13)

m=0 m=0
Although an AIM method can eliminate the interference completely, it is
important to note that an AIM method cannot eliminate the uncorrelated
noises and its system output contains terms related to both the noises
and the recovered SOI.

To develop an AIM-HOS algorithm, we need to additionally assume
that there exists at least one order n that is greater than two (n > 2) such
that the n—th order cumulants of the reference signal are not identically
zero. Under this assumption, let cz;...;(¢y,%2,...,€,—1) denote the n—
th order cross—cumulants between the primary and reference inputs and
Cyzz(€1,€2y...,€n_1) denote the n—th order cross—cumulants between
the AIM-HOS filter output and the reference input, i.e.,

sz...,,(f], fz, caey fn—l) =
Cum{ z(k), z(k+ 1), z(k+ £2),...,2(k+ €n—1) } (5.14a)
Cyz...z(‘el’ 62’ .e ')Eﬂ"'l) =

Cum{ y(k), z(k+ €1),z(k+€3),...,2(k+ €n_1) } (5.14b)
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where Cum{-} is the abbreviation of cumulant operator. Since the n—
th order cumulants of a stationary, zero-mean, Gaussian process are

identically zero, we have

czz---z(flsez 1oy en.—l) = wa---w(flafm . °!£n—1)

= Zg(k;m)cw...w(m+£1,m+£2,...,m+f -1) (5.15a)

Cyzenz (211 £ PR gn—l) —
M-1
> hm(k) cww(m+ b, m+L,...,m+£oy) (5.15b)

m=0

where ¢,...,(+) denotes the n-th cumulants of the reference signal. Al-
though what we can access is the reference input that is the reference sig-
nal {w(k)} corrupted by uncorrelated noise {n.(k)}, the higher-order cu-
mulants cy...y (€1, €2, .. .,£n—1) becomes identical to c,....(£1,42, .. .,€n-1)
because of the blindness of a Gaussian process in a HOS domain. Thus,

we can rewrite (5.15b) as

Cyz---x(fhfz: .o -}fn-l) =
M-1
Z hm(k) cz...,(m+£1,m+fg,...,m+fn_1). (5.16)

m=0

Thus, the cross—cumulant function ¢y;...; (¢, €2, - - ., £,—1) can be obtained
(estimated) from the given reference input measurement and the AIM fil-
ter coefficients. If the characteristics of {h,,(k), m = 0,1,...,M — 1}
are close enough to or the same as those of unknown {g(k;m)}, these
two higher-order cumulants, ¢z;..z(f1,...,€n-1) and cyz...z(¢1,...,€n-1),
become identical to each other. Thus, we define the “criterion of good-
ness” as the sum of the squared errors between these two n~th order

cumulants:
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2
Y T Y S Y, NN, S, |
&4 ln1
=Y T [canmslliy oy ooy ) (5.17)
4 a1
M-1 2
= E hm(k)cz...z(m'i'el,m+£2,...,m+f _1)]
m=0

where (1,2, ...,8n—1) may be defined to include the whole (n — 1)-D
plane R™*~1, When we use a proper and reduced domain I' C R*"!, we
can simplify the criterion and get the following new criterion £ given by

E = © oo 8 |oudlumediod

(£1,sln1) €T
M-1 2
- Z ho(K)Czz(m 4 £y, ..., m+ ¢, _1)] (5.18a)

m=0

¢ = (Cuoss = ConsHy(k) ) (v — CoHA() ) (5.18b)

where £ is a special case of &. In these expressions of £, C;....; is an
L x 1 column vector and C,..., is an L x M matrix. The parameter
L denotes the number of points in the chosen set I'. To increase the
reliability of the filter coefficients we have to choose L greater than the
number of taps M. When the £-th row component of vector Cg;...; is

Czzz(l1y++ oy €n—1), the £&~th row of C....; becomes

[Cz---z(el} . --1‘811—1): cz---z(fl + 11 . -s'en—l + 1): S
el M =1, b+ M—1)]  (5.19)

where £ = 1,2,...,L. The vector Hy(k) denotes an M x 1 AIM-HOS
filter coefficient vector. The gradient-type algorithm is employed to de-

velop an adaptive scheme with the gradient of the criterion given by

_ o€
Vi(k) = TR 2 (CZ--zCZ'"IHh (k) - CI....Coz..z ) . (5:20)
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Thus, the AIM filter update equation takes the form

Hy(k +1) = Ha(k) - s Va(k) (5.:21)
where py, is the step size chosen as

0< pup <

1
tr{CI..C....} (5.22)

in order to satisfy the stability requirement without knowledge of the
spread of the eigenvalues of CT ,C,.., [Chiang and Nikias, 1990b]. In
(5.22), tr{-} is the trace operator of a matrix. Since the gradient V(k)
and the step size p, consist of the n—th order cumulants of the primary
and reference inputs which are not affected by Gaussian uncorrelated
noises, the update equation is independent from the uncorrelated noises.
Figure 5.1 shows the block diagram structure of the AIM-HOS algorithm
for mitigating the interference.

In practice, the n—th order cumulant vector C;...., and matrix C,...,
need to be substituted by their estimates é,,...,(k) and 6,..,(&) at the
k-th iteration. To reduce the required computational complexity, it is de-
sired to recursively calculate the higher-order cumulant functions. There-
fore, in practice, the gradient estimate becomes

~ k
% = g
= 2 (8L (K)Cuz(W)HA(K) — €L (K)Cena(k) ) (5.28)

and the AIM filter update equation becomes
Hi(k+ 1) = Hu(k) — pn (k) Vi (k) (5.24)

where

= # . -
A= {CT..(1)C.a (b)) )
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x(k) Higher-Order C
Cross-Cumulant et -
—= Computation _
Y
Adaptive
: Z Algorithm
Higher-Order C
z(k) » Auto-Cumulant Lol
Computation ( ha(k) }
" m=0,1,..M-1 _—q‘.\‘
y(k) T x(k)
e(k)

Figure 5.1: The configuration of the adaptive interference mitigation
filter based on higher—order statistics (AIM-HOS).

Note that u is a constant less than unity to ensure the algorithm stability.

The advantages of the AIM-HOS algorithms can be summarized as

follows.

e Since the gradient and step size parameter of the AIM-HOS algo-
rithm consist of higher-order cumulants in which the effects from
Gaussian uncorrelated noises vanish, its filter update equation is

independent from the Gaussian uncorrelated noises (in theory).

e Since the AIM-HOS algorithm uses a smoothing gradient, it takes
advantage of the uncorrelation between the SOI and the reference

signal.

e The AIM-HOS algorithm’s performance is insensitive to the refer-

ence signal statistics and the choice of the step size parameter.
Its major disadvantages are as follows:

o Its computational complexity is very heavy. For example, when the

number of taps is 8 and the number of lags for AIM~HOS algorithm
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is 14, the number of required multiplication per iteration of the AIM
method based on the normalized LMS algorithm is 26; and, those
of AIM methods based on second-order and fourth-order statistics
become 1,278 and 3,420, respectively.

e Estimate of higher-order cumulants, especially when n > 3, can be

statistically “unstable” because of large variances.

5.4 AIM Algorithms Based on Second—Order
Statistics

We briefly discuss the performance properties of the following AIM
methods based on second-order statistics: the AIM algorithm based on
the LMS algorithm, the AIM algorithm based on the normalized LMS
algorithm, and the AIM-HOS algorithm with order n = 2.

5.4.1 AIM Algorithm Based on the LMS Algorithm

For a good narrow-bandwidth notch, as described in Section 3.2, the
relationship among the step size (1), the number of taps (M), and the
amplitude of reference signal (A,) should satisfy [Glover, 1977]

pM A

7 %l (5.26)

Since we can control only M and p, the performance of the AIM-LMS
algorithm is highly dependent on A,, which is unknown or time-varying.
For a relatively small amplitude A,,, the AIM-LMS algorithm usually
converges very slowly. On the other hand, for a relatively large amplitude,
the AIM-LMS algorithm converges faster, but produces large excess er-
rors after convergence. Therefore, even though there are no uncorrelated
noises at the primary and reference inputs, the performance of the AIM-

LMS algorithm is problem-dependent, i.e., its performance is very sensi-
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tive to a given problem. In addition, the performance of the AIM-LMS
algorithm can more substantially degrade when the interference is a sum
of multiple stationary or non-stationary signals [Shin and Nikias, 1993].
This is due to the fact that there is no theoretical analysis that provides

a choice for the optimal number of filter taps and the step size.

Ezample 5.1

Let us assume that the SOI is the BPSK signal having two states, so
and sy, satisfying Pr{sq} = Pr{s;} = 0.5 and
s{l) = cos(27(0.43) k),  for s
| —cos(27(0.43) k), for s
where the duration of one state is 8 samples. The reference signal is

assumed to be a real-valued sine wave
wi(k) = A; sin(2r ;T k+ ¢;), i=1,2,3

where ¢; are random phases uniformly distributed over [—m,n] and are

independent from each other. Each interference frequency is fixed at
AT =0.1, foT =0.25 fiT=0.3.

Then the interferences {I;(k)} are generated through moving average
(MA) systems excited by the corresponding reference signal {w;(k)}. The
three MA coefficients equal MA; = [1, 0.1, —0.3, 0.5, 0.25], MA, = [1,
0.5, —0.1, —0.75, 0.41, 0.21, 0.12, —0.05, 0.01, 0.2, —0.15], and MA3 =
(1, -0.2, 0.2, 0.7, —0.65, 0.3, —0.25], respectively.

We assume that there are no additive uncorrelated noise sources and
that the interference is {I2(k)} with A = 1. The numbers of taps of
the AIM-LMS algorithm is 16. The error curves between the SOI and
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the system output obtained by the AIM-LMS algorithm is illustrated in
Fig. 5.2, when g = 0.0031, 0.0047, 0.0063, and 0.0094. From this figure,
it can be observed that as the value of the step size p increases, both
the convergence speed and the excess error of the AIM-LMS algorithm
increase and that small difference of the step size causes big differences
on the performance of the AIM-LMS algorithm.

Now, when A, takes different values, Fig. 5.3 illustrates the error
curves between the SOI and the system outputs obtained by the AIM-
LMS algorithm (M = 16 and g = 0.0063). From this figure, we can
observe that when the number of taps and the step size parameters are
fixed, the AIM-LMS algorithm is quite sensitive to the reference sig-
nal statistics. A small value of A, causes slow convergence, whereas

a large value results in fast convergence at the expense of large excess

20 ) 200 400 600
iteration (k) iteration (k)

() )

Figure 5.2: The error curves {e(k) — s(k)} obtained by the AIM-LMS
algorithm when {I} with A, = 1 and the step size p is (a) 0.0031, (b)
0.0047, (c) 0.0063, and (d) 0.0094.
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) 200 400 600 "o 200 4
iteration (k) iteration (k)
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Figure 5.3: The error curves {e(k) — s(k)} obtained by the AIM-LMS
algorithm with g = 0.0063, when the reference signal amplitude is (a)
0.5, (b) 0.75, (c) 1, and (d) 1.414.

errors. When the interference is multiple or its characteristics are time-
varying, the performance of the AIM-LMS algorithm is demonstrated
in [Shin and Nikias, 1993],

5.4.2 AIM Algorithm Based on the Normalized LMS Al-
gorithm

To avoid the gradient noise amplification due to the tap—input vector
in the AIM-LMS algorithm, we can employ the AIM algorithm using the
normalized LMS algorithm (AIM-NLMS). The filter update equation is
given by

I
H(k+1) = H(k) + —— 75 e(k) z(k 5.27
(b+1) =H() + sromme®at)  (620)
where @ > 0, 0 < 2 < 2, and || z(k) || is the Euclidean norm of the tap-

input vector. In (5.27), H(k) denotes the AIM-NLMS filter coefficient

vector and z(k) is the tap-input vector. However, if there exist non-
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negligible uncorrelated noises at the primary and reference inputs, then
the AIM-NLMS algorithm coefficients H(k) are affected directly by both
the noise sources at the primary and reference inputs, because z(k) con-
tains terms related to the uncorrelated noise at the reference input and
{e(k)} contains terms related to the uncorrelated noises at the primary
ad reference inputs. Thus, the AIM-NLMS algorithm, whose filter up-
date equation is corrupted by the uncorrelated noises, can be expected
not to effectively mitigate the interference. Through simulations, it is
observed that when the amplitude of the reference is fixed at a constant,
the performance of the AIM-NLMS algorithm is sensitive to the step
size p [Shin and Nikias, 1994]. The difference between the AIM methods
based on the LMS algorithm and the NLMS algorithm is their update
equation. We can get the AIM-NLMS algorithm substituting (5.27) for
the update equation in Table 3.1. When the number of filter taps is M,
the required number of multiplications per iteration for the AIM-NLMS
algorithm is given by

3M+2. (5.28)

Example 5.2

Let us assume the same problem as in Example 5.1. We assume that
there are no additive uncorrelated noise sources and that the interfer-
ence is {I(k)} with A, = 1. The numbers of taps of the AIM-NLMS
algorithm is 16. The error curves between the SOI and the system out-
put obtained by the AIM-NLMS algorithm is shown in Fig. 5.4, when
p = 0.995, 0.75, 0.4, and 0.1. From this figure we notice that as the
step size parameter p decreases, both the convergence speed and the ex-

cess error of the AIM-NLMS algorithm decrease; and their differences
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Figure 5.4: The error curves {e(k) — s(k)} obtained by the AIM-NLMS
algorithm with M = 16, when {I3(k)} with A; = 1 and the step size u
is (a) 0.995, (b) 0.75, (c) 0.4, and (d) 0.1.

are quite large. Also, we can observe that the performance of the AIM-
NLMS algorithm depends on the choice of the constant « in its filter
update equation. If the value of || z(k) || does never become close to
zero, then « can be a small value. Otherwise, the value of a should be
large enough to avoid division by very small number. So, it is important
to note that the value of @ must be carefully chosen to get good results
through the AIM-NLMS algorithm because both the step size param-
eter and the value of o can affect the performace of the AIM-NLMS

algorithm.

5.4.3 AIM-SOS Algorithm

The AIM-SOS algorithm is exactly the AIM-HOS algorithm with
n = 2. Since the AIM-SOS algorithm is a member of the class of AIM-
HOS algorithms, we can expect that the performance of the AIM-SOS
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algorithm is very similar to that of the AIM-HOS algorithms with n > 2,
when the uncorrelated noise power is negligible or very small. However,
the AIM-SOS algorithm is generally not independent from the uncorre-
lated noises. To demonstrate this fact, let us consider the gradient for
the AIM-SOS algorithm, V,(k), defined as

Va(k) =2 ( €L C..H,(k) - CL,C.. ) (5.29)

where H,(k) denotes an M x 1 AIM-SOS filter coefficient vector. In
(5.29), C.. and C., denote the matrices consisting of cross—correlation
functions between the primary and reference inputs and autocorrelation
functions of the reference input, respectively. Since the measurement
noises in the primary and reference inputs are uncorrelated, the cross—

correlation function becomes
czz(0) = E{z(k) z(k + €)} = E{I(k) w(k + £)} (5.30)

and is not influenced by the uncorrelated noises. On the other hand,
the autocorrelation function of the reference input becomes the sum of
the two autocorrelation functions of the reference signal {w(k)} and the

uncorrelated noise {n,(k)}:

c::(€) = E{z(k)z(k+€)}
= E{wk)w(k+0}+E{n.(k)n.(k+£}.  (5.31)

Therefore, it is apparent that the gradient of the AIM-SOS algorithm
and consequently its filter update equation are affected by the uncorre-
lated noises and the performance of the AIM-SOS algorithm depends on
autocorrelation functions of the uncorrelated noise at the reference input.

The AIM-SOS algorithm is summarized in Table 5.1. When the
number of filter taps is M and the number of lags used in the AIM-SOS
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Table 5.1: Summary of the Adaptive Interference Mitigation Algorithm
Based on Second-Order Statistics (AIM-SOS) with M Taps

Parameters M number of taps number of equations
L number of equations
7 adaptatoin parameter
A forgetting factor

Initial H,(0)=0
Conditions for{=0,1,...,N—1
8::(0;£) = 0; E:2(0;€) =0

Data at k z(k) primary input
z(k) = [2(k),z(k = 1),...,2(k =M +1)]7  reference vector

Computation fork=0,1,2,3,...

for£=0,1,...,L—1

Ezz(k; ) = Xézz(k — 1;€) + z(k)z(k + ¢)

form=0,1,.... M -1

Czz(ki £+ m) = Aéze(k— 1;8) + 2(k)z(k+ £ 4 m)

If A =1, Ez(k; &) = % G22(k; £); E2:s(K;0) = § E22(k; )
Construct vector Cz.(k) and matrix C,.(k)
e(k) = z(k) — H{ (k) z(k) . .
Vo(k) =2 [ €L (k) Cas(k) Ho(k) — CL(K) Caa(R) ]
ps(k) =p [ (a+tr {CL(K)C::(k)})

algorithm is L, the required number of multiplications per iteration for
the AIM-SOS algorithm is given by

L (M?+3M +2) + M? 4 2M + 2. (5.32)
The advantages of the AIM-SOS algorithm are as follows:

e The AIM-SOS algorithm has the lowest computational complexity
among the class of AIM-HOS algorithms.
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e Its performance is similar to that of the AIM-HOS algorithms with
n > 2, when the power of the uncorrelated noise at the reference

sensor is negligible or very small.

Along with the disadvantages of the AIM-HOS algorithms outlined ear-
lier in this chapter, an additional drawback of the AIM-SOS algorithm

is :

e Its filter update equations are directly affected by the autocorrela-

tion function of the noise at the reference input.

Ezample 5.8

Consider the same SOI as in the previous examples. And, let oﬁp and
o2 denote variances of the Gaussian uncorrelated noises at the primary
and reference inputs, respectively. When the interference is {I3(k)} with
Ay = 0.75 and a,?,p = o2 = 0.001, the error curves between the SOI
and the system output obtained by the AIM-SOS algorithm (M = 16,
L = 30, and p = 0.99) is illustrated in Fig. 5.5 (a). Now, consider
that the interference is {I;(k)} with A; = 0.4 and that o} = 0.001 and
o2 =0.01. Then, the error curves between the SOI and the AIM-SOS
system output (M = 8, L = 14, and g = 0.99) are shown in Fig. 5.5 (b).
Note that we have used {é:.(¢), £ = 0,1,...,L — 1} for the AIM-SOS
algorithm.

When the power of additive noises is very small or negligible, the
AIM-SOS algorithm converges fast. In fact, it has small excess error
after convergence as illustrated in Fig 5.5 (a). On the other hand, when
the noise power of the reference input is relatively large, the AIM-SOS
algorithm performs very poorly as shown in Fig. 5.5 (b).
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Figure 5.5: The error curves {e(k) — s(k)} obtained by the AIM-SOS
algorithm, (a) when M = 16, L = 30, p = 0.99, {I2(k)} with A3 = 0.75,
and 03 =03 =0.001;and (b) when M =8, L = 14, u = 0.99, {I1(k)}
with A; = 0.4, and orf,p = 0.001, and aﬁr = 0.01.

5.5 AIM Algorithm Based on Third—Order
Statistics

When the reference signal has non-zero third-order cumulants, we
can use the AIM algorithms based on third-order statistics (AIM-TOS)

to mitigate the interference.

If the domain T = {(£1,£2)} C R? is chosen for a simplified criterion

of goodness, then we can represent the criterion as

M-1

é(k) = 2 Z [Ezzz(k;£11£2) - z hm(k) Ezz:(k;m'l'fl;m‘l' 22) ]2

& 1 m=0

= (Cena(k) - Cz,z(k)Ht(k))T(C,u(k) — G (F)H(F))  (5.33)

where C.,, (k) is an L x 1 column vector and Cas (k) is an L x M matrix
at the k—th iteration. The parameter L denotes the number of equations:
i.e., the number of points in the chosen set I'. The parameter L must be
larger than M. And, H;(k) denotes an M x 1 AIM-TOS filter coefficient
vector. The structure of the two matrices is described in the previous

section.
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At time k, we can obtain the third-order cumulant estimate vector

C..:(k) and matrix C...(k) by calculating their elements as follows

: N .
szz(k; 4, f2) = E 2 z(‘)“’,"(1 * 31)2(’! + 82)
i =1 (5.34)
Cerz (ki1 02) = > 2(i)z(i+ &) 2(i + £2).
i=1
In the non-stationary interference cases, we introduce a forgetting factor,
0 < A < 1 and obtain C., (k) and Cusi (k) by calculating the correspond-

ing moments as follows

k
SO 2 (d)2(i + £)2(i + £2)
z Ne—=i z(:)z(i + 61)2(1 -+ 82) .

i=1

é::zz(k; 81132)

ézzz (k; gl 3 ‘82)

Dandawate and Giannakis [1989] have developed a similar scheme
as an AIM-HOS algorithm using the third—order cumulants and have
shown that their filter is a better estimate of the relationship between
the interference and reference signals in the case where a noise source is

present only at the reference input.

5.6 AIM Algorithm Based on Fourth—Order
Statistics

Assuming that the interference is a sinusoidal signal whose phase is
a random variable uniformly distributed over [—=, 7], we describe an
adaptive algorithm to eliminate the interference. Since the third—order
cumulants of the interference are identically zero [Swami and Mendel,
1991; Shin and Mendel, 1992], the AIM algorithm has to be based on
fourth-order statistics (AIM-FOS).
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For a simplified criterion of goodness for the AIM-FOS algorithm, let
us choose the domain I'y = {(£, £2,%3)} C R? that satisfies the following

conditions

0581,32,2358_1: (536)

6y > 48, and & > {3
where £ is a positive integer greater than unity. Letting £; — ¢, = 7 and
£, — €3 = 7, we can represent the simplified criterion of goodness, f(k),
as

-1 &4 4
) = ¥ 2 [Comnalhsty, b — i1 - )
£=0 i=0 ;=0
M-1 2
e z hm(k) ézzzz(k;m+ bym+4y —i,m+ 4 - J]] (537)

m=0

= ( érzzz (k) = czzzz (k)H_f (k) )T ( C::zzz (k) T czzzz (k)Hf(k) )

where C,,,zz(k) is an L x 1 column vector and C,.., (k) isan L x M
matrix at the k-th iteration. Note that L = ﬂ“‘—l)ém. We choose
L so that L > M. The structure of the two matrices is described in
section 5.3. And, Hy(k) denotes an M x 1 AIM-FOS filter coefficient
vector. Note that when we choose a different domain I'; from I'y, the
performance of the AIM-FOS algorithm with I'; may be different from
that of the AIM-FOS algorithm with I';. The choice of a proper domain
for the AIM-HOS algorithm is an open problem.

Let us explain how to calculate the fourth—order cumulant functions
at time k. For the fourth-order cumulant estimate vector C...(k) and

matrix C.... (k) by calculating their elements as follows

éz:zzz (k: El: 221 f3) == Fzzzz (ks el: 821 £3) = f:zz(k; 01 gl)ﬁzz (k, 827 63)
— 722(k; 0, €2) 722 (K; &1, €3) — Fzz(K;0,€3) 72 (K; 61, €2)  (5.38a)



5.6. AIM ALGORITHM BASED ON FOS 157

Ezzzz (k; ‘811 82: 83) — Fzzzz (k; El: 821 23) = 1":‘.z'z: (k; 01 el)ﬁzz (k; 821 ‘83)
ad ﬁzz (k, 0, fg) f‘u (k; f] s 33) — f‘,z (k; 0, £3) f'" (k; 31, fz) (5.38b)

where

1 k

Fazas (k3 €1, 00, 60) = D 2()2(i+ 1) 2(i + £2)2(i + )
1=1

. 1 &
Tzzzz (k; ‘811321 ‘83) = E E z(')z(" o ‘el)z(‘ o+ eg)z(i + 83)

v =1 (5.39)
Fre(kiln b)) = 7 3 a(i+b)z(i+6)

: “;l
Fzz(k; ’El;f?) = L Z(‘l + 81)2(" + 32)

=1
In the non—stationary mterference cases, we introduce a forgetting factor,

0 < A < 1, and calculate the corresponding moments as follows

k
Frzez(k; 1,89, 03) = Z M=t g (8)2(i 4 €1) 2 (i + £2) 2(i + €3)

=1
k
Frazz (kifls‘eh £3) = Z ’\k-i z(‘)z(f- + fl)z(i + 32)2(1: + 33)
il (5.40)
Frz(k; €1, £2) = E M=t g (i + £))2(i + £3)
722 (K3 €1, 2) = Z M=t 2(3 4 6))2(i + £3).
=1

The AIM-FOS algorithm is summarized in Table 5.2. Note that we
introduce the constant parameter « in the step size equation in Table 5.2
to prevent the step size from being infinity (or very large) when the
reference signal is very small: i.e., tr {Cuu (k)é,z,, (k)} becomes close
to zero. The computational complexity of an algorithm is an important
aspect in the adaptation process. When all the signals are assumed to

be real, the number of multiplications per iteration is given by

L(M?+420M +19) + M? +2M + 2. (5.41)
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Table 5.2: Summary of the Adaptive Interference Mitigation Algorithm
Based on Fourth-Order Statistics (AIM-FOS) with M Taps

Parameters

Initial
Conditions

Data at k

Computation

M number of taps number of equations

L parameter to decide the number of equations
A forgetting factor

G adaptatoin parameter

H;(0)=0

for£=0,1,...,L -1,

fori,7=0,1,...,¢,
E:zz:(o;z:’t_' i.f—]} =0
E:zxs(oizjz_ ‘lt"' J.) =0

z(k) primary input
z(k) = [2(k),z(k —1),...,2(k = M 4+1)]T  reference vector

for k=0,1,2,3,...

for £=0,1,...,L—1and i,7=0,1,...,¢
F:zzz(k; tl £— ‘1‘ - J) =2A F:s:z(k - 1; )+
z(k)z(k+ z(k+ £ —i)z(k+ € - j)
Frz(ki€y,62) =Afzz(k—1; )+ z(k+ &)z(k+ £&2)
Fez(kyly,£2) = Afze(k —1;°) + z(k + &) z(k + &)
form=0,1,...,M =1
Frrzz(ki+mb—i4+ml—j+m) =
Fezzz(k — 1;2) + z(k)z(k + £+ m)-
zZ(k+£€—i+4+m)z(k+£—35+m)
Fez(k; 1, L= A fea(k — 15-) + 2(k + &) z(k + £2)
If A = 1, then #(k;-) = % 7(k;-)
Calculate :zz:(-) and €z::+(-) with (5.38a) and (5.38b)
Construct vector Czz::(k) and matrix C;z::(k)
e(k) = z(k) — H7 (k) z(k)
V(k) =2 [€T,ra(k) Curex(k) H(E) — €T, (k) Crrex ()]
wk)=un/ (a +tr {cfzn(’S)C““U‘)})
H(k +1) = Hy (k) — u(k) O (k)
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Note that the given computational complexity is obtained by recursively
calculating higher-order cumulants as shown in Table 5.2. It is apparent
that the computational burden per iteration required by the AIM-FOS
algorithm is very heavy.

Ezample 5.4

To compare the performance of the AIM-FOS algorithm with that
of the AIM-SOS algorithm, let us consider the same problems as in
Example 5.3. When the stationary narrowband interference is {Iz(k)}
with A, = 0.75 and O’.Ep = o2 = 0.001, the error curve between the
SOI and the system output obtained by the AIM-FOS algorithms (N =
16, L = 30, p = 0.99) is illustrated in Fig. 5.6 (a). As expected, the
performance of the AIM-FOS algorithm is very similar to that of the
AIM-SOS algorithm shown in Fig. 5.5 (a) when the noise powers are
quite small.

Next, consider that the interference is {I;(k)} with A; = 0.4. When
a‘ﬁp = 0.001 and ¢2_ = 0.01, the error curve between the SOI and the
system output obtained by the AIM-FOS algorithms (N = 8, L = 14
and g = 0.99) is illustrated in Fig. 5.6 (b). When the noise power of the
reference input is large, the AIM—SOS algorithm shown in Fig. 5.5 (b)
performs very poorly while the AIM-FOS algorithm, although converges
slowly, it performs better. The reason why the AIM-FOS algorithm
converges slowly is due to the fact that a large number of data is re-
quired for fourth—order cumulants to suppress additive Gaussian noises.
This example demonstrates that the AIM-FOS algorithm outperforms
the AIM-SOS algorithm in the environments where the additive noise at

the receivers are Gaussian and have large variance.
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Figure 5.6: The error curves {e(k) — s(k)} obtained by the AIM-FOS
algorithm, (a) when M = 16, p, = 0.99, {I2(k)} with A; = 0.75, and
o2 = o2 = 0.001; and (b) when M = 8, pu, = 0.99, {I1(k)} with
A; =04, and 02 = 0.001, and o7 = 0.01.

Ezample 5.5

This example presents the performance of the AIM-FOS algorithm
with different values of the step size parameter p. Consider the same SOI
and interference as in the Example 5.2: i.e., the stationary interference is
{I(k)} with A2 =1. When M = 16 and £ = 4, the error curves between
the SOI and the system outputs obtained by the AIM-FOS algorithm are
presented in Fig. 5.7 with four different step size parameters: p = 0.995,
0.75, 0.4, and 0.1. From this figure, it can be observed that there are no
noticeable performance differences of the AIM-FOS algorithm, in terms
of convergence speed and excess error, among the results with different
step size parameter p.

Through the Examples 5.1, 5.2, and 5.3, we can conclude that the
performance of the AIM-FOS algorithm is less sensitive to the choice of
step size parameter; less sensitive to the reference signal statistics; and
less sensitive to the Gaussian uncorrelated noises than AIM algorithms
based on second-order statistics, in terms of convergence speed and ex-
cess error. Furthermore, since we don’t know the relationship between

the reference and the interference, it is difficult to decide the number of
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Figure 5.7: The error curves {e(k) — s(k)} obtained by the AIM-FOS
algorithm (M = 16 and £ = 4), when {I3(k)} with Ay =1 and the step
size p is (a) 0.995, (b) 0.75, (c) 0.4, and (d) 0.1.

an AIM filter taps to mitigate multiple interferences. Thus, the number
of an AIM filter taps can be sometimes overestimated and sometimes
underestimated. It has been observed that the AIM-FOS algorithm out-
performs the AIM-NLMS algorithm when we underestimate the number
of the AIM filter taps [Shin and Nikias, 1994].

Ezample 5.6

We assume that there exist stationary, additive, zero-mean Gaus-
sian uncorrelated noise sources at the primary and reference inputs.
When the stationary single interference is {I3(k)} with A3 = 2, the
error curves between the SOI and the system outputs obtained by the
AIM-NLMS algorithm (N = 16 and g = 0.075) and the AIM-FOS al-
gorithm (N = 16, L = 4, and py = 0.99) are shown in Fig. 5.8 with
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iteration (k)
(a)

Figure 5.8: For interference {Iz(k)} with A; = 2, the error curves be-
tween the SOI and the system output obtained by the AIM-FOS algo-
rithm (M = 16, £ = 4, and p = 0.99) when the variance of the Gaussian
uncorrelated noises is (a) 0.0025 and (b) 0.0075.

oh, = o = 0.0025 and 0.0075. Although the additive uncorrelated
noises deteriorate both performance of the AIM—-NLMS and AIM-FOS
algorithms, as expected, it has been observed that AIM-FOS algorithm
performs better than the AIM-NLMS algorithm when the noise variance
is small [Shin and Nikias, 1994].

Now, let us assume that the variances of the uncorrelated noises are
both 0.005. The multiple interference is {I;(k) + I2(k)} with A; = 0.75
and Ay = 2 or {I1(k) + Lx(k) + I3(k)} with A; = 1, A, = 0.5, and
Az = 0.75. When the interference is the sum of the two interferences,
the error curves between the SOI and the system outputs obtained by the
AIM-NLMS algorithm (N = 16 and g = 0.75) and AIM-FOS algorithm
(N =16, L = 5, and py = 0.99) are shown in Fig. 5.9 (a). When
the interference is the sum of the three interferences, the error curves
between the SOI and the system output obtained by AIM-FOS algorithm
(N = 24, £ = 5, and p = 0.99) are shown in Fig. 5.9 (b). Again,
although the additive uncorrelated noises deteriorate both performance
of the AIM-NLMS and AIM-FOS algorithms, the AIM-FOS algorithm
performs better than the AIM-NLMS algorithm for multiple interference

cases.
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Figure 5.9: When the variance of the Gaussian uncorrelated noises is
0.005, (a) the error curve between the SOI and the system output ob-
tained by the AIM-FOS algorithm (M = 16, £ = 5, and gz = 0.99) for
the interference {I; (k) + I2(k)}; and (b) the error curve between the SOI
and the system output obtained by the AIM-FOS algorithm (M = 24,
£=75, and p = 0.99) for the interference {I,(k) + I2(k) + Iz(k)}.

Example 5.7

Now, let us assume that there are no additive uncorrelated Gaussian
noises at the primary and reference inputs and that the interference is
the sum of three interferences, {I; (k) + I2(k) + I3(k)} that are generated
by a stationary reference signal {w;(k)}, a reference signal with time-
varying amplitude {w2(k)}, and a reference signal with time-varying
frequency {ws(k)}, respectively. The frequency of {w;(k)} are 0.25 and
its amplitude is 0.75; the frequency of {wy(k)} is 0.35 and its amplitude
is time-varying; the amplitude of {ws(k)} is unity and its frequency is
time-varying. The time-varying amplitude of {wz(k)} and the time-
varying frequency of {ws(k)} are shown in Fig. 5.10. The error curves
between the SOI and the system outputs obtained by the AIM-NLMS
algorithm (N = 24 and p, = 0.075) and the AIM-FOS algorithm (N =
24, L =5, and py = 0.99) are also shown in this figure. This simulation
result demonstrates that we can use the AIM-FOS algorithm to eliminate
multiple non-stationary interference using the reference signal that is the

sum of the corresponding reference signals.
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Figure 5.10: When there are no uncorrelated noise sources and the in-
terference is the sum of one stationary (A4; = 0.75 and fyT = 0.25)
and two non-stationary interferences with (a) time-varying amplitude
Az and foT = 0.35 and (b) time-varying frequency f3T' and A; = 1.0;
the error curve between the SOI and the system output obtained by (c)
the AIM-FOS algorithm (M = 24, £=5, and p = 0.99).

Note that the performance of the AIM-NLMS algorithm is presented
in [Shin and Nikias, 1994] when the interference is stationary or non-

stationary with uncorrelated noises at the primary and reference inputs.

5.7 Summary

We have described the AIM-HOS formulations using a gradient-type
algorithm and higher—order statistics, when the reference signal is avail-
able. When the reference signals are non-Gaussian with non-zero third-
order and fourth-order cumulants, we can use the AIM-TOS and the
AIM-FOS algorithms, respectively, to mitigate the presence of interfer-
ence. Since their filter coeflicients are updated in higher-order statistics

domains, the update equations are independent from Gaussian noises
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at the primary and reference inputs. Consequently, the AIM-HOS al-
gorithms can more effectively mitigate the interference than other AIM
algorithms whose filter update equation is affected by the uncorrelated
noises. The AIM-HOS algorithms can be utilized to mitigate single and

multiple interferences which are stationary or non-stationary.
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Chapter 6

Nonlinear Methods For
Noisy Channels

6.1 Introduction

In this chapter, we consider adaptive interference mitigation (AIM)
schemes that produce the prediction of a narrowband interference cor-
rupting a broadband signal of interest (SOI).

Due to their superior performance against jamming and interception,
wideband communication formats have been of interest in military and
several commercial applications [Poor, 1992]. With their many other ad-
vantageous properties, wideband communication formats offer an effec-
tive way of combating narrowband interference. Since the transmission
bandwidths of spread-spectrum signals are much greater than their mes-
sage bandwidths, the system has an inherent capability to reject inter-
ference signal whose bandwidths are small compared to that of the wide-
band SOI. It has been shown that the narrowband interference rejection
capability of spread—spectrum systems can be improved substantially by

suitably processing the received signal [Hsu and Giordano, 1978; Li and
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Milstein, 1982; Iltis and Milstein, 1984; Milstein, 1988]. Narrowband
interference suppression can be based on the following idea. Since the
spread spectrum SOI has a nearly flat spectrum, it cannot be predicted
accurately from its past or future values. On the other hand, the nar-
rowband interference signal can be predicted accurately because of being
narrowband. Hence, a prediction of the received signal based on either
previous or future values of the received signal will be an estimate of the
interference. By subtracting a prediction of the received signal and using
the resulting prediction error as the input to the matched filter, the effect

of the interfering signal can be mitigated.

Although it is well known that linear detection and estimation tech-
niques are optimal for a Gaussian process, it has been observed that
these linear techniques are not optimal for a non—Gaussian process and
the difference in performance between linear and nonlinear processing
for a non—Gaussian process is dramatic due to the effects of the heavy
tails of its distribution. Thus, the utilization of nonlinear techniques is
desired and required for performance improvement. Assuming that the
broadband SOI corrupted by a narrowband interference is transmitting
over an additive noise channel, we describe nonlinear AIM techniques

whose performance are substantially better than linear AIM methods.

6.2 Preliminaries

This section presents models for the spread-spectrum signal of inter-
est (SOI) and narrowband interferences; and, the generalized Gaussian
distributions and the non—-Gaussian filtering algorithm with known pa-

rameters developed by Masreliez [1975].
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6.2.1 Direct—-Sequence Spread—Spectrum (DSSS) System
Model

The total direct—sequence spread-spectrum (DSSS) transmitted SOI,
{s(t)}, can be expressed as

s(t) = brm(t — kTp) (6.1)
k

where {bx} is the binary information sequence, {m(t)} is the modulation
waveform, and T} is the bit duration. For a DSSS system the low—pass
equivalent modulation waveform is written as

K-1

m(t) =Y e q(t — k) (6.2)

k=0
where {c;} is the binary pseudonoise (PN) chip sequence used to spread
the transmitted signal, {q(t)} is a rectangular pulse of duration 7, and
K is the number of chips per message bit. When each bit has the same
modulation sequence: i.e., T, = K7, then the received signal, {z(t)}, is
of the form
z(t) = as(t — 7) +n(t) + I(t) (6.3)

where « is an attenuation factor and 7 is a delay offset. The processes
{n(¢)} and {I(t)} denote a channel noise process and a narrowband in-
terference, respectively. It can be assumed that & = 1 and 7 = 0, because
these parameters do not change the analysis with respect to a channel.
After the received waveform has been processed by a matched filter and

sampled at the chip rate 1/7., the received signal becomes
z(k) = s(k) + n(k) + I(k). (6.4)

If the PN sequence is assumed to be truly random, due to the rectan-
gular shape of {q(t)}, the sequence {s(k)} can be considered as an in-

dependent, identically distributed (i.i.d.) binary random sequence with
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Pr{s(k) = -1} = Pr{s(k) = 1} = 0.5. Also, the sequences {s(k)},
{n(k)}, and {I(k)} are assumed to be mutually independent. This trans-

mission system model is illustrated in Fig. 6.1.

Transmitter Channel Receiver
I I
| | (k+1)x,

b, s(t) : : x(1) I _74___1{”
: ; & (k+1)t,
I I
I I

cq(t-kt) | I1) n(t) |

I I

Figure 6.1: Baseband model for the received signal.

6.2.2 Autoregressive Interference Model

One way to (approximately) describe a narrowband interference is
by using a finite sum of sinusoids. However, a more physically accurate
broad class of narrowband interferences consists of those which can be

modeled as an N-th order autoregressive (AR) process of the form

N
1))=Y éa I(k—n) +g(k) (6.5)
n=1

where {g(k)} is a zero-mean, white Gaussian process and {¢,, n =
1,2,...,N} are the AR parameters. Then, the received signal {z(k)}

can be modeled using the following state-space representation:
u(k) = du(k-1)+w(k)

z(k) = Hu(k) + v(k) (6.62)
(k) = n(k) + s(k)

Il
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where
u(k)= [I(k), I(k=1), ..., I(k-=N+1)]T
w(k)= [g(k), 0, 0, ..., 0]T

¢1 2 - dN-1 ON
0 e

1 0 0 (6.6b)
&= o 1 --- 0 0

o 0o --- 1 0
H= [1, 0,0, ..., 0].

The sequence {n(k)} is the noise process derived by using a channel
model and {s(k)} is the DSSS SOI. The processes {g(k)} and {v(k)} are

zero—mean, independent sequences which are mutually independent.

6.2.3 Generalized Gaussian Distributions

The generalized Gaussian distributions [Gray, 1979] are a family of
symmetrical probability density functions defined by

« - Lx.l)"
4Gz, e, f) = e (% 6.7
where
—o00o <z <00
r(-) is the gamma function; (6.7b)
a>0 is the shape parameter; )
B8>0 is the scale parameter.

It is also called Subbotin’s distribution in the statistical literature. Miller
and Thomas [1972] used generalized Gaussian distributions in detection
theory as a model for non—Gaussian noise. In the sequel, ¢G(z, o, §)

denotes the generalized Gaussian distribution with parameters o and .
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The generalized Gaussian family covers a wide range of distributions.
When a = 1, it becomes the double exponential distribution (Laplace
distribution)

9G(z,B,1) = %e"% — 00 < z < 00. (6.8)

When a = 2, it becomes the Gaussian distribution

9G(z,B,2) = 1 e_(%l)z —00<z<00 (6.9)

[N

where its variance 0% becomes 2/2. As « tends toward infinity, it-ap-

proaches the uniform distribution

1

9G(z,B,00) = 25

—B<z<p. (6.10)

As o tends toward zero, the chances of finding an event in a length of
finite samples goes to zero. That can loosely describe the certain event.
In this chapter, we assume that the distribution of the channel noise

process {n(k)} is a member of the generalized Gaussian distributions.

6.2.4 Masreliez Filter with Known Parameters

An approximate conditional mean (ACM) filter, which can be con-
sidered as an extension of the Kalman—-Bucy filter, has been developed
by Masreliez [1975] for estimating the state of a linear system described
by (6.6a) with non-Gaussian either state noise {w(k)} or measurement
noise {v(k)}. It is assumed that these noises are zero-mean independent
sequences and mutually independent and that the initial state u(0) is in-
dependent of the future plant and measurement disturbances. For more
general cases, the dimensions of the plant state vector and the measure-
ment vector are assumed to be N x 1 and R X 1, respectively. When the

minimum variance estimator is considered as the optimal estimator, the
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optimal estimator is given by
a(k) = E{u(k) | X(k)} (6.11)

where X(k) = [x(1), x(2), ..., x(k) ]¥. Then, Masreliez [1975] has
introduced the following two theorems constructing nonlinear filters for
non—Gaussian processes.

Suppose that the observation prediction density f(x(k) | X(k—1))is
twice differentiable. In the case where the observation prediction density

is not Gaussian, we have the following theorem.

Theorem 6.1 Assume that f(u(k) | X(k — 1)) is a Gaussian density
with mean (k) and covariance matriz M (k) and that E{w(k)w?(j)} =
Q(k)d(k — 7). Then the conditional ezpectation (k) and its conditional
covariance P (k) = E{(a(k) — u(k))(a(k) — u(k))T | X(k)} satisfy
a(k) = u(k) +M(k)H" gi(x(k))
P(k) = M(k) - M(k)HT Gi(x(k)) HM(k) (6.12a)
M(k+1) = &P (k)87 + Q(k)

where gi(x(k) ) is a column vector with components
BF(x(k)IX(k=1))
a(x i
{ee(x(B))} = - 7@ Xk = 1) (6.12b)
and Gi(x(k)) is a matriz with elements
O{gr(x(k))}:
o(x(k));

In the situation of Gaussian observation disturbances and non-Gaussian

{Gi(x(k))}i; = (6.12c)

plant noises, we have the following theorem.

Theorem 6.2 Assume that the density for the observation noise {v(k)}
is Gaussian with zero mean and covariance matriz R(k) and that the ma-

trizr HTR™1(k)H is nonsingular for all k. Then the minimum variance
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estimator for u(k) may be computed from the following relations:

T1(k) HTR™!(k)H
(k) = T(RHT (R7(K)x(k) —ge(x(k)))  (6.13)
P(k) = T(k) - T(k)HT Gi(x(k)) HT (k)
M(k+1) = &P(k)®’ +Q(k)

where gi(-) and Gi(-) are as in Theorem 1.

In these theorems, it is assumed that the parameters of the interfer-
ence are a priori exactly known. In practice, however, these parameters
are rarely known in advance or may vary with time. Thus, in order to
effectively mitigate the interference with either unknown or time-varying
characteristics, one should use an AIM algorithm which can adjust itself

to the variation of the interference characteristics.

6.3 Linear AIM Methods

We review first linear AIM methods based on the LMS algorithm and

discuss their interference mitigation performance.

6.3.1 One-sided Linear AIM Method Based on LMS
Algorithm

The tap—weights in the one-sided linear predictor are adjusted using
the LMS algorithm

He (k) = Hu (k- 1) + ff(k) eax (k) X (k) (6.14a)

where X(k) is the input tap vector given by
T
1

X(k) = [2(k - 1), 2k = 2), ..., a(k — M) | (6.14b)
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H¢ (k) is the weight vector
T
Hu (k) = [ha(k), ha(k), ..., hae(R) ], (6.14c)

p is a tuning constant controlling the stability and convergence rate of

the algorithm, and P; (k) is an estimate of the input power obtained by
Pu(k) = Pu(k—= 1)+ 7 (1X®) P ~Pa(k=-1)).  (6.14d)

In (6.14d), v is another step size constant. This procedure is needed
to make the choice of tuning constant invariant to changes in input sig-
nal levels. The output of the one-sided linear prediction AIM method
{ea1(k)} is obtained by

e (k) = z(k) — &4 (k) (6.15a)

where
Zo1 (k) = XT (k) Hy (k - 1) (6.15b)

is the predicted value of the received signal {z(k)} based on the M
immediate past received values. The prediction error, which is the out-
put, is the estimate of the wideband SOI sequence. The structure of the
one-sided linear prediction AIM method is shown in Fig. 6.2. The advan-
tages and disadvantages of the one-sided linear prediction AIM method
are similar to those of the LMS algorithm.

6.3.2 Two—-sided Linear AIM Method Based on LMS
Algorithm

The tap—weights in the two-sided linear predictor are adjusted using
the LMS algorithm

He (k) = He(k — 1) + —— e (k) X (k) (6.16a)

Pea (k)
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Figure 6.2: The structure of the one-sided linear prediction AIM method.

where Xy (k) is the input vector [Li and Milstein, 1982]

Xa(k) = [o(k+ %), o(k + % ~1),...,2(k+1),

z(k-1), z(k=2), ..., z(k - %) ]T, (6.16b)

Hg, (k) is the weight vector of the two-sided linear predictor, x is a tuning

constant, and Pzz(k) is an estimate of the input power obtained by
Pu(k) = Pa(k—1) +7 (1 Xa(®) |2 —Pa(k-1)). (6.16¢)

In (6.16c), 7 is another step size constant. The output of the two-sided
linear prediction AIM method {ez(k)} is obtained by

eez(k) = z(k) — Zea(k) (6.17a)
where
£ (k) = X5 (k) Hep (k- 1) (6.17b)

is the predicted value of the received signal {z(k)} based on the M/2 im-
mediate past and M/2 immediate future received values. The advantages

of the two-sided linear prediction AIM method are:
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e Since it is based on the LMS algorithm and symmetric structure,

it is simple and has low computational complexity.

e When the frequency of the interference tone is near the carrier
frequency, its performance is better than the performance of the
one-sided linear prediction AIM method with the same number of

taps (in some cases by approximately 6 dB) [Li and Milstein, 1982].

It shares the same disadvantages as the one-sided linear prediction AIM

method described in the previous section.
Ezample 6.1

The SOI is an i.i.d. binary random sequence with Pr{sy = -1} =
Pr{sg = 1} = 0.5. The background white noise source {n(k)} is a Laplace
(oo = 1) process whose power is kept constant at 0.01. The number of
filter taps M is 10 for each linear prediction AIM method. The perfor-
mance comparison is made in terms of signal-to-interference plus noise

ratio (SINR) improvement defined as

SINR improvement (dB) = 10 log,, Ei l]::Eg : :((::]) |]‘2

where {z(k)} is the given input data and {e(k)} is the output of each
linear AIM algorithm. After 1,000 iterations, the variances over windows
of last 500 data points are calculated for the SINR improvement. Five
different input SINRs: —15 dB, —10 dB, —5 dB, 0 dB, and 5 dB, are
considered. The input SINR is defined as

SINR at the input (dB) = 10 log,, B Ii}c';z_(kggk) OE

When the narrowband interference is a single-tone sinusoidal signal given
by
I(k) = Ay sin(27(0.15)k + )
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where Ay denotes the amplitude determined by the given SINR and ¢ is
a random phase uniformly distributed over [—m, x]. Then, let us use the
one-sided and two-sided linear prediction AIM methods described in the
previous sections to mitigate the single-tone interference. The averaged
SINR improvements over 10 independent runs obtained by the two linear
prediction AIM methods are summarized in Table 6.1.

From Table 6.1, it is observed that the performance of the two—sided
linear AIM method is a little better than that of the one-sided linear
AIM method. Another way to compare the performance between the
two linear AIM algorithms is to illustrate the error curves between the
SOI and the system output (restored SOI) obtained by the each linear
AIM method: i.e., {e(k) — s(k)}. Fig. 6.3 illustrates typical error curves
when the input SINR is —10 dB. From Fig. 6.3, we can observe that
although the corresponding SINR improvements are high, both the error
curves contain a large number of outliers whose magnitude is greater and
closer to unity. Note that these outliers cause signal detection errors and
that the signal detection capability is more important than the SINR

improvement.

Table 6.1: The SINR Improvement of the One-Sided and the Two-Sided
Linear Prediction AIM Method in the Cases of a Single Sinusoidal Inter-
ference in Laplace Noise Channel with Variance 0.01.

Input SINR SINR Improvement (dB)
(dB) One-Sided Linear AIM | Two-Sided Linear AIM
-15 18.8511 20.6088
-10 13.8603 15.6373
-5 9.2113 10.6769
0 4.7012 6.0416
5 0.1823 2.2290
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500
Iteration (k)
(b)

Figure 6.3: When the narrowband interference is a sinusoidal; the vari-
ance of Laplace channel noise is 0.01; and the input SINR is —10 dB,
the error curves between the SOI and the system outputs obtained by
(a) the one-sided linear prediction AIM method and (b) the two-sided
linear prediction AIM method.

Ezample 6.2

Considering the same SOI in the previous example, the narrowband
interference is generated by passing a white Gaussian process through

the following second-order IIR filter:
I(k) =1.98I(k—1)—0.9801I(k — 2)+ g(k)

where {g(k)} is a zero-mean, white Gaussian process.

When the variance of the Laplace channel noise is 0.01, the averaged
SINR improvements over 10 independent runs obtained by the linear
prediction AIM algorithms are summarized in Table 6.2. And, Fig. 6.4
illustrates typical error curves between the SOI and the system output

(recovered SOI) obtained by the linear AIM methods, when the input
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Table 6.2: The SINR Improvement of the One-Sided and the Two-Sided
Linear Prediction AIM Methods in the Cases of AR Interferences in
Laplace Noise Channel with Variance 0.01.

Tnput SINR SINR Improvement (dB)
(dB) One-Sided Linear AIM | Two-Sided Linear AIM
-15 20.6024 23.0208
-10 16.5164 18.4622
-9 12.6351 14.0291
0 9.6269 10.4254
5 3.8602 8.2513
2 T T T
.%_..o.. .......................... 5 o
%,2_ ............................ b .................................................
A s
Iteration (k)

Figure 6.4: When the narrowband interference is generated through a AR
model; the variance of Laplace channel noise is 0.01; and the input SINR
is —10 dB, the error curves between the SOI and the system outputs
obtained by (a) the one-sided linear prediction AIM method and (b) the
two-sided linear prediction AIM method.
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SINR is —10 dB. The same phenomenon can be observed as in Fig. 6.3.
A lot of outliers whose magnitude is greater and closer to unity exist

after convergence.

These two examples demonstrate that the utilization of linear AIM
techniques in the applications where processes are not Gaussian is not
an appropriate choice to effectively mitigate the narrowband interferences
that can be represented by either a single-tone sinusoidal signal or an

AR process excited by a white Gaussian process.

6.4 Nonlinear AIM Methods

Since linear AIM methods do not effectively mitigate the narrow-
band interferences in the DSSS communication system, it is necessary to
use nonlinear AIM methods that perform better in the given broadband
communication format. We describe in this section the nonlinear AIM
methods based on the ACM algorithm for Gaussian and impulsive noise

channels.

6.4.1 ACM-Based AIM Method

In order to suppress an interference with unknown or varying param-
eters, an obvious method of implementing a nonlinear AIM algorithm
would be to identify the AR parameters of the interference recursively
and to carry out the ACM filtering algorithm using the estimates ob-
tained at each iteration. However, since the ACM filter using estimates
of AR parameters is sensitive to variations in the parameter values, the

obvious approach is not promising [Vijayan and Poor, 1990].
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6.4.2 Nonlinear AIM Method for Gaussian Noise
Channels

Considering the state-space representation (6.6a), suppose that the
channel noise {n(k)} is a zero-mean white Gaussian process. Then, since
{v(k)} in (6.6a) is the sum of two independent random variables, one of
which is Gaussian and the other takes on values 41 or —1 with equal
probability, its density becomes the weighted sum of two Gaussian den-

sities given by [Vijayan and Poor, 1990]
£o(0) = % [N,a2(v=1)+ Nz (v+1)] (6.18a)

where 02 denotes the variance of the channel noise {n(k)} and the zero-

mean Gaussian probability density N,z () is defined by

1
Ny2(v) = Vano e~V 12, (6.18b)

Since f( u(k) | X(k — 1)) is assumed to be Gaussian (Theorem 1),
using the fact that {v(k)} is independent of X(k — 1), we can obtain the

following expression for the observation prediction density:
f(2(k) | X(k=1)) = F(Hu(k) +v(k) | X(k - 1))
= 5 [ Mamymrios (2(6) - Hu(k) - 1)
+ NamyHr402 (2(k) - Ha(k) +1) ]. (6.19)

Substituting the expression of the observation prediction density into

(6.12b), we get
2(k) — Ha(k) - tanh ( gy )

gk(z(k)) = M (R BT 1 o2 (6.20)
Using the following relationships
z(k) = z(k)+e(k) (6.21a)

(k) = i{j b (k = 1) z(k — m), (6.21b)
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where {e(k)} is the system output that the sum of a Gaussian chan-
nel noise and a binary SOI, we get a nonlinear transversal filter for the
prediction of {z(k)} [Vijayan and Poor, 1990]:

M
5k)= 3 hm(k—1) [3(k = m) + prom(e(k—m))]  (6.22a)

m=1
where p(-) is a nonlinear term obtained from {gx( z(k) )} appearing in
the ACM algorithm and can be written as

o Yoo ) bl ( a%(% ) . (6.22b)

Note that o%(k) is the variance of the Gaussian channel noise. In order
to implement the nonlinear AIM algorithm, an estimate of the parameter

o%(k) must be obtained. A useful estimate for o?(k) is given by
i(k) = A(k) -1 (6.23)

where A(k) is a sample estimate of the prediction error variance. For an
adaptation strategy that minimizes the squared prediction error, Vijayan
and Poor [1990] have presented a nonlinear gradient algorithm that is re-
quired a considerable amount of additional computational burden. It has
been found that the nonlinear AIM method using the nonlinear gradient
algorithm performs only slightly better than the nonlinear AIM method
using the LMS algorithm when the interference is generated through an
AR model. When the interference is a single-tone sinusoidal signal, its
performance is inferior to that of the nonlinear AIM method using the
LMS algorithm. Therefore, the utilization of the LMS algorithm for up-
dating the adaptive filter coefficients is preferable. Figure 6.5 illustrates
the general structure of the nonlinear AIM methods based on the ACM
algorithm. In Fig. 6.5, {Z(k)} is defined as

Z(k) = 2(k — m) + pr—m(e(k — m)) (6.24)

form=1,2,...,M.
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A Xk-1 A i(k-__g) A | X(k-M)

e —

D}
R
A

r
k) —=( ha(k) T S —e)

P \ /

2k

x(k) —=D=

Figure 6.5: The general structure of the nonlinear prediction AIM meth-
ods based on the ACM filter.

6.4.3 Nonlinear AIM Method for Impulsive Noise
Channels

Consider the e—mixture impulsive channel noise model using the

first—order probability density described by
fa(n) = (1 - €) fo(n) + € fi(n) (6.25)

where ¢ € [0,1] and, f,(n) and f;(n) are probability density functions.
The nominal noise density function f;(n) is usually described by a Gaus-
sian density and the impulsive density f;(n) is taken to be a more heavy—
tailed density such as a Laplacian or a Gaussian density with a large
variance.

Using the e-mixture impulsive noise model with a Gaussian density
with a large variance, Garth and Poor [1992] have obtained the nonlinear
terms for AIM methods in the absence and presence of the DSSS SOL. In
the absence of the DSSS signal, the prediction residual {e(k)} is composed

of the sum of two Gaussian random variables. Thus, the observation
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prediction density becomes

f(e(k) | X(k-1)) = (1- ¢ NaM@HT+02 (2(k) — Hu(k) )
+ € NuM(x)HT+02 (2(k) — Hu(k) ). (6.26)

Using this density, the nonlinear term {gx(z(k))} can be obtained by

—F 2 _.2 2
1;35 e” ¢ (k)/203 + o—_‘a- e (k)/203
a b

gk(z(k)) = e(k) Tt AW/ 1 £ PO (6.27a)
where
e(k) = z(k) — Hi(k)
o2 = HM(k)H” + o} (6.27b)

2
of = HM(k)HT + ko?.

In the expression of (6.27b), the variance o2 is the variance of the nominal
Gaussian noise and the parameter « is the ratio of the impulsive noise

variance and nominal Gaussian noise density defined by

O’.
K= —+

2
o (6.28)

where o? is the variance of the impulsive noise (Gaussian with a large
variance). In the presence of the DSSS signal, the observation prediction

density becomes
72 (k) 1X0:=1)) = 5 [ (1= 9 { Nog(e(®) = 1)+ Nog(e(k) +1) }
+e{ Nz (e(k) — 1)+ Nz(e(k) +1) } ] (6.29)

where {e(k)} is given in (6.27b). Using this density, the nonlinear term
{gk(z(k) )} can be obtained by

silz()= % (6.30a)
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where

NE(2(K) = 55 [(e(k) - 1)Noa(elk) - 1)

+(e(k)+1)N,3(e(k)+1)]
+;%[(e(k)—1)N,g(e(k)—l)

+ (e(k)+1)N,z(e(k) +1) | (6.30b)

Di(=(k))

(1-¢) [ Na(e(k) = 1)+ Noa(e(k) +1) ]
e[ Ng(e(t) = 1)+ Ng(e(h) +1)]. (6.300)

Since we are interested in only the situation where the SOI exists, the
prediction residual {e(k)} is approximated to be composed of the sum of
two Gaussian channel noises and a binary SOI. From the corresponding
{gx(e(k))} given in (6.30a), Garth and Poor [1992] have used the following

nonlinear function for AIM algorithm.

pr(e(k)) = [(1-€) a2+ e a? ] e(k) g';geggg (6.31)

where N{(e(k)) and Dj(e(k)) are given in (6.30b) and (6.30c), respec-

tively. The variances o2 and o can be estimated using

= A(k)+ (1-K)eo} (6.32a)
= A(k)+(k—1) (1-¢) o (6.32b)

-~

T R

where A(k) is the sample estimate of the prediction error variance which

can be found recursively using
A(k)=Ak-1)+7 [ lle(k) ||> —A(k - 1) ] (6.32¢)

The LMS algorithm can be used to adjust the nonlinear AIM filter
coefficients. Although the AIM method using the nonlinear function
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given in (6.31) is supposed to work better in e-mixture impulsive noise
channel, Garth and Poor [1992] have found that although it requires more
computations, it does not perform better than the nonlinear AIM method
based on the nonlinear function (6.22b). Therefore, the nonlinear AIM
method for Gaussian noise channels given in (6.22a) is preferable because
of its robustness in e-mixture impulsive noise channel environments and
its low computational burden.

The advantages of the two nonlinear prediction AIM methods are:

e They can predict the narrowband interference better than the linear

prediction algorithms.
Their disadvantages can be summarized as
e They require a priori information about the channel noise.
e Their computational burden is quite heavy.

e Their performance is sensitive to the choice of the step size param-

eters.

6.5 Nonlinear AIM Method for Generalized
Gaussian Noise Channels

Assuming that the channel noise process {n(k)} has a generalized
Gaussian distribution, we describe a nonlinear AIM method based on
the ACM algorithm [Shin and Nikias, 1994].

6.5.1 Description

When the channel noise process {n(k)} is derived using a generalized

Gaussian model described by (6.7a) with & and 8 parameters, the density
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function of {v(k)} in (6.6a) can be represented as

(6.33)

A=l |- o5 o —(M)‘*]

T -]
@ T ¢

To derive the ACM algorithm in a generalized Gaussian noise channel, it
is necessary to calculate the density function f(z(k) | X(k — 1)) which

is of the form
f(z(k) | X(k—1)) = f(Hu(k) + v(k) | X(k - 1)). (6.34)

Since {v(k)} is independent of the observation vector X(k— 1), f(z(k) |
X (k—1)) is the density function of the sum of two independent random
variables of which the first has a Gaussian density with mean Hui(k) and
variance HM (k)HT; and the second has the density described by (6.33).
Since the probability density function of the sum of two statistically inde-
pendent random variables is given by the convolution of their respective
probability density functions, it becomes

f(a(k) | X(E=1)) = 2\/21?(% U_:c(u,ek)-gc;(u-l,a,ﬁ)du

+ [ ‘: C(v,e8) - 9G(v+1, a, ) dv] (6.352)
where
o} HM(k)HT
e = z(k)—Hu(k) (6.35b)
C(v,e&x) = exp{—%}.

Note that ¢gG(z, o, B) is symmetric and that the A-th order moments of

a generalized Gaussian process are satisfying [Gray, 1979)

A+l
e Ji L for A=2n

00 (L
f z* ¢G(z,, f)dz = ° (6.36)
- 0, for A=2n+1



6.5. NONLINEAR AIM METHOD FOR GG CHANNELS 189

where n is a nonnegative integer. By expanding the function ((v, €)

using Taylor series about vp, it becomes

() = 3 S0 e (6.37a)
n=0
where
C(”U, fk)r n=0,
(M (vo,er) =1 . (6.37b)
8:ﬂc o n21

Since 53;':_1_[3—_:#_)_ = 0, for n > 3, the derivatives of ((vo, €x) satisfy the

following recursive equation (see Appendix A):
o : | - .

¢™ (vo, €x) = —(voo—gsk) ¢ (vo, ) — Ln—a-;—)- ¢ (vg, €x). (6.38)
k k

When each n—th order derivative of ((vo, €x) is represented with respect

to vg, it becomes (also see Appendix A)

m+tl vo—ex)26-1)
C(Uo, €k) - Z 2[,.,+,"_1 , forn=2m
0™ (vo, €x) = (6.:39)
“ ™ ()it
(vcn €) - Z ,(mc:, , forn=2m+1
i=1

where m = 0,1, 2,.... The coefficients {a'(m)} and {bgm)} are constants
with a,{,;“_gl =1 and b&:}l = —1. Appendix A presents the values of
coefficient vectors a(™) and b(™) for m = 0,1, 2,3,4,5. There seems, un-
fortunately, no explicit relationship between coefficients a( ™) and a(m’)
or between coefficients b'(- ™1) and b;- ™2) for any m; and mg.

Expanding (v, €x) about 1 and —1 and using the property that odd
moments of a generalized Gaussian process are identically zero, (6.35a)

can be rewritten as
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f(z(k) [ X(k-1)) =
1 i F(zna 1) ﬁzn
2\/2_11'01- F("i’) n=0 (21‘1)!
where {¢;} is given in (6.35b). Although the derivatives ¢(2"+1) (41, )
are not needed for the representation of f( z(k) | X(k — 1)), they are

(€1, ) +¢CM(=1,6) | (6.40)

needed to get the expressions of even derivatives ((*™ (41, ¢;).
To get a nonlinear AIM scheme in a generalized Gaussian noise chan-
nel, an expression for the following nonlinear function should be found.
(o) = BB X~ D)
k ==
f(=(k) | X(k-1))

After some manipulations presented in Appendix B, the nonlinear func-

(6.41)

tion becomes

o0 r 2n41 .82“

SR (e (1, ) + Enl=1, )

pler) =- =" (6.42a)
Z H_(%;%ﬁ [C(Qﬂ}(]_, €) + Cm"}(—l, Gk)]
n=0
where

ntl ()1 _ o )206-1)
CCM(£1,6) = ((EL &) 3 = ( 2(n+f_"1), (6.42b)
i=1 O

n+l a(“) 41 — €,.)2i-1
E‘n(ilsek) = C(il,ék) Z : (0_2{11-{-1:;:)
k

i=1

ntl g0- (n) 2i-3
2(i—1)a;"’ (£1 — )
- 2(nti-1) - (6.42¢)
O

Using the nonlinear function {px( e(k) )} with a finite order in (6.42a),

1=2

one can get a nonlinear transversal AIM algorithm for {#(k)} that is the

prediction of the narrowband interference.

M
56)= 3 bk —1) [3(k = m) + prom(e(k—m))]  (6.43)

m=1
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where M denotes the number of taps of the AIM algorithm. In this ex-
pression {h,(k—1), m = 1,2,..., M} is the filter coeflicients updated by
the LMS algorithm given in (6.14a). Then, the system output (restored
SOI) of the nonlinear AIM scheme {e(k)} are given by

e(k) = z(k) — (k). (6.44)

The structure of the nonlinear AIM scheme is illustrated in Fig. 6.5 with

a different structure of the nonlinear term {p( e(k))}.

6.5.2 Implementation

The nonlinear AIM scheme is implemented by using order up to eight.
Note that only even—order expressions are required for implementation

because the odd-order terms vanish. Then, the derivatives (2™ (-) can

O (vo,ex) = C(vo,ex) [ ——5+

be given as
<Arg=nd®

(Ovo,er) = e % = ((vo, )

(2) 1 (Ug = Ek)z
¢\¥(voyex) = C((vo,e€x) ~— 42

k O
C(4)(Uo,€k) = ((vo,€x) (% _ 6(vo —Gek)z (vo —sek)d)
Ok Or oy

C®(vo,ex) = C(vo,ex) (% ~ o) B0~}

of? op?
28(vo — €x)® . (vo —€x)®
- opt oRC

where vg = 1 or —1. Note that the coefficients of ((™)(vp, ¢;) are given

in Appendix A. Using (6.45), an approximated expression of the denom-
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inator, D} (ex), of the nonlinear function {px( € )} can be obtained by

Di(ex) = f(=z(k) | X(k-1))
4 [\(m-_l)

2 ~(zn)

n=0
where {¢(®™(vp,€x), 0 < n < 4} are given in (6.45). Again, with

(6.45), an approximated expression of the numerator, N (ex), which is

82 [ ¢ (1, 60) + ¢ (-1,6) | (6.46)

Q

the derivatives of the denominator, of the nonlinear function {px( €z )}

can be obtained as follows.

Ni(e) = go/(=(8) 1 X(E=1)
4T
& ) “‘“‘——( @ )). [€n(1,60) + En(=1,6) ] (6.47a)
n=0
where
€o(vo,€) = C(vo, &) ((”" "k"")
€1(v0,€8) = C(%%)( 3(vucrg e) , (v ;gk)a)
Eg(t’o,fk) _ C(UD;GA:) (15(026— €k) _ 10(‘000; 6};)3 + (vo —'wfk)s)
k k O
&3(vo, &) = ((vo, €) ( 105(?3— <) + 105(1}0_01; &) (6.47b)
k k
3 21(vo — €)% . (vo — ¢)?
o}? o
Eiliiores) = Clvosen) (945(2— €x) 1260(;12._ )’
378(vo — €x)®  36(vo — k)7 —¢)?
. (t::};1 %) (U'.;ésfk) +(oa};k) )

with vy = 1 or —=1. The coefficients of {&,(vo, ¢x)} is obtained by the

coefficient vectors a(® in Appendix A and the expression in (6.42c).
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Then, the nonlinear function {pr( e(k) )}, where {e(k) = €x}, becomes

pulelt)) = - Thap-

Although the nonlinear AIM scheme is structured here using order up to

(6.48)

eight, one may use the nonlinear AIM scheme in a generalized Gaussian
noise channel with a lower/higher order.
The advantages of the nonlinear prediction AIM method for general-

ized Gaussian noise channels are:

e Since it takes into account the distribution of the channel noise as
well as the predictability of narrowband interferences, it can predict

the narrowband interference very well.

e Its corresponding nonlinear terms in the AIM methods contribute
to the improvement of its performance in mitigating narrowband

interference.

e Since it has been developed for general values of a and @ of the gen-
eralized Gaussian distribution, the algorithm can be applied to any
channels characterized by a member distribution of the generalized

Gaussian distributions family.

It shares the same disadvantages of the two nonlinear prediction AIM
methods for Gaussian and e-mixture impulsive noise channels described

in the previous sections.

Ezample 6.3

Considering the same SOI and single-tone sinusoidal interference as
those in Example 6.1, let us use the two nonlinear AIM methods de-

veloped for Gaussian and generalized Gaussian noise channels in order
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to mitigate the single-tone narrowband interference. When the vari-
ance of the Laplace channel noise {n(k)} is 0.01, the averaged SINR
improvements over 10 independent runs obtained by the nonlinear AIM
algorithms are summarized in Table 6.3. Note that the new nonlinear
AIM algorithm for generalized Gaussian noise channels is implemented

by using order up to four.

Comparing Table 6.3 with Table 6.1, we can easily observe that the
nonlinear AIM algorithms performs much better than the linear AIM
algorithms. Although the performance of the two nonlinear AIM algo-
rithms seems similar, the nonlinear AIM algorithm for generalized Gaus-
sian noise channels performs a little bit better than the nonlinear AIM
algorithm for Gaussian noise channels in all the SINR cases. The differ-
ence between the two SINR improvement tends to increases as the input
SINR becomes large. As another way to compare the performance be-
tween the two nonlinear AIM algorithms, we illustrate the error curves
between the SOI and the system output (recovered SOI) obtained by each
nonlinear AIM algorithm: i.e., {e(k) — s(k)}. Fig. 6.6 illustrates typical
error curves when the input SINR is —10 dB. In Fig. 6.6, it can be easily
observed that several large outliers whose magnitudes are greater and
closer to unity after convergence exist in the system output obtained by
the nonlinear AIM method for Gaussian noise channels. Note again that
these outliers cause signal detection errors. On the other hand, although
its SINR improvement is smaller, the error curve obtained by the non-
linear AIM algorithm for generalized Gaussian noise channels does not

have large outliers that cause the detection error.

These experiments demonstrate that the nonlinear AIM algorithm
for generalized Gaussian noise channel can mitigate single-tone sinu-
soidal narrowband interference more effectively than the nonlinear AIM

algorithm developed for a Gaussian noise channel in the sense that the
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Table 6.3: The SINR Improvement of the Nonlinear AIM (NAIM) Meth-
ods for Gaussian (G) and Generalized Gaussian (GG) Noise Channels in
the Cases of a Single Sinusoidal Interference in Laplace Noise Channel
with Variance 0.01.

Input SINR SINR Improvement (dB)
(dB) NAIM for G Channel | NAIM for GG Channel
-15 29.8276 30.4248
-10 24.4617 25.5794
-5 18.8120 20.2001
0 12.6718 14.7004
5 6.5053 10.4891
| M |
% AL
S 11t A S MM _
'2 700 200 300 400 800 5 700 800 980 1000

‘20 100 200 300 400 500 600 700 8O0 200 1000
iteration (k)
®)

Figure 6.6: When the narrowband interference is a sinusoidal; the vari-
ance of Laplace channel noise is 0.01; and the input SINR is —10 dB, the
error curves between the SOI and the system outputs obtained by (a)
the nonlinear AIM method for Gaussian noise channels and (b) the new
nonlinear AIM method with order four for generalized Gaussian noise
channels.
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former nonlinear AIM method results in similar SINR improvement and
less outliers than the latter nonlinear AIM method, when the channel
noise is a member of the generalized Gaussian distributions with known

«.

Ezxample 6.4

Now, let us consider the same SOI and AR interference as those in
Example 6.2. When the variance of the Laplace channel noise {n(k)}
is 0.01, the averaged SINR improvements over 10 independent runs ob-
tained by the two nonlinear AIM methods are summarized in Table 6.4.
Note that the new nonlinear AIM algorithm for generalized Gaussian
noise channels is implemented by using order up to four.

Again, the nonlinear AIM algorithms perform much better than the
linear AIM algorithms (Table 6.2) in the AR interference case. Note
that the SINR improvement obtained by the nonlinear AIM algorithm
for generalized Gaussian noise channels is a little bit larger than that
obtained by the nonlinear AIM algorithm for Gaussian noise channels
in all five input SINR cases. Fig. 6.7 illustrates typical error curves
{e(k) — s(k)}, when the input SINR is —10 dB. The same phenomenon
can be observed as that in Fig. 6.6. No large outliers exist in Fig. 6.7
(b) illustrated the error curve obtained by the nonlinear AIM method
for generalized Gaussian noise channels. These experiments demonstrate
that the nonlinear AIM method for generalized Gaussian noise channels
can effectively mitigate the narrowband interferences generated through
an AR process which is considered as a more physically accurate broad
class of narrowband interference.

Note that the performance of the nonlinear AIM method for general-

ized Gaussian noise channels in a Gaussian noise channel is very similar
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Table 6.4: The SINR Improvement of the Nonlinear AIM (NAIM) Meth-
ods for Gaussian (G) and Generalized Gaussian (GG) Noise Channels

in the Cases of AR Interference in Laplace Noise Channel with Variance
0.01.

Input SINR SINR Improvement (dB)
(dB) NAIM for G Channel | NAIM for GG Channel
—15 29.4889 31.2914
-10 25.2374 27.2745
-5 19.6121 22.0615
0 14.6878 17.3222
5 11.1369 12.1165

(=)

Figure 6.7: When the narrowband interference is generated through a AR
model; the variance of Laplace channel noise is 0.01; and the input SINR
is —10 dB, the error curves between the SOI and the system outputs
obtained by (a) the nonlinear AIM method for Gaussian noise channels
and (b) the new nonlinear AIM method with order four for generalized
Gaussian noise channels.
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to the given performance in the Laplace noise channel for the single si-

nusoidal and AR interferences.

Ezample 6.5

In the previous examples, it is assumed that the value of a is ex-
actly known. Since this assumption is not always true, it is important
to investigate the algorithm’s performance dependence on the estimate
&. Considering the previous single narrowband interference cases, the
performance of the nonlinear AIM algorithm for generalized Gaussian
channels is investigated with different estimated values &. Note that the
true value of o is unity (Laplace noise channel). Fixing all the other
parameters as in the previous two examples, we vary estimated & from
0.5 to 2.0 by interval of 0.1 and calculate the nonlinear function with the
value of & The three input SINRs are considered: —15 dB, —10 dB, and
-5 dB.

Fig. 6.8 (a) illustrates the SINR improvements with different values of
&, when the narrowband interference is a single-tone interference whose
normalized frequency is 0.15. Fig. 6.8 (b) illustrates the corresponding
SINR improvements, when the narrowband interference is generated by
the same AR filter. Note that the solid line corresponds to the SINR
improvement when the input SINR is —15 dB and that the dashed and
dash—dotted lines correspond to the SINR improvement, respectively,
when the input SINRs are —10 dB and —5 dB. Each “¥” point is obtained
by averaging the results from 10 independent runs. As we can observe
in Fig. 6.8, there is no large difference among the SINR improvements
obtained with different values of & except for the cases of & < 0.6. The
nonlinear AIM algorithm has diverged with & < 0.6. These experiments

illustrate that the approximate nonlinear AIM algorithm for generalized



6.5. NONLINEAR AIM METHOD FOR GG CHANNELS 199

35 35
o o
:gi-ao - 30
&
E 25} 25
E® g%
15 Z1s
7 : @

Bs 1 1.5 2 8.

estimated alpha estimated alpha
(a) (b)

Figure 6.8: The channel noise distribution is Laplace with variance 0.01.
The SINR improvements obtained by the nonlinear AIM algorithm with
different estimated values of a for generalized Gaussian channels, when
the narrowband interference is (a) a single-tone sinusoidal signal and (b)
an AR signal.

Gaussian channels can perform well even though the estimate of a for

the given channel may have a small bias.

Ezample 6.6

In the previous examples, we fixed the value of # at 0.15. Since the
value of 3 is dependent on the given channel noise variance, fixing the
value of # at a constant may influence the performance of the nonlin-
ear AIM algorithm for generalized Gaussian channels. Thus, it is also
important to investigate the algorithm’s performance dependence on the
estimated value of 8. Considering the previous single narrowband in-
terference cases, the performance of the nonlinear AIM algorithm for
generalized Gaussian channels is investigated with different constant es-
timates . Fixing all the other parameters at the optimal values as in
the previous two examples, we vary the value of B from 0.01 to 0.45 by

interval of 0.02 and calculate the nonlinear function with the estimated
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value of 3. The three input SINRs are considered: —15 dB, —10 dB, and
—5 dB. Note that the true value of # is about 0.07 when the variance of
the Laplace channel noise is 0.01.

Fig. 6.9 (a) illustrates the SINR improvements with different values of
ﬁ, when the narrowband interference is a single-tone interference whose
normalized frequency is 0.15. Fig. 6.9 (b) illustrates the corresponding
SINR improvements, when the narrowband interference is generated by
the AR system. Note that the solid line corresponds to the SINR im-
provement when the input SINR is —15 dB and that the dashed and
dash—dotted lines correspond to the SINR improvement, respectively,
when the input SINRs are —10 dB and —5 dB. Each “+” point is obtained
by averaging the results from 10 independent runs. As we can observe
in Fig. 6.9, the SINR improvement begins to decrease around B =0.3in
the both cases. Also note that when the value of 3 is greater than 0.3,
the SINR improvement for an AR interference deteriorates more than

that for a sinusoidal interference. These experiments illustrate that the

8

&

—
0N

SINR improvement (dB)
8

=]
o

0.1 0.2 03 04 0 0.1 02 03 04
estimated beta estimated beta

(a) (b)

Figure 6.9: The channel noise distribution is Laplace with variance 0.01.
The SINR improvements obtained by the nonlinear AIM algorithm with
different values of constant B for generalized Gaussian channels, when
the narrowband interference is (a) a single-tone sinusoidal signal and (b)
an AR signal.
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approximate nonlinear AIM algorithm for generalized Gaussian channels

can still perform well even when an estimated value of § has a small bias.

6.6 Summary

This chapter described linear and nonlinear AIM schemes based on
the ACM filter. Their performance was described in terms of the SINR
improvement obtained by each AIM method in a Laplace noise channel
environment, and when the SOI is a DSSS signal and the narrowband in-
terference is either a single-tone sinusoidal signal or a signal through AR
model. It has been observed that the nonlinear AIM methods perform
much better than the linear AIM methods in both the two interference
environments. Although there is no big difference between the SINR im-
provement obtained by the two nonlinear AIM methods, the nonlinear
AIM method for generalized Gaussian noise channels can mitigate nar-
rowband interference more effectively than the nonlinear AIM algorithm
for Gaussian noise channels in the sense that the latter algorithm appears
to contain more outliers whose magnitude is close to or larger than unity.

These outliers can cause errors in the decoded SOls.
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Chapter 7

Impulsive Interference
Environments

7.1 Introduction

Traditionally, the Gaussian assumption has dominated the engineer-
ing literature due to the fact that it can be justified by the central limit
theorem and can lead to analytically tractable solutions for most given
problems.There are, however, many phenomena in real world which are
non-Gaussian in nature. The non—Gaussian environment may result
in significant performance degradation for systems optimized under the
Gaussian assumption. In addition, it has to be stated that the non-
Gaussian environment usually leads to nonlinear systems which require
more complexity to obtain a solution. Therefore, there is a trade—off be-
tween complexity and accuracy. When the loss of resolution or accuracy
due to the Gaussian assumption in a non—Gaussian environment cannot
be tolerated, more realistic non-Gaussian statistical model must be used.

The main difference between the Gaussian distribution and the non—

Gaussian stable distribution is their tails. The tail of a non—Gaussian
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stable density is heavier than that of a Gaussian density. This fact is one
of the main reasons why the non-Gaussian stable distribution is suitable
for describing impulsive phenomena. The non-Gaussian distribution can
provide useful models for phenomena observed in many different fields,

such as engineering, physics, hydrology, etc. [Lévy, 1925].

7.2 Stable Distributions

This section briefly reviews the definition of stable distributions and
their statistical properties. For those who are interested in learning more
about stable distributions, we refer them to the tutorial paper and book
by [Shao and Nikias, 1993; 1995].

7.2.1 Univariate Stable Distribution

A univariate distribution function F(z) is defined to be stable if and

only if (iff) its characteristic function has the following form

$(t) = exp{ jat — vy |t|* [1+ jBsign(t) w(t,@)]} (7.1a)
where
1 fort >0
sign(t) = 0 fort=0 (7.1b)
-1 fort <0

tan (%) fora#0

ifa) = { 2 log |¢| for a = 1. (7.1c)

A stable distribution is completely determined by the following four

parameters.

1. Location parameter a: It corresponds to the location of the median

value of the density function and takes any real values.
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2. Index of skewness §: It can take values in the interval —1 < 8 <
1. When § = 0, the distribution becomes symmetric about the
center a. If @ # 1, the cases # > 0 and # < 0 correspond to
left-skewness and right-skewness, respectively. The direction of

skewness is reversed if a = 1.

3. Characteristic exponent «: It is a shape parameter whose values
are satisfying 0 < a < 2. It measures the “thickness” of the tails of
the density function. The larger the value of « is, the less likely it
is to observe values of the random variable which are far from its
central location. The smaller « is, the heavier are the tails of the

density function.

4. Scale parameter v (also called the dispersion): It can be any posi-
tive number and behaves like the variance. When o = 2, it becomes

a half of the variance of the Gaussian distribution.

A stable distribution with characteristic exponent « is called a-stable.
Symmetric stable distributions with characteristic exponent a are called
symmetric a—stable (SaS). A stable distribution is called standardif a = 0
and 7 = 1. By taking the inverse Fourier transform of the characteristic
function, it is easy to show that the standard stable density function is

given by
f(z;0,8) = -;-fom exp(—t%) cos| zt + ft*w(t, )] dt. (7.2)

Note that f(z;e,8) = f(—z;a,—F). It can also be shown that the
probability density functions of stable distributions are bounded and have
derivatives of arbitrary orders. Unfortunately, no close-form expressions
exist for general density except for the special densities: Gaussian (@ =
2), Cauchy (o = 1 and B = 0), and Pearson (a = } and § = —1)

distributions. The standard stable density function can be expanded
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into convergent series. Using power series expansion, the standard SaS

density function can be given as

-
—1)k— .
LS P (ak +1) |2~ sin (A2T), 0<a<1
k=1
1 —
fulz)={ T’ =1 (7.3a)
(=]
#Z ;1!*F(_-sza1)zgk, l1<a<?2
k=0
22
"2&:8_7, a=2
where
o]
I(z) = ] 71 ¢~dt. (7.3b)
0

The SaS densities are smooth, unimodal, symmetric with respect to the
median, and bell-shaped. Most importantly, unlike the Gaussian density
which has exponentially decaying tails, the stable densities have algebraic

tails.

7.2.2 Basic Properties

Two of the most important properties of the stable distribution are
the stability property and the generalized central limit theorem [Shao,
1993; Shao and Nikias, 1993].

Theorem 7.1 (Stability Property): A random variable z is stable iff for
any independent random variables z, and z, with the same distribution
as z, and for arbitrary constants a, and as, there ezist constant a and b
such that

a1z1 + azz2 Laz+b (7.4)

where the notation z = y means that z and y have the same distribution.
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More general statement is that if 21, z3,..., 2, are independent and fol-

low stable laws with the same (e, ), then all linear combinations of the

form Zakzk are stable with the same parameters o and f.
k=1

Theorem 7.2 (Generalized Central Limit Theorem): z is the limit in

distribution of normalized sums of the form

8n=xl+z2+'.'+$ﬂ_bn (7.5)

an

where z1, 22, ... are i.i.d. and a, — 00, iff = is stable.

As a consequence of the stability property, stable distributions are the
only possible limit distributions for sums of i.i.d. random variables. It
can be shown that for a non-Gaussian a-stable random variable z with

where C() is a positive constant depending on o. Thus, stable density
functions have algebraic tails. The important consequence is the nonez-
istence of the second—order moment of stable distributions. Let z be an

a—stable random variable. If 0 < & < 2, then

E{|z]P} =00, ifp2a (7.7a)
and
E{|z|P}<o0, if0<p<La. (7.7b)
If o = 2, then
E{|z|"} < oo, forallp>0. (7.8)

Hence for 0 < a < 1, a-stable distributions have no finite first or higher
order moments; for 1 < a < 2, they have finite first—-order moments and
all the fractional moments of order p where p < a; for @ = 2, all moments

exist.
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7.2.3 Fractional Lower Order Moments and Covariations

All moments of order less than « are called the fractional lower order
moments (FLOM) [Shao and Nikias, 1993].

Theorem 7.3 Letz be a SaS random variable with zero location param-

eter and dispersion v. Then,
E{|z|?} = C(p, ) ya for0<p<a (7.9a)

where
ren(ep)

ay/m (=

depends only on a and p, not on x.

Cpya) =

r(-2) )
D)

Let = be a SaS random variable with @ = 0 and 4 > 0. Then, the norm
of z is defined as

1
_ )y forl1<a<2 1
I lla= { v for0<a<l. 040}

Let z and y be jointly SaS random variables, then the distance between

z and y is defined as
da(2,y) =llz = Y|l - (7.11)

The distance d, between two SaS random variables measures the pth
order moment of the difference of these two random variables for any
0 < p < a. It should be mentioned that convergence in distance is
equivalent to convergence in probability.

Let z and y be jointly SaS random variables with 1 < a < 2, zero
location parameters, and dispersions 7 and 7y, respectively. Then the
covariation of z with y is defined by

(z,¥]a = “E{yp} " (7.12a)
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where for any real number z and a > 0,
2<% = | z|* sign(z). (7.12b)

The covariation coefficient of z with y is defined by

Aci= [:C,y]a = E{xy<?-l.>}
z,y [y: y]a E{l y |p}

forany1<p< «a (7.13a)

where

z.z]la=7==lzlls [B¥la=r=lyls - (7.13b)

7.2.4 Conditional Expectation and Linear Regression

Let zo,z1,...,2, be jointly SaS random variables with 1 < o < 2.
The regression of zg in terms of z3,z,...,2, is the conditional expec-
tation E{z¢ | z1,22,...,2,}. The following theorem states a necessary

and sufficient condition for the regression to be linear.

Theorem 7.4 If z9,21,...,%, are jointly SaS random variables with
1< a<2. Then

E{zo | z1,22,...,Zn} = @121 + 2Z2 + - - - + anTy (7.14a)
iﬁfor all bla b2: sy bm
[ 20— @121 =+ = GnZp, b1z1 + -+ baza |, = 0. (7.14b)

If the regression is linear, then the coefficients {a,, as, ..., a,} are unique
iff z1,%9,...,2, are linearly independent elements in the space of inte-

grable random variables.

Theorem 7.5 If zg,z1,...,Z, are jointly SaS random variables and if

z1,Z2,...,Zy are independent and nondegenerate, then
E{IO | T19L2y00 4y 'T'n} = ’\019:1 + A02x2 R St o A(.'l'.";::f-:'rl (7°15)

where \o; is the covariation coefficient of xo with z;, fori =1,2,...,n.
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It is important to have good estimators for covariations (covariation
coefficients) due to the fact that they play important role in certain
problems as the correlations do for second—order random variables. For
the independent observations {(z1,y1),...,(zn,yn)}, one method for
the FLOM estimator is given by [Shao and Nikias, 1993]

N
Z: Ty |yn Ip—l. Sign( Un )

Arrom = = (7.16)

N
z Iyn Ip
n=]

for some 1 < p < a. Note that a computationally efficient choice is

p = 1. Another estimator is the screened ratio (SR) estimator proposed
by Kanter and Steiger [1974], which is strongly consistent. It is of the

form

N
-1
zxﬂ yn X‘!ﬁ
Y — n=1

ASR = =
Exm
n=1

where the random variable x, is defined

Xy = { 1 if e <|yl<e (7.17b)

(7.17a)

0 otherwise

for arbitrary constants 0 < ¢; < ¢3 < 0o. Note that Asr converges to A

almost surely as N — oo.

Ezxample 7.1

Considering the standard SaS distribution (zero-mean and unit dis-
persion), let us demonstrate how the value of « influences a SaS process.

What we can expect is that the smaller the value of a, the more will be
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Figure 7.1: Symmetric a—stable processes with different values of a: (a)
2, (b) 1.9, (c) 1.75, (d) 1.6, (¢) 1.35, (f) 1.2, (g) 1, and (h) 0.9.
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the outliers due to heavier tail of the distribution. Fig. 7.1 illustrates
typical SaS processes with different values of a: @ = 2 (Gaussian), 1.9,
1.75, 1.6, 1.35, 1.2, 1 (Cauchy), and 0.9. Note that each figure presents
one realization and that each figure has different scales for easy looking
plots.

From the Fig. 7.1, it is easy to observe that processes with o < 2
(Fig. 7.1 (b) — (h)) have larger and more outliers than a Gaussian process
with @ = 2 (Fig. 7.1 (a)). As the value of o decreases, SaS process

becomes more impulsive.

7.3 AIM Methods for SaS Interferences

In this section, we describe AIM methods for mitigating interferences
whose distributions are characterized by SaS distributions. The model
of additive interference mitigation with a reference signal is the same as

shown in Fig. 3.1.

7.3.1 AIM Method Based on LMS Algorithm

The LMS filter update using an instant and simple gradient estimate
is expressed by [Widrow and Stearns, 1985]

Hlms (k'i‘ 1) = Htms (k) + 2# elma(k) z(k)° (718)

where p is a constant that regulates the speed and stability of adapta-
tion. The process {e;ns(k)} and the vector z(k) denote the AIM sys-
tem output and the filter input vector consisting of reference signals
{zm(k), m =0,1,...,M — 1}, respectively. The AIM method based on
the LMS algorithm is described in Chapter 3.

In theory, the LMS algorithm is not suitable for mitigating SaS inter-

ferences because its corresponding criterion is the minimum mean square
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error (MMSE). Under this criterion, the best estimate is the one that
minimizes the variance of the estimation error. For stable processes with
a < 2, however, finite variances do not exist. Although its statistical
analysis is not possible, one can still use the AIM method based on LMS
algorithm because of the fact that the LMS algorithm uses an instant

estimate of the gradient which is finite.

Ezample 7.2

Assuming that the SOI is a BPSK signal satisfying Pr{s(k) = 1} =
Pr{s(k) = —1} = 0.5 and that the reference signal {w(k)} has a SaS
distribution with 1 € a < 2. Since the variance of the reference signal
does not exist, we define the signal power to interference dispersion ratio

(SPIDR) as follows:

(%

SPIDR (dB) = 10log,q —* (7.19)
Tw
where o? is the power (variance) of the SOI and 7, is the dispersion of
the reference signal. We assume that the interference {I(k)} is generated
by a MA system excited by the reference signal. The MA system is given
by [1, 0.75, —0.2, 0.1].

When the SPIDR is 0 dB, Fig. 7.2 illustrates the averaged interfer-
ences over 50 independent trials with « = 2, 1.75, 1.5, and 1.2. Due
to its impulsiveness, the averaged interferences contain more and larger
outliers as the value of o decreases. Applying the AIM method based
on the LMS algorithm for mitigating the interferences shown in Fig. 7.2,
we obtain the averaged error curves between the system outputs and the
SOI over 50 independent runs and illustrate them in Fig. 7.3. The num-
ber of filter taps is four and the step size constant g is 0.0075 for the
filter update equations. The results obtained by the AIM method based
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Figure 7.2: Averaged interference {I(k)} when its SaS distribution is of
(a) @ =2, (b) @ =1.75, (c) @« = 1.5, and (d) @ = 1.2.

on the LMS algorithm demonstrate its poor performance except for the
case of @ = 2 (Gaussian interferences). When the value of « is less than
two, we can observe much larger outliers exist than the interferences.
This effect becomes more severe as the value of o decreases. The poor
performance of the AIM method based on the LMS algorithm for inter-
ferences with a < 2 is due to the filter input vector z(k) which contains
impulsive signals. Since large signal values of the filter input vector di-
rectly affect the adaptive filter coefficients, large variation of the filter
coefficients results in poor performance. Thus, we can conclude that it is
not appropriate to use the LMS-based AIM method for mitigating the

impulsive interferences (o < 2) characterized by SaS distributions.

Previously, assuming that we had a priori knowledge about the re-
lationship between the interference and the reference signal, the number
of filter taps was chosen as four. In practice, we do not have such in-

formation. Thus, the number of taps has to be estimated and is usually
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Figure 7.3: Averaged error curves {€jms(k) — s(k)} between the SOI and
the outputs obtained by the AIM method based on the LMS algorithm
(M = 4) when the interference has SaS distribution with (a) a =2, (b)
a=1.75, (c) @ =1.5,and (d) a=1.2.

chosen greater than the true number of weights for interference. Now, let
us consider the AIM method based on the LMS algorithm whose number
of filter tabs is M = 8 or 12. When the SPIDR is 0 dB and M = 8,
Fig. 7.4 shows the averaged error curves {ejms(k) — s(k)} obtained from
the AIM method based on LMS algorithm for mitigating the impulsive
interferences with o = 1.75 or 1.5. Its step size parameter is p = 0.007.
Also, its performance with M = 12 and g = 0.006 is given in Fig. 7.4.
Comparing the results shown in Fig. 7.3 with those in Fig. 7.4, we can
conclude that an overestimated number of filter tabs can degrade the
performance of the LMS algorithm more severely. As the overestimated
tab number increases, its performance becomes worse. Also note that a
smaller value the characteristic exponent of the interference results in its
worse performance. Since overestimated numbers of filter tabs deterio-

rate the performance of the LMS algorithm more severely, the utilization
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Figure 7.4: Averaged error curves {eims(k) — s(k)} between the SOI and
the outputs obtained by the AIM method based on the LMS algorithm
when (a-1) @ = 1.75 and M = 8, (a-2) o = 1.5 and M = 8, (b-1)
a=1.75and M =12, and (b-2) a=1.5and M = 12.

of the LMS algorithm should be avoided when the interference is assumed

to be impulsive.

7.3.2 AIM Method Based on NLMS Algorithm

To reduce the variation effect of the filter input vector on the filter
coefficient update equation, we can consider the AIM method using the
normalized LMS (NLMS) algorithm. The NLMS-based AIM method is
described in Chapter 5 and its update equation is given by

enims (k) z(k)
lz(k)[|* + 8

where 3, 1 > 0 are appropriately chosen update parameters. The param-

anma (k + 1) = anms (k) + u (720)

eter (3 is used to prevent the denominator of the update equation from

being zero (or very close to zero). Note that the usual statistical analysis
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for the performance of the NLMS algorithm is not possible due to the

lack of finite variance of the interference.

Ezample 7.3

Considering the same signals as those in Example 7.2, we apply the
AIM method based on NLMS algorithm. The averaged error curves
between the SOI and the system outputs obtained by the NLMS-based
AIM method are illustrated in Fig. 7.5 when the interference distribution
is of & = 2, 1.75, 1.5, and 1.2. Note that M = 4, u = 0.075 and § = 3.5.

Surprisingly, the AIM method based on the NLMS algorithm shows
consistently good performance even when the value of « is less than two.
Since it becomes optimal (in MMSE sense) when & = 2 and mitigates
impulsive interferences very effectively, the AIM method based on the
NLMS algorithm looks promising for SaS distribution processes even
though its usual statistical performance analysis is not possible.

Now let us investigate the performance of the NLMS-based AIM
algorithm for mitigating SaS interferences when the number of filter tabs
is overestimated. When the characteristic exponent is 1.75 or 1.5, Fig. 7.6
illustrates the averaged error curves {enims(k) — s(k)} between the SOI
and the system outputs obtained by the AIM methods based on the
NLMS algorithm. The overestimated number of filter tabs is M = 8
or M = 12. For the NLMS algorithm with M = 8 the parameters are
chosen as g = 0.105 and § = 3.5. For M = 12, the parameters are
chosen as g = 0.145 and 8 = 3.5. Comparison between the results in
Fig. 7.5 and Fig. 7.6 indicates that as the overestimated number of filter
tabs increases, its performance only slightly deteriorates in the sense that
the averaged errors increase just a little bit. We can conclude that the

utilization of the NLMS algorithm is practical and appropriate to cancel
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Figure 7.5: Averaged error curves {enims(k) — s(k)} between the SOI and
the outputs obtained by the AIM method based on the normalized LMS
algorithm (M = 4) when the interference has SaS distribution with (a)
a=2,(b) a=1.75, (c) a=1.5,and (d) o =1.2.
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Figure 7.6: Averaged error curves {enims(k) —s(k)} between the SOI and
the outputs obtained by the AIM method based on the normalized LMS
algorithm when (a-1) @ = 1.75 and M = 8, (a-2) @ = 1.5 and M = 8§,
(b-1) @ =1.75 and M = 12, and (b-2) o =1.5 and M = 12.
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impulsive interferences based on the facts that it can effectively mitigate
interferences which are highly impulsive and that it still performs well

with overestimated numbers of filter tabs.

7.3.3 AIM Method Based on LMP Algorithm

Suppose that the interference has a SaS distribution with 1 < a < 2
and that the value of « is known in advance. Since the MMSE criterion
is not available, the minimum dispersion criterion can be considered as
a natural and mathematically meaningful choice for a measure of opti-
mality in stable signal processing. What we would like to do is to adjust
the filter coefficients so that the dispersion of the system output {e(k)}

is minimized. Thus, the cost function is given by

M-1
J = lle®) lla=llz(k) = 3 hm(k) 2m (k) lla (7.21)
=0
where || - ||o is defined in (7.10). This cost function is quite intractable

in general. So, we can use an equivalent cost function given by

M-1
J=E{|z(k) = ) hm(k) zm(K) "} (7.22)

m=0
where 1 < p < a. Using the given equivalent cost function, we can obtain
a stochastic gradient method to adjust the filter coefficients in a similar
way as the LMS algorithm does. The algorithm is called the least mean
p—norm (LMP) [Shao and Nikias, 1993]. When we fix p, the tap weight

update equation is of the following form
Himp(k + 1) = Himp(K) + p2(k) |emp(k) P~" sign(emp(k)) (7.23)

where Hjmp(k) is the adaptive filter coefficient vector and p > 0 is the
step size. The adaptive filter output is obtained by

Yimp (k) = H}I;np(k) Z(k) (724)
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and the system output is given by

€lmp (k) = z(k) - Yimp (k) (7.25)
The disadvantages of the LMP-based AIM method are:

e The value of « for the interference (reference signal) must be known

or estimated in advance.

e The computational burden may be heavy to calculate | ejmp (k) [P~
with1<p<a.

Ezample 7.4

Considering the same signals as those in Example 7.2, we apply the
AIM method based on LMP algorithm. The averaged error curves be-
tween the SOI and the system outputs obtained by the LMP-based AIM
method (M = 4 and g = 0.0075) are illustrated in Fig. 7.7 when the char-
acteristic exponent of the interference @ = 2, 1.75, 1.5, and 1.2. Note
that the update equation (7.22) is calculated using p = o — 0.05.

When the value of a decreases, the performance of the AIM method
based on the LMP algorithm deteriorates. When a = 1.5 and 1.2, the
error curves contain some enlarged outliers rather than reducing impul-
sive interferences. Although its performance is better than that of the
AIM method based on the LMS algorithm, the AIM method based on
the LMP algorithm cannot be used for mitigating impulsive interferences
with a small value of o.

Fig. 7.8 demonstrates the performance of the LMP algorithm when
the number of filter tabs are overestimated as M = 8 and M = 12. The

corresponding step size parameters are p = 0.007 and 0.006, respectively.
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Figure 7.7: Averaged error curves {€,,(k) — s(k)} between the SOI and
the outputs obtained by the AIM method based on the LMP algorithm
(M = 4) when the interference has SaS distribution with (a) @ =2, (b)
a =175, (c) = 1.5, and (d) a = 1.2.
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(b-1) (b-2)

Figure 7.8: Averaged error curves {€imp(k) — s(k)} between the SOI and
the outputs obtained by the AIM method based on the LMP algorithm
when (a-1) @ = 1.75 and M = 8, (a-2) @ = 1.5 and M = 8, (b-1)
a=1.75and M =12, and (b-2) a = 1.5 and M = 12.
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As the overestimated number of filter tabs increases, the performance of
the LMP algorithm slightly deteriorates in the sense that the averaged
errors increase and that the error curves are smoothed (slow convergence

due to impulsive signals).

7.3.4 AIM Method Based on NLMP Algorithm

Recently, a variation of the LMP algorithm has been suggested with
the motivation of the NLMS [Arikan et al., 1994], which is called the
normalized LMP (NLMP) algorithm using the following update equation

| entmsp () [t sign( entmp(K) )
lz(k) |5 + B

Huimp (k+1) = Hoimp (k) +4 z(k) (7.26a)

where

M 1/p
|2 (k) [l,= (E | zm (k) I”) (7.26b)

m=0

and 3, u > 0 are appropriately chosen update parameters. The parame-
ter (3 is used to avoid excessively large updates in case of an occasionally
small filter tap inputs. Note that p should be less than the value of a.
When p = 2, the NLMP algorithm becomes the NLMS algorithm. Again,
we must know or estimate, in advance, the value of « for the interference.

The disadvantages of the NLMP-based AIM method share those of
the LMP-based AIM method. In addition, it requires additional compu-

tational burden to compute ||z (k) ||3-

Example 7.5

Considering the same signal environments as in the previous exam-
ples, we apply the AIM method based on NLMP algorithm. The averaged
error curves {enimp(k) — s(k)} between the SOI and the system outputs
obtained by the NLMP-based AIM method (M = 4, p = 0.075, and
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B = 3.5) are shown in Fig. 7.9 when the interference distribution is of
a=2,1.75, 1.5, and 1.2. Note that p = o — 0.05 has been used for the

update equation.
Note that the performance of the AIM method based on the NLMP

algorithm is very similar to that of the AIM method based on the NLMS
algorithm. When a = 1.5 and 1.2, the latter AIM method performs
better than the former one in the sense of smaller errors after convergence.
Moreover, in spite of its similar performance, the AIM method based on
the NLMP algorithm is less attractive than the AIM method based on
the NLMS algorithm. This is due to facts that the value of @ must be
known or estimated in advance and that the computational complex is
much heavier because of non-integer values of p < a. The computational
complexity will be considered later.

Now, consider overestimated numbers of filter tabs: M =8 and M =

ofk)- s()

ol-sK)

time (k)
(©)

Figure 7.9: Averaged error curves {eaimp(k) —s(k)} between the SOI and
the outputs obtained by the AIM method based on the normalized LMP
algorithm (M = 4) when the interference has SaS distribution with (a)
a=2, (b) a=1.75,(c) a=1.5,and (d) o =1.2.
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Figure 7.10: Averaged error curves {enimp(k) — s(k)} between the SOI
and the outputs obtained by the AIM method based on the normalized
LMP algorithm when (a-1) @ = 1.75 and M = 8, (a-2) @ = 1.5 and
M =38, (b-1) a=1.75 and M = 12, and (b-2) @ = 1.5 and M = 12.

12. Fig. 7.10 illustrates the performance of the NLMP algorithm with
M = 8, p = 0.105, and 8 = 3.5 when the characteristic exponent of
the impulsive interferences is 1.75 or 1.5. Its performance with M = 12,
p = 0.145, and 8 = 3.5 is also given in Fig. 7.10. Again, we can observe
that its performance with overestimated filter tabs deteriorates as much
as that of the NLMS-based AIM method shown in Fig. 7.6. Note that
the performance of the latter algorithm is still better than that of the

former one.

7.3.5 AIM Method Based on LMAD Algorithm

When p = 1, the LMP algorithm will be called the least mean ab-
solute deviation (LMAD) algorithm [Shao and Nikias, 1993]. Note that
the LMAD algorithm is actually the familiar signed LMS algorithm (pi-
lot LMS, signed error, or sign algorithm) [Clarkson, 1993]. The adaptive



7.3. AIM METHODS FOR SaS IN TERFERENCES 225

filter update equation based on the LMAD algorithm is given by
Himad (k + 1) = Hlmad(k) + p z(k) Sign( €lmad (k) ) (727)

where Hjnqq(k) is the adaptive filter coefficient vector and p > 0 is
the step size. The LMAD algorithm is simpler than the LMS algorithm
because of the “sign” operator on the system output. Note that a sign
algorithm usually suffers from slow convergence rate. Another advantage
of the LMAD-based AIM method is that it is not necessary to estimate
or know the characteristic exponent of the interferences. The LMAD
algorithm is useful when the true value of the characteristic exponent o
is sure to be greater than unity, but either exactly unknown or varying

in time.

Ezample 7.6

Let us apply the AIM method based on LMAD algorithm to the
problem in the previous examples. The averaged error curves between
the SOI and the system outputs obtained by the AIM method using
LMAD algorithm are shown in Fig. 7.11 when a = 2, 1.75, 1.5, and 1.2.
The number of filter tap is fixed at four and the step size parameter is
p© = 0.0075.

Although its implementation is simpler and its performance is better
than the AIM method based on the LMS algorithm, the AIM method
based on the LMAD algorithm is not promising for SaS interference
mitigation because the error curves still contains large values. Compared
with the performance of the aforementioned normalized algorithms, its
performance is not good enough. That means the LMAD-based AIM
method cannot effectively mitigate SaS impulsive interferences. This

phenomenon becomes more severe as the value of a decreases.
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Figure 7.11: Averaged error curves {€j,q4(k)—s(k)} between the SOI and
the outputs obtained by the AIM method based on the LMAD algorithm
(M = 4) when the interference has SaS distribution with (a) a = 2, (b)
a=1.75, (c) a=1.5,and (d) a=1.2.
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Figure 7.12: Averaged error curves {€jq4(k)—s(k)} between the SOI and
the outputs obtained by the AIM method based on the LMAD algorithm
when (a-1) @ = 1.75 and M = 8, (a-2) « = 1.5 and M = 8, (b-1)
a=175and M =12, and (b-2) @ =1.5and M = 12.
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Let us consider the performance of the LMAD algorithm with over-
estimated number of filter tabs as before. Again, two different numbers
of filter tabs are considered: M = 8 and M = 12. The corresponding
step size parameters are g = 0.00875 and p = 0.0095, respectively. The
performance of the LMAD-based AIM method with the filter tabs is
shown in Fig. 7.12 when the characteristic exponent of the impulsive in-
terferences are 1.75 and 1.5. The results given in Fig. 7.11 and Fig. 7.12
indicate that the performance of the LMAD algorithm is not greatly af-
fected by the number of filter tabs and that an overestimated filter tabs
causes slightly enlarged and smoothed error curves (slow cancellation of

impulsive signals).

7.3.6 AIM Method Based on NLMAD Algorithm

When p = 1, the NLMP algorithm becomes the normalized LMAD
(NLMAD) algorithm [Arikan et al., 1994]. The adaptive filter update
equation based on the NLMAD algorithm is
sign( entmad (k) )

z(K) [l + B
where Hyimed(k) is the adaptive filter coefficient vector and p > 0 is
the step size. Again, the NLMAD algorithm can be utilized when the

anmnd (k + 1) = Hnlmad (k) + 143

2(k) (7.28)

true value of the characteristic exponent « is either exactly unknown
or varying in time (assuming o > 1). The advantages of the NLMAD

algorithm are:

e Its computational complexity is lower than that of the previous
other normalized algorithms because of the sign operator and the

use of L! norm.

e The estimation or a priori knowledge of the characteristic exponent

of the interferences is not necessary.
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Ezxample 7.7

Applying the AIM method based on NLMAD algorithm to the same
problem as that in Example 7.2, the averaged error curves {enimad(k) —
s(k)} between the SOI and the system outputs obtained by the NLMAD-
based AIM method are shown in Fig. 7.13, when a = 2, 1.75, 1.5, and
1.2. The number of filter tabs is four. The parameters z and f are given
as 0.075 and 1.5, respectively.

Fig. 7.13 illustrates that the normalization procedure inherent in the
NLMAD algorithm clearly improves its performance. Compared with the
results obtained from the AIM methods based on the LMAD algorithm,
this improved performance can be observed when the value of « is 1.5
and 1.2 (see Fig. 7.13 (c) and (d)). We can notice, however, that its

performance does not improve much when = 2 and 1.75. Although

k) k)

00 400
time (k)
(d)

Figure 7.13: Averaged error curves {€nimad(k) — s(k)} between the SOI
and the outputs obtained by the AIM method based on the normalized
LMAD algorithm (M = 4) when the interference has SaS distribution
with (a) @ =2, (b) @ = 1.75, (c) @ = 1.5, and (d) a = 1.2.
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Figure 7.14: Averaged error curves {eaimqd(k) — s(k)} between the SOI
and the outputs obtained by the AIM method based on the normalized
LMAD algorithm when (a-1) @ = 1.75 and M = 8, (a-2) a = 1.5 and
M =8, (b-1) a=1.75and M =12, and (b-2) @ = 1.5 and M = 12.

the NLMAD algorithm is computationally simpler and faster than the
NLMS algorithm, its performance for impulsive interferences with all the
values of « is not as good as that of the latter algorithm. When the value
of a is 2 or 1.75, its errors are larger. When o = 1.5 or 1.2, it cannot
effectively mitigate impulsive components of the interferences.

When the number of tabs is overestimated, Fig. 7.14 shows the perfor-
mance of the NLMAD-based AIM method when a = 1.75 or 1.5. When
the number of tabs is M = 8, the parameters for the update equation
are u = 0.085 and # = 1.5. When M = 12, they are fixed at 0.105 and
1.5, respectively. From Fig. 7.14, we can observe that the overestimated
number of filter tabs causes slight performance deterioration. Based on
the results obtained all the normalized algorithms, we can conclude that
an overestimated number of filter tabs does not greatly degrade their

performance.
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7.3.7 AIM Method Based on Clipped LMS Algorithm

A modification of the LMAD algorithm is so called clipped LMS
(CLMS) algorithm (or signed regressor) [Clarkson, 1993] described by

Heims(k + 1) = Heyms (k) + psign(z(k) ) ecims (k) (7.29)

where Hi, (k) is the adaptive filter coefficient vector and g > 0 is the
step size. The only difference between the CLMS algorithm and the
LMAD algorithm is that the “sign” operator is applied on the tap input
vector instead on the system output. The system output is given by

ecims (k) = z(k) — HY, (k) z(k). (7.30)

clms

Ezample 7.8

Considering the same signal environment as in the previous examples,
we apply the AIM method based on CLMS algorithm. The averaged
error curves {e.ms(k) — s(k)} between the SOI and the system outputs
obtained by the CLMS-based AIM method (M = 4 and p = 0.0075) are
shown in Fig. 7.15 when a = 2, 1.75, 1.5, and 1.2.

When o = 2, the AIM method based on the CLMS algorithm con-
verges faster and has smaller errors than the LMAD algorithm. On the
other hand, when a = 1.5 and 1.2, the performance of the CLMS algo-
rithm is very poor. Although it is simpler than the LMAD algorithm,
the AIM method based on the CLMS algorithm cannot be utilized to
cancel SaS interferences.

Fig. 7.16 shows the performance of the CLMS-based AIM methods
with the overestimated numbers of filter tabs: M = 8 or 12. The corre-

sponding step size parameters for the update equation are respectively
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Figure 7.15: Averaged error curves {€ecms (k) —s(k)} between the SOI and
the outputs obtained by the AIM method based on the CLMS algorithm
(M = 4) when the interference has SaS distribution with (a) a = 2, (b)
a=1.75, (c) a=1.5,and (d) a=1.2.
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Figure 7.16: Averaged error curves {€cims(k)—s(k)} between the SOI and
the outputs obtained by the AIM method based on the CLMS algorithm
when (a-1) @ = 1.75 and M = 8, (a-2) « = 1.5 and M = 8, (b-1)
a=1.75and M =12, and (b-2) a=1.5and M = 12.
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fixed at 0.00775 and 0.0075. As we can observe from Fig. 7.16, an overes-
timated number of tabs may cause very severe performance degradation.
This phenomenon becomes more severe as the number of filter tabs in-

creases.

7.3.8 AIM Method Based on ZFLMS Algorithm

The simplest LMS-type algorithm is the zero—forcing LMS (ZFLMS)
algorithm (or sign-sign algorithm) given by [Clarkson, 1993]

H. fims (k + 1) = Hafims () + psign(z(k) ) sign(ezpma(k))  (7.31)

where H. fims(k) is the adaptive filter coefficient vector and p > 0 is the
step size. Note that the “sign” operator is applied to both the filter tap
input vector and the system output. When we consider the AIM method
based on the ZFLMS algorithm, the system output is given by

ez fims (k) = 2(k) = H] 1y, () 2(k). (7.32)

The major disadvantages of the ZFLMS algorithm is its slow convergence

and large excess errors.

Ezample 7.9

Considering the same signal environment as in the previous examples,
we apply the AIM method based on ZFLMS algorithm. The averaged
error curves {€,ims(k) — s(k)} between the SOI and the system outputs
obtained by the ZFLMS-based AIM method (M =4 and g = 0.025) are
shown in Fig. 7.17 when a = 2, 1.75, 1.5, and 1.2.

When a = 2 and 1.75, the AIM method based on ZFLMS algorithm

suffers from slow convergence rate and large excess errors. However, for a
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Figure 7.17: Averaged error curves {e;fims(k) — s(k)} between the SOI
and the outputs obtained by the AIM method based on the ZFLMS
algorithm (M = 4) when the interference has SaS distribution with (a)
a=2,(b) a=1.75, (c) a=1.5, and (d) o =1.2.

smaller values of , its performance is similar to that of the NLMS algo-
rithm. When the interference becomes very impulsive, utilization of the
ZFLMS algorithm should be considered due to its simple structure and
better performance than the other algorithms using the sign operator.

As before, let us consider the performance of the ZFLMS algorithm
with the overestimated numbers of filter tabs: M = 8 or 12. The corre-
sponding step size parameters are respectively given as y = 0.0235 and
0.0225. Then, Fig. 7.18 illustrates its performance when the characteris-
tic exponent is 1.75 or 1.5. We can observe that an overestimated number
of filter tabs results in slight performance deterioration. However, it is in-
teresting observation that its performance with overestimated filter tabs
does not deteriorate as much as that of the CLMS algorithm and that
overestimated filter tabs does not cause smoothed error curves as much
as in the LMAD algorithm.
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Figure 7.18: Error curves {e.fims(k) — s(k)} between the SOI and the
outputs obtained by the AIM method based on the ZFLMS algorithm
when (a-1) @ = 1.75 and M = 8, (a-2) @ = 1.5 and M = 8, (b-1)
a=1.75and M =12, and (b-2) a =1.5and M = 12.

7.3.9 Algorithmic Assessments

The algorithmic description and the computational complexity of
each AIM method for mitigating a SaS interference are summarized in
Table 7.1. The computational complexity of each algorithm is consid-
ered as the required number of multiplications per iteration (M/I) when
the number of filter tabs is M. Note that the number of M/I of each
algorithm is the sum of the number of M/I for filter update equation
(algorithm description in Table 7.1) and the number of M/I for system
output which is M. We also assume that there is no multiplication re-
quired for obtaining the multiplication between a signed value (sign(-))
and a scalar (or vector), because the sign of the corresponding scalar (or
vector) is only changed. Even though there may be many other methods

for computing it, the value of a®, where a > 0 and |b|< oo, is assumed
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to be calculated using the following exponential series:

bl 2 bl 3
(bloga)? | (bloga)®

ab=1+bloga+ o1 3l ]

(7.33)

for the computational burden of the LMP and NLMP algorithms. To
calculate (7.33) another series expansion may be needed to calculate the
value of logarithm, but let us assume, for simplicity, that logarithm val-
ues are not required any multiplications by looking up a logarithm table
rather than using a series expansion. Then, when the value of a® is as-
sumed here to be approximated using order up to three, the required
number of multiplications becomes seven. The higher orders of the ex-
pansion are used, the more accurate value can be obtained, but the more
number of multiplications is required. Also note that (7.33) is considered
only for figuring out the required computational complexity of the LMP
and the NLMP algorithms. The expansion (7.33) was not used in the
examples of the LMP and the NLMP algorithms to calculate the corre-
sponding values. Since all the results in the examples are obtained by
using the MATLAB version 4.1, all the values of a® are calculated by the
algorithm provided in the MATLAB.

7.4 Summary

We have briefly reviewed the SaS distributions that can be consid-
ered as useful tools to describe impulsive interferences. Sa distributions
have some very important properties such as the stability property and
generalized central limit theorem. However, since variances of the SaS
processes (a < 2) are not finite, the usual second-order statistics—based
analysis or algorithmic development is inappropriate. Instead of variance,
the fractional lower order moments (FLOM), which are all moments of

order less than a < 2, should be used.



7.4. SUMMARY 237

In this chapter, we assumed that the interference to be mitigated is
characterized by the SaS distributions. Some of described AIM meth-
ods are based on FLOM criteria and the rest on the LMS algorithm or
its modifications, which are derived from second-order statistics. Al-
though usual statistical analysis of the LMS-based methods is not possi-
ble, LMS—type methods can be utilized for SaS processes due to the fact
that the LMS algorithm uses an instant gradient estimate.
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Appendix A

Derivatives of ¢ (v,¢z )

Letting € = z(k) — Hu(k), of = HM(k)H7, and f,, =

define the function ¢ as

C = exp{_fﬂ,ek }

v—cy)?

, We

(A.1)

Note that the function € is used without variables v and ¢ for simplicity.

Then, the first derivative of  with respect to v is given by

(W = — ) exp{~fi,e, }

= - flg}c)kC'
where o

150 = g fo
forn=1,2,3,.... Its second derivative becomes

¢@ =_ ¢ 5 ),

v,k v,k
And, the third derivative of the function { becomes

(Pl e M ~ FRLEW - Bl
— £ ¢ —2f@ W) _ 1) @),

ek

I

(A.2a)

(A.2b)

(A.3)

(A.4)
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Its fourth derivative is given by

¢4 = 3:‘{]* ff-c)kc(l) 2f(3) o . 2f(2) ¢ — ‘E'?)kc(ﬂ) ftg‘l)kcwl
= — f0¢ -3 cW 35 (@ — 1) ¢, (A.5)

And, the fifth derivative of the function { becomes

¢®) = 5’5[}& 4) C(l) 3 f(‘i) ¢ — 53‘{)*((2) 3 fflc(ﬂ
3ﬁ2d”—ﬁﬂd”—ﬁg&”

= = f8.¢ - 4580 — 6580,¢™ — 45 (¥ - ¢, (A6)
In general, the n—th order derivatives of ¢ can be represented by

= Zal 749 ¢l forn=1,2,3,... (A7)

where ¢(®) = ¢ and the coefficients {a;, i = 1,2,...,n} are the constant
coefficients of the binomial expansion (z + 1)*~!. Since f,g:‘cl = 0 for
n > 3, the representation of general n—th derivatives of ¢ in (A.7) can be

of the following recursive form:

¢ = = fGAY — (n— 1) £
(U — Ek) C(n—l) ( )c(n 2) (Asa)
o o}
where
0, n<0
¢ ={ ¢, n=0 (A.8b)
-g%,?, n> 1.

In stead of the recursive form, each n-th order derivative of { with

respect to v can be represented as follows

§ m+1

ﬂ(m} U—E€ ['" )
¢y —*—5(-(%—1—, for n = 2m
n i=1 %k
i A (A.9)
dv mHL ) e
C Z .:'m(,f,} e — forn=2m+1
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where m is a nonnegative integer. The coefficients {agm), 1<i<m+1}

and {b‘(m}, 1 < i < m+ 1} are constants with af:'_zl =1 and bf:'_gl = -1

There seems, unfortunately, no explicit relationship either between asm‘]
and ag-m’) or between bE"“’ and b_s-m’) for any m; and m,. After expanding
each term, these coefficients can be obtained. The coefficients {aE“‘}} and

{bE“ﬂ} for m=0,1,2,3,4,5 can be obtained by

LT
[_111]T1
T
m) — ) [3,-6,1]",
2 ] [-15,45,-15,1]7,
[ 105, —420, 210, —28,1]7 ,
[ [ —945,4725, —3150, 630, —45,1]7

(A.10a)

f [_I]Tl m
[3,-1]7, m
[-15,10,-1]7, m
m

m

m

pm) — (A.10b)

[ 105, -105,21,—1]7,
[ —945, 1260, —378,36, —1]7,
| [ 10395, —17325,6930, —990,55,—1]7,

I
S N

where a(™) and b(™) are corresponding coefficient vectors given by

m m m T
a(m) — [ag ),a;(; )’.”’a( }l]
(A.lOC)

b = (4,857, 80, ]
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Appendix B

Derivations of p; (¢ )

For the expression of the nonlinear function {px(ex)} given in (6.41),
its denominator and numerator have to be obtained. Since the denomi-
nator of {px(ex)} is the same as f( z(k) | X ) given in (6.40), what has
to be obtained is the expression of the numerator of {pk(ex)} that is
the derivative of the denominator with respect to {z(k)} (or {ex}). Let
N{(ex) be the numerator of {pr(ex)}. Then, it becomes

NE(e(k)) = g5 /(=) | Xk = 1)
1 @ r(2aH) g

[€n(1,0) + &a(-1,60) | (B.12)

b3

O

where

En(E1, &) = a%c(“)(ﬂ, €t)- (B.1b)

The expression of ((2®)(+1, ¢) is given in (A.9). Using the expression,
the function &,(+£1, ¢x) becomes
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ntl ()41 _ ¢ )26-1)
Endl ) = (Ml e) ) = : z(n+l-€_k1))
i=1 ak

) E a{™ (£1 — ¢)20-1)

+1,€ex) — : . (B.2
+ C( k) e oo o_z[n-[n—l) ( )
Using (A.2a), it can be rewritten as
n+l a(“} +1 — )21
falL, @) = (L, &) [Z e
i=1 O
_ "f 2(i — 1)a{™ (1 — )23 (B3)

o_:{n-l-l'— 1)

=2

with the coefficients {agn), 1 < i < n+1} given in Appendix A. Using this
expression of the numerator and the denominator expression in (6.40),

the nonlinear function {pg( €x )} becomes

 2g/®) | X(k-1))
F(=® X (k1))

iﬂ{‘_&:ﬂ_;))ﬁ [Eﬂ(ls fk) + Eﬂ(_ls Ek) ]
= n=0
Zﬂ%}a:'_:gﬁi [C(zﬂ)(l’ﬁk) = C(?n}(_l, €x) ]

n=0

>

Pr(€k)

(B.4)

where ¢ = z(k) —Hiu(k). The expressions of C(Q“)(:]:I, €r) and &n(£1, €x)
are given in (A.9) and (B.3), respectively.
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