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Abstract

New methods for parameter estimation and blind system identification for im-
pulsive signal environments are presented. The data are modeled as stable processes.
First, methods for estimating the parameters (characteristic exponent and disper-
sion) of a symmetric stable distribution are presented. The fractional lower-order
moments, both positive and negative order, and their applications are introduced.
Then a new algorithm for blind channel identification based on fractional lower-order
moments is proposed. Alpha-Spectrum, a spectral representation for impulsive en-
vironments, is developed. Conditions for blind identifiability of non-minimum phase
FIR channels are established using the properties of the Alpha-Spectrum.



1 Introduction

The statistical signal processing framework is incomplete without the study on a-stable
(0 < a < 2) distributions. By the Generalized Central Limit Theorem, they are the
only class of distributions that can be the limiting distributions for sums of i.i.d random
variables. Familiar members of the family are Gaussian (a = 2) and Cauchy (a = 1) dis-
tributions. Many signal /noise processes are impulsive in nature and can be best modeled
as a-stable processes [Shao and Nikias, 1993] . Unlike most statistical models, a-stable
distributions (except Gaussian) have infinite second- or higher-order moments. With
this unique property, many fundamental theories in signal processing have to be modi-
fied. For a comprehensive introduction of a-stable distributions and their applications to
signal processing, see the first engineering textbook by Nikias and Shao [1995] and the
references therein. When all the second- and higher-order statistics fail for the impulsive
environments, an alternative tool that is robust against outliers is the fractional lower-
order moments (FLOM). It is known that the p'* order FLOM for a symmetric a-stable
(SaS ) random variable is finite for 0 < p < a. [Samorodnitsky and Taqqu, 1994].

Most algorithms for blind identification of a finite impulse response (FIR) channel with
non-Gaussian input are based on second- or higher-order statistics [Nikias and Petropulu,
1993]. However, the theoretical basis of higher-order moment estimators is the asymptotic
normality [Van Ness, 1966] , i.e., the estimation error has a normal distribution. When the
input is impulsive in nature and modeled as a-stable process, the asymptotic normality
of higher-order moment estimators no longer holds. Therefore, fractional lower-order
statistics are the most appropriate tools for analysis. In the first part of the paper,
we present several new algorithms for parameter estimation from both independent and
dependent data time series. In the second part, we propose a robust blind identification
method based on a new spectral representation for impulsive environments: a-Spectrum,

which is completely determined by the output covariations and characteristic exponent c.
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With a-Spectrum, we prove the blind identifiability of any FIR channel (mixed-phase in
general, with unknown order) driven by white Sa.S' (o > 1) processes. Simulation results

for both deterministic and stochastic signals are presented.

2 Estimation of Characteristic Exponent and Dis-
persion

The most important parameters of a Sa.S distribution are characteristic exponent a and
dispersion v. Several estimation methods have been introduced in the literature [Fama
and Roll, 1968; DuMouchel, 1971; McCulloch, 1986; Brorsen, 1990]. We present an

alternative method based on the negative-order moment concept.

2.1 Fractional Lower-Order Moments: Positive-Order and Negative-
Order

It is known that a real non-Gaussian SaS random variable X with zero location param-

eter, has finite fractional lower-order moment [Zolotarev, 1986:

E(|X[?) = Ci(p,a)y”®, for 0 < p < a, (1)
e\ M (1-p/a . . .
where Cy(p, ) = QPF\(/;'JF{{F_(;M?;‘( ).« is the characteristic exponent (0 < a < 2), v is the

dispersion and I'(-) is the Gamma function.
Our analysis shows that finite E(|X|?) also exists for p < 0. The proof is straightfor-

ward. Assume X is a real SaS random variable with p.d.f:
1 [o's]
fx(z) = —/ cos(wz) exp(—yw?)dw. (2)
7 Jo

Define a new random variable Y = | X|; the p.d.f for Y is:

o

fr(y) =2fx(y) = 3] cos(wy) exp(—yw*)dw,0 < y < oco. (3)
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From the definition, we have:

E(|X[") = / = f ” 4P cos(wy)dy) exp(—yw* ) dow. (4)

The following identities can be used to establish the existence of the negative-order mo-

ments:
® s i o
/0 z? cos(ax)dz = ap+lr(l —}-p)sm( 5 ) fora>0,-1<p<0, (5)
and
o0 1
f a" ! exp(—pz®)da = I—a—l,u'”f“[’(u/a), for Re p > 0,Re v > 0. (6)
0
Then, we have
o0 ['(p+1) . @p
[0 yP cos(wy)dy = — (wp“ ) sm(?), forw>0,-1<p<0, (7)
and
/ w P exp(—yw®)dw = éf}/p"r“[‘(—p/a), for v > 0,p < 0. (8)
0
Therefore,
2
E(|X]") = ——'7”“[‘(37 +1)I(—=p/a)sin(pr/2)

2”‘” )L (=p/)
ay/nl(=p/2)

Together with the positive order moments, we have:

~Pl% for —1<p<0. (9)

E(|X[P) = Ci(p,a)y*/®, for —1 < p< a. (10)

When X is an n dimensional spherically symmetric SaS random variable, a similar

expression 1s:
L&) —2
B(XP) = r 2 e)
r'(1-3)r()

2

APl for —n<p<a. (11)



Order of Moment | p=-0.5 | p=-0.25 | p=0.25 | p=1.0
(-l<p<a=15)
Computed (E{|X[?}) | 1.425 | 1.1078 | 0.997 | 1.7055
Estimate of E(|X|?) with n samples

n=100 1.4291 | 1.1062 | 1.0062 | 1.5141
n=1000 1.3213 | 1.0816 | 1.0168 | 1.7463
n=10000 1.4155 | 1.1055 | 0.9988 | 1.7297

n=100000 1.4334 | 1.108 0.9977 | 1.6696
n=1000000 1.424 | 1.1077 | 0.9972 | 1.7797

Table 1: Comparison of theoretical values of E(|X|?) and simulations.

Especially, when X is an isotropic bivariate Sa.S random variable, we have:

E(|X[) = Co(p,an™*, for —2<p<a, (12)

B\(1-2 . .
where Cy(p,a) = 2”50—?‘[‘1)—?%——“17”“. The simplest yet most important complex SaS

random variables are isotropic bivariate.
Table (1) shows simulation results that compare estimated moments (of positive and

negative orders) with the theoretical ones generated by Eq.(10). The estimate of E(|X|?)
iy loil?

T

is
An immediate application of the negative-order moments is for estimating the char-
acteristic exponent a and the dispersion v of SaS random processes. Assuming X is a
real SaS random variable, with zero location parameter, then its positive order FLOM

is given by
E(|X[?) = Cy(p, a)y"*, for 0 < p < a. (13)

and its negative order I'LOM is given by

E(|X]?) = Ci(g,a)y"/?, for —1 < ¢<0. (14)
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Number of p=01 p=0.2 p=10.5
Samples & A a A & ~
1000 1.0038 1.0050 1.0042 1.0045 1.0085 1.0115
(0.0463) (0.0590) | (0.0488) (0.0612) | (0.0712) (0.1064)
2000 1.0033 1.0046 1.0016 1.0058 1.0077 1.0082
(0.0343) (0.0411) | (0.0353) (0.0427) | (0.0523) (0.0787)
5000 0.9997 1.0021 0.9994 1.0015 1.0029 1.0057

(0.0210)  (0.0259) | (0.0227) (0.0268) | (0.0354) (0.0531)

Table 2: New estimator performance (true a = 1,7 = 1).

Choosing p = —q (since —1 < ¢ < 0, then 0 < p < min(e, 1) such that both positive- and

negative-order moments are finite), then we have:

; i 2tan(pm/2
B(|XP)B(X|7) = Zoa T2, (19)
asin(pr/a)
i.e., a can be found by the solving the following sinc function equation:
7 in( & 2% 2
sinc(E) ) an(pr/2) ,0 < p < min(e, 1). (16)

o)~ (®) T prE(XP)E(X])

The above equation does not involve 4. Once « is estimated, 4 can obtained from Eq.(1):

_ E(|X|p))°“’
1= (Cl(p': Of) . (1?)

Table (2) illustrates the average and standard deviation values (in parentheses) of Monte-

Carlo simulation results based on the proposed estimator. We generated different numbers
of samples from a standard (zero location parameter, unit dispersion) SaS random num-
ber generator. The experiment was repeated independently 1000 times. Values of order
p were chosen to be 0.1, 0.2 and 0.5, respectively.

Results in Table (2) suggest that the order of moments p should be kept small to

achieve better performance. The asymptotic property of the proposed estimator is shown
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NS 200 500 1000 | 2000 | 5000 | 10000 | 25000 | 50000
& | 1.5852 | 1.5284 | L5132 | 1.5049 | 1.5027 | 1.5009 | 1.5009 | 1.50126
(0.3274) | (0.1735) | (0.1257) | (0.0849) | (0.0536) | (0.0406) | (0.0234) | (0.0167)
% | 1.0703 | 1.0252 | 1.010L | 1.0076 | 1.0023 | 1.0014 | 1.0008 | 1.0005
(0.3012) | (0.1325) | (0.1014) | (0.0669) | (0.0423) | (0.0300) | (0.0176) | (0.0133)

Table 3: Asymptotic property of the new estimator (true @ = 1.5,y = 1.0, order p = 0.2.)

in Table (3), where the true value of a is 1.5 and p is fixed at 0.2. The number of samples
(NS) ranges from 200 to 50000. Fig.(1) shows the average and standard deviation values
of both characteristic exponent and dispersion versus the number of samples used in the

simulations.

2.2 Parameter Estimation with log|SaS| process

Assuming X is a real Sa.S random variable, recall that its p'*-order moment is E{| X |} =

Ci(p, @)y?/*,¥p : —1 < p < a, We can rewrite E(|X|?) as E(e?*8!X1), (note that log | X|

is bounded because the p.d.fof X: f(x) is bounded at @ = 0, i.e., the probability of z = 0

is 0). Define a new random variable Y = log | X|, therefore:

E(|X[) = E(e*H]) = E(e™). (18)

Notice the last term in the above equation E(e?") is the moment-generating function of

Y. We can expand it into a power series:

=) L
E(ePY) Z Y;“ L (19)
k=0
On the other hand,
E(e’) = Ci(p, a)'y*’f"}Vp —l<p<a. (20)
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Figure 1: Estimates of the parameters v.s. number of samples. (a). Average of & over
1000 realizations with true o = 1.5. (b). Standard deviation of & over 1000 realizations.
(c). Average of 4 over 1000 realizations with true y = 1. (d). Standard deviation of %
over 1000 realizations.
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Therefore, moments of Y of any order must be finite and they satisfy:
dk 1 Y
B(Y") = 2% (C1(p, )7 |p=o- (21)
Simplifying the above equation, we have:
BY)=C.(L-1)+110 (22)
T % G bl i}

where C. = 0.57721566 -- - is the Euler constant, « is the characteristic exponent, v is

the dispersion, and

Var(Y) = E{(Y — E{Y})g} = % (é + %) 3 (23)
B{(Y - B{Y})’} = 2() (55 -1), (24)

where ((-) is the Riemann Zeta function, and ((3) is a constant: ¢((3) = 1.2020569 - - -
Also,

_ SNV — fcrc il
BBV }=n (20054 * 12a2 T 940

The higher-order moments of Y always exist and from the second-order moment and

3 1 19 ) (25)

above, the equations only involve a. This property provides a simple method to estimate
the parameters o and 7 of a SaS random process. Since we can estimate the mean and

variance of Y by:

Za—*l &2’ Z (; _)
N N-1

where N is the number of samples and Y; are i.i.d observations, then by solving Eq.(23), we

V= (26)
can obtain an estimate of a and substitute into Eq.(22) to get an estimate of 4. We should
mention that similar results were obtained by Zolotarev [1986] with a transformation of
the characteristic function of Sa.S random variables.

We can also use higher-order moments of Y to estimate «, but it is known that the

variance of the estimator of higher-order moments tends to increase as the order goes

9



Order Moment of Y | Second-Order | Third-Order | Fourth-Order
& 1.5139 1.4837 1.3564
(0.1167) (0.2578) (0.3226)
A 1.0195 1.0079 0.9549
(0.0909) (0.1032) (0.1365)

Table 4: Estimator Performance v.s. Order of Moment of Y.

Estimation Method & ol
log |SaS| Approach 1.4969 | 0.9989
(0.0522) | (0.0385)
Negative-order Moment Approach | 1.5027 1.0023
(0.0536) | (0.0423)

Table 5: Performance comparison of the log|SasS]|
moment approach.

approach v.s. the negative-order

higher. Table (4) shows a comparison of results obtained by using different orders of
moments. The true values for the parameters are a = 1.5 and v = 1.0. Y is the log [SaS]|
process, the sample size is 1000, and the experiment is repeated 1000 times independently.
As we can see from Table (4), the standard deviation of the estimators (a-estimator and
v-estimator) increases as the order of the moment of Y increases for a fixed sample size.

Table (5) illustrates the comparison of the log |SaS| approach with the method based
on the negative-order moments X is the standard Sa.S random variable with o = 1.5 and
Y = log | X|. We chose p = 0.2 in the negative-order moment method. The experiment
was repeated 1000 times independently with 5000 i.i.d samples.

Table (5) shows that these two methods have similar performance. But the advantages

of the log |SaS| approach are:

1. Tt gives explicit closed form expressions of the unknown parameters; on the other

10



hand, in the negative-order moment method, « is the solution of a sinc function

equation, which does not have a closed form expression.

2. The quality of the a-estimator and y-estimator is completely determined by the
sample size, whereas in the negative-order moment approach, the estimation results

are also affected by the choice of value p, which is often empirical.

It is worth pointing out that the proposed estimators are not optimal in a maximum
likelihood sense. However, maximum likelihood estimators for @ and v do not have simple
closed form expressions; their estimates are obtained by solving nonlinear optimization
equations [Brorsen, 1990].

Similarly, for an isotropic complex Sa.S random variable X, recall that its p‘h- order

moment is: E{|X|P} = Cy(p,@)y?/*,¥p: —2<p<a, let Y = log|X|, the log|SaS]|

approach yields:

E(Y) = cg(é < l)+log2+~i—log’y, (27)
and
. w2
Var(Y) = 6oz (28)

2.3 Parameter Estimation From Data Dependent Time Series

Employing Eq.(23) and Eq.(22) to estimate the parameters a and v, we assume that the
data samples are i.i.d. If the samples are not i.i.d, we need the ergodic properties of the
log |SaS| process. The proof of ergodicity is based on the following properties of SaS

Processes.

1. A SaS random variable U has finite p-th order moments: E(|U|P) = C,(p, a)y?/*.

The p'h-order moments are finite and continuous in the neighborhood of p = 0.

2. n jointly SaS random variables U;, Us, - - - U, have finite joint moments with orders

P1y P2, pot B|ULPHUR|P? - - - |UR|P™) = G(¢; p1, P2, - Pn) (Where G(+) is a function

11



of the joint characteristic function ¢(-) of the random variables Uy, Us, --- U, and
the constants py, p2, --+ pn). The joint fractional order moments are finite and

continuous in the neighborhood of py = 0,p2 =0,---p, = 0.

Consider the problem of estimating the parameters a and 4 from an FIR channel

output, which is an MA process. We have the following:

Theorem 1 Let U be a SaS moving average (M A(q)) random process. Its correspond-
ing log |SaS| random process V = log|U| is stationary and mean-ergodic as well as

correlation-ergodic. 1

Proof: Since U is a M A(q) process, U, and U, +(441) are independent, so are V;, and
Vit(g+1)- We now show that E(V,V,_y---V,_,) is finite and independent of n. Since
Vi = log |Ui|, then

E(ePUVn‘l'PlVn—l.+p2vn—2+'"+p9‘v"—?J — E(IU“ If”ﬂlUn_llpl [Uﬂ—'Z IP? Pt |{jn_q|p‘})

= G(é;po,p1y-**Pg), (29)

where G(¢;po,p1,---,p,) 1s a function of the joint characteristic function ¢(-) of the
random variables U,, U,_1, Un_2, --- U,—, and the constants pg, p1, - -+, p,- The above
equation holds for p; in the neighborhood of py = 0, py = 0, -+, p, = 0. Therefore,
E(ePoVrtPiVa-it-+peVn-a) can be treated as the joint moment-generating function of 'V,

Va-1, =+, Va—y, and we have:

1 0Vu+ Vn_ an Q'Vﬂ—q
E(V,Vioy- Vo) = JIHIE(epoVntp1Vait-tp )

apoapl HE apq po=0,p1=0,--,pg=0
— 5q+1E(|Unlm!Un-llm e |Un—q|pq)
apﬁapl e apﬁ' po=0,p1=0,-,pg=0

™G (B po, pry- - py)
Opo0py - - - Opy

(30)

po=0,p1=0,-:pg=0

12
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Since the joint characteristic function ¢(-) of Uy, Un—1, Un—2, -+, Un—, is independent of
n (U is a M A(q) process), E(V,,V,_1V,—2 - - V,—,) is not only finite, but also independent
of n. Therefore, V,, is stationary.

The sufficient condition for V, to be mean-ergodic is:

I=q
Y |E(VaVasi)| < oo (31)

I=—yq

Since :
PE(|Un|P°|Up— P1)
E(V,V,_;) = g 32
( i) Opodp, (32)

Po=0,p1=0
we can show that E(V,V,_;) is finite and independent of n. Mean-ergodicity of V,, is
therefore proved.

The sufficient condition for V,, to be correlation-ergodic is that its fourth-order moment
of V,, be finite and independent of n. This can be proved similarly. ]

With the mean- and correlation-ergodicities of V,,, Eq.s (22), (23) and (26) can still
be used to estimate E(V) and Var(V') even though V; are dependent.

We now use the above properties to estimate the characteristic exponent and dispersion
from dependent samples in the output of an FIR channel. Consider an FIR channel with

standard i.i.d Sa.S input (characteristic exponent « and dispersion ~, = 1),
},n = hD—Xn + thn.—l R hq— ’n—qa (33)

where h; are the channel impulse response coefficients. The output Y; are identically
distributed but dependent to ¢ order SaS random variables with the same characteristic
exponent o and dispersion v, = iz |hi|*. Let V = log|Y|, then the characteristic

exponent « is estimated by solving:

N (V- V)2 _ 72 (_L . l) T (34)

13



sample size 1000 2000 5000 10000
& 1.5153 1.5022 1.5023 1.5042
true a = 1.5 (0.1318) | (8.8726E-2) | (6.0811E-2) | (3.9782E-2)
Ty 3.5309 3.4524 3.4441 3.4514
true v, = 3.4215 | (0.6728) (0.4440) (0.2825) (0.1832)

Table 6: Estimation of a,~, from FIR channel output.

and the output dispersion 7, is then estimated by solving:

. T¥ W 1 1, .
V= ;\_; = C,_,(—a- —-1)+ Elog’yy. (35)

Consider the following example:
Y, =X, +405X,1 —1.3X,2 +0.7X,,_3, (36)

We estimate a and «, from the output Y,. Table (6) lists the results from Monte-Carlo
simulations of 500 independent realizations, where X, are i.i.d samples from a standard
SaS process with @ = 1.5 and 4, = 1; so the output of the channel is a MA(3) SaS

process with a = 1.5 and v, = 3.4215.

2.4 A New Iterative Parameter Estimation Method

Estimation accuracy increases as the sample size increases, which results in the increase
of memory size of the estimator. Memory efficiency can be achieved by updating the
estimation results iteratively. More specifically, upon observing k** block of data (one
block of data contains M samples, M is the memory size of the estimator), we update
a(k) and v,(k) from the previous results: a(k — 1) and 7,(k — 1). More specifically,
assuming Y is a SaS data sequence consisting of dependent or independent samples,

V = log|Y| is the corresponding log|SaS| process. Assume k blocks of samples with

14



M samples in each block have been collected. Let Avg(k) and Var(k) denote the average

and the standard deviation of k** block of data, i.ec.,

Cnm(-np1 Vo

Ave(k) = Z2=testiien T (37)
kM. s (Ve = Ave(E)P
Vi) Zn—(k-—l]M-HEw vg(k)) , (38)
From Eq.(34), we have:
i Vi 1 1 4
kﬂff gy Ce(a(k) l) + Oi(k) Iog 73}(’!")‘ (39)

On the other hand,

MV EE‘S”M Vi + Zg{k-nMH Vi
kM i kM
k—13EM Y, }_Z?ﬂk—l)MH Vi

k. (k—1)M "k M

k-1 1 1 1
N ‘ =4 log v, (k — 1)) + TAvg(k). (4
k (C‘(a(k_l) )+O'(k—1] 0g Yy ( ))+k vg(k). (40)
Therefore, v, can be iteratively updated by:
1 k-1 1 1
olh) logv,(k) = 7 [Ce(a(k 1 1) + ali—1) log v, (k — 1)]
! 1

Similarly, it is not difficult to show that a(k) can be updated by:

2 1 1 k—1 1 1 ¢
Tomte = B (Sl D+ sy e 1 - Ao
k—1x? 1 l, . 1
T F(oﬂ(k —1) )+ g Varlk). )

Let us now consider the same example

Vo s X 05 =108 X s+ 0.7%, s, (43)

-

15



where the impulse response coefficients are hg = 1,h; = 0.5,hy = —1.3,h3 = 0.7. We
demonstrate the performance via Monte-Carlo simulations of 100 realizations. In each
realization, the memory size of both a- and y-estimators is 100, i.e. M = 100 samples
in one block, total of 200 blocks (20000 samples) are collected. Compared with the true
values of @ = 1.5 and 7, = 3.4215, our simulation results are: & = 1.5024 and v, = 3.4317,
with standard deviations o, = 0.0289 and 0., = 0.1316, respectively. Fig. 2 shows the

performance of this new method.

3 Blind Channel Identification

In this section, we present several approaches to blind channel identification when the
input is i.i.d SaS process from output covariation (notice covariation is only defined for
stable processes with a > 1). By introducing a new spectrum for impulsive environments:
the a-Spectrum, we prove blind identifiability. Without loss of generality, we assume the

channel input is a standard white SaS process.

3.1 Time Domain Covariation Approach

The output covariation is related to the channel impulse response coefficients by [Nikias

and Shao, 1995]:

=3 p. 3 )
cej =Y, Yacile = Y, ;: Ihi|®, for j=1,---,q
=
== [Y'nav}i;l-&-j]rx = Z h ” |h;,-+1, fOI'j = la"'aQ' (44)
i

The dispersion of the output is determined by:
q

Yo = Yo Yala = 3 [hal™. (45)

1=0

16
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Figure 2: Performance of the iterative estimator of a,7,, total number of sample blocks
is 200 with 100 samples in each block. (a). Average of & over 100 realizations, compared
with true value: a = 1.5 (dotted). (b). Standard deviation of & over 100 realizations.
(c). Average of 4, over 100 realizations, compared with true value: v, = 3.4215 (dotted).
(d). Standard deviation of 4, over 100 realizations.
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The above equations show that the output covariations do not depend on n, but only
depend on the time lag j,(j = 0,£1,£2,--- £ ¢g). Since the covariation of two SasS
random variables is related to FLOM by [Cambanis and Miller, 1981] :

E(XY<-1)

/\ra Y a = ) 46
where we used the notation:
I ) e & Y: complex
¥ “{ Y [P-'sign(Y) Y: real, )

One way to obtain the coefficients hg, hy,- - - h, is to solve the above over-determined

nonlinear equation system by the least square method, i.e., to minimize the cost function:

i=q o )
J(ho, by, -+ +hg) = 3 (¢ = [Ya, Yasila)™. (48)
j=—q
However, the cost function J(hg, hy,---hy,) is not unimodal, it may converge to different

local minima from different initial guess of (ho,hy, - h,). As an example, consider a

FIR(3) channel with i.i.d SaS (o« = 1.5) input,
Y, =X, +03X,-; — 04X,_,, (49)

even in the deterministic case, i.e., when all the parameters (o and output covariations)
are exactly known, the least square method still leads to non-unique solutions. Table
(7) shows the simulation results. Obviously, least square method does not provide the
accurate solution for this problem.

For I'IR(2) (two unknown impulse response coefficients) and I'IR(3) (three unknown
impulse response coefficients) channels, it is possible to obtain closed form solutions of

the coefficients in terms of the output covariations. For FIR(2) channels, we have:
1
hfﬂ — ([Yn: Yn+1]cr : [Yn: Yn—]]gl_a>) Bamal , o -'/—‘ 2, (50)
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Initial Guess ho hi ho
(ho hn.ha) = (15,1, -2) | 0.987641 | 0.314898 | -0.408127
(ho, o, a) = (=0.5,1,2) | 0.443550 | -0.687386 | -0.673024

Table 7: Least square method yields initial-dependent results even for the deterministic
case,

by= YWl 52, (51)
For FIR(3) channels, we have:
1
jil3[) = ([YnaYn+2]a : [Y;n Y, —2]§l_a>) e , -',é 2, (52)
[Yn‘};‘n—lla i [Ytnyn-!-l]cx
hl = [anY:—Q]Q = [‘l’r||Y:+2]a 2 (53)
h3 hg
hy = [Ya, Yaz2la - R 02, (54)

For FIR(4) channels, the closed form solution also exists. However, the error propa-
gation from the output covariation estimation is so severe that the closed form approach
is virtually impractical. For longer FIR channels (channels with more than three impulse
response coefficients), the closed form solution is unknown. Nevertheless, the closed form
expression approach shows that Gaussian (a = 2) driven FIR channels are not blindly
identifiable, which is a well known fact, but we show it from a different perspective. On the
other hand, for non-Gaussian SaS input, the impulse response coeflicients are uniquely
determined by output covariation (the lower-order statistics) and characteristic exponent

.

3.2 Frequency Domain Approach with a-Spectrum

Consider the generalized form of the output covariation: [Y;, W,]a, where
g

Wy =3 oi¥uy (55)

i:—q
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and {a;,1 = —¢q,---,—1,0,1,---,q} are arbitrary constants taking on real or complex
values. Then, Eq.(44) is just a set of special cases of this generalized form.

Then, the covariation between Y;, and W, is:

[ q
os Wale = Yo D a¥ai
i=—g o
[ q q q
- ZFLan_k, Z ai(z thn—i—f)]
| k=0 i=—q I=0 a
q q q
= th Xo—k, Z Zﬂihlxnui—!
k=0 i=—¢ I=0 o
q q <a-1>
= Yz Z hk (Z (Ik_,'h,') 3 (56)
k=0 =0

where we used the pseudo-linearity of the covariation operation:
[a X, 0X5]a = ab<*>§(m — n)7s, (57)

where X,,, X, are i.i.d. real or isotropic complex SaS random variables with dispersion
7. and 6(-) is the Kronecker delta function. a,b are arbitrary real or complex constants.

Comments on Eq.(57): When X,,, X, are isotropic complex SaS random variables,

a,b are real or complex constants, or X,,, X, are real SaS random variable, a,b are also
real constants, Eq.(57) is one of the properties of covariation operation [Cambanis and
Miller, 1981; Cambanis, 1983]. When X,,, X, are real SaS random variables, a,b are

complex constants, Eq.(57) is based on the following theorem [Cambanis, 1983]:

Theorem 2 If X = (X,,---,X,) is real SaS with spectral measure I';., and a, by are

complex numbers, then

<a-—1>
[Z aka,ijXj] = f (Z aka) (Z ijj) de('r:) (58)
k=1 =1 o U5 k=1 j=1



Since the choice of a_g, -+, a_y,ap,ay, -, a, is arbitrary, let

an:z“: VZEC,Z?éO,RZ—(},---,ﬂl,U,l,"',q, (59)
and note that: .
. 1 E
ky<a=1> _ ¢ <a—=1>\k _ [/ 7 \<a—1>
e = e (et (60)
then Eq.(56) becomes:
s
Su(2) = Yo, Wa(2)lo = % ()27 ) (H ()", (61)
where .
Wa(z) = Z Y, iz, (62)
t=—q

which is the window z-transform of the channel output Y;, and

H(z) = i haz™", ¥z € C,z #0. (63)

n=0

which is simply the z-transform of the filter.

Eq.(61) is of fundamental importance in this paper. We coin the term a-Spectrum for
Sa(z). Given the measurement of the a-Spectrum: S,(z), we will show how to identify
the magnitude response as well as the phase response of the channel. Without loss of

generality, we assume the input is of unit dispersion, i.e., v, = 1.

3.3 Channel Magnitude Response Estimation

When |z| =1, i.e., the a-Spectrum S,(z) is evaluated on the unit circle, then

<a=1> o

Sa(e™) = H(e™) (H(e™)) = |H()[", (64)

which provides an easy way to estimate the channel magnitude response from the output

data.
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3.4 Channel Phase Response Estimation

To obtain channel phase response from the output a-Spectrum S,, we should evaluate
Eq.(61) on the z-plane other than the unit circle. By taking logarithm of both sides of
Eq.(61), we have:

log Sa(2) = log|Sa(z)|+ j¥(2)
= log |H(r'"*e™)| + (a — 1)log |H(re’)| + j{®(+17*!*) — ®(re?)}(65)

where |H(re’*)| and ®(re’”) are the channel magnitude and phase responses evaluated
on a circle with radius r(r # 1), respectively.

The z-transform of any FIR channel can be written as:

H(z) = Aoz-“ﬂu —a;z7") JI(1 = bz), (66)

where Ag is the constant gain, d is a constant integer (time delay), {a;, |a;| < 1} are the
zeros inside the unit circle and {1/b;,|b;| < 1} are zeros outside the unit circle. z = re/“.
Because the a-Spectrum S, in Eq.(61) will suppress the constant delay d and the sign of
the constant gain Ag. Therefore, without loss of generality, we assume d = 0 and Ay > 0,
or equivalently, we have a priori knowledge of d and the sign of Ag. It is well known

[Oppenheim and Schafer, 1989]:

log H(re’) = log |H(re')| + j®(re’*) (67)

where » s
log |H(re’)| = log(Ao) — s ;—B 4 cos(mw), (68)

m=1
. o0 pAlm)p—m _ p(m),m
B(re™) = 3 L — s sin(mw), (69)
m=1
where .
A[m] — Zagn, (70)
i=1
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Lo

B .= 5, (71)

=1

and the region of convergence (ROC) is:
max{|a;|} < |z| < min{1/]b:|}. (72)

Especially, if r = 1, then
©  Alm) 4 B(m)

log |H(&)| = log(Ao) — >_ ——— cos(mw). (73)
m=1
, o A(m) _ plm)
() = A—TB-—-sin(mw). (74)
m=1
Clearly, Mﬁﬁiﬁi determines to the magnitude response of the channel, and ﬂw
determines to the phase response.
Substituting Eqs. (68) and (69) to Eq.(65), we have:
i o Ay (r) + BMy, (L
log | Sa(rei®)| = alog(Ag) — 3 —F ("')jn #m(2) cos(mu). (75)
m=1
: < Ay, (r) = By, (L)
v e —_ r x
U(re’™) mgl = sin(mw), (76)
where
pm(r) = ™D 4 (a=1)r ™,
Vm(f') — ?,m(a—l) _T-«m, (77)
with ROC:
max{|a;, [b:]"/ "V} < r < min{1/|b;], (1/]a])/ @}, (78)

AM Bt 1 4he following,
m

As shown in Eq.(74), the channel phase is determined by
we shall show that -4-(—'“]7;8& can be obtained from the magnitude of the a-Spectrum:

|Sa(re’)| (Eq.(75)) or from the phase of the a-Spectrum: ¥(re’?) (Eq.(76)).
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Multiplying both sides of Eq.(75) by cos(nw), n = 1,2,3,---, and integrating with

respect to w from —7 to m, we have:

9 (= ) AWy (r) 4+ B®y, (L
— ;/ log | Sa(re’)| cos(nw)dw = finlr) + . (r)'} (79)
T Jo

n

where we used the following orthogonality:

/[: cos(mw) cos(nw)dw = %5(1}1 —n). (80)

Replacing r by 1/r in Eq.(79), we have:
A®pn(2) + BMpn(r)

——/ log |Sa(= ej“’)|cos(nw)dw

n

Subtracting Eq.(81) from Eq.(79), we have:
Al _ B{ﬂ 2 [y log E%%}TI cos(nw)dw ”
T ) —m® =

Aln) _pg(n)
T

Similarly, the term can also be solved through the phase of the a-Spectrum:

U(re*) in Eq.(76),

A _ e 2 F (lll(re“”") + Ut e-"")) sin(nw)dw

n Un(r) + I/n(;)

(83)

Since there is always a phase wrapping ambiguity associated with Eq.(83), i.e., we can only
obtain the principle value of ¥(re/) from the estimation. Before applying Eq.(83), we
need to unwrap ¥(re’*) into a continuous function. This is difficult to achieve in practice.
Therefore, Eq.(82) should be used instead to avoid the phase unwrapping problem. Once

w has been estimated, we can use Eq.(74) to estimate the channel phase response.

joy _ o 2510 %Cos(nﬂ)dﬂ
P(e )—Z( pn(r) = pn(3)

n=1

) sin(nw), r #1; a# 2. (84)
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Eq.(84) implies that we can extract the channel phase information from the magnitude
of a-Spectrum evaluated on circles other than the unit circle. This does not come as a

surprise. As a matter of fact, if we apply the above method to Eq.(68), we have:

T Hre
A — Bt 2[5 logl—JJqu(i,—}—llﬁws( w)dw

. S , ¥ (85)
Consequently, the channel phase response is (from Eq.(69)):
_ oo [ 2 [T log HEIL o5(n0)dO
B(e) =Y ( oo - L (86)
= P pn

which means we can extract the channel phase response from the magnitude response of
the channel evaluated on two circles with radii reciprocal to each other.

The channel magnitude response is related to w, which can be obtained by

adding Eq.(79) and Eq.(81), we have:

A 4 g —2 f7 (log | Sa(Le)| + log |Sa(rei)]) cos(nw)dw
n n ;U'u( )+iu’ﬂ(;)
= _2 [ log|5' (€8)] cos(nw) dw. (87)
T

Although we do not need q.(87) to estimate the channel magnitude response, which can
be easily estimated directly by Eq.(64), nevertheless, Eq.(87) can reduce the computation

intensity. From the equality shown in Eq.(87), we have:
I (1o 1Sa(2e)] + log [Sa(rei)]) cos(ne)ds
0 r

M/ log | S, (/)| cos(nw)dw, Vr. (88)

Therefore,

X T
_/Olog 15 (re)] cos(nw)dw = ...‘/0 log |Sa(re’™)| cos(nw)dw
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LDV C) g 15, ) cosrsy o (89)

(a3

so, from Eq.(82), we have:

A — gn) 9 i . ;
ENRENG  BREP. (C(n, r)log |S.(e’*)| — n(n,r)log ISa(reJ“’)D cos(nw)dw,  (90)

n ma Jo
where
Cn,r) = c?sh(n(a —1)logr) + (a@—1) c.osh(nlog r-)‘
sinh(n(a —1)logr) — (o — 1) sinh(nlogr)
n(n,r) = - V£ LVa#2,  (91)

sinh(n(a — 1)logr) — (e — 1) sinh(nlogr)
Similarly, the equivalent expressions for Eq. (85) is:

Aln) _ gln) 9

n m

(92)
In general, we can recover any channel entirely (magnitude response and phase response)
with the magnitude of its z-transform evaluated on the unit circle and another arbitrary

circle within the region of convergence of log H(z).

3.5 Simulations for Deterministic Signals

As we have shown in Eq.(64), the a-Spectrum S,(re’*) evaluated on the unit circle gives

us the channel magnitude response,

Q=

|H(e™)] = (Sa(e™)) (93)

together with S,(re?*) evaluated on another circle in the Region of Convergence (ROC),

we can extract the channel phase response:

P(ev) = 2 (% ]; (C(n,r] log |S.(e?*Y)| — n(n,r)log ]Sﬂ(rem)o COS(nQ)dQ) sin(nw),
(94)

=— ]ﬂ (csch(n log ) log | H(re’)| — coth(n log ) log |H(ej“’)|) cos(nw)dw, Vr # 1.
0



with ((n,r) and 5(n,r) given in Eq.(91).
The integration in Eq.(82) can be approximated to arbitrary accuracy by Filon’s cosine

formula [Hildebrand, 1974] , which states that:

/ F(9) cos(kQ)dQ = h[u(0)C. + v(0)C.], (95)
0
where
h = %, N : number of equally spaced points in[0, 7],
kw
¢ = e
0(3 + cos 20) — 2sin 20
uo) = e Z) 2T,
4(sin @ — 0 cos 0)
Wo) = 1Tl
1 N-2
&y = 3(f(0) +(=DFf(m)+ > f(ih)cos(kih), (sum of even terms)
= i(even)=2
N-1
C, = Y, f(ih)cos(kih), (sum of odd terms)
i(odd)=1
(96)
Let us consider the same nonminimum phase FIR channel that was used earlier:
Y, =X, +05X,-1 —1.3X,_2 + O.TXn_;_:,, (97)

where X is a white SaS process with a = 1.5 and channel impulse response coefficients

are: ho = 1.0, hy = 0.5, hy = —1.3, h3 = 0.7, with z-transform:
H(z) = 1.5924z71 (1 —(0.5462+0.37585)2 " )(1 — (0.5462—0.3758;)z~" ) (1+0.628z) (98)

Fig.(3) shows the magnitude estimation result when the a-Spectrum is known exactly.
The phase response estimation result is shown in Fig.(4), where N = 50 was used in
Filon’s cosine formula to approximate the integration in Eq.(82).

Comments:
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Comparison of the true magnitude(dotted) and the recovered magnitude(solid)

T T T T T T

2.6

2.4

-

magnilude

o} 0.5 1

1.5 2.5 3
omega ~ [0, pi]

Figure 3: Estimation of the channel magnitude response from ezactly known output a-
Spectrum.

Comparison of the true phase(dotted) and the recovered phase(solid)

1 T T T T T T

_ 1 1 1 i i
3'50 0.5 1 1.5 2 2.5 3

frequence: omega ~ [0, pi]

Figure 4: Estimation of the channel phase response from exactly known output o-
Spectrum.
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1. Blind identification of channel driven by Gaussian (a = 2) process is impossible. In
this case, we can only identify the channel magnitude response, but not the phase

response. This is shown clearly in Eq.(91).

2. The above approach does not require the exact knowledge of the order ¢ of the
FIR channel. This is because the channel is estimated in the frequency domain
(magnitude response and phase response), not the time domain. When the order ¢

is unknown, the a-Spectrum can be written as:
Sa(2) = [Ya, Wa(2)la (99)

where

W=13Y Y., (100)

-
1]
|
=1

if we take ¢ large enough such that ¢ > ¢, from the fact the Y,, is an M A(q) process,
Y, and Y}, are independent when [n—m| > ¢, and by the property of the covariation:
[Ya, Y] = 0, therefore,

- 1 -

Bule) = 5ale) = %H () (HE) <. (101)

o
-

3.6 Simulations for Stochastic Signals and a-Spectrum Esti-
mator

The remaining task is to find an appropriate yet practical estimator for the a-Spectrum
estimator. Notice that the FLOM estimator for covariation in Eq.(46) is applicable if
and only if X and Y are real or isotropic complex stable random variables, and 7, is the

dispersion of Y:

. { (Ci(p, )E(Y[?))*" il Y is real (102)

(Ca(p, a)E([YF’))a;p if Y is isotropic complex
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Blind identification of channel magnitude response. (p=0.3)

channel magnitude
- poNR
N s m [*4] N N £ )

-

0.6 true magnitude: solid, average estimated magnitude: dash -
1 ' ' 1

(o] 0.5 1 1.6 2 2.5 3
omega -~ [0, pi]

Figure 5: Magnitude response estimation of mixed-phase FIR channel driven by white
isotropic complex SaS process. (20000 samples)

When the input X, is i.i.d isotropic complex Sa.S random variable (see Appendix for
isotropic SaS random variable generator), then any finite linear combination with real or
complex coefficients of X, is also isotropic complex SaS random variable, and the FLOM
estimator applies. Figures 5 and 6 show simulation results of blind identification of the
channel (Eq.(98)) magnitude and phase responses, respectively. 20000 data samples were
collected in each of the 20 independent realizations and p = 0.3 in the FLOM estimator.
! The performance is significantly increased with increased sample size. Fig.s (7) and (8)
show the simulation results with 200000 samples.

n) _g(n)

In the above simulations, we kept 15 terms of Al because the zeros of Eq.(98)

are not very far from the unit circle. If the zeros of the channel are far from the unit

!Most papers claim that p in FLOM estimator should be 1 < p < a. However, we have found
covariation estimator with p < 1 often has smaller variance. Detailed analysis will be announced later.
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Blind identification of channel phase response. (p=0.3)
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Bt T Bomsng Gy g 5 g : 1
-10} - e . 4
-12f N R i e s - R
true phase: solid; average of estimated phase: dash
=14 1 1 . Ewine 1 1 1
0 0.5 1 1.5 2 2.5 3

omega ~ [0, pi]

Figure 6: Phase response estimation of mixed-phase FIR channel driven by white isotropic
complex SaS process. (20000 samples)

Blind identification of channel magnitdue response. (p=0.3)

T T T T T T

channel magnitude

true magnitude: solid; true phase: dash

o] 0.5 1 1.5 2 2.5 c]
omega ~ [0, pi]

Figure 7: Magnitude response estimation of mixed-phase FIR channel driven by white
isotropic complex SaS process. (200000 samples)
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Blind identification of channel phase response. (p=0.3)

i
o
0

-1

channel phase

-1.5

-3} B T e T R E
true phase: solid; average of estimated phase: dash =
L 1 Wb 1

0 0.5 1 1.5 2 2.5 3
omega ~ [0, pi]

Figure 8: Phase response estimation of mixed-phase FIR channel driven by white isotropic
complex SaS process. (200000 samples)

Aln) _gl(n)
n

circle, will decay much faster. Consider another example:

V= XAl X e LBEX. 5~ 0.0, 5, (103)

where X is a white SaS process with a@ = 1.5 and channel impulse response coefficients

are: hg = 1.0, hy = —4.4, hy = 1.68, hy = —0.32, with z-transform:
H(z) = —4z7'(1 = (0.2 — 0.27)z7")(1 — (0.2 + 0.27)z7")1 — 0.252). (104)

In this example, we only need to keep 5 terms of A(L);-“ﬂ. Fig.s (9) and (6) show
simulation results of blind identification of the channel (Eq.(104)) magnitude and phase
responses, respectively. 500000 data samples were collected in each of the 20 independent,
realizations and p = 0.3 in the FLOM estimator.

When the input is real SaS random variable, an appropriate estimator for the a-

Spectrum S,(z) = [Ya, Wa(2)]a (the covariation of a real SaS random variable with a
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Blind identification of channel magnitude response. (p=0.3)
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o] 0.5 1 1.5 2 2.5 3
omega ~ [0, pi]

Figure 9: Magnitude response estimation of mixed-phase FIR channel driven by white
isotropic complex SaS process. (500000 samples)

Blind identification of channel phase response. (p=0.3)
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Figure 10: Phase response estimation of mixed-phase FIR channel driven by white
isotropic complez SaS process. (500000 samples)
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complex SaS one) is yet to be found. Also the efficiency of the a-Spectrum needs to

improved.

4 «a-Spectrum for Blind Equalization

Since blind identification and blind equalization are closely related, the above methods

also apply to blind equalization in impulsive noise environments, where the model is:
Yo=h,* X, + N,, (105)

where h,, is the FIR channel, X, is the transmitted signal, and N, is the additive white
SaS noise (AWaN for abbreviation). Assuming both X, and N, are white random
processes and they are independent from each other. The a-Spectrum approach yields:

Sele) =% ()7 (HE)< +, (106)
where v, is the dispersion of the transmitted signal and 4y is the dispersion of the additive
white Sa.S noise, both of whom are generally assumed to be known. Therefore, given
the estimate of the a-Spectrum: S,(z), we should be able to identify the channel H and
construct the inverse filter H~!. Note that the transmitted signal X is not a Sa.S process,
however, we can define its dispersion v, according to Eq.(102. The received signal Y, is
no longer a SasS process, nevertheless, we can still estimate its a-Spectrum according to

[2q.(46).

5 Conclusion

We introduced the fractional lower-order moments with both positive and negative orders
and their application for parameter estimation. Further, we developed an iterative method
for estimating the characteristic exponent e and the dispersion 4 from an FIR channel

output by introducing the log|SaS| process. Then we discussed several approaches
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for blind identification of an FIR channel impulse response coefficients driven by a non-
Gaussian SaS process. We formulated the a-Spectrum, a new spectral representation
based on the output covariation, with which, we proved the blind identifiability of any

IR channels driven by white Sa.S processes. Simulation results verified our theory.
Acknowledgment
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Appendix: Isotropic SaS Random Number Generator
An isotropic Sa.S random variable X = X, + jX; has a characteristic function:
Bwi,wy) = E{ej(ler+wsX=')} - B—T(W?+w§}%, (107)
where «a is the characteristic exponent and « is the dispersion.

Theorem 3 A standard (y = 1) isotropic complex SaS random variable can be repre-

sented as:
X = AY%(G1 + jG), (108)

where A is a positive (& = 5, = 1)-stable random variable and can be generated by:

_ [a(©) &
A= (V) , (109)

where

sin((1 — &)©)(sin a@)l-%
(sin @)=

O is uniform on (0,7) and W is standard exponential random variable. © and W are

(@) = , (110)

independent. Gy, Gy are standard S2S (Gaussian) random variables. A, G\, Gy are inde-

pendent from each other. i
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Proof. Kanter [1975] showed that A as defined above is a positive stable random variable,
with the characteristic exponent & < 1 and the skewness # = 1. The Laplace transform
of A is:

E(e*4) = ¢%,s > 0. (111)

Therefore, the characteristic function of X is:
¢|(w1’w2) e E{ej(wzzl”?G'l+-.u2.4”7'Gg]} e E{E{ej(wl.fllnﬁ']+w2A”2Gg)|A}}
= E{e~@ited4]} = ~(i+ad)? (112)

This shows that X generated by the above method is indeed an isotropic complex Sa.5

random variable. ]
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