USC-SIPI REPORT #292

Architecture and Simulation of Selected
Fine-Grained VLSI Array Processors

by

Tony H.-Y. Wu

November 1995

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.

To My Parents,
Wen-Jyh Wu
and

Su-Chin Hung,

for their love and support.

11

Acknowledgments

I would like to express my deepest gratitude to my research advisor, Professor
Bing Sheu, for his generous guidance, encouragement, and support throughout these
years of graduate study. I am also grateful to Professor Theodore W. Berger and
Professor Edward K. Blum for serving on my dissertation committee. | would like
to thank Professor George A. Bekey and Prof. Vasilis Z. Marmarelis to serve as the
other two members on my Ph.D. Qualifying Examination Committee.

I am very grateful to Professor Leonard Silverman, Dean of the Engineering
School; Professor Hans H. Kuehl, Chairman of the Electrical Engineering - Elec-
trophysics Department; Professor Robert A. Scholtz, Chairman of the Electrical
Engineering - Systems Department; Ms. Ramona Gordon, Ms. Anna Fong, Ms.
Evelyn Jamora, and Ms. Gloria Halfacre in the Electrical Engineering Program, for
providing such a great research environment for my Ph.D. study at the University
of Southern California. Support from several research organizations including the
Signal and Image Processing Institute (SIPI), the Center for Neural Engineering
(CNE), the Integrated Media Systems Center (IMSC), and the MOSIS Service of
Information Science Institute (ISI) is also highly appreciated.

Valuable discussions with graduated doctoral colleagues from VLSI Signal Pro-
cessing Laboratory were truly stimulating, including Dr. Robert C. Chang and Dr.
Joongho Choi on VLSI array processing chips design, Dr. Sa H. Bang for the cellular

neural network annealing theory, Dr. Josephine C.-F. Chang on digital VLSI design,

v

and Dr. Oscal T.-C. Chen on image and information processing. Many thanks to
Eric Y. Chou, Steve H. Jen, Richard H. Tsai, David C. Chen, Michelle Y. Wang for
friendly interaction.

After studying in the SIPI for one and half year, I am very glad to have the
chance to serve as the teaching assistant for the courses related to the VLSI sig-
nal/image/video processing and VLSI neural networks. The experience really helps
me a lot, such as the opportunity of internship in Summer 1995 at AT&T Bell Lab-
oratory, Holmdel, New Jersey. I would like to thank all the fellow colleagues in the
VLSI System Research Department, especially Dr. Horng-Dar Lin.

Finally, I would like to dedicate this work to my parents, Wen-Jyh Wu and Su-
Chin Hung, my sister, Wang-Ting Wu, my brother, Liang-Wei Wu, for their love,
understanding, patience and support during my doctoral studjes.

The research was partially supported by ONR under contracts N00014-94-1-0568

and AT&T Bell Laboratory’s University Relationship Program.

Contents

Acknowledgments

List Of Tables

List Of Figures

Abstract

1

Introduction

1.1 Signal Processing and VLSI . .
1.2 Why Array Processing?
1.3 VLSI System Trend
14" Design Methodology of VLSI Systems
1.5 Organization of This Dissertation

.....................

Overview of Compact Mixed-Signal Array Processors

2.1 Role of the Compact Neural Network
2.2 Overview of Basic Theory and Computation Paradigin ., 000 . o
2.3 Hardware Annealing on Compact Neural Networks

The Behavioral Simulator
3.1 Simulation Techniques

3.4 Features of the CNNA
3.5 Simulation Results

3.6.1
3.6.2
3.6.3

Performance Evaluation
Performance Comparison
Impact of the Bias Value

with Other Simulation Programs . .

.....................

v
vili
ix

x11

12
12
14
21

26
26
31
33
36
38
43
43
44
46

vi

4 The Parallel Architecture: Array Computing 49

4.1 Review of the System Architecture 50
4.2 The TW Programming Language 54
4.3 Compiler for the Paralleled Computing Architecture 56
4.4 Framework of the Paralleled Architecture Simulation Environment . . 58
45 Appendix: Known Templates 59
5 A Versatile Video Array-Coprocessor 65
o1 Introduction 65
5.2 Basics of 2-Dimensional Discrete Cosine Transform 68
5.3 Multiplications Using Adders~ 70
5.4 Mapping of 1-D DCT Algorithm on the Video Coprocessor 72
55 Overview of System Architecture 78
56 Memory System T 84
0.7 Accuracy Validation " 87
98 Performance Estimation 90
5.9 Comparison with Others’ Results 91
6 Conclusion 94

Appendix A
Performance of Selected Microprocessors from the Industry 96

Appendix B

Network Simulation by Using HSPICE Circuit Simulator 98
Appendix C
Pattern Storage Behavior of Time-Delayed Discrete-Time Systems 102
C.1 Time-Delayed Discrete-Time Systems 102
C.2 Simulation Results~~~ 104
C.2.1 Simulation 1: No External Inputs: . .o v) a0 00 n oo, 104
C.2.2 Simulation 2: Network with External bpides oo vvo 25 55 4 o 109
Appendix D
The Behavioral Simulator User’s Guide 112
D.1" Execution of the Simulator " 112
D2 Template Library~~~ 113
D.3 Syntax of Commands 7 115
Appendix E
About the Author 122
El Biographyiuiiiiinii e 122
e 123

vii

List Of Tables

3.1
3.2

3.3
3.4

4.1
4.2
4.3
4.4

3.1

9.2

9.3
5.4

Comparison of different neural network simulation PYOETAs. - & o o 32
Performance comparison of different operations by using cnna simu-

lator. 43
Convergence analysis of different operations by using cnna simulator. 45

Performance comparison of different compact neural network simula-

tionprograms.. 46
Comparison among paralleled architecture, RISC, and CISC. 50
The built-in variables used in the TW languages. 55
Characteristics of simulation environment components. . . w4 ooy s 59

Function templates that can be used. M: Matrix of Input Image
pixels; X: Don’t care term; z, and u, are state and input of border

cells [38]. 60
Accuracy test result for the IDCT operation validation (DCT coeffi-
cients are represented by 13-bit+1 sign bit number).| 89
Accuracy test result for the DCT operation validation (DCT coeffi-
cients are represented by 13-bit+1 sign bit BUIABEI): o« i 5 46w g o 90
Performance Estimation of Proposed Video Coprocessor. 91

Comparison with others’ results. 93

viii

List Of Figures

1.1

1.2
1.3
1.4
1.5
1.6

2.1

2.2

2.3
2.4

2.5
2.6
2.7

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8

Grand challenge which calls for improvement for computing and com-

munication capability [1].., 2
VLSI trend: Featuresize.. 6
VLSI trend: Chipsize. 6
VLSI trend: Integration level. 7
VLSI trend: Clock rate. 7
The design flow of a VLSI system.. 9
The role of the compact neural network: to act as a image pre-

PrOCESSINE PIOCESSOT. . & © v v v v v v v v e e e e e e e e 13
An n-by-m 2-dimensional compact neural network on rectangular grid

(shaded squares are the neighborhood cells of C(7,7)).. 15
Interconnection diagram for the hole-filling template. 16
Functional block diagram of neuron cell in the 2-dimensional compact

neural network. L L L 17
Equivalent circuit diagram of onecell 23], 18
The piecewise-linear output function. 19

Modified neuron cell for hardware annealing in the compact neural
network. (a) Transfer characteristics of nonlinearity for several gain

control parameters. (b) Gain control function g(¢). 23
Operation windows used in the convolution-type integration. 28
Partition of an n X m network into P x @ sub-blocks, where the

numbers shown are different 7;/T, values. 30
Total execution time versus number of blocks divided in each dimension. 31
The flow of the compact neural network simulation environment. . . . 34
A snapshot of the graphics user interface of the behavioral simulator. 35
Annealing processing with changing gain. 38

(a) Input artificial image. (b) Output result along the rows after
connected-component detection operations. (c) Output result along
thecolumns. 39
(a) Input image without an 8-connected pattern. (b) Output image
which has no change. (c) Input image with a 4-connected object. (d)
Hole-filling output image where the enclosed pixels are filled. 40

1x

3.9

3.10

3.11

4.1
4.2
4.3
4.4
4.5
4.6

5.1

5.2
5.3
5.4

3.5

3.6

5.7

5.8

9.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Demonstration of the hardware annealing method. (a) Original
Mickey image. (b) The result obtained by using the traditional digi-
tal image processing. (c) The result after applying the edge detection
function template. (d) The result when both edge detection template
and hardware annealing are applied.
The output image after edge detection operation with different bias
values. ...

L i B T

The overall view of the paralleled computing architecture [49].
Block diagram of the GAPU [49].
Block diagram of a core cell [49).
Flow of the compilation process. _
Framework of the paralleled architecture simulation environment.

A possible software-hardware co-design scheme.

The functional block diagram of the MPEG video compression stan-
dards [4]. (a) The encoding process. (b) The decoding process.
Multiplication using multiple adders.
2-bit multiplication using one adder.
Two different configurations of the ADS-PE array: (a) Row-oriented
configuration. (b) Column-oriented configuration.
Configuration for the DCT Pass-1 while calculating the first column
of the transformed data. The two outputs will be summed together
(ot shown).
Configuration for the DCT Pass-1 while calculating the second column
of the transformed data. The two outputs will be summed together
(RObAhOWN): « & w6 5w w % s B TS ST mn e mm e oo o
Schematic diagram of the serial-to-parallel shift register array, where
the transformed outputs have been automatically transposed.
Signal flow of the sign information bit and table of preload values for
different typeofdata..
Block diagram of the video coprocessor system.
The systolic-array style connection of the ADS-PEs.
Detailed schematic diagram of the ADS-PE.
Schematic diagram of the ADD-PE.
Schematic diagram of the PPU.
Diagram of the ARRAY control module.
Block diagram of the draft new memory system desigtic o v 5w 2 5 5 5
Partition of the search region which can fit to the memory design. . .
Schematic diagram for accuracy test. (a) Inverse 2-D IDCT test. (b)
Forward 2D DCT test.

75

76

77

78
79
80
81
82
83
85
86
87

88

B.1

B.2

C1
C.2
C3

C.4
C.5

C.6
C.7

C.38

The states of pixels during the connect-component detection opera-
tion. White pixels represent values of 41 and black pixels represent
values of -1. (a) Initial state of the 1 x 5 network. (b) The movement
of the white pixel from the left to the right. (c) The final state of the
PEUMORK. s o v v vamusmomes Mo PR WIE W TS BRGEE §E A 99
The dynamic of a 1x5 compact network for connect-component detec-
tion operation by simulating using HSPICE. (a) The dynamic of the
left most cell V. (b) The dynamic of the cell V;. (c) The dynamic of
the cell V3. (d) The dynamics of the two right most cells V4 and Vi. . 101

Schematic diagram of the neuron [86].. 103
Schematic diagram of the 2-neuron network. 105
Simulation results using different initial conditions with first set of

synapse coefficients: (a) x[0]=(1,1). (b) x[0]=(-1,1). (c) x[0] = (-1,-
D), (d) x[0] = (1,-1). « v v oo e e 106
The relationship of input states and output patterns. 107
Simulation results using different initial conditions with the second
set of synapse coefficients: (a) x[0]=(1,1). (b) x[0]=(-1,1). (c) x[0] =

(GLAL), (Y Rl = (L) v evmun vomvim s ws @us wsw s 108
The relationship of input states and output patterns. 109
The relationship of input states and output patterns while external
inputs areimposed. L. e e 110
The relationship of input states and output patterns while external
INPLs Ere pesed. « w v v v ww i va o SR v R R EEE WSS G 111

X1

Abstract

With rapid advances of semiconductor manufacturing technologies and the ma-
ture computer-aided design tools, the trend of moving from serial signal processing
to parallel processing follows a natural progress. The constraint on VLSI imple-
mentation in circuit complexity can be alleviated by the use of regular, repetitive
architectural structures. Scalability and massive parallelism provide the enormous
throughput rate and processing capability that conventional sequential processors
cannot achieve.

An analog compact neural network model is reviewed. It is a powerful parallel
processing paradigm consisting of densely-connected analog computing cells. Various
applications, such as edge detection, hole-filling, and connected-component detec-
tion, can be accomplished by changing the local interconnection strengths, which
are programmed through the coefficient templates.

The behavioral simulator cnna, which reads in the configuration information
and simulates the dynamic behavior of the network, is presented. An unique feature
of this simulator is the hardware annealing capability which provides an efficient
method of finding globally optimal solutions. Effects of hardware annealing and the
different bias setting are presented. Performance comparisons with respect to image
sizes, and template sizes have been summarized. A comparison with simulators

developed by other researchers has also been included.

xil

The parallel computation architecture is defined. A compiler and its associated
programming language greatly facilitate the simulation of compact neural networks
in order to optimize the design parameters. The framework of the whole simulation
environment is also presented.

An innovative architectural mapping based on the multiplication-accumulation
techniques which is similar to distributed arithmetic is described. The array pro-
cessor is most suitable for high performance requirement of 2-dimensional forward
and inverse discrete cosine transformation tasks. Each computing cell contains two
adders: one for 2-bit multiplication and the other one for partial-sum accumula-
tion. The computation power could reach 10 giga-operations-per-second at a system
clock 100 MHz by using a 0.5¢m CMOS manufacturing technology. The accuracy
tests of the inverse discrete cosine transformation have been verified and comparison
with other researchers’ work is summarized. These accomplished results lay a criti-
cal foundation for the increasingly important multimedia applications, especially in

image, video, and speech processing.

xiil

Chapter 1

Introduction

1.1 Signal Processing and VLSI

During the past decade, there has been a dramatic efforts on mapping various sig-
nal/image processing applications onto very large-scale integration (VLSI) architec-
tures. Many researchers have been contributing their efforts and making signifi-
cant impacts from different levels including algorithms, architectures, and detailed
VLSI implementations. Rapid advance of semiconductor technologies and mature
computer-aided design (CAD) tools keep pushing this fast-growing field to a higher
level.

However there are applications which demand such tremendous computation
power that the conventional methods can not reliably provide. In 1992, National
Science Foundation published a booklet describing the Grand Challenging: High-
Performance Computing and Communications (1]. It calls for a thousand-fold im-
provement in computing capability, and a hundred-fold improvement in computer
communication capability. Figure 1.1 shows a plot of many mission needs mentioned
in Grand Challenge. The goal is to achieve one tera operations per second on a wide
range of applications, and a communication network capable of one billion bits per

second.

Billions of operations Grand Challenges

per second Climate Modeling
_________________________________ Pollution Dispersion
1000 ’_ Human Genome
Ocean Circulation
Superconductor Modeling
Vislon and Cognition
100 - .
) Video Compression!
_________ _fghlclg Signature :
10 - ULS! Desiln :
7 Speech and Natural Language
72 Hour ! :
Weathe i y
1 L 48 Hour Chemical | i
Weather Dynamics : {
| 1
3D Plasma ' i
Modeling : !
01 2D Plasma , |
Modeling ' i
s a
! .] ¥
1980 1990 2000

Quote from Grand Challenging: High-Performance Computing and Communications published by NSF, 1992

Figure 1.1: Grand challenge which calls for improvement for computing and com-
munication capability [1].

For example, the neural network research attempts to learn from the nature’s
success and to mimic some of the nature’s tricks in order to accomplish intelligent
information processing tasks not easily performed by the conventional methods.
Neural networks are composed of massively parallel architectures that process large
quantity of information in continuous values, and solve varieties of ill-defined and Jor
computation-intensive signal processing tasks.

When embedded in microelectronic hardware implementation, neural networks
exhibit high degree of fault tolerance to system damage and also high data through-
put rate due to paralleled data processing. Microelectronic and optical implemen-

tations of neural network chips will make it possible to insert low-cost modules into

existing and newly developed systems, and facilitate improved performance in appli-
cations such as pattern recognition, noise filtering, cluster detection, process control
and adaptive control.

Another evident example comes from video signal processing. Multimedia is one
of the most powerful forms of communication ideas which incorporate every type of
media ever developed [2]. It continues to creep into our lives as entertainment and
information become available in digital formats. But the huge amount of information
of uncompressed digital video are not only far more beyond what the state-of-art
microprocessor or digital signal processor can handle but also waste the precious
bandwidth even it is feasible in the future.

There are certain spatio redundancy in each video frame and temporal redun-
dancy among the video sequences. Various standards, such as JPEG [3], MPEG
standards [4] or CCITT H. 261 [5], which help to reduce those redundancies were
introduced to pave a clear way for the multimedia applications. However the enor-
mous demands on the processing power and memory access continue to push the
vast improvement in both architectural innovation and VLSI implementation for a
cost-effective implementation.

For the signal processing applications which require the range of tera-flop op-
erations computing capability, even the general-purpose parallel computers can not
offer satisfactory processing speed or fail the real-time requirement. At present,

special-purpose array processors will become the only appealing alternative [6].

1.2 Why Array Processing?

The trend of moving from serial processing to massively parallel processing follows

a natural progress. The brain cells work cooperatively so that an animal can run

and catch, see and hear at the same time. Although the detailed information of
brain operation still remains a puzzle to be solved by the scientists, the knowledge
that has been accumulated through the biological neural network research does give
good clues toward the construction of a new-generation parallel processing machine
in the near future. And the attempt to duplicate the functions help us toward the
way of developing future intelligent machines.

The constraint on VLSI implementation in circuit complexity can be alleviated
by the use of the regular, repetitive architectural structures. Therefore the array
processing, which is a special format of parallel processing, has the advantages on
the modularity, regularity, efficient communication, scalability, massive parallelism,
and minimized I/O [6]. The small number of building blocks can ease the burden on
the circuits design, simulation and verification. Uniform communication will keep
the layout simple and reduce the overhead with the saving of wiring. Scalability and
massive parallelism provide the enormous throughput rate and processing capability
that conventional sequential processors cannot achieve.

Array processing is not without any limitation. First, the global synchronization
driven by a global clock is the simplest way for small size of arrays. But it will
be affected by clock skew and cause unnecessary slowdown in the clock rate for a
large system. Another concern is that each processing element will possess limited
functions or programmability for compactness purpose. Not every algorithm can be
effectively mapped onto the array structure, which is related to the complexity of
each processing element (PE). In this dissertation, both array processors described
will share the SIMD (single-instruction-multiple-data) [7] style of design, which re-
quires a global clock to synchronize the operation and requests each processing

element working for the same function.

1.3 VLSI System Trend

Rapid progresses in VLSI electronic and micro-mechanical technologies have made
possible the implementation of complex data and signal processing functions on a
single silicon chip, which now contain multi-million transistors. The use of VLSI cir-
cuits can greatly reduce the physical size and enhance the performance and reliability
of microelectronic systems.

The trend of VLSI is judged according to the feature size, number of transistors
per chip, silicon area per chip and the clock rate. The trends are plotted in Figure 1.2-
1.5. The solid-line is the best fit of all data points. The dashed line represents the
best fit to the smallest feature size and gives us the most optimistic prediction. The
time period shown is between 1985 and 2005.

Feature size is related to the minimum channel length, which is an important
indicator showing how small each transistor can be. As the size shrinks, more and
more transistors can be placed on a single chip with the same area and provide
higher performance and more complex functions. At the same time, the clock speed
could have been increased at almost 5 times every decade according to the scaling
effect [8]. Beyond the year 2000, with the help of new packaging technologies such as
multi-chip modules (MCM) and optical interconnection, operation and transmission
can reach the rate near or above 1 GHz.

Power consumption has become a problem when the sizes of the chips increase.
Higher clocking rate, which also means higher switching rate, will also cause heat
problems. Since we often rely on many processing elements in the array processor, a
highly compact cell with low power consumption is very much necessary in the design

requirement. Another issue to be taken into consideration is the interconnection

Chip Siza

Feature Size (um)

"~ Year 2002, leature siro =0.1887 um = -

possible mlnlrnur_;w fealure size = 0_14;11 um s “~
107! L : : ~
1985 1890 1995 2000 2005
Year
Figure 1.2: VLSI trend: Feature size.
10' ; :

in Year 2002, chipsize = 3:438 cm x cm -
wree-Jargest slze =4.904 cmoxcem -

;
1985 1990 1995
Year

Figure 1.3: VLSI trend

2000

: Chip size.

number of fransistors

Clock rate

-
o

£

- Year QDGE. tlock rale- = 981.2MHz -
Possible fastest clock is- 3TEMHZ -

n L

Figure 1.5:

1885 2000 2005
Year

VLSI trend: Clock rate.

among the chips. Electronic connection has its 2-D plane limitation and optical 3-D
transmission/receiving would be a promising choice in the future.

The data are collected from H. B. Bakoglu’s book [9] and results reported in
IEEE ISSCC conference, IEEE Micro magazines and press releases from the chip

vendors over the years. A complete table is listed in Appendix A.

1.4 Design Methodology of VLSI Systems

Before we identify an application and start to build a VLSI system, computer soft-
ware simulation plays a very important role. At the beginning high-level program-
ming language, such as general-purpose C language or mathematics-oriented MAT-
LAB programs can be used to simulate the behavior of the entire system. Various
algorithm implementations under different architectures and dataflows are the de-
sign factors to be reviewed and compared at this stage. The design flow of VLSI
system is shown in Figure 1.6.

Nowadays the hardware description languages, such as VHDL or Verilog, emerge
as the bridge between the high-level simulation and the detailed circuit simulation
by providing different architecture structures, Designers can change the architec-
ture descriptions according to the design schedule, which could be either high-level
behavioral models or detailed low-level circuits. It helps the designers to choose an
appropriate and effective solution before the final architecture is set and detailed
circuit design starts.

In actual electronic implementation, the choices lje within either digital, ana-
log, or hybrid approaches. Digital design is based on well-established and reliable
techniques. It can easily realize cost-effective ASIC chip with high performance

as compared with software simulation on sequential computers with the help of

Problem Deflnmon

Algonthm Study

l

THIgh-Level Simulation f

Architecture Study

Partition & Specification

HDL Simulation

:

Detalled DeS|gn

Fabrication & Testing

T Detailed Simulation T

System Integratlon

Figure 1.6: The design flow of a VLSI system.

sophisticated CAD tools. But this approach still has its own constraints, too. Inter-
connections represent one of the main factor of using silicon area. Higher precision
also comes with the price of larger silicon area and higher pin-count requirement.
Examples of digital implementation include Intel’s Pentium and P6 CISC micro-
processors, IBM’s PowerPC 604 RISC processors and TI’s TM32C030/40/80 digital

signal processors. Other digital neural network chips include HNC-100 chip from

HNC Inc. (10, 11], CNAPS chip from Adpative Solution Inc. (12, 13], and MA16
chip from Siemens Corporation [14].

On the other hand, analog design can provide a compact, dense array which
is very much required in some biologically-inspired applications. For example, the
sigmoid function of a neuron can be simply emulated by the combination of an
operational amplifier and the synapse cells can be modeled by using resistors or
analog multipliers. At present, the precision of weights does not seem to have easy
reproduction for long-term storage by using a purely analog approach. Approaches
such as dynamic capacitors [15, 16], logical digital memory with D/A converter [17],
floating-gate analog memory (18], charge-couple device (CCD) [19] were all proposed
to solve this problem.

Hybrid design, which takes the advantages of both digital and analog designs,
would provide a better choice in implementing the neural network hardware. Digital
storage preserves the signal strength during the operation and helps to cross the
chip boundary. Analog cells such as multiplier, comparator or current minor, can

be used as basic compact building blocks.

1.5 Organization of This Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 described the paradigm of the compact neural network, which can
be described as a two-dimensional mixed-signal processor array and its hardware-
annealing capability. Hardware annealing method provides a quick way to find the
globally optimal solution, which is an important topic in the engineering discipline.

Chapter 3 covers the simulation techniques and partitioning issues for the be-

havioral simulator. The behavioral simulator could help designers not only gain

10

insight on the system operations, but also optimize the hardware-software co-design
characteristics. Selective simulation results are also presented.

Chapter 4 describes the overview of the universal machine and our supporting
programming language, compiler and simulation environment. A high-level language
is defined to facilitate the parallel programming.

In Chapter 5, an innovative mapping of 2-D DCT algorithm to the compact array
processors is presented. The array processor at first is used as a motion estimation
search engine. With minimum additional hardware, it can efficiently compute the 2-
D DCT coefficients which meet the IEEE recommendation of DCT implementation.
The overall throughput rate can be higher than 10 GOPS.

Chapter 6 summarizes the results of this dissertation.

In Appendix A, a collected list of the microprocessor information is provided in
a table, which is used to predict the VLSI trend. Appendix B gives detailed de-
scription of simulating the compact neural network by using SPICE circuit simula-
tor. Appendix C gives a short description of the discrete-time time-delayed network
which can memorize some patterns, which could be related to the biological memory

system. The user’s guide of the behavioral simulator ¢nna is listed in Appendix D.

11

Chapter 2

Overview of Compact Mixed-Signal Array

Processors

2.1 Role of the Compact Neural Network

The computer vision or image processing tasks can be classified into three main
categories and as shown in Figure 2.1. First, an image capture device is used at
the front end, which can be either a CCD camera, an image scanner or an optical
sensor. Those devices capture the images in different formats, such as color images,
black and white images, or images represented in different levels of grey levels.

At the other end, the post-processing tasks, including image processing, pattern
recognition, are performed either in software by using general-purpose computers
or in application-specific ICs (ASICs) to achieve maximum performance. Certain
knowledge could be extracted or some patterns could be recognized.

The extraction or recognition tasks could be greatly facilitated if image pre-
processing steps are effectively performed. Some information obtained from the
capture devices are not required for post-processing. For example, the edge of an
image is usually a very important feature. Thus transmitting the edge informa-

tion only could greatly reduce the required bandwidth instead of transmitting the

12

Image CCD Camera

Image Scanner
Capture Optical Sensor

1: * edge detection
Image : * noise filtering
I * connected-component
: detection
| * hole filling
Tompact Neural Network

Pre-processing

* pattern recognition
Image
* knowledge extraction

Post-processing * image analysis

Figure 2.1: The role of the compact neural network: to act as a image pre-processing
processor.

whole image in full grey-scale representation. The compact neural network con-
sists of mixed-signal array processors which can accomplish the above-mentioned
pre-processing tasks.

The paradigm of the compact mixed-signal array processor is related to the
cellular neural network (CNN) paradigm, first proposed by Chua, et al. in 1988
[20, 21, 22). The two most fundamental ingredients of the paradigm are: the use of
analog processing cells with continuous signal values, and local interaction
within a finite radius. Many results on the algorithmic development, VLSI imple-
mentations of the compact neural network systems were reported in the first three
IEEE International Workshops on Cellular Neural Networks and Their Applications
(Budapest, Hungary, 1990; Munich, Germany, 1992; Rome, Italy, 1994); the book

13

entitled: Cellular Neural Networks, which was edited by T. Roska, J. Vandewalle;
and papers published in IEEE Trans. on Circuits and Systems, and other IEEE
journals and conference proceedings.

The compact neural networks can be viewed as a 1- or n-dimensional array of

many identical dynamical cells, which satisfies two properties:

e most interactions are local within a finite radius r, and

o all state variables are continuous-valued signals.

A coefficient template specifies the interaction between each cell and its neighboring
cells in terms of their input, state, and output variables. The coefficient template
may be a linear or a nonlinear function of the state, input, and output variables of
each cell. It could contain time-delay or time-varying values. The dynamic systems
may be perturbed by some noise sources of known statistics. In this dissertation,

only the cases of linear output functions and without time-delay effects are discussed.

2.2 Overview of Basic Theory and Computation

Paradigm

The compact neural network! can be either a continuous- or discrete-time neural
network that features a multiple-dimensional array of neuron cells with local inter-
connection among the cells. The basic paradigm proposed by Chua and Yang [20, 21]
is a continuous-time network in the form of an n-by-m rectangular-grid array where
n and m are the numbers of rows and columns, respectively. Each cell corresponds
to an element of the array. However, the geometry of the array needs not to be rect-

angular and can be such shapes as triangle or hexagon [24]. A multiple of arrays can

"The basic theory was well-described in Dr. Sa Hyun Bang’s Ph.D. dissertation [23], and is
included in this chapter to facilitate the understanding of compact neural network operation.

14

Cn. 1 =i Cn'm

Figure 2.2: An n-by-m 2-dimensional compact neural network on rectangular grid
(shaded squares are the neighborhood cells of C(1,7)).

be cascaded with an appropriate interconnect structure to construct a multi-layered
network.

The r-th neighborhood cells N:(i,7) of a cell C(4,5), 1 < i <nl<j5<m,
are defined as those cells C(k,!),1 < k < n,1 <1 < m, for which |k —i| < 7 and
|l = j| < r. Figure 2.2 shows the scheme of an n-by-m compact neural network
with neighborhood range r = 1. The cells filled with dashed lines represent the
neighborhood cells Ny (4, 7) of C(i,7), including C(i, 7) itself.

The cell C(, 5) has the direct interconnection with N,.(z, 7) through two kinds of
weights, i.e., the feedback weights A(k,l;1,7) & A(3, 7; k, 1) and feedforward weights
B(k,l;1,7) & B(i,j; k1), where the index pair (k,l;1,7) represents the direction of
signal from C(3, §) to C(k,l). Hereafter T4 and Tg will be used to represent these

two synapse weights for short, respectively.

15

Vu(i,j): input

Vy(i,j): output

Figure 2.3: Interconnection diagram for the hole-filling template.

Each cell C(i,5) communicates directly with its neighborhood cells C(k,l) €
N.(,7). Since the cells C(k,!) have their own neighborhood cells, it also commu-
nicates with all other cells indirectly. The term template is used to describe the
data format which stores the connection-strength information, such as the feedback
synapse weight Ty, feedforward synapse weight Tz and bias value /.

For example, a hole-filling template is described as

[0 1 0
Th = |1 21|,
010
[0 0 o
Te = |0 375 0|,
0 0 o0
Ig = -1 (2.1)

Figure 2.3 illustrates the interconnection information of cell C(i,7) for the hole-filling
template.
The block diagram of each cell C(1,7) in the network is further illustrated in

Figure 2.4. The external input to the cell is denoted by vuij(t) and typically assumed

16

.\
10
vV, (i,))
|B G ik

AGIH E

C A U RAD)

C(k 1) € N (i,)) + f X v .
V,(kDs - = T
< integrator| nonlinear

¢ output
A (I,J;k-”\f fungtion
‘1 /Rx

Figure 2.4: Functional block diagram of neuron cell in the 2-dimensional compact
neural network.

to be constant vyj(t) = v,; over an operation interval 0 < ¢ < 7. The input is
connected to N,(z,7) through the feedforward weights B(i, j; k,!)’s. The output of
the cell, denoted by vy, is coupled to the neighborhood cells C(k,l) € N,(i,7)
through the feedback weights A(z, j; k,1)’s.

Therefore, the input signals consist of the weighted sum of feedforward inputs
and weighted sum of feedback inputs. In addition, a constant bias term is added to
the cell. If the weights represent the transconductance values among the cells, the
total input current i,;; to the cell is given by

wii(t) = D AGLE D)+ Y B, ik Dva(t) + I, (2.2)
C(k)EN(i,5) C(k,1)ENe(1,7)

17

Vi (1) =V, Vaij () Yoy ()

KRR %L PO® | 9Ped & =

SLGGkD Sl,G kD
k1 k1
Figure 2.5: Equivalent circuit diagram of one cell [23].

where [, is the bias current. The equivalent circuit diagram of a cell is shown in
Figure 2.5, where R, and C, are the equivalent resistance and capacitance of the
cell, respectively.

Here, I, R., and C, are assumed to be the same for all cells throughout the
network. All inputs are represented by dependent current sources and summed at
the state node. Due to the capacitance C, and resistance R, the state voltage v,;;

is established at the summing node and satisfies a set of differential equations

dvz,'- t 1 i
de—;() = —R_Ivzij(t) + 1.45(2)
1

= _R_U:ij(t) + Z A(I,_}‘, k: l)vykf(t)
z C(kI)ENK(i,j)

C(kDENK(5.5)

The cell contains a nonlinearity between the state node and the output and
its input-output relationship is represented by v,;(t) = f(v.i;(t)). The nonlinear
function used in a compact neural network can be any differentiable, non-decreasing

function y = f(z), provided that f(0) = 0, df(z)/dz > 0, f(+o0) — +1 and

18

G = 5 e+ 1l -lx=1))

Figure 2.6: The piecewise-linear output function.

f(—=00) = 1. Two widely used nonlinearities are the piecewise-linear and sigmoid

functions as given by

;(lt+ 1] =]z —1]) piecewise-linear function,

2 (2.4)
(1—e)/(1 4 e**) sigmoid function.

y=ﬂﬂ={

Here, the parameter A is proportional to the gain of the sigmoid function. For a
unity neuron gain at = = 0, : 2 may be used for the sigmoid function. However, if
the positive feedback in the cell is so strong that the feedback factor greater than one,
the gain of the cell needs not to be large for guaranteed binary output in the steady
state. Typically, a unity gain df(2)/dz|,_, = 1 is used. The transfer characteristic
of the piecewise-linear function is shown in Figure 2.6.

The piecewise-linear function provides a mathematical tractability in the analy-
sis, while the sigmoid-like nonlinearity can be easily obtained from electronic circuits
such as an operational amplifier. The shift-invariant network has the interconnection
that do not depend on the position of cells in the array except at the edges and is the

most desirable feature when implementing a large-size electronic network such as a

19

VLSI chip. The weights of a shift-invariant array neural network can be represented

by the (2r +1) x (2r + 1) feedforward and feedback coefficients templates

Ta = [apm -r<p,q< 7‘], (2-5)

TB — [bp.q;' -r S P, q S T‘].

Let N =n x m be the number of cells in the array. By using the vector and

matrix notations, (2.3) can be re-written as

dx 1
CIE = —R—Ix + Ay + Bu + Lw, (2.6)

where

x = [z122 -+ an]T = [Vaa()|vza(t)] - - [vzn(t)]7, N x1

y 192 -+ yn]" = [(t)|vga(t)] - - - [oga(2))7, N x1

u = [ul Ug * -+ U-N]T: [Uullvu2|“'|uun]’1‘) N x1

A = toeplitz((AolAs| - [Acl0]--), (Ao|A_s] - [Acl0]--)), N x N

B = toeplitz((Bo|Bi| - [Bl0]), (Bo|B_y| -+ [By]0]---)), N x N

w o= [11---1]7. N x 1
Here,

Vxk = [Vzk1() vaka(t) - - vzkm (1)), 1 xm

Vyk = [Uykl(t) Uyk?(t) vt Uykm(t)]a I xm

Vuk = [Uukl Uyk2 *** Uukm]: 1 xm

Ax = toeplitz((aro ar - ar0--),((ako ax-1---ax_0---)), mxm

By = toeplitz((bro by bkr0---), ((bio bk—1---br—,0--)), mxm
and toeplitz(a,b) is defined as the Toeplitz matrix with a in the first row and b
in the first column. Note that the sub-matrices Ay and By are Toeplitz, but A
and B are not. The elements of T and Tg are often normalized to the scale of
T:, e.g., 107°. The notations of voltages v,(t)/v,(t) and the state variables x/y
will be used interchangeably hereafter. Because —1 < y; < +1, Vk, the output

variable y is confined within the N-dimensional hypercube so that y € DN = {y €

20

RN : -1 <y < Lk = 1,2,---,N}. The coefficient templates are symmetric
if A(1,5;k,1) = A(k,l;1,57) and B(3,j;k,1) = B(k,l;7,7). In this case, A and B
are symmetric matrices and the stability of the network is guaranteed. In fact, the
symmetry of A is a sufficient condition for stability. Under the constraint conditions
|vzij(0)] <1 and |vy;;| < 1, Vi, 4, the shift-invariant compact neural network always
produces a stable output in the steady state. Moreover, if A(1, j;1,7) > 1/R,, then
the saturated binary outputs are guaranteed.

In any compact neural network, all states vzij(t),¥t > 0, are bounded and the

bound vz 4, can be determined by [20]

VUzmaz — 1+R:|16|

+ R; max (¥ (IA(i,j;k,f)H|B(i,j;k,f)|))- (2.7)
114 <n, C(k-I)ENr("‘J')
1<j<m

The terms in (2.7) account for the initial value, bias, feedback, and feedforward

interactions, respectively. Therefore, the operating range of the circuits for summing

and integration in Figure 2.2 (b) must be at least “Wramar S Beiill) € Viias

2.3 Hardware Annealing on Compact Neural
Networks

Optimization? is an important subject in solving scientific and engineering problems.
The most common searching technique for finding the global minimum is to use
gradient descent, which finds the direction for the next iteration from the gradient
of the objective function. For complicated problems, the gradient descent technique

often gets stuck at a local minimum where the objective function has surrounding

*Description of hardware annealing was included in Dr. Bang Lee’s dissertation [25]. This
section provides convenient overview of the related materials.

21

barriers. In addition, the complexity of most combinatorial optimization problems
increases dramatically with the problem size and makes it very difficult to obtain the
globally optimal solution in a reasonably computational time. Simulated annealing
is one of the popular approaches which is widely applicable to the combinatorial
optimization problem [26, 27].

The parallel hardware annealing technique borrows the concept from the metal-
lurgical annealing and is not just an implementation of the popular software simu-
lated annealing. In order to find the lowest energy level of a piece of metal, the best
way is to melt it and to reduce the temperature slowly in order to allow atoms to
fit into the lattice sites. Since the number of iterations at a given temperature and
the cooling rate of the temperature should be compromised in order to speed up the
convergence process, a very large computation time is usually required in software
simulation of the hardware annealing. However, recent advances in microelectronic
technologies make possible the design of compact electronic neural networks with
hundreds of neurons. Many analog electronic neural network processors are equipped
with gain-adjustable output neurons which allow the execution of hardware anneal-
ing 28, 29].

The hardware annealing is performed by the neuron-gain control g(t), which
is assumed to be the same for all neurons throughout the network for simplicity
of analysis and illustration [23]. The initial gain at time ¢ = 0 can be set to an
arbitrarily small, positive value such that 0 < g(0) << 1, and after the annealing

process for ¢4 seconds the final gain g(¢4) = 1 is maintained until the next operation.

22

(a)

(b)

Figure 2.7: Modified neuron cell for hardware annealing in the compact neural net-
work. (a) Transfer characteristics of nonlinearity for several gain control parameters.
(b) Gain control function g().

When the hardware annealing is applied to a compact neural network by increasing
the neuron gain g(t), the transfer function can be described by

+1, ifv,>+1/g
vy = f(gv:) =4 gv,, if — I/g <wv, < —|—l/g . (28)
-1, ifv.<-1/g

Figure 2.7(a) shows the transfer characteristic of the piecewise nonlinearity for sev-
eral gain control parameters g.

Note that the saturation level is still y = %1 and only the slope of f(z) around
z = 0 varies. In Fig. 2.7(b), the gain control function g(¢) with constant slope is
plotted. In each annealed operation, g(t) increases linearly from gnmin = g(0) to

gmaz = 1 for 0 <t < T4. Then, the maximum gain is maintained for Ty <t < T,

23

during which the network is stabilized and the initialization operation x = x(0) may
take place.

The dynamic of a compact neural network is described by a set of the first-order
nonlinear differential equations as defined in (2.3), where vy;; = f(g - vsi;) at this

moment. In a compact form,
x = —=T,x + Ay + b, (2.9)

where y = f(gx) and b = Bu + /w. When the neuron gain is not equal to one, the

Lyapunov energy function of the network can be modified as,

E = ——z o AGLFi R, Dogi(t)vg(t) + 291R: 2 (vyis (1))°

,j C(kJ)EN:(i,5) 1,j

- Y Y B(, ik Dy (t)vur — Zhvm

1,7 C(kJl)ENL(i,5)

1 Tr
= —>y"Ay+ZyTy-y'b
2 2g
= A £y . S . [P
= =¥ A— gI y-yb=-zy Mgy —y"b. (2.10)

where the factor 1/g in the second term stems from the energy associated with the
piecewise-linear function with a neuron gain other than unity. Since My is also a
real symmetric matrix, it can be diagonalized as Mgy = A — (T./g)I = QA,QT,
where Ag is the diagonal matrix of eigenvalues Ay, £ = 1,2,---, N, and Q is an
N x N matrix whose columns are made of orthonormal set of eigenvectors ey’s.
In an annealed neural network, the elements of Ay are time-varying. However, Q
is independent of the neuron gain because M and My commute. By noting that
Mg=A-T.I-((1-9¢)Tz/g)l =M — ((1 — g)Tx/g)l, the relationship between

the eigenvalues of unannealed and annealed network can be easily shown to be

Ak=,\;—(—1%m, k=12, N (2.11)

24

where Ay’s are the eigenvalues of M. In the hardware annealing, the eigenvalues \’s
are changed from all negative initial values to the final values Ay’s by increasing
the neuron gain g, such that the energy function (2.10) which is initially a convex
function of y, is transformed gradually into a concave function. The initial neuron
gain gop must be chosen such that Ax(g0) < 0, Vk.

Detailed theoretical proof and an example to demonstrate the superiority of
hardware annealing technique had been found in (23, 30]. It had been successfully
applied to Hopfield networks and the cellular neural networks. But the application
of the hardware annealing is not limited to only neural networks, global optimal so-
lutions can be achieved in both image edge detectors and in wireless communication

receivers.

25

Chapter 3

The Behavioral Simulator

3.1 Simulation Techniques

In order to solve the system of 2-dimensional n xm networks using a digital computer,

the governing equation (2.3) is best represented in the matrix form as

dx 1
r,E_—Rxx+T,ely+'].’13uJrj"&w. (3.1)

The C; is used for integration purpose and R, is used to provide a leakage path.
For behavioral simulation, these two variables will be normalized to 1 and the time
scale used hereafter will be in the normalized time unit. Since the inputs are kept
as constants during each operation, the last two terms can also be lumped together
as another constant term. Once the output transfer function is included, the overall
systems can be expressed as a set of differential equations to be solved as

d
(T’t‘ = —x + f(Tax) + Le, (3.2)

where f(-) is the output transfer function and L, is the lumped constant vector
whose values are equal to Tgu + [,w. By using differential equation solver subrou-
tines provided by many software vendors [31, 32], the whole system dynamics can

be simulated and analyzed.

26

One severe drawback for this simulation method is that, for an n x m network,
the feedback matrix 7’4 and control matrix Tg will have the dimensions of mn x mn,
which increases on the order of O(n*). When a large system is to be simulated, very
large storage resources will be required to hold the data for these two matrices. Only
a small portion of the entities are non-zero and others will be zero. Precious storage
space and computing resource are not efficiently utilized. Besides, it will be quite
challenging to partition the computing jobs for multi-processors or multi-computer
systems because of the synchronization requirement, non-regularity of the network
and the inefficiency in the routing and use the communication bandwidth.

An alternative solution is to apply the “convolution” idea popularly used in the
digital image processing. Because the cells are locally connected and space-invariant,
the basic approach for the integration is to consider a sub-image block whose size
is the same as the feedback matrix T4 (or feedforward matrix 7). It moves from
left to the right, from top to the bottom of the image as shown in Figure 3.1. The
output state will only be updated after the whole image has been processed at
each iteration. Only new state information on the border has to be passed to the
neighboring block. The simulation will stop after all the outputs saturated to either
1 or -1 and no longer changed their values.

By applying this “convolution” concept, it will not only save the storage space
required but also increase the data hit rate during the software simulation. That’s
mainly because most of the time the data are in the cache for local access.

The updating equation in each cell can be written in the form as

Um'j(tn»{»l) = Urij(tn) + ‘/:'“"'I f,(‘um-j)dt, (33)

27

o O O O

- ———— .

Current Convolution Window

o O O O O

Figure 3.1: Operation windows used in the convolution-type integration.

Now the problem can be treated as solving the set of differential equations with
initial values V(0) in each sub-image block. The one-step method, such as the sim-
plest Euler’s method or the more elaborated fourth-order Runge-Kutta method, can
be used for the integration. The latter will cost more in terms of computation time
because it evaluates four derivatives per iteration. However its high cost is compen-
sated by its accuracy in transient behavior analysis and thus is usually favored. The

fourth-order Runge-Kutta for one-step integration is given by [33]

8t
Velten] = Valta] + - (Fy + 25 + 23 + F), (3.4)

where 6t is the integration time step and Fy, Fy, Fi, Fy are four intermediate terms.
One advantage to solve the compact network in this scheme is that the whole
system can be easily partitioned for parallel computation using multi-processor or

multi-computer systems. As shown in Figure 3.2, assuming that the 2-dimensional

28

compact network is partitioned into P x @ sub-blocks for parallel computation, the

overall execution time 7, will be equal to

nm 2 n m

Te='j3—Q"Tu+"B: };-i-a)

T, (3.5)

where T, is the computing time for each cell and T; represents the time for inter-
block communication. B. is the communication bandwidth factor between adjacent
sub-blocks. The first term decides how much computation time is needed within
each sub-block and the second term is related to the interval required for block-to-
block communication. The more sub-blocks divided, the less the computing time will
be needed. The penalty will be the larger number of computing resource required,
massive synchronization among the blocks, and the communication burden among
the blocks.

The total execution time versus the number of blocks divided per dimension is
plotted in Figure 3.3 with different 7;/T, ratios. In the experiment the input is
assumed to have the same size in both dimensions (256 x 256) and the number
of blocks divided in each dimension is assumed to be equal. The communication
bandwidth factor B, is set to be 1 to facilitate the analysis. When a multi-computer
system is used to simulate the network, the T;/T), ratio tends to be large due to the
extra memory access time and bus arbitration time. When the number of divided
sub-blocks increases, the execution time difference among different T;/T,, ratios will
also increase. This implies that a fine-grained system will need better communication
to improve its system performance.

A compact analog VLSI implementation will be an extremely powerful approach
for P — n, @ — m. Here T}, is equal to k- RC, where k is a scaling factor depending
on the coefficient template and was proved to have an upper-bound limit for each

template [20]. Therefore saturated binary results will be achieved after a certain

29

subblock(0,0) subblock(0,1) subblock(0,Q-1)

IR L 8

Al

P

X

l
1X]

s

subblock(1,0)

n rows(divided into P sub-column)
A
O | T R

X\
LX]

S
o ><
x L]
8
ey - . —— ..
~ subblock(P-1,Q-1)
18 J
Y
m columns (divided into Q sub-columns)
|:| Neuron Cell — inter-block interconneciton

[Partition Boundary - Intra-block Interconnection

Figure 3.2: Partition of an n x m network into P x @ sub-blocks, where the numbers
shown are different T;/T, values.

30

10 T T T T T L) L]
10°F E
@
E
& 100
310’k 1
> E p
1]
3
10
10°F i
1
0.1
0.01
10‘ 1 1 1 1 L 1 1 L
0 10 20 30 40 50 60 70 80 90

number of blocks divided per dimension

Figure 3.3: Total execution time versus number of blocks divided in each dimension.

amount of execution time. If the network can be realized on one silicon micro-chip,
the updated interconnection will occur simultaneously when the state changes. 7:
will become negligibly small and the second term in equation (3.5) can be dropped.
The overall execution time will be equal to just k - RC. By using modern VLSI
fabrication techniques, the RC' constant will be in the range of 10 ns to 1 us. The

achieved speed is enormously fast when dedicated microelectronic hardware is built.

3.2 Related Work on the Simulators

Several research versions of simulators have been announced. The CNN Workstation

[34], the XCNN simulator [35], the SIRENA environment [36] or the Neurobasic

31

Table 3.1: Comparison of different neural network simulation programs.

Simulator cnna XCNN[35] | NeuroBasic[37] | CNNM[34]

==m=

Graphical Yes (cnng) Yes No Text-Menu

User

Interface

Annealing Yes No No No

Capability

Multiple-step | C-like BNF style Basic-Like No

Simulation

Language

Support

Image Size unlimited unlimited unlimited 47 x 47

Image Use compan- |Built-in Use companion |Built-in (only a

Display ion software software few different
colors avail-
able)

Dynamic Anal- | With compan- |Animation dur- | Animation at No

ysis ion software |ing certain pre-

execution specified time

simulator [37], are representative examples. A comparison of the simulator programs
is summarized in Table 3.1.

The CNN Workstation, developed by the Dual and Neural Computing Systems
Laboratory, in Budapest, Hungary, provides a simple experimental tool for studying
cellular neural networks. Transients of compact neural networks with linear, nonlin-
ear, and delay-type templates can be monitored graphically. A basic menu-driven
user interface provides the control mechanism of the system.

Another software package XCNN simulator from Texas A&M University in Col-
lege Station, Texas, focuses on a multi-layered neural network structure performing

color image processing applications. Additional post processor is used to perform

32

pixel-wise logical operations among different layers. The commands are based on a
specialized BNF-like language.

Researchers in the Universidad de Sevilla, Spain, developed the SIRENA envi-
ronment which is a general framework for artificial neural networks, with emphasis
on cellular neural networks. The focus is on the simulation and modeling of the
non-ideal effects in VLSI implementations, with efficiency comparable to SPICE cir-
cuit simulator. Graphics interface is provided for simulation supervision and image
visualization.

The Neurobasic simulator from Swiss Federal Institute of Technology, in Zurich,
Switzerland, is another simulation environment for neural networks which uses the
Basic programming language as the development tool. It is also designed to execute
on the MUSIC parallel computer. The neuron function can be evaluated very fast
because of the massive parallelism of computer hardware.

The network can also be simulated by using SPICE circuit simulator, and the ap-
propriate circuit elements. More detailed explanations are described in Appendix B.
Using SPICE can provide excellent transient analysis capability but it usually takes
much long time to simulate the network. The output can be nicely displayed as the

way results from other simulations are handled.

3.3 The Behavioral Simulation Environment

The framework of the behavioral simulation environment is shown in Figure 3.4.
The simulator accepts the configuration command files and the images files as input
and generates the result output images after the simulation. Those images can be

visualized using companion software or via the graphical user interface.

33

Graphical W Image

User Interface J Viewer
[}
Lo
| b e e e - — "
Y : |
configuration |1 = E
T Z L
commandfle | Behavioral ——
|
— Simulator image
image '_

Figure 3.4: The flow of the compact neural network simulation environment.

The compact neural network annealing simulator cnna was constructed based
on the integration method described above. It is developed using the portable C
language and consists of more than 3,500 lines of code. It runs under either Unix
operating system with a suitable C compiler. The behavioral simulator can provide
valuable information and is a good tool to characterize the behavior of the system.

An X-window graphical user interface based on XView widget is built on top of
the text-mode simulation which provides a more intuitive way for the user to execute
the simulator. A snapshot of the graphics interface is shown in Figure 3.5.

The strength of the compact networks lies in the programmability by changing
the coefficient templates. That is to say, the content of the templates can be viewed
as instruction sets used in the conventional digital microprocessors. The simulator
can either read the commands from a text file or accept the input from the graphic
user interface and properly established the configurations for the network operation.
The input images and initial states can be handled as the operands. The system
will only need information of new templates for different applications. Therefore a

general-purpose simulation environment can be built.

34

Figure 3.5: A snapshot of the graphics user interface of the behavioral simulator.

The user can program the command files for different applications. A sample
of the command file that is used to simulate the vertical connected-components

detection operation described in the next section is listed in the following:

METHOD RK4
TRAN 0.01 10.0
ANNEAL N

TOL 0.0001

ISIZE 20 20

INPUT ccd.20
INITIAL ccd.20
OUTPUT ccd20ns.out

TSIZE 3 1

TEMPAO 100200 -10
TEMPB ALL 0

BIAS 0.0

BOUNDARY 0

35

The commands can be summarized into 3 groups. The first category contains
simulation commands which specify what kind of integration method is used for
simulation, what is the integration interval, and whether annealing capability is ap-
plied. The second category consists of I/O commands where the input/output
image information is provided. The last category contains the template configu-
ration commands which can be provided individually or with the help from the
template library.

Template library is supported which accommodates more than 50 useful tem-
plates. A list of selective known templates for cellular nonlinear networks can be
found in [38]. Additional coefficients templates were also reported in [39, 40]. Several

examples are used in the next section for demonstration.

3.4 Features of the CNNA

There are several features that could be incorporated in this behavior simulator to
help us study the system behavior before the detailed design of the hardware. It
provides us valuable information for effects of the non-linear network and non-ideal

microelectronic fabrication. Those effects can be summarized as:

Internal state limitation Although the internal states will be bounded to a cer-
tain value as proved in [20], it is not desirable to have such a large dynamic
range for the actual circuit simulation. With limited swing voltage (or current)
range, a large dynamic will sacrifice the resolution. To decide what range is

appropriate, the simulator can help.

Non-ideal output function The output function described in section 2.4 has the
characteristics such as passing the origin, skew-symmetric with respect to the

origin point, and saturating at fixed output when the input is large. However,

36

the output function when implemented in hardware will not be so perfect.
Symmetric characteristic is not always achieved and the output might keep
growing even when the saturation point is reached. To simulate this effect, a
look-up table for output function can be used to study the effect of the desired

output function.

Crosstalk in the interconnection There are heavy communication activities
among the computing cells during the execution which might cause the
crosstalk. Especially for the analog implementation, the burst noise might
randomly strengthen or weaken the templates weights and thus lead to a dif-
ferent solution. By imposing randomly generated noise with a pre-specified

strength, the simulator could provide useful information.

Limited resolution For digital simulation, the resolution can be as high as desired
with the penalty of longer execution time. For analog implementation, the
resolution supported by the analog circuits is typically limited to about 7 to 8
bits. Use of integer data type instead of floating point data type can accurately

simulate the effect.

An unique feature of this simulator is the annealing capability. Hardware an-
nealing [23, 41], which is effectively the paralleled version of the popular mean-field
annealing used in analog arrays, provides an efficient method of finding globally
optimal solutions. It is performed by changing the gain value of the input-output
transfer function f(-), which is described by (2.8) for the piecewise linear function.
At the beginning of the annealing process, the initial gain can be set to a very small,
positive value. During the annealing process the gain keeps increasing and the final
gain g; = 1 for the piecewise linear function is maintained until the next operation.

Notice that the new current-mode circuit scheme is used and the maximum gain

37

Figure 3.6: Annealing processing with changing gain.

value in the cellular network is only 1. Figure 3.6 shows the transfer characteristics
of the nonlinearity for several values of the gain control parameter g.

The simulator takes much longer CPU time for the annealing process because
the gain g, needs to be changed during the simulation. This is due to the use of low
neuron-gain at the beginning, in contrast to the constant high gain for simulation
without the annealing. The states will change in order to deterministically search

for the optimal solution in the solution space.

3.5 Simulation Results

The connected-component detection operation [42] can count the number of con-
nected components in each row (or column) of the input image. This operation is

performed by using the appropriate template for the row operation,

00 0
A(i,j;k,l) =1 2 =1 |, B(i,j;k,f) = 0, I, =0. (3.6)
00 0

The input image to be processed is entered as the initial state values V,(0). The

output will be saturated to either 1 or -1 and the numbers of cells which have

38

positive outputs in each row is the number of connected components. These positive
output values will be separated by a -1. Figure 3.7 shows the final results using this
template. The execution time for this specific application grows linearly with the

image size because the 1-dimensional dependency of the data.

10 3

ool == L :

wn

—_—
===
]

10 ‘

5 10 15 20
(b)
10
5 10 15 20
c)
Figure 3.7: (a) Input artificial image. (b) Output result along the rows after

connected-component detection operations. (c) Output result along the columns.

Another example is the hole-filling operation [43], which can fill the holes within
the edge of objects in the input image. The edge of the hole has to be at least eight-
connected for proper filling. A pixel X is said to be eight-connected to the neighbors

if it is a logical one and at least one of its east, west, north, south, northeast,

39

northwest, southeast or southwest neighbors is also logical one. The operation can

be realized by the template

0
A(s, 53k, 0) = | 1
0

[% T =
(== B =

000
, BLik)=]04 0|, L=-1. (@37
000

The image to be processed is entered as the input, and the initial states are all set
to 1. As time evolves, the pixels to be filled will stay at 1 and the those pixels
which will not be filled will keep decreasing their values and finally saturated at -1.

Figure 3.8 shows the results of hole-filling operation on two simple spiral images.

Figure 3.8: (a) Input image without an 8-connected pattern. (b) Output image
which has no change. (c) Input image with a 4-connected object. (d) Hole-filling
output image where the enclosed pixels are filled.

40

The applications described above both use the binary input images. For some ap-
plications, gray-level images are used. In the edge-detection operation, the required

templates are

[0 0 0
A(t,5:k0) = |0 2 0,
(000
[—0.25 —0.25 —0.25
B(i,5;k,0) = | —025 2 —025]|, I,=-03 (3.8)
| —0.25 —0.25 —0.25

An example that shows the superiority of hardware annealing for finding the global
optimal is shown in Figure 3.9. The original Mickey image is plotted in Figure 3.9
(a) and it is a gray-level 187 x 294 image. After we applied the conventional digital

image processing operation with

-0.25 —-0.25 —0.25
M= -0.25 2 -0.25 |, (3.9)
—0.25 —-0.25 —0.25

and threshold set to 0, an edge image is generated in Figure 3.9 (b). The simulation
result shown in the Figure 3.9 (c) is produced by (3.8) without hardware annealing.
In Figure 3.9(d), an improved edge result is shown when the annealing is applied.
The annealing speed and the threshold I, are the parameters for the annealing
operation.

The compact neural network can be enhanced by incorporating chaotic neurons
into the array to explore the rich spatio-temporal relationship. Such complex net-
works are important models for physical systems and biological signal processing
with many degrees of freedom [44]. The Chua’s circuits can be used as chaotjc
cells [45]. Due to the high dimensionality of the complex chaotic networks, accurate

simulation will be a challenging task and is not addressed in this dissertation. Qur

41

(c) (d)

Figure 3.9: Demonstration of the hardware annealing method. (a) Original Mickey
image. (b) The result obtained by using the traditional digital image processing.
(c) The result after applying the edge detection function template. (d) The result
when both edge detection template and hardware annealing are applied.

behavioral simulator can be used in conjunction with the mixed-mode circuit sim-

ulator iSPLICE [46] for development of application-specific array processing VLSI

chips in pattern recognition.

42

3.6 Discussion on the Simulation Results

3.6.1 Performance Evaluation

Since the convolution concept is used, the required computation time is linearly
dependent on the number of total cells, number of synapse weights, and the number

of iterations executed. Table 3.2 summaries the simulation time for different cases.

Table 3.2: Performance comparison of different operations by using cnna simulator.

: Image and Execution lteration
Fiection Size CPU Time Steps
Edge Detection lenna 6.53 sec 1,000
(32x32)
lenna 26.33 sec 1,000
(64x64)
lenna 104.62 sec 1,000
(128x128)
lenna 418.30 sec 1,000
(256x256)
Horizontal letter A 31.13 sec 2,000
Connected- (32 x 32)
Component-
Detection letter A 185.78 sec 3,000
(64x64)
letter A 1476.50 sec 6,000
(128x128)
letter A 19799.44 20,000
(256x256)
Image Halftoning lenna 54.89 sec 2,000
(32x32)
lenna 329.48 sec 3,000
(64x64)
lenna 1755.75 sec 4,000
(128x128)
lenna 6664.56 sec 5,000
(256x256)

43

All the simulations are done on a SUN Sparc-20 workstation running Solaris
2.3. In the first case, the edge detection template, which is describe in (3.8), is
used where most of the non-zero coefficients terms are in T and can be lumped
together. Therefore the simulation time is much less than the other two cases. The
time required is approximately proportional to the number of cells.

The second case is the connected-component detection which is described in
(3.6). The task takes longer time to finish as compared with the edge detection
case because there are only feedback synapse weights (7). Besides, the behavior
which moves the positive pixels (value +1) along a certain direction also contributes
to a larger number of integration steps before the output saturates. This leads to
a longer execution time, given the same image size. The last testing template is a
5-by-5 halftoning template, which is larger than the 3-by-3 template in the other
two cases. Since more interconnections are involved, it takes longer execution time.

Table 3.3 lists the number of iteration steps for the outputs to saturate. For the
edge detection operation, the numbers are not linearly proportional to the image size,
mainly because it is a locally-interconnected operation. In contrast, the connected-
component detection operation involves the pixel value movement along a certain
direction. Therefore it almost takes twice the number of steps needed whenever the

image is enlarged by a factor of 2.
3.6.2 Performance Comparison with Other Simulation
Programs

Performance comparison with different simulation programs is listed in Table 3.4.
Edge detection and connected-component detection operations are used as the

benchmarks with two test images sizes of 32-by-32 and 64-by-64.

44

Table 3.3: Convergence analysis of different operations by using cnna simulator.

Fuifiction Image and Steps Needed
e Size for Saturation
Edge Detection lenna 344
(32x32)
lenna 430
(64x64)
lenna 471
(128x128)
lenna 472
(256x256)
Horizontal letter A 1185
Connected- (82 x 32)
Component-
DB!BEﬁOH letter A 2393
(64x64)
letter A 4773
(128x128)
letter A 9627
(256x256)

NeuroBasic can complete both four tests at a speed comparable to cnna. CNNM
simulator does well in the speed test at the price of accuracy. That causes an incor-
rect answer for the connected-component detection operation. Besides, it can only
support the simulation up to 47-by-47 cell size due to the DOS memory limitation.

The programs are executed on different platforms. It would be unfair to compare
the speed directly. According to the benchmark program used in the MATLAB, a
speed index is used as a reference. The speed index is approximately proportional
to the computing power of the platform used. The higher the index is, the higher
computation capability the machine can have. The execution time multiplied by the

speed index would be a good measurement for the performance comparison.

45

Table 3.4: Performance comparison of different compact neural network simulation
programes.

Simulator cnna NeuroBasic CNNM H-SPICE
— — —_— — — —
edge detec- | 6.53 sec 7.56 sec 1 sec for 20 F 860.8 sec
tion (32x32) iterations”
edge detec- | 26.33 sec 28.69 sec not support- || fail because
tion (64 x 64) ing this size || of insuffi-

cient memory

CCD (32x32) | 31.13 sec 17.64 sec 11.0 sec | 3786.6 sec

CCD (64x64) | 185.78 sec 101.47 sec not support- || fail because
ing this size of insuffi-
[| cient memory

Simulatoin SUN SUN IBM PC SUN

Platform SPARC 20 SPARC 20 Pentium SPARC 2
90 MHZ

Speed Index | 2.73 2.73 2.46 1.0

* The simulation is done by applying the edge detection template on a 32x32 image consisting
of a solid filled square with size of 20-by-20. The simulation on the lenna image didn’t succeed
because the simulator didn't stop after the output saturates

3.6.3 Impact of the Bias Value

For many applications that mainly worked on the binary input images, the bias value
will not change the state of each neuron cell which is either 1 or -1. That means the
bias value is not an important factor. But for the grey-level (continuous-level) input
images, the bias will actually affect its overall behavior.

Take the edge detection operation as an example, where the template information
is listed in (3.8). The original image is an eye portion of the Lenna image. If the
bias value is varied from -1 to 0, different edge results will be achieved as shown
in Figure 3.10. When the bias is set lower than -1, too much information can be

filtered out.

46

Ibias = -1.0 Ibias = -0.75

Ibias = —0.25
w/o annealing

Figure 3.10: The output image after edge detection operation with different bias
values.

This phenomenon also occurs with the digital Sobel edge detector [47]. After
the Sobel operator is applied, a threshold value has to be set to decide whether the
pixel represents an edge or not. With different threshold values, the quality of the
edge result will not be the same, as shown in Figure 3.11. Therefore, the choice of

the bias or the threshold value is very critical for the edge detection operation.

47

Original Image 32x32 Threshold =0

Xty

S

Threshold = 50 Threshold = 100

Figure 3.11: The output image after digital edge detection with different threshold
values.

48

Chapter 4

The Parallel Architecture: Array Computing

For more than 40 years, the concept of the von Neumann machine has dominated the
design of the computation architectures and systems [48]. Traditionally a computer
consists of a single or multiple central processing units (CPUs), the memory and the
controller circuits.

In contrary to the digital CPU design, a hybrid analog-digital scheme [49] can
be used to construct a smart and compact computing machine. It is an architecture
for an analog stored-program 2-dimensional array computer with distributed local
memory, analog-and-logic computing modules, as well as local and global commu-
nication and control units. The global stored-program and the massively parallel
execution are the key features of the array computing for implementing the process-
ing algorithms.

A comparison among CISC (Complex Instruction-Set Computing) CPU, RISC
(Reduced Instruction-Set Computing) CPU and the paralleled architecture is sum-

marized in Table 4.1.

49

Table 4.1: Comparison among paralleled architecture, RISC, and CISC.

Paralleled
GISG AING Architecture
Implmentation Pure digital Pure digital Hybird
(digital+analog)
Cycle per instruc- | 2-15 <15 varied for logic
tion (CPI) instruciton and
analog instruction
Addressing 12-24 3-5 2
modes
Memory type Digital memory Digital memory Digital memory +
analog memory
J{e] Limited numbers | Limited numbers | large /0 numbers

required

Generall-purpose | 8-24 32-192 depend on local
registers number cell number
Operation speed | 20-100 MHz 100-250MHz 1-10 MHz

(gate-level) (gate-level) (module level)
Data rate 108 10°-10'° 1014101
(connections/sec)

4.1 Review of the System Architecture

The global architecture! of the paralleled computing machine [49] is shown in
Fig. 4.1. The computing cells are arranged on a regular grid. Each cell is con-
trolled by the global analog-logic programming unit (GAPU). The GAPU receives
the processing program and executes them in a specified order with the given tem-
plate information. Due to the huge amount of inputs and outputs, the I/O lines can
to be multiplexed and cells on the same row can share the same bus line. Therefore

the overall input/output requirement can be minimized.

'The information described in this section was quoted from the publication by Roska and Chua
[49].

50

General Analogic ;
Analogic

Tomplate Programming Unit ' Program

Inputs

Legend:

Intra-nucleu communication
‘GAPU to local nucleu communication
JUR " |npuﬂ0utput

Figure 4.1: The overall view of the paralleled computing architecture [49].

There are several analog and digital circuit modules in the GAPU and the block
diagram of a GAPU is shown in Fig. 4.2. Those modules that need to be processed
in the analog form are marked with thick black lines. Control signals can be decoded
to leverage the inter-chip wiring constraints. The functions of the modules in GAPU

are described here.

e The Analog program register (APR) stores several analog processing instruc-
tions, i.e., the coefficient template elements. The information will determine

what kinds of operation the chip would perform.

o1

Local Logic

Selected Function Register Function
A,B,Bias Selector Selector Register
Template signals signals Signals

/\ A A A

AMatrix | > APRO LPR
(9lines) | *
BMatix | | APR 1| sca
i =)
(9 lines) = Decoder | Instruction
Ib.ias _ Decoder (e GACU
(1lines) [»| APRi15
Circuit
4 bits selector
A A
clock(digital signal)
clock(analog signal) —— |
Data Ready <—— | P
START Host

Computer

Interface
:l Digital Circuits D Analog Circuits

Figure 4.2: Block diagram of the GAPU [49].

o The Logic program register (LPR) stores the local logic-function selection, i.e.,
AND or OR operation. These can be implemented in a digital form although

the compact neural network can do them in an “analog” form.

o The cell-configuration information is stored in the Switch configuration regis-
ter (SCR). By switching to the appropriate configuration, each local cell can

perform different kinds of tasks.

e The analog-digital programs are stored in the Global analog-digital control unit

(GACU). Instructions are fetched and executed in sequence.

e The Instruction decoder circuit (IDC) provides the required circuits for host
communication, signal synchronization for analog and logic operations, and

instruction decoding.

92

Besides the analog circuit, several analog and digital components are needed to
complete a core cell. The block diagram of each core cell is shown in Fig. 4.3. LAM1,
LAM2, and LAMS3 are used for the input, initial state, and bias, respectively.

There are four other general-purpose analog data registers which can be adjusted

for different applications.

Template
Information
Extemal Input—} o LAM1 |
Initial State —f-af LAM2 > CNN
Bias »| LAM3 & Circuit
LAM4(0)
LAM4(1) 4
. ’—|—i || | Analog
: Registerl | Comparato1
Selector|
LAM4(3) | - il Y
4 [} LLM
Y
Local Communication
and Control Unit (LCCU) [] LLU >
l:] Extemal
Digital Circuits Output
Analog Circuits Local Register Logic
Function Selector Function
Signals Signals Signals

Figure 4.3: Block diagram of a core cell [49].

e The Local analog memory (LAM) and Local logic memory (LLM) greatly
facilitate the implementation of several algorithmic steps on the cell array by
using the local copy of the data. LAMs also act as buffers and they save the

driving loading of the global signal outputs.

93

o The Local communication and control unit (LCCU) receives the code of the
switch configuration from SCR and re-configures the proper switches in the

local cells.

o The Local logic unit (LLU) reads the control signals from LPR and executes

the logic functions.

o The Local analog output unit (LAOU) converts an analog output to the logic

value for further processing.

4.2 The TW Programming Language

In order to make the paralleled computing architecture easier for users, a program-
ming language TW is created which contains a small subset of the popular C pro-
gramming language. It hides the information needed for the simulation and the
functional definitions are the only necessary items to know. The compiler cnne will
translate the program into executable pseudo code. Therefore the users can focus
on the high-level issues such as application development.

The TW program consists of three parts: program declaration, variable declara-
tion, and the main execution statements. Variables can be integers (INT), floating-
point numbers (FLOAT), grey-level images (AIMG) which contains analog (or con-
tinuous) values, or binary images (LIMG) which contains logic (0 or 1) values. The

variables have to be declared before they can be used. Several predefined variables
are TIME, STEP, TOL, WIDTH and HEIGHT. Their meanings are listed in
table 4.2.

54

Table 4.2: The built-in variables used in the TW languages.

Variable Names | Meanings Preset Value |
WIDTH width of the processing image | no preset value
HEIGHT height of the processing image | no preset value

TOL tolerance of the error 10000 (in le~ unit)
STEP stepsize of simulation 1000 (in 1~ unit)
TIME max simulation time 100

The main execution statement portion starts with keyword BEGIN and stops
with keyword END. Only signal assignments and the function assignments capabil-
ities are implemented and all the statements will be executed sequentially. No loop

statements are supported. A sample program is provided in the following.

PROGRAM TEST:

INT TIME,STEP,TOL,WIDTH,HEIGHT;
AIMG M1, M2, M3, M4;

LIMG MS5;

BEGIN

TIME = 50;
STEP = 10000;
TOL = 1000;
WIDTH = 24;
HEIGHT = 24;

M1 = LOAD(‘wa.24’’);

M2 = EDGE(M1,M1);

M3 = CCD_V(M2,M2);
M4 = CCD_H(M2,M2);
MS = OR(M3,M4);

OUT(MS, ' 'wa.out’’);
END

The first 5 statements override the system default values of the simulation set-

tings. Then the file wa.24 is loaded into the image register M1. After the edge

55

detection operation, the result will be saved in register M2. The horizontal and ver-
tical connected component detection operations will be applied on the same image
M2 and the results written to registers M3 and M4, respectively. The output is sent
out after a logic-OR operation.

As seen in the example, The TW language is a function-oriented one and its
capabilities rely on the functions supported in the template library, which is listed
in section 4.5. Each function simulates the behavior that the controller GAPU
configures a new connection and execute a certain task.

The TW language provides a very general solution for the behavioral simulation.
Therefore, it can not only execute the single-layer simulation but also act for a multi-
layer application [50, 51], where multiple steps of execution are needed. If further
extended grammar is supported, it can also support the simulation for the time-
multiplexing cellular neural network [52] simulation. However, this option was not
implemented. It processes the input image block-by-block and the number of each

block is the same as the number of PE’s within the network.

4.3 Compiler for the Paralleled Computing

Architecture

There are two parts for the compilation process: analysis and synthesis [53]. The
analysis part breaks up the source program into constituent pieces and creates an
intermediate representation of the source program, called “token”. The synthesis
part constructs the desired target program from the tokens. The flow of the process
is illustrated in Figure 4.4.

In the analysis step, the source program is divided according to the grammar

which has a hierarchical structure. The grammar is a subset of the C language

56

g?;;r::m —» Analysis [——3» Synthesis __"(%E?T(\:rl:‘t:f?ées

tokens
syntax parser statement translation
function name check configuration setting

Figure 4.4: Flow of the compilation process.

grammar, which is defined in the Appendix A of the book, The C Programming
Language [54]. In our implementation, this step is assisted by using the parser gen-
erator program bison which converts the grammar description of the TW language
into a C program to parse that grammar. The parser will also build the variable
table, check the syntax, and report any semantic error.

The synthesis step requires more specialized techniques. In order to achieve
simplicity, only a few data types and assignment statements are supported. The
compiler translate the statements into separate command files and the actual actions
are done by invoking the behavioral simulator mentioned in the previous chapter.

In fact the TW language is a parallel programming tool where the natural of
the paralleled computing architecture has strong influence on the compiler design.
For example, the global behavior of the whole system is more important than the
individual one. Therefore the global conditional-branch instructions might not be
necessary. Saturation for each processing element has to be guaranteed before the

execution, and the synchronization among the cells are important.

57

Graphics User Interface

Command Interpreter [

iy

CNN Compiler

/
CNN template
differential <: ||brary
equation __
solver T T
template
library
manager

Figure 4.5: Framework of the paralleled architecture simulation environment.

4.4 Framework of the Paralleled Architecture

Simulation Environment

The simulation environment consists of several components and is illustrated in Fig-
ure 4.5 The behavioral simulator cnna which provides the command interpreter and
the differential solver engine is described in Chapter 3. The graphical user interface
program cnng give the user a more interface to supply the simulation information.
The choice of template to be used is selected by the scroll-bar items so the users do
not have to memorize the function.

The compiler cnng will interpret the source code written in TW language and
generate commands for the simulation. The template library plays a key role sup-

porting various functions. The template manager helps to keep track of the library.

58

Table 4.3: Characteristics of simulation environment components.

Component Name Command Name | Lines of C Codes
Behavioral Simulator cnna 3,500
Graphics User Interface cnng 1,500
Compiler cnnc 5,000
Library Manager libmgr 500

In our implementation, all the components are individual programs. Table 4.3 lists
the characteristics of various components,

A suitable software-hardware co-design scheme is shown in Fig. 4.6. The TW
language is written and translated into configuration information using the compiler,
which retrieves the detailed built-in template information via the template manager
or user-supplied information. Then those information can be sent to simulator for
behavioral simulation or be translated into binary machine codes. A host, either
PC or workstation, can send the binary codes to the universal machine chip for

execution.

4.5 Appendix: Known Templates

A compilation of selected known templates for compact neural networks is presented
in the appendix of this chapter. Many of the items were taken from the previous
efforts described in [39, 40]. The detailed information of the selected templates is

listed in Table 4.4.

99

Table 4.4: Function templates that can be used. M: Matrix of Input Image pixels;
X: Don’t care term; z, and u, are state and input of border cells [38].

Application Ta Ts d [x(0) | u | x5 | ug
Noise Filtering - - - - 0 [M| X[|O0] X
010 000
12 1 000
0 10 000
Hole Filling = = = -1 1 M| -1 X
010 000
121 040
1010 1000
Convex Comers - = - - -3 M M| X 1
Detector 000 -0.25 -0.25 -0.25
020 -025 2 -0.25
10 0 0] -0.25 -0.25 -0.25
Edge Detector — - - - -2 MIM]| X 1
000 -0.25 -0.25 -0.25
020 -025 2 -0.25
000 -0.25 -0.25 —0.25
Laplacian - = 25| M| M| X | X
Operator for 0 -05 0 000
Edge Delection -05 2 -05 010
0 -05 0 00 0f
Connected - - 0 M X |- X
Component 000 000
Datection 12-=1 000
000 000
Average ~ - 0 M X111 X
010 000
121 000
010 10 0 0]

60

Table 4.4 (cont’d)

Application Ta Ts d | x0) | u | x| ug
Vertical — = 625 M [M| 1|
Line 000 -0.25 1 -0.25
Detactor 010 -2 2 -2
0 0 0 -0.25 1 -0.25
Horizontal - -] M x| o X
Line 000 000
Detector 121 000
0 0 0 000
Diagonal — - €25 M | M| -1] -1
Line 000 1 -025 -2
Detector 010 -0.25 2 -0.25
0 0 0 -2 -025 1
AND - MM X [x
000 00 0
0150 0150
00 0 0 0
OR e ey 2 | M1 me| x| x
000 000
030 030
0 0 0 000
NOT e o | M[M[x|x
000
010 0 -2
0 0 0 00
Isolated = e 4 M M| X | -1
Pixels 000 -0.25 -0.25 —-0.25
Detection 020 -0.25 2 -0.25
[0 0 0 -0.25 -0.25 -0.25

61

Table 4.4 (cont’d)

Application Ta Tg d | x(0) Xg | ug
Isolated - - 0 M X |-
Pixels 0 0 -0.25 -0.25 -0.25

Elimination 020 -0.25 05 -0.25

[0 0 0] -0.25 -0.25 -0.25
Delete one-pixel - - -2 M X |-
wide diagonal 000 -0.25 0 -0.25
lines in the input 020 0 0 o
images
0 0 0] ~0.25 0 -0.25
Delate one-pixel - 15| M X |
wide vertical E) 00 0 -0.25 0
lines in the input 010 0 0
images
0 0 0of 0 -0.250
Thresholding - - -1 M X | X
00 000
010 000
(0 0 0f 000
Detact SW-NW [1 - -9 M X |-
Diagonals [NV [:2 0 2
020 020
0 0 0 .2 0 =2

Preserve ~ - S5 M X |-
Marked 0.25 0.25 0.25 0 0 0
Objects 0.25 1 0.25 01.75 0

0.25 0.25 0.25 0 o o
Thinning T2 M -1 | A1
0 04 0 4.6 -2.8 4.6
0.4 1.4 0.4 -28 1 -28
0 04 0 46 -2.8 4.6

62

Table 4.4 (cont’d)

Application Ta Tg d | x(0) Xg | ug
Peel from the -5 M X |-
left side 000 000
020 3130
000 000
Right Border -2 M -1 -1
Detector 00 1 0 0 0
12 -1 -11-3
00 1 00 0
Shadow |— - —~ - 0 1 -1 X
Creation 000 o000
0 2 0 0
[0 0 0] [0 0 0
Vertical - - - 2 M -1 X
Shadows ’_ct 10 000
0 o 000
0 0 0] [0 0 0]
Delete Two-pixel -5 M -1 | -1
Wide Vertical -0.1 0.4 =-0.1 0.2 0 0.2
Line 04 0 04 <3 2.5 =3
-0.1 0.4 -0.1 0.2 0 0.2
Black —~ - — - 4 M X X
Output 000 000
Image 020 000
[0 0 0] 0 0 0]
White I— - - - -4 M X X
Output 000 000
Image 020 000
[0 0 0] 10 0 0]

63

= Simulator
C-like Confi i
High-level —f Compller onfiguration
Language Informption
Assembler
Software Design S!ig:hni;na
Hardware Design Code
CNN Peripheral Bus "mjm
Universal and ——
Machine Interface
Chip Circuits

PC or Workstation

Figure 4.6: A possible software-hardware co-design scheme.

64

Chapter 5

A Versatile Video Array-Coprocessor

5.1 Introduction

There are certain spatio redundancy in each image frame and temporal redundancy
among the video sequences. The Motion Picture Experts Group (MPEG) standards
[4] which help to decrease the redundancies were established to pave a clear way for
the multimedia applications. However the huge demands on the processing power
and memory access keep pushing the rapid advances in both architectural innovation
and VLSI design for a cost-effective implementation.

Transform coding, especially the Discrete Cosine Transform (DCT) is widely
used in JPEG [3], MPEG [4], CCITT H.261 [5] standards to reduce the spatial
redundancy. Direct computation of the 2-D N x N-point DCT takes O(N*) multi-
plications [55]. With the help of fast algorithm and the row-column decomposition
techniques, the computation requirement is reduced substantially and becomes more
economic from the VLSI point of view [8].

In motion compensation, the previous frame is searched to find a block of data
that is the best match of the block of the current frame. The offset is represented

as a motion vector. A subtraction is performed and the residual prediction error is

65

quantized and encoded. The data-representing motion vectors form the prediction
of the current frame.

Figure 5.1 shows the MPEG encoding and decoding functional blocks. Among
the real-time video encoding tasks, the above two functions, motion estima-
tion, and 2-D DCT/IDCT are the two most computation-intensive steps. For a
much simpler decoder, the major speed limitation comes from the IDCT com-
putation. Even with the rapid advances in VLSI technologies, the state-of-the-
art general-purpose microprocessor or digital signal processor still cannot han-
dle the jobs efficiently. Some specific motion estimator [56, 57, 58, 59] or DCT
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73] processors were reported but
they are either too slow for real-time MPEG-2 [74, 75] or HDTV applications [76],
or occupy too large area to be cost-effective.

In implementing the AVP-III video codec, an array-structure processor had been
designed to efficiently work as the search engine [77]. By applying a new 2-step
searching scheme instead of the full search scheme, it is shown that only less than
25% of the computing resource is used and the rest of the time the processor simply
stays idle. That is a waste of the computing resource. In this chapter, an innova-
tive mapping based on the multiplication-accumulation technique using the concept
similar to distributed arithmetic (78, 79] is described. It helps to fully utilize the
array processor for the high performance 2-dimensional discrete cosine transform or
inverse discrete cosine transform (2-D DCT/IDCT). The array structure has been
maintained and minimum additional hardware is added, which leads to compact and
cost-effective VLSI design. Pipelining and parallel execution helps to achieve high
throughput rate while the latency is still kept low. According to the analysis, it
takes about another 50% of the computing resource for the 2-D DCT operation for

the encoding process.

66

Regulator

Y —
Frame Motion
™! re-order [] estimator :9?_ DCT — Q vLC . Buffer | —»-
2
=
U
=
=1]
Q L
et
Vectors | Frame
stores
Modes
(a)
Quantize
level Qutput
—_—
\i
Data =
Header = _ | Demultiplexer R 1
—| detection [Buffer —*| v| G decoder ™ @ ™ DCT
Predictor

A A

Motion vector
Modes

(b)

Figure 5.1: The functional block diagram of the MPEG video compression standards
[4]. (a) The encoding process. (b) The decoding process.

67

Since the 2-D inverse discrete cosine transform (2-D IDCT) can be applied with
the same structure except different coefficients, the array processor can also be used
for IDCT operation in decoder. The design is not limited to DCT operations. The
same concept can be further extended to 1-D or 2-D filters with additional hardware
which also provides certain programmability. The whole design can be used as
a video coprocessor to off-load the computation from the host CPU or as a key

component in the real-time video codec set-top box.

5.2 Basics of 2-Dimensional Discrete Cosine

Transform

The 2-D Discrete Cosine Transform (2-D DCT) has excellent energy compaction for
highly correlated data. Thus it is widely used in the image compression scheme and

the N x N 2-D DCT is defined as [80]

2, g o, (2i + Vur, (25 + 1)or
X(u,v) = 5C)C(v Z;JEO-? 1, J)cos((y eos(=—x—), (5.1)

where z(z,j) (1,7 = 0, 1, ..., N-1) is the image pixel value and X (u, v) (072 0.1
N-1) is the transformed coefficient. C(0) = 1/v/2, C(i)=1if i # 0.

The direct implementation of the 2-D DCT is not practical since it involves
multiplication with the computing complexity of O(N*). Because the 2-D DCT
kernel is known to be orthogonal and separable [80], the original formula can be
split-up into two 1-D DCT’s by the row-column decomposition technique.

Usually the 1-D fast algorithm (81, 82, 83] is applied to further reduce the total
number of multiplications needed by lumping terms earlier as done in the DFT case.

But the butterfly structure is not suitable or efficient to map into regular array

68

structure. Therefore, the formula of the fast algorithm is restored and the 1-D DCT

(N=8) can be described in matrix form as

- - ~ -

o6 | A A A A A A A A %o
X D E F G =6 -F =B =D ||
X, B C -C -B —-B -C C B -

X3 FE -G -D -F F D G -E T3
X4 A -A -A A A —-A -A A T4
Xs F -D -G F -E G D -F Ts
C
G

B3| =

Xe -B B -C -C B -B (C Tg
X7 -F E -D D -E F -G T7 |

where A = cos(m/4), B = cos(7/8), C = sin(n/8), D = cos(n/16), E = cos(37/16),

F = sin(37/16) and G = sin(x/16). =z; (:=0, 1, .., 7) is the pixel data and X,
(u=0,1,.. 7) is the transformed coefficients. The term /2 had been absorbed into
the matrix as term A and additional division by 2 can be easily implemented by
hardware. Later it will be demonstrated that the DCT formula in this form is more

suitable for an 8x8 array structure implementation.

Similarly, 2-D inverse DCT (IDCT) is defined as

g e 1 um] v
z(i, j) = 2; Z C(u)C(v)z(: J)COS((2 ;:r))cc'.s((z“1 ;}é))y (5.3)

where C(u), C(v) have the same definitions as in DCT. And the 8-point 1-D fast
IDCT can be described as

T B 1’ r 7

[X A A A A A A A A Zo
Xy B B F G <G <P =P 0| | =
X, B B A -8B ~F =0 & B 2
Xa| _1|E -G =D -F F D G -E| |z il
Xe| 2| A -4 A A A -4 —-A 4 4
X F -D -G E -E G D -F| |z
X ¢ -B B -0 -C B —-B C 6
| X7 |G -F E -D D -E F —G| |z

The constant A, B, C, D, E, F, G are same as used in (5.2).

69

5.3 Multiplications Using Adders

As seen in (5.2), the operations needed are multiplications and additions. Since the
area of each PE has to be kept small, a dedicated multiplier inside each PE is not
appropriate. One way to get around of it is to make full use of the two adders already
existing in the PE. In the following, the multiplier-accumulator scheme constructed
by adders only is introduced where the original idea is very similar to the distributed
arithmetic (DA) (78, 79]. DA is a very efficient means for computation that is
dominated by inner products. The original architecture can be maintained with a
few extra components.

Taking the operation of an 8-bit unsigned number (A) multiplied by another

8-bit unsigned number (B) as an example,

3
Sum = A-B=Y [A B¥*]. 2%
k=0

Il

[[A-B§-22+A-B,f]22+A-B§‘]22+A-Bé, (5.5)

where Bf means the k—th bit to [—th bit in B. The second operand B is decomposed
into four 2-bit numbers, which will be used as multiplicand in the successive four
stages. The decomposed stages of the multiplications are shown in Figure. 5.2. In
stage one the two most significant bits B(7,6) is multiplied by A and the result sum0
propagates to the second (next) stage. In the second stage B(5,4) is multiplied with
A and the result is then accumulated with sum0. If the process is continued, and
the multiplication is finished after four stages.

Let us take a closer look at the 2-bit multiplication. The operation can be
achieved with just one adder. Assume that each of the 2-bit numbers contains the
most significant bit (MSB) and the least significant bit (LSB). The MSB will decide

whether a left-shift by 1 bit is necessary or not, whereas the shift-left operation

70

L A(7:0) 1
x L B(@6) | B4 | BE2 | B0]

[AllO I

+ L A(7:0)x B(7:6) | Stage 1
[SUM 0]

+ [A(7:0)x B(5:4)] Stage 2
[SUM 1 1

. | A(7:0)x B(3:2)] Stage 3
[SUM 2]

+ L A(7:0)x B(1,0) _ Stage 4
il SUM 3]

Figure 5.2: Multiplication using multiple adders.

simulates a x2 multiplication. The LSB decides whether a copy or zero will be sent
to the adder. The pseudo-code expression that helps to explain the operation is

described as

if (MSB = ‘1’) then
op2 := A * 2;

else
op2 := 0;
end;
if (LSB = “1’) then
opl := A;
else
opl := 0;
end;
sum := opl + op2;

The scheme is illustrated in Figure 5.3 and the summation (sum) is the result of the

multiplication.

71

L A(7:0) IM' A(7:0)]EI

sum

Figure 5.3: 2-bit multiplication using one adder.

5.4 Mapping of 1-D DCT Algorithm on the Video

Coprocessor

There are two ways to partition the array for the multiplication and accumulation
operations heavily used in the DCT operation. One is row-oriented and the other is
column-oriented. Figure 5.4 shows the different configurations.

The main reason why the column-oriented configuration is preferred is that the
data-path along the row is smaller and no shifting operation is necessary before
accumulation. Take an 8-bit x 16-bit unsigned number multiplication using row-
oriented configuration as an example. If regular structure is required, the data path
along the column must be the maximum data bandwidth which is 84+16=24 bits.
The bandwidth can be reduced for the left-side PE’s but irregular structure will
hamper the compact design of the PE array. In contrast, the data-path would be
only 104+3=13 bits wide for the column oriented configuration where the 3-bit is

contributed by the 8 additions.

72

BERESENCEEEEEEE S
BRI NEEEE
BEREECETEEEEEEES
O-CPCRPCPLRRO)
(a)
ol R RO
g]S
sl IO
o | OO
o0 | OO O
w9 | e IO
o | OO OO
oo | OO

e
(=
—

Figure 5.4: Two different configurations of the ADS-PE array: (a) Row-oriented
configuration. (b) Column-oriented configuration.

73

If the 1-D DCT formula in matrix is expanded into individual equations, there
will be eight of them. The first transformed coefficient can be achieved by the

equation,

X(0) = A-x(O)+A-$(1)+A-$(2)+A-x(3)+A-z:(4)

+ A-z(5) 4+ A-z(6) + A-z(7). (5.6)

If x(0) x(7) are the pixel values of the first row in the image macro block, the
result of the summation is X(0,0). If the second row in the image are fed next, the
result of the summation will become X(1,0). If the pixel data keep feeding until the
eighth row, the transformed coefficients of the first column come out in order. No
additional transpose hardware is needed if the data are fed in this way.

In order to get the transformed second column, the DCT coefficients have to be

updated. The new equation is,

X(1) = D-2(0)+E-2(1) + F-2(2) + G - 2(3) + (=C) - z(4)

t (=F)-2(5) + (- £) - 2(6) + (—D) - z(7). (5.7)

If the image data are fed again from the first row until the eighth row, the trans-
formed coefficients of the second column X(0,1), X(1, 1),...,X(7,1) will come out.
By using the method described above to feed in the image pixels, the outputs of
the transformed data have been transposed. Hereafter we will call the steps working
on each of the rows as “pass1”. From hardware implementation point of view, with
the help of shift registers, output of each column can be gathered and sent out at a
time when all components come out. Figure 5.7 shows the schemes for the serial-to-
parallel shift register array used in the post processing unit. The summer is a 32-bit

adder and the result will be rounded to 16-bit signed representation.

74

X70 X71 X72 X73 x34 X75 X76 X77

S| x60 x61 x62 x63 x64 x65 xb6 xor

g | x50 x51 x52 x53 x564 x55 x56 x57

| x40 x41 x42 x43 x44 x45 x46 x47

2 x30 x31 x32 x33 x34 x35 Xx36 x37

- x20 x21 x22 x23 x24 x25 X26 x27

2| x10 x11 x12 x13 x14 xi15 x16 xi17

£V x00 x01 x02 x03 x04 x05 x06 x07
A1 (._..2
A(1 <,
A(1 2
A9
A7 =,
A(5 <1
A3 =

—>

A(1%

A A A A A A A A

Figure 5.5: Configuration for the DCT Pass-1 while calculating the first column of
the transformed data. The two outputs will be summed together (not shown).

75

input sequence

e
T

D(1

D(1

D(1

D(9

D(7

D(5

D(3

D(1%

x70
x60
x50
x40
x30
x20
x10
x00

D

E

F

G

-G

-F

-E

-D

g,

Figure 5.6: Configuration for the DCT Pass-1 while calculating the second column

of the transformed data. The two outputs will be summed together

(not shown).

76

l Memory Banks .

- E:

64-bit

r

R R R R R R Rl R suma |
Rounding
X(00) X(10 X20) XBO X@0) X50) X@60) X7.0)

Figure 5.7: Schematic diagram of the serial-to-parallel shift register array, where the
transformed outputs have been automatically transposed.

The operations on all columns (or “pass-2”) are very similar. The transformed
coefficients which are 16 bits wide from pass-1 are fed into the ADS-PE array with
the same set of DCT coefficients. The rounding is done in the PPU and the final
result has to be scaled back to 13-bit representation.

In the pass-2 where the length of the incoming data is more than 8 bits, only
8 bits (either the higher 8 bits or lower 8 bits) will be sent at a time due to the
design of the data path. For signed number, only the first byte contains the sign
information and the rest of bytes are unsigned numbers. Therefore, sign information
has to be provided to help the PE’s determine the data type when the multiplication
operations are executing. A 4-bit circular-shift register can be used as shown in
Figure 5.8. For different lengths and types of data, a preset value will be loaded into
the shift register before the start of the operation. The sign signal is multiplexed with
the CHANGE signal used for motion estimation operation to save the extra wiring.
The propagation path is a little different with the one used in motion estimator.
The most significant byte is loaded first, with the appropriate sign signal indicating
whether it is a signed number or not. There is a special "sign function circuit” in
the PE which can help to translate the input data into signed number format where

all the addition operations hereafter are executed in signed-number representation.

77

Preload values:
8-bit signed: 1111
8-bit unsigned: 0000
J 16-bit signed: 1010
16-bit unsigned: 0000
Circular shift Register gg.gﬁ :ﬁ;ggeéoggoo

Figure 5.8: Signal flow of the sign information bit and table of preload values for
different type of data.

The sign signal will propagate through the array Just at the time when the data
comes out of the delay elements. The circular operation of the shift register saves

the effort to reload the preset value again and again.

5.5 Overview of System Architecture

The system architecture is shown in Figure 5.9, which consists of 5 major compo-

nents:

ADS PE array The array contains 8x8=64 ADS PEs. Each PE maintains its
simple structure which contains two adders (one 10-bit and the other one 13-
bit), several registers and latches. Additional delay elements lie on top of the

ADS-PE array to provide the necessary delay for the accumulation.

78

Figure 5.9: Block diagram of the video coprocessor system.

ADD PE array This array contains 8 ADD PEs. Each PE contains one 24-bit

adder. Several delay elements are added for accumulation purpose.

Post Processing Unit (PPU) The PPU contains four MIN/MAX units for
motion estimation operation and one 32-bit adder to accumulate the final re-
sult of DCT operation. After rounding, the data are sent to a serial-to-parallel
shift register array. The data-path of each register is 16 bits. The external
control signal can decide whether higher bytes or lower bytes are to be sent

back to memory.

Video RAM (VRAM) Currently the size of the video RAM is 2K byte which is
organized into 8 banks. Therefore the output data-path is 64-bit wide. The
additional memory shown in Figure 5.9 is actually part of the internal video

RAM and shares the same address space.

79

Control Unit Control Unit receives the commands from the host. It coordinates
.

the operations among all the other components and schedules the execution

sequence for different tasks. It is based on the Finite-State-Machine (FSM)

concept.

The ADS-PE array maintains the original structure which is shown in Figure 5.10.

In order to accommodate the new functions, slight modifications of the ADS-PE are

necessary.

Internal Memory

I T 1 1 1T T T 1
oj_-P Di_Pq_*D?PHDTPHTPq_*DTP DS_P S_P
lAos_pE—»fans _PE—HADS_PE—ADS_PE—HADS_PE—ADS_PH—{aDs_PE—»ans_pe

Figure 5.10: The systolic-array style connection of the ADS-PEs.

The input will be translated into signed-representation if it is an unsigned num-
ber. That can simplify further operations. The bandwidth of the first adder will be
increased to 10 bits and one additional sign bit. The bandwidth of the second adder
will be increased to 13 bits and additional one sign bit. The LOAD and CHANGE

signal will be used for different purposes in different operations. That can save the

80

Sin

Rin_| & Hgg-rallor [—Ev
= Weight(1)
e
Rl Y
|
i Yy OP_MODE

ZERO .

ADSin

LOAD:

CHANGE

v
Sout Weight(0)

Figure 5.11: Detailed schematic diagram of the ADS-PE.

wire space for the layout routing. The detailed schematic diagram of the ADS-PE
is shown in Figure 5.11.

The configuration of the ADD-PE vector and PPU is shown in Figure 5.12. The
ADD-PEs are separated into two sets, the top four ADD-PEs and the bottom four
ADD-PEs. This is because it can reduce the skew cycles before the data coming out
from 8 to 4 cycles, and the number of delay elements from 28 to 12.

If it is operated for motion estimation, the accumulation still propagates through
the whole 8 PEs. Since the range of the sum-of-difference is smaller, 24-bit adder
will be enough. Besides, the smaller data-path width the adder uses, the faster the
adder will be. In Figure 5.12 the dotted boxes indicate the new addition to the
design. Whether the inputs of ADD-PE come from ADD-PEs directly or from the

delay elements will be selected by MUX, which is not drawn here.

81

;"ADD-PE
o — — |ADD-PE[— >
: -
» DR -
@ _
e Al !
5 LEER e
< Ly ADD-PE ":;
E 1 ¥ =
§ {LBF —— et
+s{Dbs{o} —
KRR RAA ‘
~+-{0p*{Dpo] —>

Figure 5.12: Schematic diagram of the ADD-PE.

Basically the ADS-PEs and ADD-PEs behave in the similar way no matter they
are used in the motion estimation function or DCT function. But the operation
of PPU is different for different functions. Figure 5.13 shows the block diagram of
the PPU. When it is used in the motion estimation function, only the MIN/MAX
blocks are activated to select the desired minimum results. When it is used for DCT
operation, the 32-bit adder and the shift-to-parallel register arrays are in charge.

The operation of motion estimation is an asymmetric one. A lot of data comes in
but only the minimum 3 sum-of-differences values are kept and sent back to the host.
The I/O cycles are minimal. On the other hand, the DCT operations need a lot of

I/0 cycles to write the data back. The write-back can happen in two occurrences:
1. Use the interval between the generation of each transformed row, or

2. Use the interval between the generation of one entire block.

82

To M
/To Memory o “emory\

Shifter

Shifter Shift-Registers

—Fwwg] =3 X

Shifter
_w E §| For"

Shifter
MINMAX] 5.2

—

From ADD-PEs

A 4

32-bit Adder

A

o

Figure 5.13: Schematic diagram of the PPU.

In the first method, no buffer is needed to temporarily store the transformed
coefficients. However, extra cycles might be wasted to write the data back unless
double-buffer memory is available. In the second method, buffers which can hold 64
transformed data (16 bits wide) are required.

The control unit (CU) is the coordinator of the whole coprocessor. It receives
operation command from the host and extracts the necessary information. When
a certain operation is initiated, CU presets the contents in the counters, start the
operation micro-sequences and send control signals to the memory, ADS-PEs, ADD-
PEs and PPU. When the operation is completed, it acknowledges the host about
the completion and waits for further commands.

Depending on the trade-off among performance and programmability, the co-
processor can be programmed in two different ways. The first one is for dedicated

functions, such as motion estimation, 2-D DCT (both pass-1 and pass-2), or vector

83

quantization. Those are hardware-programmed routines in order to achieve maxi-
mum performance for the computation-intensive tasks. The user can only change
the memory address where the input image pixels are stored. On the other hand,
the filtering operation needs the software programmability to adapt to the functions
the coprocessor is asked to do. The users can provide detailed information, such
as filter length, input data type, and so on, via software routine and write all the
settings to certain pre-defined registers.

The control unit is further divided into several macro blocks and the schematic
diagram is shown in Figure 5.14. The op-code interpreter reads in the command,
activates one of the core to start the execution. An internal control bus is used
to share the control lines among those cores. In the final stage, the control signal
generator (CSG) generates the necessary control signals to ADS-PEs, ADD-PEs,
and PPU, while the address generator (AG) controls the read/write function of the
internal video RAM by supplying appropriate address. At the same time, weight

generator (WG) updates the weights if necessary.

5.6 Memory System

In order to retain high throughput of the PE array, it is desirable to spend most of
the time to pass the data from memory to PE array. Besides, for the DCT operation,
the data flow amount is asymmetric, i.e., the rate that data comes into the PE array
is far more than the amount that comes out. Another set of register files is used to
temporarily keep the data in the controller and the data is written back at certain

intervals.

84

Instruction/Data Bus (64-bits)

internal control bus

'-------s

G s =EmE==--

i = = =m L B I ------'

Figure 5.14: Diagram of the ARRAY control module.

The memory model used here is very simple. When EN = ‘1’ and RW = ‘0’,
there will be 64-bit data out from the memory. If EN = ‘1" and RW = ‘1", 64-bit
data on the bus will be written to the memory according to the address.

A non-linear address mapping can be used to minimize the space that the video
RAM occupies. However, a new design is shown in Figure 5.15.

There are 4 row decoders and 4 column decoders which are designed to work
independently. When it is operated for motion estimation operation, the whole
memory space is used to hold the data sent into the ADS-PEs array. The first
section of RAM can hold the macro block to be searched and the other 3 sections
can hold the data of the search region. Figure. 5.16 shows the partition of the
macroblock and how the data are stored.

At the instance while a portion of image to be compared crosses the video RAM
section boundary, the row decoders have to make sure both sections are activated.

It is up to the column decoder to decide which section provides the output data.

85

Data from external bus
or from PPU

address

1111111000

1 RAM Section 4

1100000000

S stopper 3

Col. Decoder
| RAM Section 3

1000000000 Signal Stopper

RAM Section 2

0100000000

RAM Section 1

J' .

data to ADS-PEs array

Figure 5.15: Block diagram of the draft new memory system design.

Thus the address mapping mechanism can be omitted. All the signal stoppers (1-4)
will just behave like transmission lines.

When the memory is used for the DCT operation, the situation is more compli-
cated. In the Pass-1 stage, the original data can be stored in video RAM section 1,
and only the stopper 1 is activated to block the other 3 sections from the section
1. Therefore, the translated coefficients generated from PPU can be written back
to section 2 without interference. In the pass-2 stage, Stopper 1 is deactivated but

the Stopper 2 is activated. Therefore sections 3 and 4 are separated from sections 1

86

Figure 5.16: Partition of the search region which can fit to the memory design.

and 2. The array processor can thus read input data from section 2 and then write
the translated data back to section 3. This could be the solution of memory system

design when double-buffered memory is not available.

5.7 Accuracy Validation

Since integer operations are used instead of the more precise floating-point operations
and a minimized amount of data coming into the PE arrays is more desirable, certain
round-off (or truncation) operations are used. At the same time, errors could be
accumulated during the DCT/IDCT operations and may cause the distortion and
annoying block effects.

To ensure the accuracy of the design, certain tests have been recommended by
IEEE [84]. The IDCT test taken is under the guidance of the Inverse Transform
Accuracy Specification, where the block diagram of the IDCT test is illustrated in
Figure 5.17 (a).

87

Original

Image

4

64-bit floating-

point FDCT
|
2 v
intager fast 64-bit floating-
DcT point IDCT
h
Restored Restored
Image Image
P«
U
h 4

calculate peak MSE, ME, and average MSE, ME

(a)
Original
Image
|
v
64-bit floating-
fasi FDCT point FDCT
L 4 \ 4
64-bit floating- 64-bit floating-
point IDCT point IDCT
Restored Restored
Image Image
r Y
=D (D=
\/ U
h

calculate peak MSE, ME, and average MSE, ME

(b)

Figure 5.17: Schematic diagram for accuracy test. (a) Inverse 2-D IDCT test. (b)

Forward 2-D DCT test.

88

When the two restored images are achieved, one by 64-bit floating-point IDCT
and the other one by the integer method, a difference image is taken. Based on the
difference image, the first step is to examine where there is any pixel difference (PD)
larger than 1. If the answer is yes, the proposed method would fail. Then the peak
mean error (PME), average mean error (AME), peak mean square error (PMSE),
and average mean square error (AMSE) are calculated. The results must be within
the IEEE recommended values. There are totally 10,000 blocks generated randomly
and used for any one of the 6 test cases. It is clearly seen from table 5.1 that the
integer IDCT algorithm mapping can successfully meet the IEEE requirement for

the IDCT accuracy test.

Table 5.1: Accuracy test result for the IDCT operation validation (DCT coefficients
are represented by 13-bit+1 sign bit number).

Test Items L PMSE AMSE PME AME
L=256, H=255 0.0156 0.012384 0.0027 0.000075
15, b 0.0110 0.009152 0.0021 20.000170
[=300, H=300 0.0170 0.013389 0.0031 0.000133
[=256, H=255 (RS) 0.0150 0.012230 20.0028 -0.000095
L=5, H=5 (RS) 0.0102 0.008341 -0.0021 0.000119
=300, H=300 (RS) 0.0171 0.013545 20,0030 20.00014
IEEE recommended 0.06 0.02 0.015 0.0015

Since only the inverse transform accuracy specification had been recommended,
the following is the way the forward DCT algorithm is tested and Figure 5.17 (b)
shows the schematic diagram of the DCT test. Basically it is very similar to the
one used in the IDCT test. At first the 64-bit floating-point 2-D DCT and IDCT
are applied and a new restored image is achieved. Then the integer fast 2-D DCT
algorithm is applied on the original image and 64-bit floating-point 2-D IDCT is

used for restoration. The two restored images are compared with the original image

89

where PME, AME, PMSE and AMSE can be calculated. Table 5.2 shows the result
from program simulation. The test conditions are similar to the conditions used in
the IDCT test and the results clearly indicate that the proposed method can achieve

similar performance as the 64-bit floating-point DCT operations.

Table 5.2: Accuracy test result for the DCT operation validation (DCT coefficients
are represented by 13-bit+1 sign bit number).

Test tems PMSE AMSE PME AME
Proposed DCT =256, H=255 ~ 0.0891 0.083761 0.0063 -0.000355
+ 64-bit IDCT L=5, H=5 0.0838 0.075911 0.0066 -0.0008
=300, H=300 0.0893 0.083781 -0.0055 -0.001084
L=256, H=255 (RS) 0.0905 0.085414 0.0075 0.001561
L=5, H=5 (RS) 0.0824 0.075605 0.0060 0.000433
|| L=300, H=300 (RS) 0.0881 0.083495 -0.0064 -0.000414
64-bit DCT L=256, H=255 0.0879 0.083345 -0.0062 0.000486
+ 64-bit IDCT L=5, H=5 0.0819 0.075553 -0.0064 0.000237
1' L=300, H=300 0.0875 0.083645 0.0068 -0.000270
L=256, H=255 (RS) 0.091 0.085302 0.0088 0.001830

L=5, H=5 (RS) 0.0814 0.075647 -0.0066 -0,0002
| L=300, H=300 (RS) 0.0879 0.082909 -0.0060 0.000172

5.8 Performance Estimation

Assume that the video sequences are composed according to the MPEG-2 main
profile, with resolution 720 x 480-pixel per frame. There are 30 frames per second
and each frame contains 3 color components (R-G-B) which are 4:1:1 sub-sampled.
The system clock will run at clock rate 100 MHz, i.e., 10 ns per cycle. Assume
that the data access is always successfully with 100% hit rate and the on-chip video
RAM is double-buffered which can support simultaneous read-write operation. That
means the system will not halt while the data has to be written back to the video

RAM. Table 5.3 shows the required cycles and the resource usage percentage.

90

Table 5.3: Performance Estimation of Proposed Video Coprocessor.

Olperatisns cycles blocks cycles resource
per block | per frame | per frame | usage (%)
Motion Estimation 370 2025 749,250 22.5%
2-D DCT (Pass-1) 85 8100 688,500 20.7%
2-D DCT (Pass-2) 150 8100 1,215,000 36%

From the table shown above, the 3 operations will use about 80% of the com-
puting resource of the coprocessor. Hence, the design can meet the performance
requirement for real-time MPEG-2 main profile encoding operation.

Although no actual chip was fabricated, the table II in Chang, et al.’s paper
[85] provided a good way to estimate the size and the transistor count of the VLSI
design. The estimation is based on 0.8um CMOS technology. Assume that a 16-bit
adder needs 0.1052 mm? of area and uses about 700 transistors. There are totally
64 9-bit adders and 64 12-bit adders in the ADS-PE array, which account for about
58,000 transistors and 8.84 mm? of area. The 8-bit registers will use another 18,000
transistors and 1.74 mm? area. Thus the core processor will use roughly about 76,000
transistors and 10 mm? of silicon area. Compared with the results achieved by others
[85, 76, 62], this approach not only saves the silicon area and transistor counts, but
also further push the speed to a higher limit with the pipelined array structure. In
fact the compact design provides a cost-effective solution for multimedia real-time

applications.

5.9 Comparison with Others’ Results

Table 5.4 gives a comparison of the proposed 2-D DCT/IDCT architecture with

some existing designs in terms of several parameters. In summary, the proposed

91

approach has several advantages over others’ results. Since it is based on a motion
estimation search, it is more versatile with minimum additional hardware cost. The
superpipelining execution of the adders in the processing elements can push the clock
speed to a rate higher than 100 MHz by using a 0.5 pum CMOS fabrication technology.
The speed can be further increased by using future more advanced semiconductor
technologies. Massively parallel processing in the array which consists of totally 64
PEs can achieve the throughput rate of more than 10 giga-operations-per-second
(GOPS). The high performance is critical for real-time multimedia MPEG-2/video
applications. And the compact digital cell design proves to be a very cost-effective

solution.

92

Table 5.4: Comparison with others’ results.

Arrayvs.| Type of No. of No. of Trans- Mool Ref.
Direct | Multiplier | Multiplier DCT position Tran: No
Block sistors :
Du[:\amel- N2log,N/2 No 67
Guillemot
Cho-Lee Array | Multiplier N2log,N/2 | 2 No 66
Chiu-Liu 8N No 68
Totzek- 2N Yes 69
Manthiesen
Ma 4N(N+1) No 70
Chang-Wang | Array | Multiplier N2 2 No 340K | 78
Wang-Chen Array | Multiplier 4N2 2 No 71
Yang-Bai Array | Multiplier N/2 1 No 72
Karathanasis Array ROM- 0 2 No 102K | 73
based
Madisetti- Array | Multiplier 4 1 Yes 67K 64
Willson
Jang-Kao Direct | Multiplier 8 2 No 63
Wu-Chiou Array | Multiplier 4 Yes 66K 62
Chan-Siu Direct ROM- 12 ROM 2 Yes 61
based
Guo-Liu Array ROM- 8 2 No 60
based
Uramoto-lnoue| Direct ROM- 8 ROM 2 No 76
based
Sun-Chen Direct ROM- 32 ROM 2 Yes 73K 75
based
Proposed Array DA 0 1 No 70K

93

Chapter 6

Conclusion

In this dissertation, a behavioral simulation methodology for the densely-connected
analog array processor is presented. The proposed method is based on a Runge-
Kutta 4-th order differential equation solver engine which can efficiently simulate
the system dynamic behavior. System partition techniques can provide valuable
information about the influence when multiple chips had to be used to construct
a large system. Random noise added in the system would simulate the case when
crosstalk noise generated during the fast data switching and test the robustness of
the coefficient templates. The effect on the finite precision of analog system can also
be analyzed with the simulator.

The paralleled computing architecture adapts a hybrid analog-digital scheme
for the construction of a smart and powerful computing machine. A simulation
environment which consists of several components is constructed. It includes the
behavioral simulator, a graphical user interface, a compiler, and a template library
manager. A parallel programming language is also defined to facilitate the use of
the parallel computing architecture.

An innovative approach to fully utilize an array processor originally designed
for motion estimation as a 2-D DCT/IDCT processor is also presented. Minimum

hardware is added so the compact array structure can be maintained and maximum

94

flexibility is achieved. Pipelined execution can easily push the speed to be higher
than 100 MHz in a chip fabricated by a 0.5um CMOS technology while the number
of latency cycles is still low. Multiple processing elements (8 by 8) can realize the
throughput rate to be more than 10 giga-operations-per-second (GOPS) which is
suitable for real-time applications. Because of its performance, flexibility and com-
pact design, this array processor architecture could lead to a cost-effective solution

for the multimedia video application.

95

Appendix A

Performance of Selected Microprocessors from the

Industry
Yoar Chip Tran. # '(':r‘r']')‘ P;’““;;" f'ﬁ;“z‘)’ MIPS (;Lz:m)

1986 |NEC V60 a5k |15 N EG 35 =
1987 | MCe8030 300K 16
1988 [Mcss100 1.2M 1 20
1988 | AMD29000 12 30
1989 |Intel 80486 1.2M 1 25 15 1.3'1.3
1989 |Intelig6o 1.2M 1 20 17 1.0"1.5
1990 | MCs8040 1.2M 0.8 25 20 164 mm2
1990 |NEC V80 980K 0.8 33 16.5 1.45°1.45
1990 | Gmicro/300 900K 1 2 25 17 16'1.6
1991 |Intel 486DX2 1.2M 0.8 7 66 81mm?2
1992 | DEC Alpha 21064 1.68M 075 |30 200 234 mm?2
1992 | Super SPARC 31M 0.6 142 |60 256 mm?
1992 | Fuijitsu 1.5M 0.5 5 1.575'1.6
1992 | Hitachi 1.65M 06 9 66 132 1.09°1.6
1992 |HP PA7100 0.85M 0.8 23 100 1.42%1.42
1992 | PowerPC 601 2.8M 0.6 6.5 50 11711
1993 | Mistubishi 1.71M 0.8 6 40 1.63°1.27
1993 | PowerPC 603 1.6M 0.5 3 80 65 imme
1993 Intel Pentium (P5) 3.1M 0.8 16 66 296mm?2
1993 | Motorola 68060 2.4M 05 39 50 198mm?
1993 |DEC Alpha21084A |2.8M 0.5 33 275 164 mm2
1994 |Intel Pentium (P54C) |3.1M 0.6 5 100 163mm2
1994 | T1TMS320C80 4M 0.5

96

Year Chip Tran. # tpmn:? F;;:}er {Smi? MIPS {Giif:m)
1994 PowerP_-E_GCH — 3.6M 0.5 13 100 = 19:;““2
1994 HP RISC 7200 1.2M 0.55 29 140 1.4*1.5
1994 | MIPS R4200 1.4M 0.64 1.8 80 78 mm?2
1994 Silicon Graphics 2.6M 0.5 13 75 300 1.73*1.73
1934 | DEC Alpha 21164 9.3M 05 50 300 161 mm2
1995 |Ultra Sparc 52M 05 30 167 315 mm?2
1995 NexGen 3.5M 0.5 94 1.41*1.41
1995 |Intel Pentium (P54CS) |3.1M 0.35 10 120 163 mm?
1995 [Intel Pentium Pro (P6) |5.5M 0.35 14 133 306mm?
1995 |HP RISC 8000 3.9M 0.5 200 345 mm?
1995 PowerPC 620 6.9M 05 3c 100 311 mm?2
1995 | MIPS R10000 5.9M 0.5 30 200 298 mm?
1995 NEC 9.3M 05 S0 300 1200 1.65%1.81

97

Appendix B

Network Simulation by Using HSPICE Circuit

Simulator

HSPICE is a general-purpose circuit simulation program. Based on the equivalent
circuits shown in Figure 2.5, the network can be described with circuit elements
and simulated by using HSPICE. The signal is represented by voltage while the
ideal voltage-controlled current source is used as the synapse weight multipllica.tion
scheme. The current can be summed together at a node where the resistor R and
capacitor C are connected. The piecewise linear function can be simulated by using
two diodes connected to a positive and negative voltage. Since there are voltage
drops across the diodes, these two voltages have to be chosen carefully. In our
experiment, setting them to +0.58 V makes the saturation voltage to +1 V. The
subcircuit description of a connect-component-detector cell is shown here.

.subckt cell 1 6 3 11 12

* 1: Vx, 3: Vu, 6: £(Vy), 11, 12, : from neighbors
* feedforward from Vu

GO 0O1300.0

* feedforward from neightboring inputs
G10111 0 1

G2 0112 0 -1

* feedback from Vy

Gi1I0 01602

* Bias

I1010.0

98

* R and C constant
R1101

Ci101

* Vy and PWL circuit
E1720101

RR 72 2 10Meg

D1 5 2 dmodel

D2 2 4 dmodel

E26 0201

* Decide the saturation voltage
Vp 4 0 0.58

Vn 6 0 -0.58

.ends

Assume that there is a 1 x 5 networks implementing the connected-component-
detection function. The initial states are set as shown in Figure B.1(a). The right-
most pixel and the leftmost pixel are set to 1 (white) and the middle 3 pixels are
set to -1 (black). As time evolves, the left white pixel gradually moves to the right

as seen in Figure B.1 (b) and (c) and finally stops at the middle.

Ol N N NO
(@)

| BON N NO

0 OO0 O
(©)

Figure B.1: The states of pixels during the connect-component detection operation.
White pixels represent values of +1 and black pixels represent values of -1. (a) Initial
state of the 1 x 5 network. (b) The movement of the white pixel from the left to the
right. (c) The final state of the network.

The network can be described as the following:

Vpl 6 0 1

99

Vnli 7 0 -1
JIC V(211) 1
JIC v(212) -1
LIC Vv(213) -1
JIC V(214) -1
.IC v(215) 1
Vi1 11 0 1
Vi2 12 0 -1
Vi3 13 0 -1
Vid 14 0 -1
Vi5 15 0 1

X11 211 111 11 7 112 cell
X12 212 112 12 111 113 cell
X13 213 113 13 112 114 cell
X14 214 114 14 113 115 cell
X15 215 115 15 114 7 cell

The dynamics of the simulation results are shown in Figure. B.2. At the top the
behavior of the leftmost cell is plotted against the time. The peak value of 1 move
to the right until it reaches the middle pixel. Since the values of the rightmost two

cells do not change, they are plotted in the Figure B.2 (d).

100

3T 580~

A

- mEumS~ SEL. ro= wh 3T SEUSTFTET (FR="Ormen" BEvEETin.

[ERERENE
LR R RN N I
sos w

an mELL rom LNY, SEUYTFFTED;FRN"OENT BETecTros

SrPux fLama

(c)

= HEuUmDN EELL Fam ad 3T 5BU~TETEDP;: fQ P NEnNT DEveeT

S R R s
et o oty Sy T T IR S e g 1] A dndel i
seo.an (RO e WY S —
e

Figure B.2: The dynamic of a 1x5 compact network for connect-component detection
operation by simulating using HSPICE. (a) The dynamic of the left most cell V;.
(b) The dynamic of the cell V;. (c) The dynamic of the cell V. (d) The dynamics
of the two right most cells V; and Vs.

101

Appendix C

Pattern Storage Behavior of Time-Delayed

Discrete-Time Systems

In this appendix, a time-delayed discrete-time system which can associate certain
input patterns with output patterns is described. Compared with the compact
neural network, it is found that the cells are very similar when the synapse weights

are replaced by the delayed ones.

C.1 Time-Delayed Discrete-Time Systems

Assume the time-delayed discrete-time system consists of N neurons and M external
inputs. The schematic diagram of the neuron used is illustrated in Figure C.1 [86].

Each neuron can be described as

r=0 i=1 r=0

M k N k
sl = Yus DT wlk—r] = Y wy Y Tylk — o] — b
S(@ifk]), (C.1)

vilk+1] =

where f(-) is the hard-limiting function whose output is 0 when the input is smaller
than 0, and 1 otherwise. The coefficients vij and wj; represent the synapse weights

from the external inputs u; or the outputs y; to the neuron 1, respectively. Here,

102

h; is the threshold value of neuron 7 and T is the decay parameter which is smaller

than 1.

Uj[K]— ll-h*‘-b vj

|r
v

S&H —>

YjlK]—» M T

Figure C.1: Schematic diagram of the neuron [86].

xlke1] — [yk+1]

Equation C.1 can be rewritten into the matrix form,

X[k+1) = VUK Tk - W Yy[k] T[k] - H,

Yk+1] = f(X[k]), (C.2)
where

Xk+1] = [m[k+1zolk+1] - ay[k+1]7
Yk+1] = [yk+1)ylk+1] - yn[k+1])"
T = [T e 1]

H = [h[hg hN]T

Uip VY2 ot Uip

U1 V22 -+ Upm
V =

UN1 UN2 --* UNM

103

wy W2 . WIN
W = Wz Wi - UgN
| WN1 WN2 c°t WNN |
[wf0] wll] o wk]]
U — Hz_[ol up(l] - Uz.[k]
| un(0] un[l] - un[k]
- nl0] wll] --- yi[k] .
o yz-[ol wll] - yz.[k]
| un[0] yw[1] - yn[R] |
When the length of the memory element was shortened to 1 and w;; = 0, the

system will become a discrete-time Hopfield network. Furthermore, if the length
is 1, the external inputs and incoming external outputs are within a limited range
(neighborhood) and self-feedback is permitted, the system will behave as a discrete-

time compact neural network.

C.2 Simulation Results

Figure C.2 shows the schematic diagram of the 2-neuron network that has been

studied.

C.2.1 Simulation 1: No External Inputs

If no external inputs were applied, the final result will depend on the initial condi-

tions. In the first case, the synapse weights are

wp = —03, W = 06, Wo1 = 0, Wog = 03, and hl = hg = —0.3. (03)

104

Y1 Y2

Wiy .@ @. iz

Vo

Uy

Figure C.2: Schematic diagram of the 2-neuron network.

Four different initial conditions, (1,1), (-1,1), (-1,-1) and (1,-1), which represent
the points in four quadrants, were used. The final output is illustrated in Figure C.3.
Two output patterns were found, which are

Ya=[1 Ol,andYb:[U 0]. (C.4)
10 1 0
The @ — th row represents the periodic discrete output sequence z;. The period in
this case is 2.

It is desirable to know what input pattern may lead to a certain output pattern.
An experiment was performed by changing the initial points on each axis (z; and
) from -2 to 2, with 0.1 spacing. The result is shown in Figure C.4. If the initial
points lie in the second quadrant, the output pattern is ¥;. Otherwise, the output
pattern is Y.

The network will not be limited to remember just the above two patterns. By
changing the synapse weight connection, more patterns can be memorized. In the

second case, the synapse weights were changed to
wy = —75, Wy = -—9.0, Wy = 3, Wyg = 45, and }11 = 153,}12 = —06.3. (0.5)

105

gt Y1

0.0 -

O, -

o.7 -
o.a -
O.8 -
o.-f
.3 -

o.= -

OCutput v

16

10

St Y

Sutput v

165

0.0 -
o.6 -
o.7
o.a6 -

O.- ke

o.o -

o.2

0.1

10

16

=20

(d)

D utputl v

0.0 =
o.a -
o.7 -
o.a b
O.6 -
(=F 2
o.3 -
o.2 -

o.1 |-

Output w2

0.9

o.al

o.7§-

o.0 -

o.6 -

L= R

o.3

oz

o1

10

I utput Y

L)

0.0 -
o8-
o.7 |-
o.al
0.6 -
(=N
o.3 =
o.2

o.1 -

Outputr w2

o.o
o.8 -
o.7F -
o.a
o.5 -
O.4 b=
.3 =
o.2 -

o.1 |-

=20

Figure C.3: Simulation results using different initial conditions with first set of
synapse coefficients: (a) x[0]=(1,1). (b) x[0]=(-1,1). (c) x[0] = (-1,-1), (d) x[0] =

(1,-1).

106

Output pattern, +: Ya, o: Yb

2+ttt 4+ 4++++ 4+ 4+ 4+ +4+4+000000000000000000000
THt++++4+++4+4+44++++4+4++000000000000000000000
THt+++++++++++++++++000000000000000000000
TH+++++4+4++++++4+4+4+++000000000000000000000
THt+++44+4++4+4++4+4+++444+000000000000000000000
1.5 ++++++++++++++++++4+000000000000000000000
THt++++4+4++++44+++++++000000000000000000000
TH+++++++++4+444+++4++4+000000000000000000000
TH++++++++++++++4+44+4+000000000000000000000
T+++++++++++++++++4++00000000000000 oo
I+++++++++++++++++4+4+-000000000000000000000
TH++++++4+++4+4+4++4+4+4+000000000000000000000
TH++++++4+++444+4+++4+000000000000000000000
TH++++++4++1+++4++++44+4000000000000000000000
TH++++++++++++++4+4++4+000000000000000000000
0.5+++++++++++++++++++000000600000000000000
TH+++t++++++++++++++000000000000000GC000
TH++++++++++4+44+4++4++00000000000000000000
T+++++++++++++++++4++000000000000000000
TH+++++++4+++44+44+444+4+4+000000000000000G0000
3 t++tt 4+ b+ 444400000 000000000
©0000000000000000000000000 000000000000
200
@00
$00000000000000000000000000000000000000C00
-0.54-00000000000000000 Q0000000000000
@00
©®00
@0000000000000000000000000C0000000000G000
@00
-1¢00
200
200
200000000000000000000000000000000000C0000
$00
-1.5¢000000000000000 00
$000000000000000 00
$000000000000000 00
$000000000000000 o0
$000000000000000 oQ
-2 -15 -1 -0.5 0 0.5 1 1.5 2
X1

Figure C.4: The relationship of input states and output patterns.

The simulation result is shown in Figure C.5.

Three more patterns were found. They are

1000
‘fd = 3

(001 1]

(111 0]
¥Xe = , and

000 1]

(00000
Y =

(11010

(C.6)

Note that the periods of the output pattern in the second experiment can be either

4 or 5. That means a longer pattern is memorized.

The relationship of the initial states and the output patterns was plotted in

Figure C.6. If the initial state points were all positive, the output pattern will be Y;.

107

Cutput v Output Y2

o.e - o.e -
o.a - - o.e -
o.7 -1 o.7 - g
o.a R oc.e} .
o.sl : o.sf q
o.a E o.al 4
o.a - E o.al ~
o.2| - ozl 4
o.1 | b o.1 E
o“ = 10 18 20 or_} & 10 18 =20
(a)
- Sutput Y1 Dutput Y=
O.6 - -5 oo - -
o.al = o.sal -
.4 - o.7}| g
0.2 E o.al .
(= - e
-2 - o.af -
—0.4 - o.alk E
—o.al B ozt 4
—o.al — o.1 -I
o 3 1o s =0 °s [:3 1o 16 =6
(b)
4 Dttt v i Ut Ut v
o.6 - -1 oo -
o.e B o.al 5
o.al E o7} .
o.2 - - o.al g
0.5 - -
—o.2 - o.4 - -
—0o.al - o.alk E
—o.al- e ozl e
—-o.8 |- . o.1
T G 5 Zo °F = G 56 Zo

Sutput v 4 Cutput va
0.9 - o.ef =
o8| E o.nl H
o7l 1 o.7 | —
o.a - -1 0.6 - -
0.6 E 0.6} .
o.af -1 ol .
o.3 - -1 o.3 - &
o.2 - 1 o.2- -1
o.1 1 o.1 -
%G & 10 15 Fred > = 10 15 =0

(d)

Figure C.5: Simulation results using different initial conditions with the second set
of synapse coefficients: (a) x[0]=(1,1). (b) x[0]=(-1,1). (c) x[0] = (-1,-1), (d) x[0] =
(1,-1).

108

Those initial states that lie in the fourth quadrant will lead to the output pattern

Y.. Otherwise the output patterns will converge to Y

Output pattemn, +: Yd, o: Ye, *:Yf

U 02030330 0 0 00 0 00000000 0000000000000
0030 J0C J0C D0 300 30306 2 M0 0306 3 6 X Q00000 000000000000000
:;::;!l’l 000 20 00 0 0 0K X X0 00000 000000000000000

00 00 M 0 226 0) X X 0 00 00 0000000000000000

2 3 D303 3 M0 0 3 06 0 X X X X000 000000000000000000

1. 026 3 36 2 o 30 036 06 60K X000 000000000000000000
D20 MCO XN MEK M X K KK % X X000 00 0000000000000000

33 00 0 2 X6 3 0 0 % X X 0 00 00 0000000000000000
253K 36 MK 36 36 000K 0 00 06 X K X XX X000 000000000000000000
20306 303 O 8 KO0 000 0000000 000000000
30200 0 0 03 00 ©000000000000000

3K N300 3 0 0 2 06 0 2 O 000000000 00000000000

23 0 N30 K D 00 XN X6 9 0 W % % % 000 00 000000 0000000000

DN 0 M 300 K M 36 2 K W X X X 00000 0000000000000000
2 0 300 30 XK 336 X X X X X 00000 0000000000000000

(01 S 3 330 0 3 3 3 36 0 ©000000000000000008
3 30 00 X0 0O K 0 K XOEX X0 0 0 00 uooogooooeooooe
20030 3 0 3K 3E3 00K K X0 M X KX X 0000000000 oooogcoooo
200 20 000 0 8 K8 X X 000000 000000000000000

D3 00 M3 00 2 6 036 20 0 00 0 000000000060 000000000

3] 330 0 23 2 0 02 0 000000000000006
MORMMMMMMMNE A+ 4 +++++++++++++ +++++

BOKMMCHOK MMM NN A ++ ++ b bbb bbb+ 4

DUORCOEHE MM NN+ 4+ + 4 bbb bbb+

2626 36 0 00 MMM O MMM + 4+ ++ + 4+t b bbb bbb+

—(0, 506033 30 3 3 5 3 26 3K 3 M e e N S
N300 2 MMM 4+ + b bbb bbb+t

20 0 M0N0 MO MK ++ + 4+ 44+t
2020 20 2 02 20 0 20000 MM+ + bbb b+
3K R 0K 0 33K K K+ + 4+ bbbk b b4+ F

= 0300006 0000000 MM 4+ + b bbb+ 4+ + 4+ 4+
Eedatetutetututototolutetatototot tot. &0 S 0 T S o SO SHEGHEHE S

D 30 30 0 000 0 00 000K+ + + 4 o o o b oo b

0 0000 3003 M0 MK MK MM MOK A+ + + ++ b+t 4+ d b4t

-1. 3030 30 206 006 2 2+ i o o SRR S S

00 00N NN X MM+ + 4 ++ bbb+t

00 O DK MM+ + 4+ + b+t

2000000 0K MMM+ 44+ ++++ 4+

K XX Etddtdftbbdtttdbttiddtt

-2 -15 -1 -0.5 0 05 1 15 2
X1

Figure C.6: The relationship of input states and output patterns.

C.2.2 Simulation 2: Network with External Inputs

The initial states will determine the eventual system output pattern when no external
inputs were applied. However it is possible to change from a pattern to another
pattern by the addition of external inputs. A network with parameters listed in C.3
was studied.

Assume the initial state is (—1, 1) and the input is only applied to the 1-st neuron
with strength 0.51, i.e., W = [0.51 0]". At the beginning no external input is added
and the output will become pattern Y;, as shown in Figure C.7. At time t = 18,

there is an input impulse and the output sequence changes from pattern Y, to Y;.

109

At time ¢ = 29, an input train with length 10 is applied and a new pattern Y, is

produced. The pattern Y, can be described as

g | L 1 C7
=l 1 | (C.7)

When the input is returned to 0, the output pattern will remain the same. That

means the pattern Y, is memorized.

Input U

0.8}

0.6}

0.4F

0.2r E

(]

vvvvvvvvvvvvvvv

0.8f M

06 4

0.4F

0.2

0.8

0.6 o

0.4F b

02f 4

Figure C.7: The relationship of input states and output patterns while external
inputs are imposed.

In the above experiment the output pattern changed from Y, to Y}, then from Y;

to Yz. Another experiment is done without the impulse input at time 8. At this time

110

it is found that the output sequence will jump directly from pattern Y, to pattern Y,

without passing through pattern Y;. The simulation result is shown in Figure C.8.

Input U
1 T T T T T po 7900 T
0.8
0.6 .
0.4 E
0.2 4
©06660000600000000060000600 06000 o4
0 5 10 15 20 25 30 a5 45 50
Output Y1
1 T T T T T
0.8+ 1
0.6]
0.4 «
0.2 -
N N s R T
Output Y2
T
0.8F _
0.6
0.4}1 B
0.2
c[cc_ccuacc‘cccc*cc:cévcca.
0 5 10 15 20 25 30 as 40 45 50

Figure C.8: The relationship of input states and output patterns while external
inputs are imposed.

111

Appendix D

The Behavioral Simulator User’s Guide

D.1 Execution of the Simulator

To invoke the program, execute the command cnna under the UNIX prompt as
prompt> cnna [command_file] <cr>

If no command file name is supplied, the program will look for the default com-
mand file cnn.cmd. The instructions used in command file will be explained in the
next section. When the program is executed, it will read the commands from the
command file, parse the sentence into tokens and extract the system configuration

parameter values. For example, using the file hf5.cmd as the input command file,

the screen will show as follows:

| Compact Neural Networks Simulator [
| Version 1.2.5, Last Updated Oct. 30 1995 |

| Developed by Tony H. Wu, Dr. Bing J. Sheu |

Initializing CNN ...

112

Reading from [edge32.cmd] and the parameters are .
Using 4-th order Runge-Kutta Method.
Image size is 32 x 32.
Read input image from file [lenna.32]
Read initial states from file [lenna.32]
output file is [lenna32.out].
Time step = 0.050000 and Max Execution time = 50.000000
TempA size = 1.
2.0000

3.

TempB size
-0.2500 -0.2500 -0.2500

-0.2500 2.0000 -0.2500

-0.2500 -0.2500 -0.2500

Bias is -0.750000, Boundary value = -1.000000.
piecewise-linear function is used.

Tolerance is 0.010000. No annealing.

Running CNN simulation .

After execution, some statistics will appear on the screen. In the meantime
output will be written to the file specified in the command file for further processing

or viewing.

D.2 Template Library

A template library is provided and its name is called template.lib. A list of built-in

templates and their names can be found in Chapter 4. Please put this file in the

113

same working directory so the cnna program can find it. The template file is also
an ASCII file and will be scanned when a “USE” command is used. The syntax in

the template file is

QDEF template_name
TSIZE x x

TEMPA

TEMPB

BIAS x

BOUNDARY x

QENDEF

where TSIZE, TEMPA, TEMPB, BIAS, and BOUNDARY use the same syntax as
usual. The user can add his/her own definition in the template library file. Currently
the library only support the templates with constant template coefficients.

Users can also use the environment variables to specify a different path or a
different template library file. The program cnna will use the environment variable
TEMPLIB_DIR as the new path and the TEMFILE as the new template library
filename. Therefore the library can be shared and this can avoid the duplication of

the library files used by different users.

Data File Format

All the input, initial state, and output data are stored in the same format. Each cell

will use one byte to store the data, which means the data range is 0 to 255. When

the data were read in, they will be linearly scaled to values ranging from -1 to 1.
The data for the whole array are stored in column-first fashion. Assume a network

contains cells C(,) where 0 <7 < n, and 0 < j < m, the data will be stored in the

114

order of C(0,0), C(0,1), C(0,2), ---, C(0,m), C(1,0), C(1,1), ---, C(n,m). So the
total image size will be just n x m bytes.

The ASCII text input and output are supported. The program will read the text
input (or initial state) data in the order specified in the above. If the data cannot
fit within one line, multiple line inputs can be accepted. But after each input line
there has to be a \ character to let the parser know at least one more line needed
to be read. There is no \ character at the last line of the data.

If the users want ASCII text output, the output will be sent to the screen instead

of a file. 41’ will be represented by a '+’ character and -1’ will be represented by

L

D.3 Syntax of Commands

The command file gives you the flexibility to change the system configurations with-
out recompiling the whole program. The default command filename is cnn.cmd.
Other command file will be used if its name is supplied. In the command file all
instructions are given in plain ASCII text. Each line contains one instruction only
and is composed of one command keyword (in capital letters) and several necessary
or optional parameters. If the first character in the line is %, this line of text will
be treated as comments and ignored during interpretation.

Syntax of each command is explained here according to the category it belongs

to. The conventions used are
e cach line started with a command keyword (in capital letters),
e the parameters enclosed by angle brackets are mandatory,

e the parameters enclosed by brackets are optional, and

115

e the parameters separated by / are choices to be made.

I/O Commands

ISIZE <size_of_row> <size_of_column>

Keyword ISIZE helps to specify the row size and the column size of the

input V.

INPUT ALL <value>
INPUT <filename>

INPUT ASCII pixel(0,0) pixel(0,1)

Keyword INPUT defines the input data V,, from either a data file or an
uniformly presetting value. The input data file use 8-bit integers to store
the values. Value 0 will be mapped to -1 and value 255 will be mapped

to 1. Other values lie between will be linearly scaled.

ASCII text input is also supported. The pixel values will be read in the
order explained in previous chapter. If the data cannot be fit in just one
line, a \ character had to be appended at the end of the line except the

last one.

INITIAL ALL <value>
INITIAL <filename>

INITIAL ASCII pixel(0,0) pixel(0,1) ...

Keyword INITIAL defines the initial state V;(0), from either a data file
or a uniformly presetted value. The data file has the same properties as

the input data file.

116

ASCII text input is supported as well. Please refer to the explanation of

command 'INPUT".

QUTPUT <filename>

OUTPUT ASCII

Keyword OUTPUT specifies the output filename. The output file stores
the values of the output V,. The values are mapped in the same way as

what was done in the input file.

ASCII text output is also supported. The saturated output value ’+1’
will be represented by '+’ character while value -1’ will be represented
by ’-' character. The output will be shown in the matrix form for easy

viewing.

Simulation Commands

METHOD RK4/ARK4

Keyword METHOD specifies the integration method the solver engine
will use. It can be either the 4-th order Runge-Kutta method (RK4) or

the adaptive 4-th order Runge-Kutta method (ARK4).
TRAN <step_size> <max_integration_period>

Keyword TRAN defines the integration step size used and the maximum
integration period (not the physical CPU time) the integrator will work.
For the 4-th order Runge-Kutta method, the step size will be fixed and
the simulator might stop if the output didn’t change for a certain period.

If the 4-th order adaptive Runge-Kutta method is used, the step size

117

defined here will be used as the initial step size. It will change its value
according the characteristics of the system. However, the simulator will
continue executing the program until the maximum integration period is

reached. So be careful in choosing this parameter.
ANNEAL N/Y

Keyword ANNEAL specifies whether annealing processing is used. Users

have to choose either N or Y.
TOL <tolerance_value>

Keyword TOL defines the tolerance value. If all neurons’ changes are

within this value for a certain number of time steps, the simulator stops.

NOUTPUT PWL

NOUTPUT SIGMOID [lambdal

Keyword NOUTPUT helps to define the output neuron type. It can be
either piecewise-linear function (PWL) or sigmoid function (SIGMOID)
which are described in (2.4). If A value is not supplied, the default value
is 2.

Template Commands

TSIZE [size_of_TA] [size_of_TB]

Keyword TSIZE specifies the size of the feedback matrix (T4) and the
control matrix (Ts), respectively. Square size of the template is assumed
and the values can be either 0 , 1 , 3 or higher. Choose the possibly

smallest one to speed up the simulation.

118

TEMPA coefficients...

TEMPA ALL <value>

Keyword TEMPA defines the entries in the feedback matrix (74). The
terms are given in the order of T4(1,1),7'4(1,2),.., Ta(1,N),T4(2,1), All
coefficients must lie in the same line and are separated by space. Each

entry in the T4 matrix can also be set to the same value as specified.

TEMPB coefficients...

TEMPB ALL <value>

Keyword TEMPB defines the entries in the control matrix (7). The
terms are given in the same order as T4. Each entry in the T matrix

can also be set to the same value as specified.
BIAS <bias_value>

Keyword BIAS defines the value of 1.
BOUNDARY <boundary>

Keyword BOUNDARY specifies the boundary input value.
USE <template_name>

Instead of using the above 5 commands to specify the configuration of
the compact neural network, the user can use the template that resides
in the template library for short. The name had to exactly match and
it is case-sensitive, which means that it is responsive to the difference

between uppercase and lowercase letters.

119

Miscellaneous Commands

Commands described in this category in general is not necessary. They are mainly
designed to simulate the network in some special conditions. For normal applica-

tions, commands can be omitted.
VXCUT <Vxcut_low> <Vxcut_high>

Keyword VXCUT helps to simulate the case when the state variables
will saturate when they approach Vieut_tow 0F Vicut_nigh. That means the

states values V. will not exceed Vieye_nigh or go below Vet tow-

Default Setting

In our implementation, R and C' are normalized to 1 so all the time used hereafter
are all specified in (normalized) time unit. The defaults for the inputs, initial states
and boundary input values are all -1. The integration step size is 0.01 time unit and
the integration period is 50 time units. The sizes of matrix T} and Tp are 3, i.e.
the neighborhood size is 1. No predefined template information is assumed and user
has to specify the coefficients. The default bias is 0 and the tolerance value is 0.001.

The default neuron output type is piecewise-linear function.

Sample Command File

The following is a complete command file without invoking the template library.

Y. comment: a sample example file
METHOD RK4

ISIZE 32 32

INPUT a.32

INITIAL a.32

OUTPUT a32.out

TRAN 0.05 100.0

120

TSIZE 3 0

TEMPAO OO0 12-1000
TEMPB 0

ANNEAL N

BIAS 0.0

TOL 0.001

BOUNDARY -1

If you want to use the template “CCD_V”, a modified command file will look
like:

% comment: a modified sample example file
METHOD RK4

ISIZE 20 20

INPUT ccd.20

INITIAL ccd.20

OUTPUT ccd.out

TRAN 0.05 30.0

ANNEAL N

TOL 0.0001

USE CCD_V

121

Appendix E

About the Author

E.1 Biography

Tony Hung-Yao Wu was born in Taiwan in 1967. He received the B.S. degree in
electrical engineering from National Taiwan University, Taipei, in 1989. He received
the M.S. and Ph.D. degrees both in electrical engineering from University of Southern
California in 1992 and 1995, respectively. He will join Cirrus Logic, Fremont, CA,
as a senior design engineer.

At USC, Mr. Wu was a teaching assistant for two graduate-level courses in
multimedia technology and digital information highway. He worked as a graduate
research assistant in the VLSI Signal Processing Laboratory where he also man-
aged the computing facility and equipment. He had participated in many research
topics including VLSI image processing and signal transmission, neural networks,
and intelligent systems. In summer 1995, he worked in the AT&T Bell Labs. in
Holmdel, NJ. He has been an active participant in IEEE activities. He served on the
Technical Program Committee of the 1995 International Conference on Computer
Design in the Architectures-and-Algorithm Track. He also served as an co-editor of
the tutorial book for 1995 IEEE International Symposium on Circuits and Systems.
He is a member of the IEEE.

122

E.2 Resume

EDUCATION

Jan. ‘93 - Dec. ‘95 Ph.D in Electrical Engineering,
Univ. of Southern California, Los Angeles, CA
(under the guidance of Prof. Bing J. Sheu)

Dec. 1992 M.S. in Electrical Engineering,
Univ. of Southern California, Los Angeles, CA
Jun. 1989 B.S. in Electrical Engineering,

National Taiwan University, Taipei, Taiwan.
EXPERIENCES

* Jun. 1995 - Aug. 1995
Summer intern in AT&T Bell Labs. locating in Holmdel, New Jersey.
Topics: Video DSP project
* Design of new algorithm mapping based on the existing video co-processor
which consists of 2-D systolic-array structure.
» Work on both algorithm derivation and architecture mapping design.
« System implementation and validation extensively using both high-level VHDL
compiler/simulator and various physical layout/circuit simulation CAD tools.
* The design is under internal evaluation of possible patent application.

* Jul. 1994 - present
Graduate Research Assistant, VLSI Signal and Image Processing Lab, Dept. of
Electrical Engineering, USC
» Software-hardware codesign of low-power array processing systems.
* Analysis and simulation of innovative technique to find optimal solutions in
multiple-processor arrays.
* Design of VLSI chip for parallel processing computing machine.
*» Design of software simulator for behavioral analysis and performance evaluation.
* Management on computer and hardware facility.

« Jan. 1994-May 1994, Jan. 1995-May 1995
Teaching Assistant, “Special Topics - Neural Network Processing and VLSI", Dept. of
Electrical Engineering, USC
* Guide weekly 1-hour discussion session.

* Help to provide and prepare appropriate tools and supplementary materials for
students.

* Sep. 1993-Dec. 1993, Sep. 1994-Dec. 1994
Teaching Assistant, “Special Topics - VLSI Image Processing and Compression”,
Dept. of Electrical Engineering, USC
* Teach VHDL language for high-level system simulation.
* Teach MPEG-2 standards for 4 weeks while the instructor was absent.

123

« Lead students working on the final projects.

* Guide weekly 1-hour discussion session.

 Help to provide and prepare appropriate tools and supplementary materials for
students.

* Jul. 1993-Jun. 1994,
Graduate Research Assistant, VLSI Signal and Image Processing Lab, Dept. of
Electrical Engineering, USC
* Analysis and simulation of the hippocampal network.
« Design of system-level architecture for hardware implementation.
* Design of VLSI chips for emulation of brain memory function.

PROFESSIONAL SERVICES

« [EEE ICCD-95, Technical Program Committe on Architecture and Algorithm Track.
» Reviewer of IEEE Trans. on Circuits and Systems for Video Technology.
« Editor of IEEE ISCAS-95 Tutorial Book.

COURSE EMPHASIS
« Digital Image Processing « Communication System
« Digital Signal Processing » VLSI System Design

« Advance Digital Signal Processing * Analog Integrated Circuits
« Special Topics: Low Power and High-Speed VLSI Design
* Medical Image Processing » Computer Architecture

GPA =3.90/4.0
COMPUTER SKILLS

« Computer Languages: C, Pascal, Fortran, 80x86 Assembly language, Perl, Unix Shell
programming and DSP TI TMS320C3x/4x or Motorola DSP56000 assembly
languages.

« Operating Systems: UNIX/ X-Window, VAX/VMS, MS-DOS, Macintosh OS and
Linux.

» CAD Tools: VHDL, SPICE, MAGIC, SWITCAP2, IRSIM, Viewlogic, OrCAD,
MATLAB, OASIS and various VLSI-CAD design tools.

* Familiar with MPEG-1/2.

HONOR/ACTIVITIES
« [EEE member: Circuit and System Society, Computer Society, and Signal Processing

Society. 1992-present.
* Tau Beta Pi Honorary Member

124

PUBLICATIONS
* Books
- Chapter co-author of “Simulated Annealing, Boltzmann Machine and Hardware
Annealing,” in the book The Industrial Electronic Handbook, CRC Press, to be
published in 1995.
- One of the editors of IEEE ISCAS-95 Tutorial Book Microsystems Technology for
Multimedia Applications: An Introduction, IEEE Press, 1995.
- Assistant editor of Neural Informational Processing and VLSI, Kluwer Academic,
1995.
« Journal Papers:

- S.H. Bang, B.J. Sheu, Tony H.-Y. Wu, “Optimal Solutions for Cellular Neural
Networks by Paralleled Hardware Annealing,”, IEEE Trans. on Neural Network
(accepted).

- Tony H. Wu, Bing J. Sheu, Eric, Y. Chou, “Behavioral Simulation of Densely-
Connected Analog Cellular Array Processors for High-Performance Computing,”
Analog Integrated Circuits and Signal Processing (accepted).

« Conference Papers:

1. B.J. Sheu, C.-H. Chang, Tony H.-Y. Wu, “Neural information processing in analog
current-mode VLSL,” Int. Symp. on Artificial Neural Networks, pp. B-01-10,
Hsinchu, Taiwan, R.0.C., Dec. 1993.

2. S.H. Bang, B.J. Sheu, Tony H.-Y. Wu, “Paralleled Hardware Annealing of Cellular
Neural Networks for Optimal Solutions,” Proceeding of IEEE Int. Conference on
Neural Networks, pp. 2046-2051, 1994.

3. B. J. Sheu, R. C. Chang, T. H. Wu, “Applications, design, and test of mixed-signal
ICs,” Modern Engineering and Technology Seminar, Electronic Session, Taipei,
Taiwan, Dec. 1994

4. B. J. Sheu, R. C. Chang, T. H. Wu, S. H. Bang, “VLSI-compatible cellular neural
networks with optimal solution capability for optimization,” IEEE Int. Symposium
on Circuits and Systems, Seattle, WA, Apr. 1995.

5. Eric Y. Chou, Bing J. Sheu, Tony H. Wu, “VLSI Design of Densely-Connected
Array Processors,” IEEE International Conference on Computer Design, Austin, TX,
1995.

CHIPS DESIGNED
+ Hippocampus Chip
- To mimic the function of the hippocampus in human brain for memory retrieval.
- Mixed analog-digital CMOS p-well 2-poly 2-um technology (MOSIS) design.

+ Cellular Neural Network Chip

- Prototype of a 5 by 5 cellular neural network with limited programmability.
- Mixed analog-digital CMOS p-well 2-poly 2-pm technology (MOSIS) design.

125

Reference List

[1] U. G. Committee, Grand Challenges: High Performance Computing and Com-
munications. National Science Foundation, 1992.

(2] E. Holsinger, How Multimedia Works. Ziff-Davis Press, 1994.

(3] 1SO/IEC JTC1/SC20/WG10. JPEG Committee Draft CD 10918, 1991.
[4] ISO/IEC JTC1/SC29/WGl11. MPEG Committee Draft CD 11172, 1991.
[5] CCITT Recommendation H.261, 1990.

(6] S. Kung, VLSI Array Processors. Prentice-Hall, 1988.

[7) K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. NY: McGraw-Hill, Inc, 1993.

[8] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective. Addison-Wesley Publishing, 1993.

[9] H. Bakoglu, Circuits, Interconnections, and packaging for VLSI. Addison Wes-
ley: Reading, MA, 1990.

[10] D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, on-
chip learning,” in Proc. [EEE/INNS Inter. Joint Conf. Nerual Networks, vol. 2,
pp. 537-543, 1990.

[11] D. H. D. Mueller, “A neural network systems component,” in Proc. IEEE Inter.
Conf. Neural Networks, vol. 3, (San Francisco), pp. 1258-1264, Mar. 1993.

[12) M. Griffin, G. Tahara, K. Knorpp, R. Pinkham, and B. Riley, “An 11-million
transistor neural network execution engine,” in Tech. Digest IEEE Inter. Solid-
State Circuits Conference, (San Francisco, CA), pp. 180-181, Feb. 1991.

[13] D. Muelleer and D. Hammerstrom, “A neural network systems component,” in
Proc. IEEE Inter. Conf. Neural Networks, (San Francisco, CA), pp. 1258-1264,
Mar. 1993.

126

(14] U. Ramacher, J. Beichter, and N. Briils, “Architecture of a general-purpose neu-
ral signal processor,” in Proc. IEEE/INNS Inter. Joint Conf. Neural Networks,
vol. 1, (Seattle, WA), pp. 443-446, July 1991.

(15] S. Satyanarayana, Y. Tsividis, and H. Graf, “A reconfigurable VLSI neural
network,” IEEE Jour. Solid-State Circuits, vol. 27, pp. 67-81, Jan. 1992.

(16] B. J. Sheu, J. Choi, and C.-F. Chang, “An analog neural network processor for
self-organizing mapping,” in Tech. Digest IEEE Int’l Solid-State Circuits Conf.,
(San Francisco, CA), pp. 136-137, Feb. 1992.

[17] P. W. Hollis and J. J. Paulos, “Artificial neural networks using MOS analog
multipliers,” IEEE Jour. Solid-State Circuits, vol. 25, pp. 849-855, Jun. 1990.

[18] B. W. Lee, H. Yang, and B. J. Sheu, “Analog floating-gate synapses for general-
purpose VLSI neural computation,” IEEE Trans. Circuits and Systems, vol. 38,
pp. 654-658, Jun. 1991.

(19] A. Chiang and M. Chuang, “A CCD programmable image processor and its neu-
ral network applications,” IEEE Jour. Solid-State Circuits, vol. 26, pp. 1894-
1901, Dec. 1991.

[20] L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Trans.
Circuits and Systems, vol. 35, pp. 1257-1272, Oct. 1988.

[21] L. O. Chua and L. Yang, “Cellular neural networks: applications,” IEEE Trans.
Circuits and Systems, vol. 35, pp. 1273-1290, Oct. 1988.

[22] L. O. Chua and T. Roska, “The CNN paradigm,” IEEE Trans. Circuits and
Systems, Part I, vol. 40, pp. 147-156, Mar. 1993.

(23] S. H. Bang, “Performance optimization in cellular neural networks and as-
sociated VLSI architectures,” Tech. Rep. USC-SIPI Report No. 268, Signal
and Image Processing Institute, University of Southern California, University
Park/MC-2564, Los Angeles, CA 90089, 1994.

[24] T. Roska and L. Chua, “Cellular neural networks with non-linear and delay-
type template elements and non-uniform grids,” Int Jour. Circuit Theory and
Applications, vol. 20, pp. 469-481, 1992.

[25] B. W. Lee, “VLSI design of adpative neural systems,” Tech. Rep. USC-SIPI
Report No. 152, Signal and Image Processing Institute, University of Southern
California, University Park/MC-2564, Los Angeles, CA 90089, 1990.

(26] P. M. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applica-
tions. D. Reidel Publishing Company, 1987.

127

[27] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, pp. 671-680, May 1983.

[28] B. W. Lee and B. Sheu, “General-purpose neural chips with electrically pro-
grammable synapses and gain-adjustable neurons,” IEEE Jour. Solid-State Cir-
cuits, vol. 27, pp. 1299-1302, Sept. 1992.

[29] S. Bang, O.-C. Chen, J.-F. Chang, and B. Sheu, “Parallel hardware annealing in
multi-level Hopfield neural networks for optimal solution,” IEEE Trans. Circuits
and Systems, Part II, vol. 41, Dec. 1994.

(30] B. W. Lee and B. J. Sheu, Hardware Annealing in Analog VLSI Neurocomputing.
Kluwer Academic Publishers, 1991.

[31] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in
C. Cambridge University Press, 1988.

[32] Visual Numerics, Inc., Houston, TX., ISML Reference Manual, version 2.

(33] J. Ortega and J. W.G. Poole, An Introduction to Numerical Methods for Dif-
ferential Equations. Pitman Publishing Inc., 1981.

[34] T. Roska and J. Vandewalle, Cellular Neural Network. Wiley, 1993. In
Chapeter: Cellular Neural Network Simulator User’s Manual, ver. 3.6.

[35] J. P. de Gyvez, “XCNN: A software package for color image processing,” in
Proceedings of the Third IEEE Inter. Workshop on Cellular Neural Networks
and Their Applications, pp. 219-234, Dec. 1994.

[36] R. Dominguez-Castro, S. Espejo, A. Rodriguez-Vézquez, 1. Garcia-Vargas,
J. Ramos, and R. Carmona, “SIRENA: A simulation environment for CNNs,”
in Proceedings of the Third IEEE Inter. Workshop on Cellular Neural Networks
and Their Applications, pp. 417-422, Dec. 1994.

[37] The simulator is written by J.A. Osuna, Additional Information can be found
by ftp://ife.ethz.ch/pub/NeuroBasic.

[38] B. J. Sheu and J. Choi, Neural Information Processing and VLSI. Kluwer
Academic Publishers: Boston, MA, Jan. 1995.

[39] S. Espejo, VLSI Design and Modeling of CNNs. Ph.D. Dissertation, University
of Sevilla, Spain, Apr. 1994.

[40] “CNN analogic (dual) software library,” Tech. Rep. Internal Report DNS-1-
1993, Computer and Automation Institute, Hungarian Academy of Science,
Jan. 1993.

128

[41] S. Bang, B. Sheu, and T. Wu, “Optimal solutions for cellular neural networks by
paralleled hardware annealing,” IEEE Trans. on Neural Networks. (Accepted).

[42] T. Matsumoto, L. Chua, and H. Suzuki, “CNN cloning template: connected
component detector,” IEEE Trans. Circuits and Systems, vol. 37, pp. 663-665,
May 1990.

[43] T. Matsumoto, L. Chua, and R. Furukawa, “CNN cloning template: Hole filler,”
IEEE Trans. Circuits and Systems, May 1990.

[44] M. Ogorzalek, A. Dabrowski, and W. Dabrowski, “Hyperchaos, clustering and
cooperative phenomena in CNN arrays composed of chaotic circuits,” in Pro-
ceedings of the Third IEEE International Workshop on Cellular Neural Net-
works and their Applications, pp. 315-320, Dec. 1994.

[45] L. Chua and G.-N. Lin, “Canonical realization of Chua’s circutis family,” IEEE
Trans. Circuits and Systems, vol. 37, no. 7, pp. 885-902, 1990.

[46] R. Saleh, iSPLICES Version 3 User’s Guide. Dept. of Electrical and Computer
Engineering, University of Illinoi, Urbana-Champaign.

[47) W. K. Pratt, Digital Image Processing. John Wiley & Sons, Inc.: New York,
NY, 1991.

(48] D. I. Moldovan, Parallel Processing: From Applications to Systems. Morgan
Kaufmann Publisher, 1993.

49] T. Roska and L. Chua, “The CNN universal machine - an analogic array com-

[49] ; g y
puter,” IEEE Trans. Circuits and Systems, Part II, vol. 40, pp. 163-173, Mar.
1993.

[50] K. Crounse, T. Roska, and L. Chua, “Image half-toning with cellular neural
networks,” IEEE Trans. Circuits and Systems, Part I, vol. 40, pp. 267-283,
Apr. 1993.

[51] L. Chua and B. Shi, “Multiple layer cellular neural networks: A tutorial,” in
Algorithms and Parallel VLSI Architectures (E. Deprettere and A. van der Veen,
eds.), vol. A, pp. 137-168, New York: Elsevier, 1991.

[52] C.-C. Lee and J. P. de Gyvez, “Time-multiplexing CNN simulator,” in Proc.
IEEE Int’l Symp. Circuits and Systems, vol. 6, pp. 407-410, 1994.

[53] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Addision-Wesley, 1985.

[54] B. W. Kernighan and D. M. Ritchie, The C programming Language. Prentice-
Hall, 1988.

129

[55] W. Pennebaker and J. Mitchell, JPEG: Still Image Data Compression Standard.
VonNostrand Reinhold, 1993.

[56] M. Sun and K.-M. Yang, “A flexible VLSI architecture for full-search block-
matching motion-vector estimation,” in IEEE Int. Symp. on Circuits and Sys-
tems, (Portland, OR), pp. 179-182, Oct. 1989.

[57] E. Chan and S. Panchanathan, “Motion estimation architecture for video com-
pression,” IEEE Trans. on Consumer Electronics, vol. 39, pp. 292-297, Aug.
1993.

[58] C. Wu and D. Yeh, “A VLSI motion estimator for video image compression,”
IEEE Trans. on Consumer Electronics, vol. 39, pp. 837-846, Nov. 1993.

[59] A. Costa, A. Degloria, P. Faraboschi, and F. Passaggio, “A VLSI architecture
for hierarchical motion estimation,” I[EEE Trans. on Consumer Electronics,
vol. 41, pp. 248-257, May 1995.

[60] J.-I. Guo, C.-M. Liu, and C.-W. Jen, “The efficient memory-based VLSI array
designs for DFT and DCT,” IEEE Trans. Circuits and Systems, II, vol. 39,
pp. 723-733, Oct. 1992.

[61] Y.-H. Chan and W.-C. Siu, “On the realization of discrete cosine transform
using the distributed arithmetic,” IEEE Trans. Circuits and Systems, I, vol. 39,
pp- 705-712, Sept. 1992.

[62] C.-M. Wu and A. Chiou, “A SIMD-systolic architecture and VLSI chip for
the two-dimensional DCT and IDCT,” IEEE Trans. on Consumer Electronics,
vol. 39, pp. 859-869, Nov. 1993.

[63] Y.-F. Jang, J.-N. Kao, J.-S. Yang, , and P.-C. Huang, “A 0.8um 100MHz 2-D
DCT core processor,” IEEE Trans. on Consumer Electronics, vol. 40, pp. 703~
709, Aug. 1994.

[64] A.Madisetti and J. A.N. Willson, “A 100mhz 2-D 8x8 DCT/IDCT processor for
HDTV applications,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 5, pp. 158-167, Apr. 1995.

[65] L.-W. Chang and M.-C. Wu, “A unified systolic array for discrete cosine and
sine transforms,” IEEE Trans. on Signal Processing, vol. 39, pp. 192-194, Jan.
1991.

[66] N. Cho and S. Lee, “DCT algorithms for VLSI parallel implementations,” IEFE
Trans. on Acoustics, Speech and Signal Processing, vol. 38, pp. 121-127, Jan.
1990.

130

[67] P. Duhamel and C. Guillemot, “Polynomial transform computation of the 2-D
DCT,” in Proc. IEEE Int’l. Conf. Acoust., Speech, Signal Processing, (Albu-
querque, NM), pp. 1515-1518, Apr. 1990.

[68] C. Chiu and K. R. Liu, “Real-time parallel and fully pipelined two-dimensional
DCT lattice structures with application to HDTV systems,” IEEE Trans. Cir-
cuits and Systems for Video Technology, vol. 2, pp. 25-37, Mar. 1992.

[69] U. Totzek and F. Matthiesen, “Two-dimensional discrete cosine transform with
linear arrays,” in Proc. Int. Conf. Systolic Arrays (J. McCanny, J. McWhirter,
and J. E. Swartzlander, eds.), pp. 388-397, Hertfordshire: Prentice-Hall, 1989.

[70] W. Ma, “2-D DCT systolic array implementation,” Electron. Lett., pp. 201-202,
Jan. 1991.

[71] C.-L. Wang and C.-Y. Chen, “High-throughput VLSI architectures for the 1-
D and 2-D discrete cosine transforms,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 5, pp. 31-40, Feb. 1995.

[72] J.-F. Yang, B.-L. Bai, and S.-C. Hsia, “An efficient two-dimensional inverse
discrete cosine transform algorithm for HDTV receivers,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 5, pp. 25-30, Feb. 1995.

[73] H. Karathanasis, “A low ROM distributed arithmetic implementation of the
forward inverse DCT/IDCT using rotations,” IEEE Trans. on Consumer Elec-
tronics, vol. 41, pp. 263-272, May 1995.

[74] LSI Logic Corp., Milpitas, CA, CCITT Video Compression Databook, Sep. 1991.

[75] P. Plantec, “MPEG-2: The new world standard for high-quality digital video,”
Multimedia Today, Apr. 1995.

[76] V. K. Madisetti, VLSI Digital Signal Processors: An Introduction to Rapid
Prototyping and Design Synthesis. IEEE Press, 1995.

(77) H.-D. Lin, “AVP-III Technical Report,” tech. rep., AT&T Bell Labs., 1995.

[78] S. A. White, “Applications of distributed arithmetic to digital signal processing:
A tutorial review,” IEEE ASSP Magazine, pp. 4-19, July 1989.

[79] S. Waser and M. Flynn, Introduction to Arithmetic for Digital Systems Design-
ers. Holt, Rinehart and Winston Publishing, 1982.

[80] A. Jain, Fundamentals of Digital Image Processing. Prentice-Hall Publishing,
1989.

131

[81] W. Chen, C. Smith, and S. Fralick, “A fast computational algorithm for the
discrete cosine transform,” IEEE Trans. Communication, vol. 25, pp. 1004-
1009, Sept. 1977.

[82] M. Sun, T. Chen, and A. Gottlieb, “VLSI implementation of a 16x16 discrete
cosine transform,” IEEE Trans. Circuits and Systems, vol. 36, pp. 610-617,
Apr. 1989.

[83] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, ,
and M. Yoshimoto, “A 100MHz 2-D discrete cosine transform core processor,”
IEEE Journal of Solid-State Circuits, vol. 27, pp. 492-498, Apr. 1992.

[84] “IEEE standard specifications for implementation of 8x8 inverse discrete cosine
transform,” IEEFE Standard, pp. 1180-1190, Mar. 1991.

[85] Y.-T. Chang and C.-L. Wang, “New systolic array implementation of the 2-D
discrete cosine transform and its inverse,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 5, pp. 150-157, Apr. 1995.

[86] T. Kumagai, R. Hashimoto, and M. Wada, “Learning of limit cycles in discrete-
time neural network,” 1995. (Submitted).

132

