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Abstract

We describe a new approach to imaging neuronal current sources from measurements of
the magnetoencephalogram (MEG) associated with sensory, motor, or cognitive brain activation.
Previous approaches to this problem have concentrated on the use of weighted minimum norm
inverse methods. While these methods ensure a unique solution, they do not introduce informa-
tion specific to the MEG inverse problem, often producing overly smoothed solutions and exhibit-
ing severe sensitivity to noise. We describe a Bayesian formulation of the inverse problem in
which a Gibbs prior is constructed to reflect the sparse focal nature of neuronal current sources
associated with evoked response data. We demonstrate the method with simulated and experimen-
tal phantom data, comparing its performance with several weighted minimum norm methods.

Key words: magnetoencephalogram, minimum norm, mean field annealing, Bayesian imaging.

I. INTRODUCTION

The magnetoencephalogram (MEG), and the associated electroencephalogram (EEG),
provide unique insights into the dynamic behavior of the human brain, as they are able to follow
changes in neural activity on a millisecond time scale. In comparison, the other functional neu-
roimaging modalities (functional magnetic resonance imaging, and single photon and positron
emission computed tomography) are limited in temporal resolution to at best one second, due to
physiological time constants and signal to noise considerations. Furthermore, MEG signals are
produced directly by electrical brain activity through which the brain communicates, rather than
the indirect correlates, such as regional cerebral blood flow or glucose metabolism, that are
imaged by the alternative functional modalities. In this paper we address the problem of produc-
ing an image of the three dimensional distribution of neural current sources that produced an
observed MEG signal. The inherent ill-posedness of the associated quasistatic electromagnetic
inverse problem, compounded by the limited number of spatial measurements available with cur-
rent MEG systems, presents a difficult challenge for standard methods for image reconstruction.
In the following we will describe an alternative Bayesian approach that uses a physiologically
based model for the source to estimate a plausible solution from the available data.

An array of superconducting quantum interference device (SQUID) biomagnetometers
may be used to measure the spatio-temporal MEG signal produced by the brain. Physiological

models for the MEG assume primary sources are constrained to the cortex with current flow ori-



ented normal to the local surface [20]. The image can therefore be constrained to the cortical sur-
face, which can be extracted from a registered volume MR image of the subject’s head. By
tessellating the cortex with N disjoint regions and representing the sources in each region by an
equivalent constrained current dipole [7] oriented normal to the surface with amplitude y,, the
MEG inverse problem can be expressed in terms of a linear model. The linear forward model

relating the N sources y (Nx1) and the M MEG measurements b (Mx 1) can be written,

b=Gy+n (N

where the i’th row of the MxN system matrix G is a discrete representation of the lead field (sen-
sitivity) of the i’th sensor. The j’th column of G specifies the gain vector for the j’th constrained
dipole component. The Mx1 vector n represents noise generated within the sensor and by
unwanted electromagnetic sources (power lines, the heart, background brain activity, etc.), or
from modeling errors.

We assume a quasistatic approximation, since the time-derivatives of the electric and mag-
netic field are small compared to the ohmic current [26]. If the head is modeled as a spherically
symmetric conductor, the radial component of the magnetic field outside the head is entirely due
to the primary current; consideration of the volume or return currents can be neglected. In this
case, the relationship between the j’th source dipole and the radial magnetometer measurement at

the i’th sensor is [24],

. = Ei i = 2
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where L1, is the permittivity of free space, r; and r; are the locations of the dipole j and sensor i
respectively, and e : is a unit magnitude vector with the j’th constrained source’s orientation.

In practice of course, the head is not spherical and the sensors do not make point measure-
ments of the radial component of the magnetic field. To reduce sensitivity to distant sources and
the earth’s magnetic field, a gradiometer is used to measure the difference in the magnetic flux
through two adjacent coils. The forward model is easily modified to include the effects of the gra-
diometer and of non-radial sensors [17]. Finite and boundary elements can be used to further
extend the model to include non-spherical head geometries [5]. While the forward model in these
cases becomes increasingly complex, the problem remains linear and the reconstruction methods

described below can still be used. In the experimental results presented below we use a spherical
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head geometry but specifically model the non-radial, planar gradiometer configuration of the
Neuromag122 system used in our work [24].

A linear relationship also exists between the primary current density and the potential dif-
ference between two electrodes measured by the electroencephalogram (EEG). Mosher et al. [19]
show quantitatively that MEG and EEG provide complementary information. In the spherical
head model, MEG is sensitive only to the tangential component of the primary current density,
whereas EEG is sensitive to all components, and the MEG lead field magnitude falls off more
quickly than EEG near the center of the sphere. For radial sensors, EEG is affected by the skull
and scalp much more than MEG, however. To obtain the best conditioned data set, therefore, the
two may be concatenated, forming a new (M+L)XN gain matrix where L is the number of EEG
leads available. In the following however, we will concentrate on MEG only.

Many inverse procedures for EEG/MEG can be classified as either multiple dipole or
imaging. In multiple dipole methods, a small set of current dipoles are used to model neural activ-
ity at a small number of distinct sites. The unknown dipole locations and moments form a set of
unknown parameters which are typically found using a non-linear least squares fit to the observed
data. A more recent method, which avoids some of the problems of mis-locating sources due to
the non-convexity of the error surface with respect to the location parameters, is based on the
MUItiple SIgnal Classification (MUSIC) algorithm introduced earlier in another context [18].
Multiple dipole methods are optimal for point sources but may perform poorly if sources are dis-
tributed over a significant area. While multipole expansions could be used to represent these more
distributed sources, this approach has not received much recent attention in the MEG literature.
Imaging is also well suited for distributed source representation, and has the advantage that the
inverse problem is linear and that anatomical constraints can be easily implemented. The major
disadvantage of the imaging approach over multiple dipole methods is that the number of
unknowns can rise dramatically and the problem is typically highly under-determined.

The search for an appropriate imaging method is primarily concerned with finding a way
to choose within a set of images that produces essentially the same fit to the data. Weighted mini-
mum norm inverse methods [22,24,28] typically find solutions which match the data while mini-
mizing a weighted l,-norm on the solution vector. These techniques tend to smear sources over
the entire reconstruction region and are generally unstable due to ill-conditioning of the system
matrix. The instability can be overcome using Tikhonov regularization [13] but the reconstruc-

tions remain smeared. The iteratively reweighted minimum norm method [10][11] is a nonlinear



approach to overcoming the problem of smeared sources in which the norm weighting is updated
at each iteration based on the result of the previous iteration. This method uses a weighting matrix
which, as the iterations proceed, reinforces strong sources and reduces weak ones. This results in
very sparse solutions, but again the method is extremely sensitive to noise and highly dependent
on the initial estimate.

Here we propose an alternative approach to the inverse problem based on a Bayesian for-
mulation. Rather than use an arbitrary weighted l,-norm to select the solution, we introduce a
prior distribution on the source which is used to resolve the ambiguities inherent in the inverse
problem. This prior is constructed to favor the reconstruction of physiologically plausible solu-
tions. Basic studies of functional activation, such as somatotopic or retinotopic mapping using
fMRI or PET, reveal the sparse and highly localized nature of activation in the cerebral cortex [1].
Our prior is therefore specifically designed to reflect the expectation that current sources tend to
be sparse and focal. This prior is combined with a Gaussian likelihood model for the data which is
based on the linear model (1) and an assumption of additive white Gaussian noise. Maximization
over the resulting posterior probability results in a maximum a posteriori (MAP) estimate of the
primary current sources.

In the following, we briefly describe the regularized, weighted minimum norm methods.
We then develop our Bayesian approach and describe a numerical procedure for computing a
MAP image estimate. We compare the performance of the different methods for simulated data

and experimental phantom data from a clinical Neuromag 122 channel MEG system.

II. MINIMUM NORM APPROACHES

The weighted minimum l,-norm approach to linear inverse problems involves solving the

constrained optimization problem:

= arg min yTC?y such that Ib—GyI2 = 0 (3)
y

¥Ywmn

where Cy is an arbitrary symmetric positive definite matrix. Writing Cy = WW , we can form
the solution as,

TAT TaTy
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where (GW)T denotes the pseudoinverse of GW. The weighted minimum norm solution can

also be formed from the singular value decomposition (SVD) of GW :

M (T
u'b
= WE[‘—}Q )

men
i=1\ S

where s;, v;, and u; are the i’th singular value and corresponding right and left singular vectors of
GW, respectively.

Several forms of W have been proposed for MEG imaging applications. In [24] and [28],
the weight matrix is implicitly the identity matrix (W=I). In the normalized minimum norm
method [16], W ___ = diag(l/"g]”, l/||g2||..., 1/||gN||), where ||g1" is the Euclidean norm of
the i’th column of G. This weighting is designed to compensate for the reduced sensitivity of
MEG to deep sources which results in a preference for superficial distributions when W=I. The
NxN Laplacian operator B is commonly selected to smooth the reconstruction of minimum norm
techniques such that W = B [9)(pg. 562)[21]. The LORETA technique [22] uses a weighting

. -1 . .
matrix W, = W_ B . The Laplacian operator tends to select smoother reconstructions than

norm
either of the previous two weight functions. Dale and Sereno [6] use a weighting based on esti-
mates of signal power at each location. These estimates can come from other modalities or from
physiological knowledge.

Exact matching of the data in (3) results in ill-conditioning and high sensitivity to noise.
Regularized forms of weighted minimum norm methods lower this noise sensitivity. One popular
technique is to simply truncate the summation in (5) at a threshold index, known as truncated
SVD [25]. An alternative method, Tikhonov regularization [13], replaces the original problem (3)
with the unconstrained minimization of a combination of the residual error norm and weighted 1,-

norm of the solution vector:

- 2 T -1
y, = argmin  |b-Gy|"+Ay Cy. (6)
¥

For any value of the regularization parameter A, the solution can be found as:

T T T il J ulb
¥, = WW G {GWW G +Al b=wEfiT-v‘. 0
i=1 i
where the filter parameters f; = s?/ (s?+A) . Note that the filter coefficients decrease as s;

decreases. Therefore, the contributions of (ulb/s,)v; to the solution from the smaller s; are



effectively filtered out. In our implementation of the regularized weighted minimum norm meth-
ods we use a regularization toolbox [13] which selects an optimal value for A using the L-curve
method [14].

The iteratively reweighted minimum norm approach [11], also known as focal underdeter-
mined system solution (FOCUSS)[10], is a novel inverse method which iteratively updates the
weight matrix using the result of the previous iteration. The algorithm first provides an initial esti-

mate of y(0) using (4) with W as the weighting matrix. At each step thereafter, a separate

norm

weight matrix W(k) = diag(y(k — 1)) is formed. At each iteration, we update the solution using,

Y& = (W mWE) (GW W) Tb.

norm norm (8)
For any starting point y(0) asymptotic convergence to a fixed point is guaranteed [11]. The fixed
points are, however, unknown and highly dependent on the initial estimate. Also, the final error in
fitting the data may be large, even for the noiseless case. In our implementation we use Tikhonov

regularization and the L-curve method at each iteration to avoid ill-conditioning.

III. BAYESIAN INTERPRETATION OF MINIMUM NORM

The minimum norm methods can be re-interpreted in a Bayesian format. If we have addi-
tional statistical knowledge of the structure of the image y, then we can incorporate this informa-
tion to pick a single reconstruction from the set of primary current distributions consistent with

the measurements. By Bayes rule,

_ pb|y)p(y) b
p(y|b) = ~ 5 )

Maximizing over the log posterior to find the Maximum APosteriori (MAP) estimate,

* arg max
y = gy In {pb|y)} +In{p(y)} . (10)

If y and n are independent and normally distributed with zero mean and covariance Cy and Cy,

then the MAP estimate is,

#*

g o BB max(_ (Gy—b)TC;l (Gy—b) —ch;ly) diis
Y
That is,

y' = CyGT(GCyGrT +Cn)_’b. 12)



For the noiseless case (C,| = 0), this result is identical to (4), the weighted minimum norm solu-
tion. Therefore, the various weight matrices can be interpreted in terms of the covariances of a
Gaussian prior with Cy = WW'. If we assume C, = AI, we arrive at the general Tikhonov
regularized form as given in (7).

Viewed in this way, the choice of weight matrices used in weighted minimum norm meth-
ods are equivalent to a somewhat arbitrary selection of the covariance matrix of a Gaussian prior.
The alternative formulation presented below replaces this arbitrary Gaussian prior with one cho-

sen to better reflect the expected attributes of the current sources that produced the observed data.

IV. THE NEW BAYESIAN APPROACH

Since the primary sources of the MEG are widely accepted to be sparse and focal [23], we
suggest that this information be used in reconstructing the image. This information can be natu-
rally introduced into the problem using the Bayesian paradigm in which the source is modeled as
a random field. Since we assume that sources are sparse, the large majority of source pixels will
have zero amplitude. We therefore use a binary indicator process x to model whether each source
dipole is on (x; =1) or off (x; =0). Those sites that are active are assumed to have a Gaussian ampli-

tude, z;. We can then write the source image vector y as,
y =:x*2 = Xz (13)

where “.*” signifies the Schur product (element by element pair-wise multiplication) and
X = diag(x). Assuming independence of the indicator and amplitude processes, we can write

the posterior probability for x and z given the MEG data b as,

p(b|x, z)p(x)p(z)
p(b) '

We find a MAP estimate y* ofyasy" = x*.* 2" where,

(14)

p(x,z|b) =

*®

X,z =argmax p(x,z|b). (15)
X, Z
The joint probability p(x) is chosen to reflect the expectation that the sources are sparse

and focal. To achieve this goal, we use a Markov Random Field (MRF) [8] model for which



sparse focal sources have a higher probability of occurring than more distributed sources. We

define p(x) to be a Gibbs distribution,

p(x) = (1/K)exp {-V(x)} (16)
where K is a proportionality constant and the energy function V(x) is given by,

X, Clx.,.x Jec,
V(x) - z t_:.—t’ +tB1 t{ [ S i E;} a7

S

{ | Sparseness Term
Clustering Term

where the parameters o; > 0 and 3;> O determine the relative weights of the sparseness and clus-
tering terms. The potential function C{x;, X; je l;,.} is defined in terms of each pixel and its

neighbors &; as,
: 2@
Clxyx; je&} = LZ (x;- %) ] . as)
=

This clustering term is small if neighboring pixels are of the same magnitude. The exponential
parameter Q determines the strength of the clustering. As Q increases, the size of the clusters
tends to increase. In the results presented below we constrain sources to a plane and use a four
nearest-neighbor interaction. Some examples of binary images, produced by sampling from this
prior using a Gibbs Sampler [8], are shown in Fig. 1. The source amplitude process, z, is assumed

to be a set of independent zero mean Gaussian random variables with covariance C,.

(a) (b) (c)

Figure 1. Three examples of a random sampling from p(x). (a) @ =1,0=1.0,and f =0.4
(b) 0=2,00=1.0,and =02 (¢) Q=3,0=1.0,and 3 =0.1.




Using the definitions above and assuming the noise process in (1) is zero mean Gaussian

with covariance C,, we can write,

p(x,z|b) = %exp {-U(x,z|b)} (19)

where Z is the posterior partition function. The posterior energy function is given by:

1

g e
U(x, z|b) = = [b - GXz] Cnl[b—GXz]+%z C,z +V(x) 20)

a1

The MAP estimate is found by maximizing over the log-posterior, or equivalently,

x*, z* = arg min U(x, z|b). (21)
X, 2

The solution to the optimization problem (21) provides our estimate of the neural current

sources. The solution is clearly a function of the parameters of the likelihood function and the

prior probabilities. Methods for selecting these parameters will be addressed in a future publica-

tion. However, we note that since the parameters o, represent the relative probabilities that each

source pixel is active, it is straightforward to include pixel-wise probability weightings deter-

mined from fMRI or PET activation studies to influence the formation of these sparse images.

V. MEAN FIELD ANNEALING

Minimization of U(x, z|b) is difficult since the optimization must be performed over a
mixture of discrete and continuous variables. Since this function is quadratic in the continuous
variables, z, we can derive a closed form expression for the optimal z as a function of any particu-
lar indicator process X. i.e. the vector z*(x) which minimizes (20) given the binary vector X is

given by,

2’ (x) = C,XG" (GXC,XG" +C,) 'b. (22)
Substituting z"(x) into U(x, z|b) results in,

U(x|b) = U z[b)|, _ .o (23)
which is a Gibbs energy function for the binary density p(x|b) = (1/K) exp {—[_f(xlb)}. We
can therefore first find the optimal indicator process by minimizing f](x|h), then substitute this

result in (22) to obtain the optimal amplitude process.



Coordinate-wise optimization with respect to a collection of binary variables using, for
example, iterated conditional modes (ICM), tends to produce rapid convergence to an undesirable
local minimum. Here we use, instead, a continuation method based on mean field annealing
(MFA) [3].

MFA changes an optimization problem into a series of expected value problems. We form

a new density function based on a temperature parameter 7,

1
o I .7 1 2
p_(x|b) = —p'(x|b) = =—exp {-U(x|b)/T} (24)
T K, Ky
where f{T is a temperature dependent normalization parameter. The mean of the newly defined

process ﬁT(x|b) approaches the mode of p(x|b) as T— 0 in the following sense.
Theorem. If x* is the unique global maximizer of p(x|b) , then,
lim
T—=0
where E.{x|b} denotes the expected value of x with respect to ﬁT(xlb) .
Proof. We can find E. {x|b} by the relation,

E.{x|b} = x". (25)

E {x|b} = %erxp {—f](x|b)/T} . (26)
T x

If we separate x* from the summation and multiply the numerator and denominator by

exp { (}(x’|b)/T} , we can rewrite this as,

( Y xexp { [Ux*|b) - Ux|b)] /T} J +x*

x#x’

E {x|b} = 27)

( Y exp{ [ff(x*|b)—f;’(x|b)]/T}J+ 1
x#x"
Since x” is the unique global maximizer, U(x*|b) <U(x|b) V x# x" . Therefore the summa-

tions go to zero as T — 0 and (25) results.
Q.E.D.

Using (26) to determine E..{x|b} is infeasible due to the large dimensionality and cou-
pling in x. Instead we use a mean field approximation [4] to simplify the computation of the
(approximate) mean. Let S represent all elements of the field. For each pixel i we create a univari-

g f y
ate energy function U:.n (xl.|b) , written as,

U:_nf(xl.|b) = ff(x|b)|x;_=’_‘$_ (28)
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where X¢_; denotes the mean of the field restricted on S-i. We define K:n; to be the corresponding

mean field local partition function,

K?; = z,exp {—U:-m.(x£-|b)/7} - (29)
X

We then approximate the joint probability, jiT(x|b). as the product of independent mean field

approximated marginal probabilities:

f f 1 f
prx|b) = [Tp7'e|b) = —exp {-(ZU}“ (x,|b) )/T} . 30)
i Ky i
where the overall mean field partition function K?t is the product of all local mean field partition

functions. This mean field approximation effectively replaces the influence of the statistical fluc-

tuations of neighboring sites by their mean values, where the means are computed with respect to
. - f

the approximated probability p? (x|b).

Using this mean field approximation, we can compute jflb(T) at a given pixel site as:

- 1 f 1 f

x:‘[b(T) > [W] 2 X;eXp {—U:n (x‘-|b)/T} = —=exp {—U:.n (x;=1|b)/T}. @31
i, T/x€ {0, 1} LT

Note that the mean is computed with respect to the approximation in (30) to the joint density

fJT(x|b) in (24). Substituting K:n; from (29) and dividing numerator and denominator by

exp {—U:Irlf (x; = 1|b) /T}, we can simplify this to,

- 1
xt'|b(T) = (32)

where the difference in energies is given by,

mf

AUy = U= 1]b) = U} (x, = O]b). (33)

Note that to compute the mean of pixel i, we need the mean of all other pixels in the image since

the statistical coupling between sites in the original probability is replaced with a coupling

through their means. Therefore, the mean field must be computed iteratively. In our work, the
algorithm cycles several times through all pixels using (32) to update their mean values.

The temperature parameter 7 is slowly reduced as the iterations proceed. As T'— 0, coor-

dinate-wise updating using the conditional mean reduces to the method of Iterated Conditional

Modes (ICM) [2]. Therefore, the asymptotic local convergence behavior of mean field annealing

11



is identical to that of ICM. It is easy to show that ICM will converge to a local minimum x ", i.e.,
to a point X~ where ff(x*lb)< f](x|b) V xe {0, 1} such that x"and x differ at no more
than one site. The potential advantage of mean field annealing over direct application of ICM, is
that by using the mean, in combination with an annealing schedule, we can slowly approach the
solution, and hopefully avoid undesirable local minima.

Our algorithm to perform MFA is summarized as follows:

1. Set 7(0) and find an arbitrary initialization for x,,[0], j= 1 ... N. Set the location of interest
i = 1 and iteration number k = 0.

2. Use (22) to determine z*(x[k]) for x;[k] = 0 and x;[k] = 1, all other xj[k] setto ¥, [kl j#i.
3. Use the z* vectors to find U;"f(xl. = 1|b)and U:.nf(xi =0l|b).

4. Use (32) to calculate Ty 4] -

5. Increment i. If i <N, go back to #2, else go to #6.

6. Increment the iteration number k and decrease T(k), set i = 1, and if not converged go to #2.

We have found empirically that a good choice for the annealing schedule T(k) is:
T (k) = Tyexp {-k/K_} (34)

where K, is a constant controlling the rate of 7(k)’s decrease and 7} is the initial temperature. Bil-
bro et al. [3] find that in MFA, after a certain “critical temperature”, all locations in a binary prob-
lem move to the binary values without any direction change. They suggest at least 40 iterations to
reach this temperature. Below this temperature, the function equivalently reduces to a smoothing
of the binary problem. Hiriyannaiah et al. [15] have found the optimal initial temperature is noise
dependent and of O(62), were 62 is the noise variance. They also find that a decrement of 5% or
less in the temperature works well as a general annealing schedule. We find these numbers to be
appropriate as well.

Note that this algorithm requires that we take the inverse of an MxM matrix twice in step
#2. This can be computationally prohibitive, especially if we have a large number of sensors. To
increase the computational speed, we recognize that when we change only one element from its
current value to either a zero or a one, we effectively make a rank one update of the matrix
L = GXC,‘,‘)(KGT + C,_ in (22). A fast method for performing the inverse of a rank one updated

matrix was proposed by Sherman and Morrison [9]. The method is based on the property that the



new inverse is a rank one update of the previous inverse. This method requires storing the previ-

<] ; ;
ous L. ', but it reduces the order of computation from M3 to M.

VI. SIMULATIONS

We have conducted extensive simulations based on a simplified 2D source model with a
1D array of 64 sensors. All dipolar sources are constrained to the annular segment of the x-y plane
shown in Fig. 2. The distance between source locations was set to 2.8 mm providing an isotropi-
cally sampled image grid of 560 pixels. All dipoles were constrained in orientation perpendicular
to the x-y plane. The source images were chosen using stochastic sampling from p(x) and p(z)
with O =3, o; = 1.15, B; = 0.075, and 6; = 10 nAm i =1...N. The first three parameters were cho-
sen heuristically to provide good sparseness with a small degree of clustering. The fourth parame-
ter, the standard deviation of the dipole moments, reflects the typical activity seen in an evoked
response study [12]. We set C,, to vZ21, where v? is the added noise variance which we assume
known. For the study with noiseless data, we used a value in the algorithm of non-zero vz, compa-
rable to a SNR of 50 dB, to avoid numerical instabilities.

The results of a representative simulation are shown in Fig. 3 for three scenarios, one

noiseless, and two with added white Gaussian noise. The percent residual error printed on these

images, is defined as,

d i
[(Gy‘b)T(GY‘b)} - 100% 35)
bb
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where y is the solution shown. We compared the MAP technique to the four methods discussed in
Section II: standard minimum |, norm technique, the normalized minimum norm technique, the

LORETA method, and the iteratively reweighted minimum norm technique.

12r

10

— amplitude

+ amplitude

-8 -6 -4 -2 0 2 4 6 8

Figure 2. Sample plot showing the support of the source region (a 90 degree annulus from
S5cm to 9cm) and the locations of the 64 MEG sensors (radial orientation, point measure-
ment). Sources are shown as full boxes (positive amplitude) and empty boxes (negative ampli-
tude), with the area of the box proportional to the magnitude of the source. In the following
reconstructions, sources with magnitude less than one percent of the maximum are not
included to improve the clarity of the figures.
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Figure 3. Sample 2D simulation with a 1D sensor array. 64 point measurements, 560 point
image grid. The percent residual error (% R.E.) is shown above and the range of source val-
ues (in nAm) is shown below each image. Three scenarios are presented. (a) No noise added
to the computed data (b) White Gaussian noise added to the data to achieve a SNR of 20 dB
(¢) White Gaussian noise added to the data to achieve a SNR of 8 dB.
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These results show a wide variation in the characteristics of the solution obtained using different
weighting functions. All of the linear minimum norm methods produce results exhibiting a rela-
tively large degree of smoothness. In comparison, both the iteratively re-weighted minimum norm
and the new Bayesian method produce very sparse solutions. For each scenario, all five methods
generally give similar residual errors in the fit to the data. In some instances, the iteratively
reweighted minimum norm method gives larger errors since there is nothing inherent in the
method to limit increases in the error from one iteration to the next. All results can be considered
‘correct’ in the sense that they are configurations that could have produced the observed data.
This observation emphasizes the severely under-determined nature of this problem. Clearly, in
order to select between these feasible solutions we must use additional information concerning
the expected nature of the source. We see that as the SNR decreases, performance of all methods
deteriorates. In the 8dB case, the MAP solution clearly misplaces one of the source clusters, indi-
cating that at this SNR, it is not possible to resolve between the true source configuration and the
MAP reconstruction since both give similar fits to the data and both exhibit the sparse, clustered
property preferred by our prior - in fact the MAP reconstruction gives this preference to the true

solution in the sense of producing a lower posterior energy.
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VII. PHANTOM EXPERIMENTS

We have applied the same techniques used in Section VI to experimental phantom data
collected with a Neuromag-122 system [12] using the 28 dipole phantom supplied by the manu-
facturer. The Neuromag-122 system employs 61 dual-channel planar first-order gradiometer units
in a helmet-shaped configuration at a radius of 10-11 cm, measuring the magnetic field gradient in
two orthogonal tangential directions, for a total of 122 individual sensor measurements. The hel-

met for a Neuromag-122 is shown in Fig. 4.

Figure 4. A view from below of the helmet of the Neuromag-122, showing the configuration
of the 61 dual-channel planar first order gradiometers (Neuromag Ltd., Helsinki, Finland).

The phantom consists of two half circles with a 7 cm radius in the x-z plane and y-z plane,
with dipoles in fixed positions in these planes oriented tangential to the outer edge. The image

reconstruction grid consisted of 768 locations spaced 4 mm apart on two 180 degree annuli, with



an inner radius of 3 cm and an outer radius of 7 cm. A schematic of the imaging surface with the

surrounding sensor elements is shown in Fig. 5, and a photograph of the phantom in Fig. 6. The

104
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Figure 5. Schematic representation of the phantom reconstruction regions (two orthogonal,
180 degree annular regions) with the locations of the planar gradiometers of the neuromag-
122 system superimposed.

Figure 6. The phantom used in the Neuromag-122 experiments consists of 28 tangentially
oriented dipoles on two orthogonal planes.
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distance between sources and sensors creates a gain matrix which is more poorly conditioned than
the one in the previous simulations. This increases the sensitivity to noise of all inverse methods.
In all cases, the gain matrix was constructed to include gradiometer effects and non-radial sensor
orientations assuming a spherical source volume [24].

The phantom data was scaled to reflect a reasonable evoked field response. We then added
data collected in the same system from a passive human subject (100 averages of a pre-stimulus
interval from an evoked response paradigm). This background was added to the phantom data to
obtain a specified SNR. Fig. 7 shows the true configuration and the MAP solution plotted as a 2D

projection of the three dimensional source distribution. In this example, noise was added to obtain

(a) (b)
Figure 7. Reconstructions from a phantom experiment with three active dipoles. 122 point

measurements, 768 point image grid. Colored subject noise was added to the data to achieve
a SNR of 15 dB. (a) True configuration of phantom dipoles. (b) MAP Solution.

a SNR of 15 dB. The minimum norm techniques tested on phantom data performed comparably
to the simulations in Section VI. The comparison plots are shown in Fig. 9 with high and low
SNR. The phantom experiments show that our forward model is accurate and that the MAP tech-
nique can also be used effectively to reconstruct sparse sources from real data. We found that col-
ored noise from the human subject was slightly more damaging than white Gaussian noise, since
human subject noise tends to be smoother across the sensor array and therefore more likely to

resemble spurious sources.
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Figure 8. Sample phantom results with three active dipoles on two orthogonal planes. 122
point measurements, 768 point image grid. Percent residual error (Pct Res Err) is shown
above and the range of source values (in nAm) is shown below each image. Two scenarios are
presented. (a) Colored subject noise added to the data to achieve a SNR of 15 dB. (b) Colored
subject noise added to the data to achieve a SNR of 10 dB.
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VIII. CONCLUSIONS

In the simulations and phantom studies we have conducted, our MAP solution was gener-
ally superior to those obtained using minimum norm methods. However, this is true only when the
sources exhibit the sparse focal characteristics on which our method is based. We stress that all of
the methods provide good fits to the data, and hence are physically (if not physiologically) plausi-
ble. This ambiguity is inherent in attempting to infer spatial information from on the order of 100
external sensor measurements. Specific prior information is essential if useful spatial information
is to be extracted from the data.

In this work we have developed a Bayesian framework for image estimation from MEG
data. This approach can be extended to include information from other modalities (fMRI or PET)
as well as using anatomical MR images to constrain sources to the cortex. The method can also be
combined with more accurate forward models as discussed above, and also used for combined
MEG/EEG data. We can also directly extend the model for dynamic imaging by simply replacing
each of the amplitude processes, z;, in our model with a time series model, z;(7).

The results that we have presented assume sources are constrained to 2D planes. Future
research will focus on sources constrained to a realistic cortical surface. Only then can be we

begin to establish realistic limits on the ability of MEG to usefully image neural activity.
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