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Abstract

With the rapid advancement of photonic technology in recent years, the potential
exists for the incorporation of photonic neural-network research into the devel-
opment of opto-electronic real-time pattern classification systems. In this dis-
sertation we present three classes of photonic neural-network models that were
designed to be compatible with this emerging technology: (1) photonic neural
networks based upon probability density estimation, (2) photorefractive neural-
network models, and (3) vertically stacked photonic neural networks that utilize
hybridized CMOS/GaAs chips and diffractive optical elements. In each case, we
show how previously developed neural-network learning algorithms and/or archi-
tectures must be adapted in order to allow an efficient photonic implementation.

For class (1), we show that conventional “k-Nearest Neighbors” (k-NN) prob-
ability density estimation is not suitable for an analog photonic neural-network
hardware implementation, and we introduce a new probability density estimation
algorithm called “Continuous k-Nearest Neighbors” (C-kNN) that is suitable. For
class (2), we show that the diffraction-efficiency decay inherent to photorefractive
grating formation adversely affects outer-product neural-network learning algo-
rithms, and we introduce a gain and exposure scheduling technique that resolves
the incompatibility. For class (3), the use of compact diffractive optical inter-

connections constrains the corresponding neural-network weights to be fixed and



locally connected. We introduce a 3-D Photonic Multichip-Module (3-D PMCM)
neural-network architecture that utilizes a fixed diffractive optical layer in con-
junction with a programmable electronic layer, to obtain a multi-layer neural net-
work capable of real-time pattern recognition tasks. The design and fabrication
of key components of the 3-D PMCM neural-network architecture are presented,
together with simulation results for the application of detecting and locating the

eyes in an image of a human face.
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Chapter 1

Introduction

Over the past several years, neural-network technology has begun the transition
from being a research curiosity into being a viable technology that can be in-
corporated into commercial products. Beginning with the increased interest in
neural-network research that took place in the mid-1980’s, continuing research
into topics such as neural-network learning theory, VLSI implementations of neu-
ral circuitry, and efficient input data representations have resulted in the devel-
opment of commercial neural-network products in the mid-1990’s. For example,
Visionics, Inc. (Metuchen, NJ) now offers a neural-network-based software pack-
age for IBM-compatible PC’s that authenticates a user through face recognition
rather than through a password, using a small camera mounted on top of the
PC monitor. Recent neural-network hardware products include digital chips for
embedded speech recognition applications (Sensory, Inc., Sunnyvale, CA) and
PC co-processor boards for neural-network pattern recognition/image processing

operations (Adaptive Solutions, Beaverton, Oregon).



With the rapid advancement of photonic technology in recent years, the po-
tential exists for an analogous incorporation of photonic neural-network research
into the development of opto-electronic neural-network products. It has long
been recognized that photonic storage media and interconnection systems offer
fundamental advantages over their all-electronic counterparts in terms of stor-
age capacity, impedance matching characteristics, and power dissipation require-
ments [van Heerden, 1963] [Miller, 1989] [Feldman et al., 1988]. However, the de-
vice fabrication technology required to realize the potential of photonics for in-
formation processing systems such as neural networks has become available only
recently. For example, the successful hybridization of CMOS electronics with
multiple-quantum-well (MQW) GaAs optical modulators [Goossen et al., 1995]
[Kyriakakis et al., 1995] [Worchesky et al., 1996] has enabled the fabrication of
dense high-bandwidth planes of artificial neurons that can be used in multi-layer
neural-network systems. Progress has also been rapid in the development of op-
tical interconnection components that can implement weighted interconnections
between neural planes. It is now possible for an optical engineer to design Diffrac-
tive Optical Elements (DOE’s) and microlenses [Jahns, 1994] for a neural inter-
connection system, and have them fabricated using photolithographic processes
common in the semiconductor industry.

In this dissertation, we present neural-network algorithms and hardware archi-
tectures that were designed to be compatible with this emerging photonic technol-
ogy. We introduce and discuss three classes of photonic neural-network models:
(1) photonic neural networks based upon probability density estimation, (2) pho-

torefractive neural-network models, and (3) vertically stacked photonic neural

Q]



networks that utilize hybridized CMOS/GaAs chips and diffractive optical ele-
ments. In each case, we show how previously developed neural-network learning
algorithms and/or architectures must be adapted in order to allow an efficient pho-
tonic implementation. The emphasis of the discussion is towards computationally
intensive real-time pattern recognition applications, where a neural network must
process large format (e.g., 256 x 256 pixels) input images at a rapid frame rate
(e.g., 30 frames/sec). These applications make best use of the high temporal and
spatial bandwidth offered by photonic hardware components.

For each of the three neural-network classes discussed above, a photonic hard-
ware implementation imposes important constraints upon the relevant architec-
tures and learning algorithms. In each case, we propose a hardware and/or algo-
rithmic solution that addresses the limitations imposed by a photonic implemen-
tation. For class (1), we show that conventional “k-Nearest Neighbors” density
estimation is not suitable for an analog photonic neural-network hardware im-
plementation, and we introduce a new density estimation algorithm called “Con-
tinuous k-Nearest Neighbors” that is suitable. For class (2), we show that the
diffraction-efficiency decay inherent to photorefractive grating formation adversely
affects outer-product neural-network learning algorithms, and we introduce a gain
and exposure scheduling technique that resolves the incompatibility. For class (3),
the use of compact diffractive optical interconnections constrains the correspond-
ing neural-network weights to be fixed and locally connected. We introduce a
3-D Photonic Multichip-Module (3-D PMCM) neural-network architecture that
utilizes a fixed diffractive optical layer in conjunction with a programmable elec-
tronic layer, to obtain a multi-layer neural network capable of real-time pattern

recognition tasks such as locating the eyes in an image of a human face.



The photonic neural networks discussed in this dissertation offer the poten-
tial of scalability to higher temporal and spatial bandwidths than are possible
with purely electronic neural networks. Temporal bandwidth refers to the rate
at which the neural input and output signals can be propagated through the
network. Temporal-bandwidth scalability is achieved in the photonic neural-
network models discussed above through the use of GaAs modulators and free-
space optical interconnections, which allow high-speed (e.g., 250 MHz) neural
signal modulation that is independent of the distance between neural-network
layers [Miller, 1989]. Spatial bandwidth refers to the number of neurons that
can be packed into each layer. For classes (1) and (2) discussed above, spatial-
bandwidth scalability is achieved through the use of volume holographic storage
of interconnection weights, which allows a greater connectivity between planes of
closely-packed neurons than would be possible with planar-electronic interconnec-
tions [Psaltis et al., 1988]. For class (3), spatial-bandwidth scalability is achieved
using the 3-D PMCM architecture, which bypasses the usual 2-D chip-to-chip In-
put/Output (I/0) bottleneck [Goodman, 1984] by allowing optical propagation
perpendicular to the neural planes. Thus, our overall goal is to formulate and
solve systems-level design problems that are relevant to several varieties of scal-

able photonic neural networks.

1.1 Contributions

The original contributions contained in each chapter of this dissertation can be

summarized by the following:



L.

o

Continuous k-Nearest Neighbor (C-kNN) algorithm. We present a new prob-
ability density estimation algorithm that was specifically designed for ana-
log electronic or photonic neural-network implementation. A formal proof
of statistical consistency is given for the new probability density estimation
algorithm, along with empirical simulation results that suggest performance
improvements with respect to conventional k-NN and Parzen Windows tech-
niques. Bayesian pattern classification and nonparametric regression archi-

tectures that use C-kNN probability density estimation are presented.

Photonic neural-network architectures for C-kNN and other probabilistic
neural networks. Volume and planar holographic architectures for neural
networks that are based upon nonparametric probability density estima-
tion algorithms are presented. Photonic architectures for neural-network
implementations of probability density estimation, Bayesian pattern classi-
fication, and nonparametric regression are given. We present derivations for
the optical encoding of bipolar training vectors and the relationship between

spatial-light-modulator (SLM) gain and estimation kernel width.

Gain and exposure scheduling. We present a gain and exposure schedul-
ing technique that compensates for photorefractive diffraction-efficiency de-
cay when applied to outer-product neural-network learning algorithms. A
derivation that maps the photorefractive grating update equations into neural-
network weight updates is presented, along with empirical simulation results
which verify that our method works correctly when applied to the Exclusive-

OR (XOR) problem. It is shown that the method applies to both Single



Coherent Source (SCS) and the Incoherent/Coherent (I/C) optical repre-

sentation.

. A 3-D Photonic Multichip-Module (3-D PMCM) neural-network architec-
ture. The hardware architecture for a 3-D stack of opto-electronic devices
used for feedforward neural-network processing is presented. The VLSI de-
sign, computer simulation results, and electrical test results for the opto-
electronic chip that provides a scrolling-window input to the neural-network
processor are given. Derivations for the mapping between neural-network
signals and 3-D PMCM optical representations are given. We present ex-
amples of fabricated micro-diffractive optical elements designed for neural-
network edge detection, and we derive optical imaging constraints which

show that the 3-D PMCM optical components can be stacked compactly.

5. Eye-delection simulations for a 3-D PMCM neural network. A two-layer

neural network that is consistent with the 3-D PMCM hardware architec-
ture is simulated for the application of detecting the positions of the two eyes
in an image of a human face. Space-variant edge detection, which requires
only local neural-network connectivity, is shown to be a useful pre-processing
stage for eye detection. Simulation results on a database of real facial images
show significant performance improvements compared to a simpler single-
layer network. We show that the two-layer neural-network learning algo-
rithm is computationally intensive when implemented on a digital computer
(20 seconds per image on a SPARC 10 workstation), while the 3-D PMCM
neural network can potentially process the images in real time (1/30 second

per image).



1.2 Organization

The five technical chapters of this dissertation (chapters 2-6) are organized into
3 parts, where each part corresponds to one of the 3 classes of neural-network
models discussed above. Chapters 2-3 discuss neural networks based upon prob-
ability density estimation. In Chapter 2 the C-kNN density estimation algorithm
is introduced from a theoretical viewpoint, while Chapter 3 builds on the theo-
retical foundation established in Chapter 2 with a discussion of several photonic
implementations of probabilistic neural networks. The second part of the disser-
tation consists of Chapter 4, which discusses the gain and exposure scheduling
technique for photorefractive neural network learning algorithms. The final part
of this dissertation consists of chapters 5-6, which discuss the 3-D PMCM Neural
Network architecture. The 3-D PMCM hardware is discussed first, in Chapter 5,
followed by the eye-detection simulation results presented in Chapter 6. Finally,

Chapter 7 concludes with a summary and a discussion of future work.



Chapter 2

Probability density estimation
for analog neural network
implementation: the Continuous

k-Nearest Neighbors Algorithm

2.1 Introduction

The k-Nearest Neighbors (k-NN) algorithm [Fix and Hodges, 1951] is one of the
most popular and most researched classification techniques in the field of statis-
tical pattern recognition [Dasarathy, 1991] [Fukunaga, 1990]. It is based on the
intuitively simple idea that a good estimate for the classification of an unknown
input vector is the class most represented by its nearest neighbors. However,
this algorithm has always had two limitations preventing its widespread use in
real-time pattern recognition systems: (1) the algorithm requires a memory ca-
pacity large enough to store all of the necessary training vectors, and (2) the
algorithm requires the computation of the distance between the unknown input
vector and each of the training vectors, which implies an increasing computational

time-complexity as the number of training vectors grows. In the past, the issues



cited above have been addressed in the statistical pattern recognition literature
[Dasarathy, 1991]. Algorithmic advances have been achieved that in some cases
allow a reduced number of training vectors to be stored, thus partially alleviating
problem (1). Likewise, problem (2) has been addressed by the development of
fast searching techniques to find the nearest neighbors.

More recently, advances in analog electronic and opto-electronic implemen-
tations of artificial neural networks have provided possible hardware solutions
to the problems discussed above. For example, issue (2) has been addressed
by Urahama et al., who have designed special-purpose analog neural network
circuits to implement the k-NN algorithm using sub-threshold MOS transistors
[Urahama and Nagao, 1994]. As will be discussed in more detail below, recent
research efforts in the analog electronic implementation of radial basis function
(RBF) neural networks [Sheu and Choi, 1995] can also be applied to the k-NN
algorithm. Progress in opto-electronic hardware implementations of neural net-
work architectures has the potential of directly addressing problem (1). In par-
ticular, the use of volume holographic materials in neural network architectures
[Psaltis et al., 1988] [Asthana et al., 1993] [Li et al., 1993] can theoretically pro-
vide a storage capacity as high as 10'? analog values / cm?®.

The theory underlying the k-NN classification algorithm is based on nonpara-
metric probability density estimation. Once the underlying probability densities
that describe a data set are known, it is possible to design a statistically opti-
mal (Bayes) classifier. For the case of k-NN classification, the underlying den-
sities are approximated from the training data using k-NN density estimation
[Loftsgaarden and Quesenberry, 1965], and the density estimates are then used

to construct a Bayes classifier. In this chapter, we describe a new probability



density estimation algorithm called “Continuous-k Nearest Neighbors” (C-kNN).
This algorithm is specifically designed to be implemented using electronic or opto-
electronic analog neural networks of the type described above.

This chapter is organized as follows. Section 2.2 begins with a brief review
of conventional k-NN and Parzen windows density estimation, and it establishes
the notation used for the remainder of the chapter. Section 2.3 introduces C-kNN
probability density estimation. We present analytic and empirical results to verify
that the C-kNN probability density estimate converges in probability to the true
underlying density. In Section 2.4, the performance of the C-kNN technique is
compared to that of conventional Parzen windows and k-NN. We show that, for
some classes of density estimation problems, the C-kNN algorithm performs better
than both Parzen windows and k-NN. The remainder of this chapter focuses on
neural network implementations and applications for C-kNN density estimation.
In Section 2.5, radial basis function neural networks for probability density esti-
mation are presented, and in Section 2.6 these RBF neural networks are discussed
in the context of C-kNN pattern classification and nonparametric regression. The

chapter concludes with a summary and discussion in Section 2.7.

2.2 Review of Parzen windows and conventional
k-NIN density estimation

The probability density estimation problem can be defined as follows: given a
set of n independent identically distributed (i.i.d.) training vectors T = {t() : 7 =
1,2,--+,n} drawn from a population with probability density function p(x), find

an estimate p,(x;T) that approximates the true density p(x). (The functional

10



dependence of p,(x) on T is suppressed when there is no ambiguity) The density
estimate is considered nonparametric if there is no assumed functional form for
the true density. This paper will discuss only nonparametric density estimation.

The kernel interpolation technique known as Parzen windows is commonly
used for nonparametric density estimation [Rosenblatt, 1962] [Parzen, 1962]

[Cacoullos, 1964]. The Parzen window estimate is defined by the expression

pal) = 2, (2.1)

in which

n — t(¥)
kn(xlzqu(" - ) (2:2)

and ¢(-) is the estimation kernel. The kernel volume V,, is related to the kernel

width A, by the relation

A /’(ﬁ(x’/hn)dx’
= hd [ (' )dx’

= hivp, (2.3)

where d is the number of components in the input vector x, and the unscaled
kernel volume V; is defined above. The kernel ¢(-) must satisfy the following
conditions: the integral in Eq. (2.3) must exist, the kernel must be nonnegative
and bounded, and it must satisfy the limit

lim (x)L z; =0, (2.4)

|x|=00

11



in which || denotes the Euclidean vector magnitude. It can be shown that if the
deterministic sequence {h,} is chosen such that k, — 0 and nh? — oo as n — co
(e.g., hy ox 1/y/n), then the estimated density converges in probability to the true
density [Duda and Hart, 1973].

Another commonly used nonparametric technique is k-NN density estimation
[Fix and Hodges, 1951] [Loftsgaarden and Quesenberry, 1965]. This estimate can

be defined as

kn/n
~(K n
L (x) = Vi ) (2.5)

in which the (K) superscript denotes k-NN density estimation. In contrast with
Parzen window estimation, here the kernel volume V,)(x) is a random variable
dependent on the input vector x and the training set T, while {k,} is a determin-
istic integer sequence chosen a priori. The volume V.¥)(x) is determined by the
Euclidean distance between the input vector x and its k2 nearest neighbor among
the set of training vectors T. If this distance is denoted r,(x), then V,(x) is equal

to the multi-dimensional spherical volume [Loftsgaarden and Quesenberry, 1965]

218 (x) /2

Vi) = dr(d2)

(2.6)

where T'(+) is the Gamma function defined by I'(¢)2 [;° @9~ le~*dx . It can be
shown that if the sequence {k,} is chosen such that k, — oo and k,/n — 0 as
n — 00, (e.g., kn o< y/n), then the estimated density converges in probability to

the true density [Loftsgaarden and Quesenberry, 1965].



2.3 C-kNN probability density estimation

It is well known that the k-NN method has several drawbacks. For example, it uses
a hard threshold to decide whether or not a given training vector contributes to
the density estimate: if the distance between x and t(?) is larger than the distance
between x and its k% nearest neighbor, then t(*) is completely ignored in the cal-
culation of the density estimate [Buturovic, 1993]. In addition, the k-NN method
treats all training vectors that are sufficiently close to the input vector identi-
cally; that is, the nearest neighbor to x has the same contribution to the density
estimate as the k' nearest neighbor [Mack and Rosenblatt, 1979] [Dudani, 1976]
[Silverman, 1986]. On the other hand, although the Parzen windows method does
not have the aforementioned drawbacks, the method is limited because the kernel
width is fixed for all values of the input vector. This limitation can be a problem
if the density being estimated is more efficiently approximated by a kernel that
can “adapt” to the local probability density [Silverman, 1986].

Many of these issues have been previously addressed in the literature. For
instance, Dudani proposed a “weighted-distance k-NN” rule that explicitly gives
nearby training samples more weight in the classification decision than those that
are more distant [Dudani, 1976]. The effectiveness of this method has been ac-
tively debated since its introduction [Baily and Jain, 1978] [Keller et al., 1985]
(Macleod et al., 1987] [Denoeux, 1995]. Modifications to the Parzen windows
method have also been reported in the literature, in order to address the problem
of fixed-width kernels as mentioned above [Silverman, 1986]. In this paper, our
approach is to combine the Parzen windows and k-NN density estimation tech-

niques. The new estimation technique, called “Continuous k-Nearest Neighbors”

13



(C-kNN), retains both the continuous kernel property of Parzen windows and the

adaptive kernel property of k-NN.

2.3.1 Definition of C-kINNN

As was the case with k-NN, the C-kNN method uses a kernel volume that is a
function of the input vector x:

kO /n

5O (x) =
Pn (X) V,;{C](XJ )

(2.7)

where the superscript (C) denotes C-kNN density estimation. Here, the kernel

volume V(©)(x) is defined more generally than was the case for k-NN:

K =

x

& (X! [ha(x)) dx' = hiy(x) Vo, (2.8)

in which the kernel width h,(x) is chosen to satisfy

n x — t(:’)
2 (o ) &+ &

i=1

Eq. (2.9) defines a feedback mechanism in which the kernel width h,(x) is varied
until the summation of all kernels is equal to a predetermined parameter, £(°). If
Eq. (2.9) does not uniquely determine the kernel width h,(x) [as may be the case
if ¢(-) is constant in some regions|, then the width is defined to be the minimum
value consistent with Eq. (2.9). The parameter k(©) is similar to &, in k-NN
density estimation, with the exception that k{°) can in general take on any real
value, rather than being restricted to integer values as is the case with k-NN. The

estimation kernel ¢(-) used for C-kNN density estimation must satisfy the same
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conditions previously discussed for Parzen windows. In addition, the kernel must

satisfy
d(x)>0 V|x|<r (2.10)

for some r > 0. That is, the kernel must include a finite region surrounding the
origin, x = 0.

By comparing Eq. (2.7) with Eq. (2.5), and Eq. (2.8) with Eq. (2.3), it is
clear that C-kNN is a combination of Parzen windows and k-NN. C-kNN uses
a continuous kernel ¢(-), as does Parzen windows, but the volume V(9 (x) is a
function of the input vector, as is the case with k-NN. For the special case

1 if x| < 1
$(x) = : (2.11)

0 otherwise

the parameter k() must be an integer in order for Egs. (2.9) and (2.11) to be
mutually consistent. Furthermore, Eqs. (2.9) and (2.11) require the kernel width
h.(x) to be chosen as the distance to the k{°) & nearest neighbor. Therefore, in
this special case the RHS of Eq. (2.7) reduces to the RHS of Eq. (2.5) (where
k() takes the place of k,), and the definition of V®)(x) becomes equivalent
to the definition of V)(x) [where h,(x) takes the place of r,(x), and Vp =

2742/ (dI'(d/2))]. That is, in this special case C-kNN becomes equivalent to k-

NN.

2.3.2 Proof of C-kNN consistency

A probability density estimation algorithm is consistent if p.(x) —p p(x), where

the symbol —; denotes stochastic convergence in probability. That is, the density



estimate is consistent if [Papoulis, 1965]
vx, lim P(|pn(x) —p(x)| > €) =0 Ve> 0. (2.12)

As mentioned above, both Parzen windows and k-NN are consistent density esti-
mates if the {h,} (Parzen windows) or {k, } (k-NN) sequences are properly chosen.
In the following, we show that C-kNN is also a consistent density estimate.

Assume k(©) is chosen such that the following two conditions are met:

lim £{©) = (2.13)
n=oo
: .(C) =

nll];glo(f\,n /n) = 0. (2.14)

In the following, we prove that C-kNN is consistent by relating the above two
conditions to the asymptotic behavior of the kernel width A,(x). For any fixed
input vector x, the infinite random sequence {h,(x)} is related to the deterministic
sequence {k(©} through Eq. (2.9). To prove that the C-kNN estimate converges
correctly, we will show that the sequence {h,(x)} satisfies the two Parzen window

convergence conditions: h,(x) —p 0 (Sec. 2.3.2), and nhd(x) =5 0o (Sec. 2.3.2).

First Parzen convergence condition

Using Eq. (2.9),
(®)

/)36 (S ) = ). 2.15)
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If the samples {7} are i.i.d. random vectors, then

n x — 0 e o
Wi z}‘ﬁ( e ) =ik {¢ (;;(xt))} = )8 (zn(xt)) L

Using Eq. (2.14) and the RHS of Eq. (2.16), the kernel width A, (x) must satisfy

the following conditions Vx:

! x—t ! : ; Y
/ () ( = (x)) dt' —, 0, which implies that (2.17)
x—t' x—t
/ t’ 0 l i . = ¢ i ! ¥
-/'R-(x] p(t') o (hn(x)) dt' —p 0, where R(x) {t D < r } (2.18)

2q. (2.18) follows from Eq. (2.17) because it represents an integration over a
subset of the entire region, in which the integrand is nonnegative. If p(t’) > 0

over an infinitesimal region containing x, then 3’ < r such that Vt' € R(x) :

p(t’) > pm > 0 and o ;‘ﬂ_(:)) > ¢m > 0 (from Eq. (2.10)). Therefore, the volume
of the spherical region R(x) —+» 0 because the integrand is bounded from below
by a fixed positive constant, p,,¢,. Thus, h,(x) —p 0 because ' is fixed.

If p(t') = 0 over a finite region containing X, then h,(x) —p (non-zero con-
stant), which violates the first Parzen convergence condition. However, in this
case pLO(x) —p 0 = p(x) (from Eq. (2.7), because (k{9/n) — 0 and V(9 (x) is

finite), which means that the estimate converges to the correct value even though

ha(x) 45 0.

Second Parzen convergence condition

Using the above result that A, (x) —¢ 0 Vx such that p(x) # 0, we now show that

E{p©)(x)} = p(x) Vx such that p(x) # 0. This preliminary result will then be
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used to show that nhd(x) —p oo, which will complete the proof that the C-kNN

estimate is consistent. From the definition of p{®)(x) given in Egs. (2.7) and (2.9),

BHOEL = 13 B {5 (Z257) O]

- oo (i) o) i

assuming i.i.d. training set vectors {t()}. As h,(x) —» 0,

E{pO(x)} —» Bv{d(x—1t)}
= f}p(t’)&(x—t’)dt’

= p(x), (2.20)

where 4(-) represents the Dirac delta function. Taking the expected value of
Eq. (2.7) (noting that k(%) is deterministic) and comparing the result with Eq.

(2.20), leads to the limit

KOE{1/(nV O (x))} =+ p(x), (2.21)
which implies that
E{1/(nVOx))} = 0 (2.22)

because k() = oo (Eq. (2.13)) and p(x) is assumed to be finite. Because
(1/(nV(©)(x))) is a non-negative random variable, Eq. (2.22) implies that
(1/(nV9(x))) —s 0. Therefore nV{9(x) —» oo, which implies that

nhi(x) =p co. O
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Figure 2.1: C-kNN density estimation convergence as a function of sample size n
2.3.3 Empirical validation of C-kINN consistency

The C-kNN method was tested empirically using a univariate Gaussian distribu-
tion N(m=7, o0=4) as the true density, where m represents the Gaussian mean
and o represents the Gaussian standard deviation. The estimation kernel was also
chosen to be Gaussian shaped (standard choice for nonparametric density estima-
tion), as given by ¢(z) = exp(—z?/2). We chose the {k{©)} sequence to be k{®) =
(0.5)n/5, which satisfies the two conditions for consistency [Eqs. (2.13) and (2.14)].
The exponent value (4/5) has been shown to be optimal for estimating Gaussian
densities using the conventional k-NN method [Silverman, 1986] (although this
does not necessarily imply that (4/5) is optimal for C-kNN).

Fig. 2.1 shows the results of statistically averaged experiments using the pa-
rameters given above. The figure of merit used to measure the accuracy of the

density estimate is the mean integrated squared error [Silverman, 1986], as given
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P(X)
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0.04}

0.02 : :
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X

Figure 2.2: C-kNN density estimation for variable sample size n. Dashed line
represents true density, solid line represents estimated density. Mean Integrated
Squared Error results: n = 100, MISE=0.14 x 10~%; n = 400, MISE=0.048 x 1073;
n = 1600, MISE=0.025 x 10~%; n = 6400, MISE=.0062 x 102,
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2
MISEG?) = (1/T) ¥ [ 7<) — p(x)dx, (2:23)

i=1 /X'
where yﬁfﬁ-’(x’) denotes the estimated density for trial number 7 given n training

samples, and T is the number of independent trials used for ensemble averaging.
As indicated in Eq. (2.23), the quantity MISE is itself a random variable, and it
is dependent on sample size T. In order to assess the statistical sampling error in
the measurement of MISE, we estimate the standard deviation opzsg indirectly,

using [Papoulis, 1965]
omise & (1/VT) Sample Std. Dev.{] [ﬁ,(&](x') — p(x)]*dx'}, (2.24)
xf

where i.i.d. trials have been assumed. For T = 50 trials, the percentage error
omise/MISE < 15% at all data points. As shown in the figure, the MISE ap-
proaches zero as n becomes large. This convergence is shown graphically in Iig.
2.2, where typical examples of true and estimated density functions are shown for

increasing sample size n.

2.4 Density estimation performance
comparison

The performance of the C-kNN method was assessed by comparing the MISE
of the C-kNN estimate to those of the Parzen windows estimate and the k-NN esti-
mate. A mixture density consisting of the sum of two gaussians (7/8)N(m="7, c=4)
+ (1/8)N(m=T, ¢=.5) was used as the true density to be estimated, and n = 100

training samples were drawn from this mixture density for each trial. These mean
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and standard deviation parameters were chosen so that the local spatial-frequency
content of the true density varies significantly over the x-axis. Gaussian kernels
[6(z) = exp(—x?/2)] were used for both the Parzen windows and C-kNN methods.

The performance of each of the three methods depends on one smoothing
parameter: k(©) for C-kNN, k for k-NN, and h for Parzen windows. Therefore,
each method was tested using a range of values for the relevant parameter, and
the minimum value of the MISE served as the performance metric. Figures 2.3-2.5
show the results of the performance comparison. The upper plot in each figure
shows the MISE as a function of the relevant smoothing parameter. Statistically
averaging over T' = 100 trials resulted in a percentage error oyisg/MISE < 10% at
all data points along each curve. As shown in the figures, C-kNN performed the
best and Parzen windows performed the worst for the mixture density we tested.

Using the optimal parameter values obtained from the upper plots, typical
examples of the true and estimated densities are shown in the lower plots. For
these examples, sets of 100 samples were repeatedly drawn until a single set gave
typical results for all three methods simultaneously (where “typical” is defined to
be an integrated squared error within 10% of the MISE). From the lower plot in
Fig. 2.3, it is evident that Parzen windows has poor performance because it is
unable to adequately model both the high frequency (center) and low frequency
(tails) portions of the mixture density. The k-NN method does not suffer from the
above weakness (because the kernel width adapts to the local density), but it is
clear from Fig. 2.4 that the method yields an estimate that is very “jagged” (i.e.,
it has a discontinuous first derivative). This effect can be traced back to the hard-
threshold nature of the k-NN density estimation algorithm [Buturovic, 1993]. The

(C-kNN method has better performance than either of the conventional methods
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Figure 2.3: Parzen windows performance. The upper plot shows the optimization
of h with respect to the performance metric MISE (h = 0.8, MISE=3.25 x 10~*).
The lower plot shows a typical example (MISE=3.48 x 107*) of true density
(dashed) compared to estimated density (solid) using h = 0.8.
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Figure 2.4: k-NN performance. The upper plot shows the optimization of & with
respect to the performance metric MISE (£ = 28, MISE=3.14 x 10=*). The
lower plot shows a typical example (MISE=3.45 x 10™*) of true density (dashed)
compared to estimated density (solid) using k& = 28.
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Figure 2.5: C-kNN performance. The upper plot shows the optimization of k(<)
with respect to the performance metric MISE (k(©) = 22, MISE=2.54x10~*). The
lower plot shows a typical example (MISE=2.69 x 10~*) of true density (dashed)
compared to estimated density (solid) using k(©) = 22.
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because it uses a continuous kernel, which leads to a smooth density estimate, but

the kernel width than can still adapt to the local probability density.

2.5 RBF neural-network implementation of
nonparametric density estimation

The computation of Eqgs. (2.2) and (2.9) can be considerably simplified by
restricting the kernel ¢(+), which is in general a function of d (number of dimen-

sions) scalar variables, to be a function only of the squared magnitude of its input

¢ (x = t“}) = ¢ ( ) , (2.25)

in which ¢,(-) is the restricted estimation kernel. This restriction reduces the

argument:
3.~ H
han

computational requirements, but may increase the number of training samples
that are necessary to yield an acceptable probability density estimate.

This special case is useful because it enables the density estimation algorithms
that have been discussed in this paper to be computed using radial basis function
(RBF) neural networks [Moody and Darken, 1989] [Poggio, 1990] [Specht, 1990].
Iig. 2.6 shows RBF architectures of Parzen windows, k-NN, and C-kNN density
estimation. In all three architectures, the first layer of weights computes the
squared distances between the input vector and each of the training vectors [as
is needed for the computation of Eq. (2.25)]. For the case of Parzen windows,
there is no feedback required in the network; the density estimate is simply the
sum of the RBF-unit outputs. For both k-NN and C-kNN, feedback is required
in order to find a value of the kernel width i (or r) such that the total output
from the RBF layer is equal to the value of £{©) (or k) chosen a priori. It should

be noted that all three networks shown have an important advantage compared
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Figure 2.6: RBF architectures for (a) Parzen windows, (b) k-NN, and (c¢) C-kNN
probability density function (PDF') estimation; each architecture is shown for the

case of input vectors with dimension d=4.
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to conventional serial implementations of the estimation algorithms: the neural
networks compute all of the distances in parallel. This time-complexity issue has
important implications for real-time systems that require density estimates, such
as those discussed in Sec. 2.6.

Figure 2.6 shows an important reason why C-kNN is better suited than k-
NN for analog neural network implementation: k-NN requires infinite-gain (hard
threshold) neural nonlinearities, whereas C-kNN does not. When implemented on
a general purpose digital computer, the hard threshold nature of k-NN is not a
problem from the point of view of hardware complexity, because digital computers
are very well suited for decisions such as whether or not a particular training vector
should be included in the density estimate for a given input vector (i.e., whether or
not it is in the set of k, nearest neighbors). However, electronic and opto-electronic
hardware implementations of analog neural networks typically use differentiable
(finite gain) neural units [Sheu and Choi, 1995] [Goldstein et al., 1995]. In ad-
dition, it can be shown that for a given electronic hardware complexity (i.e.,
available power, transistor characteristics, efc.), the amplification gain-bandwidth
product is constant [Gray and Meyer, 1993]. Therefore, a neural network im-
plementation that approaches infinite gain will necessarily be slower than one
that does not have such a gain requirement. Another practical issue that fa-
vors C-kNN implementations over k-NN implementations relates to the feedback
mechanism shown in Fig. 2.6. We show in Appendix C that a simple analog
proportional controller [KKailath, 1980] can be used to converge to the correct
kernel width h,(x), assuming that the kernel ¢,(-) is a monotonically decreasing
function of its input argument. The k-NN estimation kernel of Eq. (2.11) violates

this assumption, thus requiring a more complicated search technique to find the



correct kernel width.

2.6 Applications of C-kNN: pattern
classification and nonparametric regression

Once the training data has been used to estimate the underlying probability
density for a given problem, the density estimate can be embedded into a larger
application. The two most common applications of density estimation are pattern
classification [Duda and Hart, 1973] and nonparametric regression [Hardle, 1990].
In the following, we will briefly discuss the application of C-kNN density estima-
tion to pattern classification and nonparametric regression, as well as RBF neural

network architectures for these applications.

2.6.1 Pattern classification

The fundamental problem addressed in the field of (supervised) statistical pattern
classification can be stated as follows: given a set of class-labelled i.i.d. training
vectors T = {t9 : i = 1...n.,,c = 1...N}, in which there are n. train-
ing vectors that belong to class we, classify an unknown input vector x (drawn
from the same statistical distribution as T) among the N possible pattern classes
{we : e = 1...N}. It is well known that the statistically optimal solution to
this pattern classification problem is the Bayes classifier: assign x to the class
w, that maximizes the a posteriori probability P(w.|x) o« P(w.)p(x|w.:). Thus,
the pattern classification problem can, in essence, be reduced to the problem of
estimating a set of class-conditional probability densities, {p(x|w.)}. If a consis-
tent density estimation algorithm (such as C-kNN, k-NN, or Parzen windows) is
used to estimate the class-conditional probability densities, the resultant pattern

classification performance is asymptotically optimal in the limit of large training
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set size.

When P(w.) is approximated by n./ ¥, n;, and p(x|w.) is approximated by
the C-kNN estimate given in Eq. (2.7) (where n = n.), the Bayes classifier can
be approximated by the following rule: assign x to the class w. such that V,(%)(x)

[and therefore h,(x)] is minimized while satisfying the constraint

Z z ( — t{) }) =k, (2.26)

In analogy with conventional k-NN terminology [Fukunaga, 1990], we refer to the
above rule as the “volumetric” C-kNN pattern classification rule. As is the case
with the volumetric k-NN rule, it requires a separate determination of the kernel
volume for each pattern class, and the unknown input vector is assigned to the
class that yields the smallest volume.

Another formulation of the C-kNN pattern classification rule can be expressed

as the following: assign x to the class w. that maximizes the expression

ne _ 4(1,¢)
Z(we|x) = Z¢( h,,(tx) ) (2.27)

where Z(w.|x) is the “vote” for class w,, and the kernel width is chosen such that

the sum of all votes is equal to a constant chosen a priori:
N ]
> Z(welx) = k9. (2.28)

This second rule will be referred to as the “voting” C-kNN pattern classification
rule, in analogy with the “voting” k-NN rule [Fukunaga, 1990]. [Both the voting

and volumetric C-kNN rules reduce to their k-NN equivalents when ¢(-) is chosen
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as in Eq. (2.11), using similar arguments to those used previously in Sec. 2.3].
For both k-NN and C-kNN, the voting rules have the advantage that that they
require only one determination of the kernel width for all classes. In Appendix D
we show that, for the N = 2 case, the voting C-kNN rule using parameter k()
is equivalent to the volumetric C-kNN rule using parameter k(%) /2, when ¢(x) is
continuous.

As first discussed by Specht in the context of classifier design using Parzen
windows density estimation, RBF neural networks map very conveniently into the
probabilistic formulation of the pattern classification problem. In [Specht, 1990],
Specht specifies the architectural mapping between the calculations required for
Parzen windows-based classification and the weights required in a three-layered
RBF neural network. Figure 2.7 (a) shows a similar neural network mapping for
the case of the voting C-kNN pattern classification rule. This RBF pattern clas-
sification network operates much like the C-kNN density estimation architecture
shown in Fig. 2.6, except that an additional maximum detection stage is used to
determine which class has the maximum (estimated) a posteriori probability.

The main difference between this architecture and Specht’s “Probabilistic Neu-
ral Network” (PNN) [Specht, 1990] is the presence of the C-kNN feedback mech-
anism that determines the kernel width as a function of the total response from
the RBF layer. In contrast, the PNN uses kernel widths that are constant and
independent of the input vector. The following experiment demonstrates the util-
ity of the C-kNN feedback mechanism. A two-class pattern classification problem
was simulated, in which the two classes were defined by the following Gaussian

mixture densities: p(z|w;) = (1/10)N(m=0, 0=100) + (9/10)N(m=5, c=1), and
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Figure 2.7: RBF architectures for C-kNN applications: (a) pattern classification
(vong Q LNN rule), shown for the case of N=2 classes and input vectors of
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p(z|wy) = (1/2)N(m=0, ¢=100) + (1/2)N(m=-5, o=1). The a priori probabil-
ities for the two classes were equal: P(w;) = P(wz) = 0.5. Such a probabilistic
description is representative of applications in which two pattern classes are well
separated when the input (x) is accurate, but there is a significant probability
that the input has been corrupted by a very high-variance Gaussian noise source.
For this classification problem, it is advantageous for the kernel width to be much
smaller when z ~ 0 (accurate input) than when |z| > 5 (corrupted input); if
the kernel width is forced to be fixed, then one would expect the performance to
deteriorate for either the small z or the large |z| case.

The above analysis is verified by the empirical results shown in Table 2.1.
For each of the three probability density estimation methods, the (one) optimal
smoothing parameter (h, k, or k%) was determined by minimizing the estimated
error probability

1‘ ?L'rp}
P = (UT)Z !l/n'rs: >, E:‘,j] ; (2.29)
t=1 =1

in which P. denotes the estimated classification error probability, T" is the number
of independent trials, ng is the number of test samples for each trial, and where
E;; = 1 if test sample j is misclassified during trial ¢, £;; = 0 otherwise. An
independent set of n = 100 training samples and npz = 50 test samples was
generated for each trial. Averaging the results over T' = 50 trials resulted in
a percentage error op,/P. < 10%, where op, represents the estimated standard
deviation of P, as defined in analogy with Eq. (2.24). Gaussian kernels [¢(z) =
exp(—a?/2)] were used for both C-kNN and Parzen windows. As shown in the
table, both C-kNN and k-NN significantly outperform Parzen windows for this

test problem. The difference between C-kNN and k-NN (& 7%) is too small
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Table 2.1: Pattern recognition performance comparison

Optimum  Minimum error
parameter  probability (F,)

Parzen | h=0.5 0.10
k-NN k=T 0.069
C-kNN | k¢=5.0 0.074

to be statistically significant. It should be noted that this sample problem was
specifically chosen to emphasize the difference between density estimates with
feedback (C-kNN, k-NN) and those without (Parzen windows); the significance of

feedback would be substantially reduced for simpler classification problems.

2.6.2 Nonparametric regression

The regression problem can be formulated as follows: given n pairs of ¢.i.d. input-
output training vectors {(t,z()) : i = 1...n}, find the optimal estimate of
output vector z, denoted z(x), when presented with a new input vector x drawn
from the same population as {t(}. This is a statistical formulation of the standard
input-output mapping problem for which supervised neural network algorithms
such as backpropagation have been designed. When the criterion for optimality
is the minimization of mean squared error E{|z — z(x)|*}, then it is well known
that the statistically optimal estimate is the conditional mean, z(x) = E{z|x}
[Papoulis, 1965]. The Parzen window probability density estimate can be used

to approximate this conditional mean using the available training vector pairs,
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which leads to the Nadaraya- Watson estimator [Hardle, 1990]

n 1 206 (jx = t9]/h,)
>, 6 (x — tO]/hy)

3(x) = (2.30)

Because the C-kNN algorithm adjusts the kernel width such that Eq. (2.9) holds,

the denominator of Eq. (2.30) is equal to the constant k(%) for C-kNN regression:

ﬁ(c)(x) = (1/k£c])iz(i]d) (x e t(i)) ; (231)

i=1 hn(x)

where the kernel width h,(x) is determined by Eq. (2.9).

Specht has shown in [Specht, 1991] that the Nadaraya- Watson estimator maps
very conveniently into an RBF neural network architecture (known as a General
Regression Neural Network). Figure 2.7 (b) shows a similar architecture when
C-kNN density estimation is used in place of Parzen windows. Once again, the
first layer of weights computes the squared distances between the input vector
and each of the training vectors. For the second layer of weights, the fan-out
weight vector corresponding the the RBT center t( is equal to its corresponding
output vector, z(). There are two reasons why the C-kNN feedback mechanism
can be beneficial: (1) the adaptive kernel width improves performance in some
cases (as we have shown for both density estimation and pattern classification),
and (2) the variable denominator of the Nadaraya- Watson estimator is replaced by
the constant £{“) in Eq. (2.31). This second advantage is particularly important
for analog hardware implementations such as that described in [Specht, 1993],
in which the normalization division for the Nadaraya-Watson estimator must be

computed off-chip. The C-kNN feedback mechanism eliminates the necessity for
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such an off-chip computation, although it does require a variable-gain feedback

mechanism in order to keep the denominator of Eq. (2.30) equal to a constant.

2.7 Summary and discussion

To summarize, a new probability density estimation algorithm called “Continuous-
k Nearest Neighbors” has been introduced in this paper. Analytic results show
that C-kNN asymptotically converges to the actual probability density from which
the training samples have been drawn, and empirical simulation results have vali-
dated the analytic results. For finite-sized training sets, empirical results suggest
that C-kNN has advantages over both Parzen windows and conventional k-NN
density estimation: when the true density contains regions with varying spatial-
frequency content (e.g., Figs. 2.3-2.5), C-kNN effectively adapts the kernel widths
to the local region without resulting in the jaggedness inherent to conventional
k-NN estimation.

We have also shown that the C-kNN method maps straightforwardly into an
analog Radial Basis 'unction (RBF) neural network architecture. Neural networks
for C-kNN density estimation, pattern classification, and nonparametric regres-
sion were presented and compared to corresponding networks that use Parzen win-
dows or k-NN density estimation. It was found that C-kNN outperforms Parzen
windows for pattern recognition problems based upon probability densities with
variable spatial-frequency content. Due to the requirement of hard threshold
nonlinearities, RBF networks that use the k-NN method are not as practical for
analog implementations (e.g., the gain-bandwidth product and feedback issues

discussed in Sec. 2.6). In contrast, both C-kNN and Parzen windows are more
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easily implementable using analog electronics or opto-electronic hardware.

It should be noted that the C-kNN algorithm is much better suited to special-
purpose analog hardware implementations than it is to general-purpose digital
computer implementations (i.e., software). In the authors’ experience, the total
C-kNN computation time in the software case was dominated by the feedback
routines that determined the kernel width £,(x). We believe this difficulty was
mainly due to the discrete nature of the software implementing the required feed-
back; oscillations in the proportional-controlled feedback loop required an adap-
tive mechanism (which did not always function efficiently) to monitor the results
of each update to h,(x). A purely analog controller would not face such difficul-
ties, as is shown analytically in App. C.

As an interesting extension of this work, it may be possible to apply the C-
kNN concept to a more general class of RBI' neural network architectures. In
the more general context, the first layer of weights is not restricted to being a
matrix consisting of the training vectors. Such a network offers a designer the
flexibility of using standard clustering algorithms to determine the RBF centers
[Moody and Darken, 1989], while still retaining the C-kNN feature of a feedback-
controlled kernel width. Although statistical consistency theory may not underlie
these more general networks, as it does for the C-kNN RBF networks discussed
in this paper, the basic concept of the kernel width being dependent on the input

through a feedback mechanism can still be applied.
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Chapter 3

Probability density estimation
for analog neural network
implementation: photonic
architectures

3.1 Introduction

In the previous chapter, it was noted that nonparametric probability density es-
timation techniques suffer from the following weaknesses when they are imple-
mented on conventional serial computers: (1) a large number of training vectors
are required for accurate estimation, which implies a large memory capacity re-
quirement, and (2) the required computation time grows with sample size for
serial implementations, thereby making real-time nonparametric pattern recogni-
tion and regression impractical. In this chapter, we present photonic probability
density estimation architectures that address both of these concerns. Our basic
approach is to optically implement the C-kNN and Parzen windows radial basis
function (RBF) neural networks discussed in the previous chapter, using an inco-

herent /coherent (1/C) volume holographic architecture [Asthana et al., 1993] to
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store the large number of required training vectors in a compact volume. The
probability density estimation architectures are then embedded into photonic ar-
chitectures for both Bayes pattern classification and statistical regression appli-

cations.

3.2 Mapping between probability density
estimation and optics: parallel inner
products

To briefly review some definitions from the previous chapter, the Parzen window

probability density estimate is defined by the equations,

pulx) = 2O (3.1)

in which p,(x) is the estimated probability density for the input vector x given n

training samples {t() : i =1...n}, and

ken (%) = Z ¢ (x = t(i)) ; (3.2)
i=1 h“

The kernel volume V,, is related to the kernel width £, through the relation
V, = hiV,, where d is the number of components in the input vector x and
Vo = [ ¢(x')dx'. For Parzen window estimation, h, is chosen a priori and
kn(x) is a random variable dependent on the input vector and training vectors.
For the case of C-kNN density estimation, essentially the same equations are used,
but the quantity k() is chosen a priori and the kernel width A,(x) is a random

variable dependent on the input vector and training vectors. Thus, the photonic
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implementations of Parzen windows and C-kNN estimation will be very similar,
with the only difference between the two being a feedback loop similar to that
discussed in Sec. (2.5) from the previous chapter.

In order to allow an efficient optical implementation of Eqgs. (3.1) and (3.2),

the kernel function ¢(+) is chosen to be a scalar function of squared radial distance,

(br('):
—t@ 2
qb(%) - ,6( ) (3.3)

2 t(:’)‘z_g Tt(z']
) ¢r(lxl+| - 2x ) )

2
h?

x — £

ho

This restriction to a radially symmetric kernel function allows an RBF neural-
network implementation, as was discussed previously. In deriving a photonic
implementation of an RBF neural network, the three-term expansion shown in
[5q. (3.4) suggests that the fundamental operations required for probability den-
sity estimation are vector inner-products, addition, and subtraction. In the ar-
chitectures proposed below, the inner-products are computed holographically, the
addition is computed using optical superposition, and the subtraction is imple-
mented using analog electronics. The division by h, represents the variable input-
scale of the estimation kernel, which will be addressed later in the discussion of
the spatial-light-modulator (SLM) input gain.

[5q. (3.4) suggests a method for solving the problem of computation time in-
creasing with training set size: if the inner-product between the input vector and
all of the training vectors can be computed in parallel, then computation time be-

comes independent of training set size. Several planar holographic architectures
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have been proposed and/or demonstrated that implement parallel inner prod-
ucts between an input vector and a set of stored training vectors [Caulfield, 1987]
[Jang et al., 1988] [Lin, 1990] [Lu and Lin, 1991] [Goldstein and Jenkins, 1992].
These systems use holographic film as the recording medium, which has previ-
ously been extensively characterized in the literature with respect to its multiplex-
ing capabilities (e.g., [Shamir et al., 1989] [Johnson et al., 1984]). Optical imple-
mentations of inner products using optical disks and /or incoherent matrix-vector
multipliers have also been previously discussed in the context of squared-distance
calculations [Neifeld and Psaltis, 1993]. However, a fundamental limitation inher-
ent to any 2-D architecture is that the maximum recordable spatial frequency is
limited by the wavelength of the recording light. That is, the maximum number
of resolution elements is limited to the total available area divided by A2. Vol-
ume holographic media are theoretically capable of much higher storage capacity
because they are fundamentally limited to the total available volume divided by

A? [van Heerden, 1963].

3.2.1 Incoherent/Coherent volume holography

The incoherent/coherent double angularly multiplexed (I/C) architecture
[Jenkins et al., 1990] [Asthana et al., 1993] can be employed to store the train-
ing vectors in a volume holographic element (VHOE), as shown in Fig. 3.1. In
this “sub-hologram” version of the architecture, the holograms are recorded using
both spatial and angular multiplexing, which yields high optical throughput, low
crosstalk, and minimizes material dynamic-range requirements [Asthana et al., 1993].
During holographic recording, an input-SLM reference beam R;, in which j

ranges from [1 ... d], interferes with a training-SLM object beam consisting of a set
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Figure 3.1: Recording dual-rail training vectors



of pixels that intensity-encodes component j from the set of training vectors. This
set of pixels is denoted {tgi) : 7= 1...n}, in which n is the number of training
vectors. Each training-vector component set {tffi) :7 = 1...n} is sequentially
placed at the training SLM and is recorded with a single reference R;. The training
SLM is illuminated by an angularly-multiplexed plane-wave for each holographic
recording, resulting in d partially overlapping sub-holograms. The degree to which
the sub-holograms overlap depends on the specifics of the angular multiplexing
and placement of the lenses. It should be noted that all SLM’s shown in the
figures in this chapter are assumed to be physically two dimensional; they are
drawn as one-dimensional objects for simplicity. Similarly, the training “vectors”
we refer to in this chapter are optically represented as two-dimensional objects.
Because the incoherent/coherent architecture is intensity-encoded, a dual-rail
representation must be used in order to accommodate bipolar training and input
vectors. At the training SLM, this dual-rail encoding can be accomplished by
(#)

decomposing each bipolar quantity ¢}

- o e (i) (i-)
5 into two positive quantities ¢; 7 and ¢} 7,

(i4) _ =)
t5 ) — ),

. .. ; (@) - s
3 Each training vector component ¢;” is optically

such that tgé) =
represented at the training SLM with two adjacent pixel intensities, Iwot?"') and
fwotg-i_), in which /,, is the object beam writing intensity (we assume that t?ﬂ
and tg-i_J have been normalized to the maximum SLM reflectivity). Each input
SLM reference R; is also dual-rail encoded, in the following sense. Every training-
vector component set is recorded twice (sequentially): the set {t?)} is recorded
with reference R;, and its negation {—t_g-i)} (i.e., adjacent + and — components
are swapped) is recorded with reference RY. The reference beams R;-" and R}

have the same intensity, I,,. By dual-rail encoding the reference beams during

recording, we allow the use of bipolar input vectors during readout.
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Figure 3.2: Reading out dual-rail training vectors

Two additional sub-holograms, besides the 2d sub-holograms discussed above,
must be recorded in order to compute Eq. (3.4): one computes the [t!)|* term and
the other computes the |x|* term. The first of these sub-holograms is stored by set-
ting the 2n training-SLM pixel intensities according to t(+) = (1,,,/d) Z?zl(!._(,-i))z,
=) = 0 and recording with reference beam B1 (intensity=1,,). The last term to
be computed, |x|%, is not a function of training vector index 7. Thus, a uniform
hologram t(+) = [., t47) = 0 is recorded with reference B2 (intensity = I,,,.).

During holographic readout, the input SLM is read out by a set of individually
coherent but mutually-incoherent point sources [Asthana et al., 1993]. The SLM
is addressed by a dual-rail representation of the input vector x = {x;}, such that
xf —a; = x; (see Fig. 3.2). Each pixel is read out with intensity (21,)z}, in
which 21, is an SLM pixel-readout intensity (we assume that z} and z} have

been normalized to the maximum SLM reflectivity). Input SLM pixel B1 is read
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out with the constant intensity, (d - I,.). Input SLM pixel B2 is read out with an
intensity proportional to an externally computed quantity, (d- ,)[1/d z;{=l(.’ﬂj)2],
where the summation is computed either optically or electronically with additional
hardware. The ¢(-) SLM detectors are placed in the image plane of the training
SLM, resulting in a weighted incoherent superposition of the angularly multiplexed
training data. The difference between the two detected intensities, [{g:‘:] - I‘gi:),

is electronically computed at each ¢(-) SLM pixel, as follows:

: [ d _ . ' |
189 = @) |23 (7t + 2 ’)+1xr+|tw|2]
| =

: [ d _ .
1 = ) QZar;eﬁ'-’+av;fﬂ‘*’] —
| j=t

. , [ 4 ‘ ‘
[:(tle:r) - I(E:rt] = (nl) Z (—Qa:jt;- }) + |x|* + [th]l?]

=1

) = 1) = () (3P 4 160 = 2xT49) (84

et

in which n < 1 is a loss factor dependent on the VHOE material, the two writing
intensities I, and /., and the recording exposure time. (For simplicity, we have
assumed that the modulators and detectors have equal areas.) Thus, the distance-
squared calculation required for an RBF neural-network implementation can be

optically computed using the 1/C sub-hologram architecture and a dual-rail SLM.

3.2.2 Variable gain SLM

We described above the method by which the set of squared distances {|x —t(|*}
can be computed in parallel. The last step that remains in order to compute

Eq. (3.4) is the incorporation of the variable width h, and kernel function ¢,(-).



The kernel width h, can be adjusted by varying the SLM input gain (see
Fig. 3.3). The figure shows a system-level model of a spatial light modulator, as

defined by
19, = ésim [Gu(I5)) — 137)] (3.6)

in which If(,i)f is the SLM output intensity, ¢spa(+) is the SLM transfer function,
!é;” and 1\'7) are the dual-rail detected intensities, and G, is the variable elec-
tronic input gain. Each SLM pixel functions as follows. The input intensities are
transduced into dual-rail voltages that are electronically differenced with amplifi-
cation (¢,,. The resultant voltage V;, modulates the reflectivity (or transmissivity)
of a light modulator R,,:, and the modulator is read out with an external source
yielding the output intensity fc(,f‘),. At the system level, it is sufficient to model
these multiple opto-electronic transductions as an optical-input/optical-output

transfer function given by Eq. (3.6).

By relating SLM gain to kernel width as

Bei== LG, (3.7)

and substituting Eq. (3.7) into Eq. (3.5) combined with Eq. (3.6), we find that

) . (3.8)

If the density estimation kernel function ¢(-) is related to the SLM transfer func-

x — )
o

19, = oo (fr

tion ¢spa(-) through the relation

o(p) = (1/1:)bsiam(ply), (3.9)
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where p is a dummy variable, then

x — (0
h,,

d3=n¢(

) . (3.10)

Thus, the modulated output from each SLM pixel yields a scaled version of the
required kernel function ¢(-) in Eq. (3.4). By altering the SLM gain (7, the kernel

width h, changes in accordance with Eq. (3.7).

3.3 Photonic architectures for C-kINNN and Parzen
window probability density estimation

In the following two subsections, photonic volume holographic architectures
for probability density estimation are described. The Parzen window and C-kNN
consistency conditions are related to the SLM gain in order to ensure statistical

consistency in the photonic architectures.

3.3.1 Parzen window estimation: SLM gain scheduling
As discussed previously, Parzen window probability density estimation is statisti-
cally consistent if the kernel volume satisfies the conditions V;, — 0 and nV}, — oo,

as n — oo. These two conditions, together with Eq. (3.7), lead to the SLM gain

scheduling conditions,

G, — oo (3.11)

G¥%/n — 0. (3.12)
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Fig. 3.4 is a schematic of a photonic Parzen window probability density estimation
system, in which the training vectors {t)} have been stored according to Sec.
3.2.1, the input vector x is represented in dual-rail form at the input SLM, and the
SLM gain schedule conditions Eqs. (3.11) and (3.12) are assumed to be satisfied
at the ¢(-) SLM. The area-detected intensity I,(x) is proportional to the Parzen
window estimate p,(x), as shown by the following: the area detector integrates

the total output light reflected off of the ¢(-) SLM, yielding

n (i) n X — t(‘-) %
L= Iu=1).¢ - = Lka(X), (3.13)
i=1 =1 n
using Eq. (3.10) and Eq. (3.2), and therefore
. L/L
pn(Xx) = mra (3.14)

using Eq. (3.1).

3.3.2 C-kNN density estimation: feedback-controlled SLM
gain

We showed earlier that the C-kNN probability density estimation is statistically
consistent if the conditions k(®) — oo and k{®)/n — 0 as n — co. The detected
intensity I, is proportional to k{©), as shown by Eq. (3.13), implying that the ap-
plication of these conditions to the detection schedule I,, will guarantee statistical

consistency:
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Figure 3.4: Photonic architecture for probability density estimation. The area
detector integrates the total output light reflected off the ¢(-) SLM. For Parzen
window estimation, the estimated probability density is proportional to the area-
detected intensity. For C-kNN estimation, the estimated density is a function of
the feedback-determined SLM gain required to detect an intensity chosen a priori.



I/n — 0. (3.16)

The ¢(-) SLM gain (7,,(x) is determined for a given input vector x by forcing the
total SLM output intensity to be equal to the scheduled value I,,, through the use
of a feedback loop that alters the SLM gain until the detected intensity equals the
value chosen a priori. By combining Eq. (3.7) with the form of Eqgs. (3.1) and (3.2)
appropriate to C-kNN, it can be shown that the C-kNN probability density esti-
mate is given by

4/2},(C)
e ) : (3.17)

ﬁiC-')(x) = [G'u(x)dﬂ] ( nVy

which is a function of the feedback-determined SLM gain.

3.4 Photonic architectures for Bayes pattern
classification and nonparametric regression
applications

The probability density architectures discussed in the previous section can now be
embedded into larger systems that use density estimates. In the first subsection,
a photonic architecture that implements an approximation to a Bayes classifier
is described. The optical system uses either Parzen windows or C-kNN density
estimation to approximate the a posteriori probability that the input vector be-
longs to a given pattern class. In the second subsection, a photonic nonparametric
regression architecture is presented, which uses either Parzen windows or C-kNN
density estimation to approximate a minimum mean squared error mapping be-

tween input and output vectors.
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3.4.1 Photonic Bayes classifier

To briefly review some definitions from the previous chapter, the statistical pattern
classification task can be stated as follows: given a set of training vectors {t(i) :
i = 1...n., ¢ = 1...N} in which there are n. training vectors {t("} that
belong to class w,, classify an unknown input vector x (drawn from the same
statistical distribution as the training vectors) among the N possible pattern
classes {w. : ¢ = 1...N}. The Bayes classifier gives the statistically optimal
solution: assign x to the class w. that maximizes the a posteriori probability
P (w.|x) o P(w:)p(x|we). If P(w,) is approximated by n /}: —, n; and p(x|w.)
is approximated by the Parzen window estimate from Eq. (3.1), then the Bayes
classifier can be approximated by the following rule: assign x to the class that

maximizes the expression

e _ t(t <)
Z(welx) = Z ¢ ( ) (3.18)

= o,

where Z(w.|x) is the “vote” for class w,, and h, is determined a priori. For the
case of C-kNN estimation the same rule applies, except that the kernel width

hn(x) is determined by enforcing the following condition:
N
> Z(welx) = k), (3.19)
c=1

in which k(%) is chosen a priori.

When Bayes pattern classifiers are implemented using serial computers, it is

on
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difficult to obtain real-time performance because the probability density estima-
tion time grows with training set size. The photonic probability density estima-
tion architectures discussed here solve this problem because all of the required
inner-product computations are done in parallel. In addition, current multiple
quantum well SLM’s operate in the MHz range, which is more than sufficient for
real-time image processing applications that typically require a 30 Hz clock rate
(30 frames/sec.).

Eqgs. (3.18) and (3.19) have straightforward optical implementations given the
results derived in Sec. 3.3. TFor pattern recognition applications, during holo-
graphic recording (Fig. 3.1) the training vector pixels are spatially separated at
the training SLM according to class membership. (i.e., a distinct spatial region
is devoted to each class w,). Thus, during holographic readout the votes Z(w,|x)
can be computed by area-detecting each class separately through the use of a
microlens array, as shown in Fig. 3.5. Using an expression similar to Eq. (3.13),

it can be shown that the area-detected intensity I(w.|x) for class w, is given by

I(we|x) = I, Z(w:|x), (3.20)

which implies that a maximum detection stage following the area detectors yields
the Parzen window estimate of a Bayes classification. Similarly, the C-kNN esti-
mate of a Bayes classification is obtained by adjusting the ¢(-) SLM gain G, (x)
until the total intensity 3¢, I(w.|x) = I.k{“), and once again using a maximum

detection stage for the classification decision.
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Input SLM

Figure 3.5: Photonic architecture for a Bayes classifier
3.4.2 Photonic nonparametric regression

As discussed in the previous chapter, another common application of probability
density estimation is nonparametric regression [Hardle, 1990]. To briefly review,
the regression problem can be formulated as follows: given n pairs if i.i.d input-
output training vectors {(t),z()) : i = 1...n}, find the best estimate of z,
denoted z(x), when presented with a new input vector x (assuming x is drawn
from the same distribution as {t®} ). If the “best” estimate is defined as the
one with minimum mean squared error (MMSE) £{|z — z(x)|*}, then the optimal
estimate is known to be the conditional mean z(x) = E{z|x}. The Parzen window

probability density estimate can be used to approximate this conditional mean,
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leading to the so-called Nadaraya-Watson estimator [Hardle, 1990]

8 20 (x;:l{':-)
Th o (5E2)

'lln

z(x) = (3.21)
in which A, is a deterministic function of n satisfying the Parzen convergence
conditions. If the C-kNN estimate is used instead of Parzen windows, a similar

conditional mean is obtained,

w299 (67)
i ,

79 (x) = (3.22)
where the kernel width h,(x) is determined through feedback by forcing the de-
nominator of Eq. (3.21) to be equal to the predetermined value k,.

A photonic implementation of nonparametric regression is (not surprisingly)
very similar to photonic implementations of probability density estimation and
optical Bayes classification. However, two VHOE’s are required in this case: the
first VHOE stores the set of input training vectors {t()} and the second VHOE
stores the set of output training vectors {z()}. The input training vectors are
recorded using the same method discussed previously for probability density esti-
mation (Fig. 3.1). The output training vectors, however, are recorded somewhat
differently. The first difference is that Eqs. (3.21) and (3.22) require a weighted
superposition of the {z(?} vectors, which implies that the pixels B1 and B2 in
Fig. 3.1 (used for a squared-distance calculation) are not needed. Secondly, the
output vectors are stored using the “transpose” of the previous recording method.
That is, each output vector {zf,-’.] : 7 = 1...d} is sequentially recorded as a sub-

hologram in the second VHOE (n recordings of d SLM pixels), whereas each
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VHOE: {t(i)}

VHOE: {z(i)}

Figure 3.6: Photonic architecture for nonparametric regression

training-vector component set {tg” i =1...n} is recorded as a subhologram in
the first VHOE (d recordings of n SLM pixels).

Fig. 3.6 shows the proposed optical regression architecture. As was the case in
the previous discussion, both Parzen window and C-kNN regression use the same
optics, but for C-kNN estimation the ¢(-) SLM gain is determined by forcing the
total output intensity of ¢(-) SLM to be a pre-determined value dependent on n.
One important difference between the two, however, is that the C-kNN version
does not need external electronic hardware to compute the division in Eq. (3.21),

because the denominator is independent of the input vector x [Eq. (3.22)].
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3.5 An alternate holographic recording method

One possible disadvantage in the photonic architectures described in this chap-
ter is that our method for holographically storing the training vectors, given in
Sec. (3.2.1), requires the use of a digital computer to initially store all of the
vectors before they can be holographically recorded. This digital storage is nec-
essary because a training-vector component set {tf,f} :2=1...n} can be placed
at the training SLM only after all of the training vectors {t) : i = 1...n} have
been collected. Furthermore, if any additional training vectors are subsequently
obtained, all of the original d sub-holograms need to be rewritten; incremental
addition of new training data is not possible.

To resolve the two issues raised above, we propose an alternate recording
scheme briefly described below. The alternate recording scheme has the advan-
tage that the training vectors can be directly stored in the hologram, without first
collecting and digitally storing all n vectors. However, the alternative method also
has the significant disadvantage of being limited by a planar-holographic storage
capacity (as will be explained below). Thus, if all training vectors are simul-
taneously available and can be digitally stored, the original volume holographic
recording architecture is preferable.

The two-step recording scheme shown in Fig. 3.7 shows one method for di-
rectly storing the training vectors [Goldstein and Jenkins, 1992]. (A previously
reported holographic recording technique [Caulfield, 1987] also allows direct stor-
age, but this technique may not be practical due to requirements on the SLM
[Shamir et al., 1989]) As shown in the figure, during the first recording step each

training vector (actually a 2-D image) is placed at the training SLM, and a set of
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Figure 3.8: Holographic readout: parallel inner products between the input vector
and all training vectors.

spatially non-overlapping Fourier sub-holograms is recorded in hologram H1 using
a computer-controlled translation stage. In order to accommodate bipolar training
and input vectors, as well as the three-term distance-squared calculation required
for probability density estimation, the same training-SLM optical representations
that were discussed in Sec. 3.2.1 can be employed. During the second record-
ing step, each of the spatially separated Fourier sub-holograms is converted back
into the originally recorded image, through the use of a second (global) Fourier-
transforming lens. Fach of these superimposed images will be recorded with a
different spatial-frequency carrier at hologram H2, since the images approaching
the second hologram are angularly-multiplexed [Goodman, 1996]. Thus, holo-
gram H2 consists of a set of spatial-frequency multiplexed images. If new training

vectors become available at a later time, it may be possible to record additional
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holograms on hologram H1 (without rewriting all the other holograms), but H2
would need to be rewritten.

When an input vector is imaged (in both amplitude and phase) onto the
spatial-frequency multiplexed hologram H2 (see Fig. 3.8), a point-wise multipli-
cation takes place between the input vector and each of the training vectors. A
Fourier-transforming lens collects the first-order diffracted light from H2, forming
a set of spots in the focal plane in which the integrated intensity of a given spot is
proportional to the inner product between the input vector and a corresponding
training vector. In order for the inner-product spots to be spatially separated at
the focal plane, the training vectors stored in H2 must have non-overlapping 2-D
spatial-frequency content. Herein lies the storage capacity limitation mentioned
previously: because the stored images must be non-overlapping in 2-D spatial-
frequency content, the total number of pixels that can be stored is limited by
the 2-D space-bandwidth product of H2 [Goodman, 1996]. Thus, even if H2 is a
volume hologram, the storage capacity is inherently limited to the cross-sectional

area divided by A%,

3.6 Discussion

This chapter has addressed some of the issues involved in the photonic im-
plementation of pattern recognition and regression systems that use nonpara-
metric probability density estimation techniques. These photonic architectures
are based on the radial basis function (RBF) neural networks discussed in the
previous chapter. A volume holographic architecture that computes the required
squared-distance calculations in parallel, based on the sub-hologram version of the

incoherent /coherent architecture [Asthana et al., 1993], was described in detail.

60



Photonic architectures were presented that implement nonparametric probability
density estimation, real-time Bayes classification, and real-time nonparametric
regression. The architectures described were applied to both C-kNN and Parzen
window density estimation.

An important issue we have not addressed in this chapter is that the num-
ber of training vectors needed for acceptable system performance may exceed
the storage capacity of even a volume hologram. We have shown that the pho-
tonic systems will converge to statistical optimality in the limit of an infinite
number of training vectors, but in practice an infinite number of samples cannot
be stored in a finite medium. Although this is clearly an important issue, non-
parametric techniques such as k-NN and Parzen windows have proven to be use-
ful in practice [Geman et al., 1992] [Specht, 1990] [Specht, 1991] [Hardle, 1990]
[Silverman, 1986] [Dasarathy, 1991] with only a finite amount of training data.
One particularly troubling weakness inherent to nonparametric estimation tech-
niques is the so-called “curse of dimensionality” [Bellman, 1961], which states that
the number of training vectors required increases exponentially with the number
of dimensions in each training vector. However, it has been shown that when
the surface being estimated is sufficiently smooth the curse of dimensionality can
be avoided [Silverman, 1986] [Xu et al., 1994]. Whether or not this smoothness
requirement is met in typical applications is unknown, but the fact that non-
parametric techniques have proven themselves useful suggests that the curse of

dimensionality can be avoided when systems are properly designed.
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Chapter 4

Gain and exposure scheduling to
compensate for photorefractive
neural-network weight decay

4.1 Introduction

In the previous two chapters, we applied statistical techniques to the design of op-
tical neural-network systems that learn a relationship between input and output
vectors given training set data. These systems work by holographically storing
the set of training vectors; when the system is presented with a new input, it
interpolates between the stored vectors in a statistically optimal sense. These
statistical techniques have a number of advantages over other proposed adaptive
neural network pattern recognition systems: nonlinear classification is allowed
(as opposed to optical synthetic discriminant function methods [Casasent, 1984]
and Perceptron classifiers [Hong, et al., 1990]), training is rapid because learning
is non-iterative [Specht, 1990], local minima are not present as is the case with
neural-network training, and statistical optimality is assured for a sufficiently large
training set. However, there are also some major disadvantages: (1) the required

storage capacity grows linearly with training set size, and (2) the optical system
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learns through interpolation between training vectors rather than through extrac-
tion of features relevant to the learning task. Disadvantage #2 is particularly
important, because it means that this type of system never learns which combi-
nations of input vector components are most important. This weakness is related
to the “curse of dimensionality” [Bellman, 1961], and it implies that a very large
number of training samples may have to be provided to the system in order to
obtain satisfactory performance.

Adaptive neural-network learning algorithms offer a possible solution to these
problems. Rather than directly storing the training set, adaptive neural algo-
rithms adjust the network weights in order to approximate the desired input-
output mapping. Typically the number of weights provided to the network does
not scale linearly with training set size, as is the case for nonparametric statistical
estimation methods. Thus the network is forced to use its weights parsimoniously,
in the sense that it tries to learn the input-output mapping using fixed hardware
by extracting those features from the training inputs that are most relevant to
the learning task.

Photorefractive materials are currently the most promising holographic me-
dia for adaptive neural networks, in part because the dynamic nature of these
volume materials allows for real-time interconnection updating. Unfortunately,
the physics which governs photorefractive interconnection updates is not entirely
consistent with the outer-product form common to many neural network learning
algorithms; in a photorefractive material a decay effect causes previously written
interconnections to be partially erased during each update [Psaltis et al., 1988].
[t was recently shown that this weight decay effect can prevent both the percep-

tron and backpropagation algorithms from converging to an acceptable solution
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[Hsu et al., 1993] [Petrisor et al., 1995]. In this chapter, a technique we call gain
and exposure scheduling is presented. This technique theoretically eliminates the
effect of photorefractive weight decay from the outer-product (Hebbian) class of
neural network learning algorithms, by iteratively increasing the spatial light mod-
ulator (SLM) transfer function gain and decreasing the weight update exposure
time. Thus, the SLM’s used for decay-compensated neural learning must have
the flexibility of variable input gain, as was also the case for the PDF estimation
architectures described in the previous chapter.

As will be shown in more detail below, an essential element in the analysis
of photorefractive learning is the distinction between physical representation and
neural representation. As a specific example, in previous articles on photore-
fractive neural networks [Psaltis et al., 1988] [Owechko, 1993] the authors have
treated synonymously the concepts of photorefractive diffraction efficiency (a
physical implementation) and neural network interconnection weight (an abstract
neural quantity). We will show that a clear distinction between these quanti-
ties is necessary for development of the gain and exposure scheduling technique.
Thus, this chapter will begin with a physical description of photorefractive grat-
ing formation, together with its quantitative relationship with a neural network
interconnection weight update. The scheduling procedure is first described for
the conventional single coherent source (SCS) architecture, and the next section
addresses gain and exposure scheduling as it applies to the more complicated In-
coherent /Coherent (I/C) architecture [Jenkins et al., 1990] [Asthana et al., 1993].
Simulation results will then be presented which verify that the scheduling proce-

dure results in improved learning performance.
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4.2 SCS gain and exposure scheduling theory

The most common type of neural network weight update is known as a Hebbian
[Rumelhart and McClelland, 1986] or outer-product update rule. This class of

weight updates is defined by
wik(n + 1) = wik(n) + adi(n + a(n + 1), (4.1)

where w;y, is the connection weight from neuron k to neuron i, « is the (fixed)
learning rate, n is the iteration number, and neural signals x and d; are algorithm-
dependent. The class of algorithms to which Eq. (4.1) applies includes most of
the widely used neural algorithms, such as backpropagation, perceptron, Hopfield,
and LMS (Widrow-Hof).

The update given by Eq. (4.1) can be optically implemented using spatial
light modulators and a photorefractive crystal, as shown in Fig. 4.1. This figure
shows the SCS physical interconnection geometry considered in this chapter for
one layer of a feed-forward neural network. (For a multi-layer network, the input
SLM can be the output SLM of the previous layer.) During photorefractive record-
ing the shutter is open. Beams from both the training and input SLM’s interfere
in the photorefractive crystal to update previously written interconnection grat-
ings. The grating update equation differs from Eq. (4.1) because of a decay term
that models the partial erasure of previously recorded gratings [Owechko, 1993]

[Anderson, 1987],

fic(n + 1) = fik(n)(1 = Bntr) + [K exp(3@)Bns1] Es,(n + 1) EL (n+1).  (4.2)
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In the above, Fs, and E,, are complex plane-wave amplitude representations of
neural signals from the training and input planes, respectively. ;. represents
complex-amplitude diffraction efficiency, which is defined as the ratio of the de-
tected complex amplitude E* (measured at the output SLM detection plane)
to the input complex amplitude I, . The phase term exp(j¢) includes the ef-
fect of any constant phase shift caused by the photorefractive recording method
and optical propagation. The real parameter A is dependent on total recording
intensity, the photorefractive medium, and the optical recording geometry. De-
cay parameter (3, is related to the weight update exposure time At, through the
relation

Bn =1 —exp(—At,/7), (4.3)

where 7 is the photorefractive grating formation (and grating erasure) time con-
stant. We assume in the following that the total recording intensity is fixed
throughout training, which implies that parameters K and 7 are constants
[Owechko, 1993]. In addition, if the training and input beams are all activated
simultaneously there may be coherent recording cross-talk effects that are not
considered in this analysis [Asthana et al., 1993] (we will return to the subject of
crosstalk in Sec. 4.3).

During photorefractive readout the shutter (Fig. 4.1) is closed, and each diffracted
output plane-wave has an amplitude equal to a weighted coherent sum of the input
amplitudes. It is assumed that the field strength is sufficiently weak so that any
diffraction efficiency decay that occurs during readout is insignificant. The output
SLM provides a (possibly) nonlinear transfer function to compute the neural ac-

tivation function. It also supplies a variable gain that can be implemented either
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Figure 4.1: SCS interconnection geometry for a single neural network layer (one

diffracted output beam shown); PRC, photorefractive crystal; S, shutter; f, focal
length
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by varying the SLM detection sensitivity or by varying the SLM readout intensity.
In the following derivation, the output SLM uses coherent (field amplitude and
phase) detection to distinguish between positive and negative inputs. In addition,
the training and input SLM’s use [0, 7] phase modulation to optically represent
bipolar neural signals. Coherent detection and phase modulation are analytically
convenient but difficult to implement. Therefore we will also show below that the
results obtained can be adapted to the special case of a dual-rail encoded system
that requires neither phase detection nor phase modulation.

The variable SLM gain, in conjunction with proper scheduling of the weight
update exposure time, allows the ideal neural update rule given by Eq. (4.1) to
be realized by the physical interconnection geometry shown in Iig. 4.1. To show

this, we first relate electric field amplitude to neural signal level,

§i(n) = Es,(n)/|Er|, zr(n) = By (n)/|E| (4.4)

and amplitude diffraction efficiency to its corresponding neural interconnection
weight,

wig(n + 1) = Gupric(n + 1) exp(—jo). (4.5)

In the above, | E,| denotes the (constant) SLM-pixel readout field magnitude used
during photorefractive recording, which corresponds to maximal neural activation
assuming a maximum SLM reflectivity of one. The variables xy, &;, wir, Gn, Ez,,
and Ej, are all real numbers. E,, and Ejs, are constrained to be real by restricting
SLM phase modulation to 0 and 7 rad (i.e., any pair of point sources are either
in-phase or 7 rad out of phase).

The parameter G, denotes the field amplitude gain supplied by the output
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SLM, as defined by its input-output transfer function, fsym:

E:mt(n) = fSLM(GHE?“(n)) — fSLM (G'?!.Z El‘k(n)ﬁfk(n')) (46)
k

JsLm (|E:_]exp(qu)Zxk(n)wfk(n)) , (4.7)
!

where Ef and E?“ are the complex amplitudes that correspond to the SLM
detected input and modulated output at neuron ¢ during photorefractive readout,
and | F!| is the weak field-magnitude used during photorefractive readout. Fig. 4.2
diagrams the system-level SLM model corresponding to Eq. (4.6). This model is
similar to Fig. 3.3 from the previous chapter, in which dual-rail intensities were
used to modulate the output. Here we assume that the modulator has the capabil-
ity for amplitude and phase detection (phase can be detected interferometrically),
which eliminates the need for dual-rail detection. As with the SLM discussed in
the previous chapter, the multiple opto-electronic transductions can be described
at the system level by the optical-input/optical-output transfer function given by
Eq. (4.6). Eq. (4.7) shows that transfer function fspy(-) is a scaled version of the
activation function (squashing function) used at the neural-level description.
The mapping between the physical and neural network quantities given above
can now be used to derive the constraints under which the ideal neural outer-
product update rule is obtained. Substitution of Egs. (4.2) and (4.4) into Eq. (4.5),
while constraining the coefficients to match the desired form of Eq. (4.1), yields

the relations

(Gas1/Gn)(1 = Buyr) =1 (4.8)

Bu41Gnt1 = o/ (K|E,|*) = B.Gn, (4.9)
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where the final equality in Eq. (4.9) is valid because a/(K|E,|?) is a constant.
The combination of Eqs. (4.8) and (4.9) results in an iterative exposure schedule
given by

6n+1 == 1811/(1 - 5 ﬁn)a (‘4-10)

which, together with Eq. (4.9), implies the closed form solutions

Bn = Po/(1+nbo) (4.11)
G, = Go(l+nBo) (4.12)
Gobo = of(K|E.[). (4.13)

Eqs. (4.11)-(4.13), together with Eq. (4.3), give the required gain and exposure
schedule for decay-compensated weight updates for each neural network layer.
The exposure schedule given by Eq. (4.11) is similar to those derived in previ-
ous articles, which considered the recording of holograms with equal diffraction
efficiency [Blotekjaer, 1979] [Psaltis et al., 1988]. However, when the required up-
dates are generated with an iterative nonlinear neural algorithm, both gain and
exposure scheduling must be used simultaneously.

The combination of Eqgs. (4.13) and (4.12) yields

G, = Go + (ans)/(K|E.|?), (4.14)

in which n; is the number of iterations required for network convergence. Eq. (4.14)
implies that a tradeoff exists between the required maximum SLM gain (Gy,)

versus the required dynamic range of the SLM gain (G, /Go), for the following
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Figure 4.3: Dual-rail SCS interconnection geometry

reason. It can be shown that, in the “continuous-time limit” (e << 1), the prod-
uct (any) depends only on the weight space path traversed by the network during
learning; that is, the product is independent of the o, Gy, and Fy. Therefore, the
final SLM gain G’,,va is minimized by setting the initial gain Gy to be as small as
possible. However, the SLM gain dynamic range requirement (G,,/Go) is most
severe (largest ratio) for small Gj. The simulation results presented below will

verify the existence of this tradeoff.

4.2.1 Dual-rail representation

Because phase modulation and detection are difficult to accurately implement
in practice, we also applied the gain and exposure schedule derived above to

the special case of a dual-rail signal representation [Owechko, 1993], as shown in
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Figure 4.4: Dual-rail SCS model for SLM



Fig. 4.3 and Fig. 4.4. In such as system, each bipolar quantity is represented by
two unipolar (positive) quantities, thus eliminating the need for phase modulation
and detection. Each bipolar neural weight is represented using the magnitudes of

two separate interconnection gratings according to the modified mapping
wig(n +1) = Gap ([ + 1)| = [iz(n + 1)), (4.15)

where 7, and 77, are the amplitude diffraction efficiencies associated with the
positive and negative components (respectively) of the bipolar connection weight.
Correspondingly, at the output SLM each amplitude Ef is computed as the
difference between the square roots of the dual-rail detected intensities IZf* and

I{iet

i— !

according to

N R L
2
= \J > Ea i, _J > Eoiii
k k

= Xk:IExNI(|ﬁ?E-| — |a))- (4.16)

2

where Eq. (4.16) follows from the preceding expression because phase modulation
is not used during photorefractive recording. The required subtraction and square
root operations are assumed to be internally computed (electronically) by the
SLM. The mapping between neural signals and their optical representation is

modified according to

5i(n) = (

Bf ()| = | E5 ()1, ax(n) = | By (n)] /| EL] (4.17)
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Figure 4.5: 1/C interconnection geometry

and updates |77.|. The input SLM does not require
ik q

where |E§“'| updates |?}j Es.
a dual-rail representation because all external inputs to the network are restricted
to be nonnegative, as are all neuron outputs. (That is, the input to each neuron
is bipolar, but the output is unipolar). Following a procedure similar to that used
for the previous derivation (taking the magnitude of Eq. (4.2) with appropriate
superscripts, substituting into Eq. (4.15) and comparing to Eq. (4.1) combined

with Eq.(4.17)), it can be shown that the same gain and exposure schedule is

obtained as that given by Egs. (4.8)-(4.13).

4.3 1/C gain and exposure scheduling theory

The Incoherent/Coherent (1/C) architecture [Jenkins et al., 1990]

[Asthana et al., 1993] was recently proposed as an alternative to the fully coherent
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(SCS) architecture [Psaltis et al., 1988]. Fig. 4.6 shows the interconnection geom-
etry for one variant of the I/C architecture. At the input SLM, each point source
is individually coherent but mutually incoherent with respect to the other input
SLM point sources. This mutual incoherence prevents undesirable interconnec-
tion gratings from being written in the crystal. At the training SLM, each point
source represents a superposition of all sources used at the input SLM; therefore, a
grating can be written between any training SLM pixel and any input SLM pixel.
Because the input sources are mutually incoherent, during holographic readout
cach diffracted output beam has an intensity equal to a weighted summation
(weight proportional to intensity diffraction efficiency) of the input intensities.
Unfortunately, one price to be paid for the crosstalk reduction in the 1/C
architecture is that the standard Hebbian rule given by Eq. (4.1) cannot be im-
plemented in a photorefractive crystal. A revised version of the Hebbian rule can

be implemented, however, as given by

wig(n + 1) = wix(n) + (02/4)55(?1 + Dag(n+1)

+ o (VoF o+ Dk = 57+ D)) yeatn + 1), (418)

in which §F is the positive component of &; [6} = (1/2)(d; + |d])] and 6] is
the negative component of §; [67 = (1/2)(6; — |&])]. The two unipolar weights
wfjc and w;, are related to the bipolar weight wy; through the relation w;, =
wi — w3. Although this is clearly not equivalent to the ideal Hebbian update
rule of Eq. (4.1), it can be shown that gradient-descent neural network algorithms

based on the true Hebbian update will still converge with the revised update. (See

Appendix 7 for more details).

¥



The form of the revised Hebbian rule given by Eq. (4.18) is caused by the new
mapping between neural network quantities and their optical representation in the
[/C architecture. For this architecture, neural signals are optically represented

using the relations
5?(”) = I&t(")/jr 5:(”) — [E(n)/f, "Uk(n) = -‘"Jk/fr? (4'19)

in which [, is the SLM pixel readout intensity. The neural interconnection weights
are related to their corresponding dual-rail diffraction efficiencies through the
relation

wir(n + 1) = GLy, (lik(r + D = lian + D) . (4.20)

The relationship given above is similar to that used in the dual-rail SCS represen-
tation [Eq. (4.15)]. However, in this case it is the intensity diffraction efficiency
|7%|, rather than the amplitude diffraction efficiency 7, that determines the in-
terconnection weight. The SLM intensity gain G’ is defined by its input-output

transfer function, fspm(+):

"rz?ut — .ISLM[GJ !riet Idet)]
= fsumlG" Y L (Inf? = Inzl?)]
ke

= fsum(lr ) wpwir). (4.21)
k

The mapping between the physical and neural network quantities given above
can now be used to derive the constraints under which the revised Hebbian update
rule given by Eq. (4.18) is obtained. Substitution of Eq. (4.2) (taking the magni-

tude squared and adding appropriate superscripts) and Eq. (4.19) into Eq. (4.20),
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while constraining the coefficients to match the form of Eq. (4.18), yields the

following relations:

(GLa/GR)(A = Bopr)? = 1 (4.22)
G:{w{—l 3:.+1(K[r)2=0'2/4 = r'i 3([([;-)2 (4.23)

2K 1) (1= funr) (Gl /VfGE) = (1.24)

The combination of Egs. (4.22) and (4.23) results in the same iterative exposure

schedule derived earlier,

But1 = Bn/(1 + Br) (4.25)

which together with Eq. (4.23) implies the closed form solutions

Ba = Bo/(1+nf) (4.26)
GI = Go(1+nB)? (4.27)
Gig: = [a6/@KL)P. (4.28)

[t can be shown that the third constraint given by Eq. (4.24) is automatically
satisfied when the first two constraints are satisfied.

The above calculations reveal a surprising result: even though the physics gov-
erning the [/C architecture differs significantly from that governing the SCS archi-
tecture, and the form of the Hebbian updates are substantially different [Eq. (4.1)
versus Eq. (4.18)], the gain and exposure schedules turn out to be basically the
same in both cases. (The intensity gain GZ rises quadratically with n in the I/C

architecture, while (7, rises linearly with n in the SCS architecture. This means



that the gain schedules are actually identical, because the former represents am-

plitude gain and the latter represents power gain.)

4.4 Simulation results

We simulated the derived gain and exposure schedules for both the dual-rail SCS
and I/C architectures. In both cases, we used backpropagation as the learning
algorithm and XOR (2 input units, 4 hidden units, 1 output unit) as the test

problem [Rumelhart and McClelland, 1986].

4.4.1 SCS dual-rail simulations

For the dual-rail SCS simulations, we used a sigmoidal SLM input-output transfer

function given by

B = fom(GaB{*) = |E;|/[1 + exp(—4Ga E{* /| E} )], (4.29)

where |E’| is the weak field magnitude used during photorefractive readout. The
detected field Bt was computed using the dual-rail representation indicated in
Eq. (4.16). The material-dependent parameter (K|E,|*) in Eq. (4.13), which is
inversely proportional to the number of neurons per layer, was set equal to (1/4).

Fig. 4.7 shows typical dual-rail simulation results for network error as a func-
tion of iteration number, both with and without the scheduling procedure. When
scheduling was not used (exposure time and SLM gain were held constant), the
network did converge to a steady-state in weight space, but the final network

did not solve the XOR problem. The simulation which used gain and exposure
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scheduling converged to an acceptable solution, and it was identical to decay-
free (no decay term in weight update equation) backpropagation training at each
iteration.

Table 4.1 shows statistically averaged simulation results that demonstrate the
advantage of gain and exposure scheduling. As shown in the table, the back-
propagation simulations that did not use gain and exposure scheduling converged
only when the gain was sufficiently high. When scheduling was used, the networks
converged at a rate of 100% regardless of initial gain. The number of iterations re-
quired for network convergence was also reduced in the scheduled simulations, be-
cause the effect of weight decay (which alters the optimal gradient-descent weight
updates) was eliminated. Furthermore, the average final gain for the scheduled
simulations was significantly smaller (when the initial gain was set equal to one)
than the gain required for 100% convergence in the constant gain simulations.
Thus, after training is complete and the network is used in an optical system, a
network trained with scheduling would require a smaller gain (on average) than
one trained without scheduling. The data also verify the tradeoff discussed at the
end of Sec. (4.2); the final gain is minimized when G = 1, but the ratio G, /Go

is largest for this value of Gj.

4.4.2 I/C simulations

The gain and exposure scheduling simulations for the I/C architecture were quite
similar to those applied to the dual-rail SCS architecture. For the I/C case, the
SLM transfer function is an input intensity — output intensity sigmoid, given by
ou I rde
I = foumlGu(Iy — 1)
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Backpropagation convergence for XOR problem
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Network error
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(3) - backpropagation with no decay
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Figure 4.7: Backpropagation for XOR (SCS, a = 0.025, G = 100). (1) constant
gain and exposure; (2) scheduled gain and exposure; (3) weight update with no

decay term.
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Table 4.1: Backpropagation XOR convergence® (SCS architecture)

No Scheduling Scheduling

a Gy C(%) <ns> C(%) <n;> <Gy >
0.1 1 0 - 100 636 257
0.1 350 45 1966 100 637 605
0.1 500 95 1286 100 675 770
0.1 1000 100 780 100 648 1259
0.2 1 0 - 100 426 342
0.2 350 39 1394 100 426 691
0.2 500 93 781 100 394 815
0.2 1000 100 446 100 424 1339

*A network converged if the absolute difference between
the target and actual output was less than 0.2 for all in-
put patterns, allowing a maximum of 4000 training itera-
tions. Results were averaged over 100 trials with random
initial weights. Gain (and decay) parameters were held
constant at initial values when scheduling was not used.
a, learning rate; (o, initial gain; C, convergence rate;
< ny >, avg. number of iterations; < G, >, avg. final
gain.
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Backpropagation convergence for XOR problem
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in which ! is the weak intensity used during photorefractive readout.

[ig. 4.8 shows typical simulation results for network error as a function of
iteration number, both with and without the scheduling procedure. The results
are quite similar to the SCS case discussed above. When scheduling was not used,
the network often settled into an unacceptable local minimum; when gain and
exposure scheduling was used, unacceptable local minima were extremely rare.

Table 4.1 shows statistically averaged simulation results that demonstrate the
advantage of 1/C gain and exposure scheduling. As was the case for the SCS case,

the backpropagation simulations that did not use gain and exposure scheduling
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Table 4.2: Backpropagation XOR convergence® (I/C architecture)

No Scheduling Scheduling
a Go C(%) <ng> C(%) <n;> <Gp,>

0.025 1 0 - 96 794 2038
0.025 2500 0 = 96 795 8421
0.025 4900 68 1861 94 915 12616
0.025 10000 100 1228 95 814 20150
0.05 1 0 - 97 473 3455
0.05 2500 0 — 97 472 10563
0.05 4900 64 1383 97 496 15544
0.05 10000 100 470 96 470 22591

*A network converged if the absolute difference between
the target and actual output was less than 0.2 for all in-
put patterns, allowing a maximum of 4000 training itera-
tions. Results were averaged over 100 trials with random
initial weights. Gain (and decay) parameters were held
constant at initial values when scheduling was not used.
a, learning rate; G, initial gain; C', convergence rate;
< ny >, avg. number of iterations; < G, >, avg. final
gain.
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converged only when the gain was sufficiently high; when scheduling was used,
the networks converged at a rate of nearly 100%. However, gain and exposure
scheduling for the SCS architecture resulted in ezactly 100% convergence. Ap-
parently the weight update given by Eq. (4.18) is slightly more likely to lead the
network into a local minimum of the error surface. One surprising simulation re-
sult is that, if the SLM gain is sufficiently high, the weight updates with decay can
converge at a rate of 100%. This indicates that a small amount of weight decay is
actually beneficial for the I/C architecture. (A similar gain and exposure schedule
can be derived that, rather than completely eliminating the effect of weight decay,

allows the decay rate to be set at a user-specified value.)

4.5 Discussion

The scheduling algorithm is applicable to any neural network learning rule that
can be mapped into the form of Eq. (4.1) (e.¢g. backpropagation, Widrow-Hoff,
perceptron, Hopfield). If the network architecture uses step-function neural acti-
vation functions, as is the case for perceptron and some Hopfield networks, only
the exposure schedule of Eq. (4.11) is needed to eliminate the effect of photore-
fractive diffraction efficiency decay. Gain scheduling is unnecessary because in
this special case fsp,m(+) is a step function (i.e. the SLM output depends only on
the sign of the detected input), which is invariant with respect to any scaling of its
input argun'aeht. It has recently been shown that, without the use of an exposure
schedule, the perceptron training algorithm will not converge unless the (constant)
exposure energy is sufficiently small [Hsu et al., 1993]. Furthermore, even when it

does converge, the perceptron with decay requires more training iterations than a
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decay-free perceptron. It is therefore advantageous to use the exposure schedule
of Eq. (4.11), as this guarantees convergence in the same number of iterations as
a decay-free perceptron (for the SCS architecture).

Although the gain and exposure schedule theoretically eliminates the effect of
weight decay regardless of the number of iterations required for network conver-
gence, there is a practical limit determined by the minimum tolerable diffraction
efficiency and/or the maximum allowable SLM gain. Gain G, = oo as n — o0
(Eq. (4.12)), which implies that |f;x(n)| — 0 because the neural weights are finite
(Eq. (4.5)). One way to alleviate both the diffraction efficiency and gain prob-
lems is to periodically refresh the photorefractive gratings during the gain and
exposure scheduling procedure [Qiao et al., 1991] [Brady et al., 1990]. After each
refresh operation the SLM gain would be reduced by a factor equal to the refresh
gain, thereby keeping all neural weights unchanged while increasing diffraction
efficiency. Thus, the combination of gain and exposure scheduling together with
periodic diffraction efficiency refreshing could provide decay-compensated neural

network performance for an arbitrarily large number of training iterations.
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Chapter 5

A 3-D photonic
multichip-module neural
network: hardware architecture

5.1 Introduction

In the previous chapters of this dissertation, several examples of scalable photonic
neural network architectures that use volume holographic weight storage were
presented. In the case of the Continuous-k Nearest Neighbor neural network, the
emphasis was on the new probability density estimation algorithm together with
a mapping between the new algorithm and a volume holographic implementation.
The gain and exposure scheduling technique was also designed for use with a
volume holographic medium, where in this case the dynamics of photorefractive
grating formation were exploited in order to implement the outer-product update
common to many neural-network learning algorithms.

This and the following chapter discuss a different type of scalable photonic
neural network. Whereas the emphasis in the previous chapters was primarily on
the use of a 3-D optical interconnection medium for neural-network processing,

in these two chapters the emphasis is on 3-D packaging of multiple electronic
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and photonic components into a compact neural-network structure. We call such
a structure a “3-D Photonic Multichip-Module Neural Network” (3-D PMCM
Neural Network). Recent technological advances in the hybridization of GaAs op-
tical modulators with high-density silicon CMOS circuitry [Goossen et al., 1995]
[Kyriakakis et al., 1995] [Worchesky et al., 1996] have enabled the design of dense
high-bandwidth optoelectronic devices suitable for such 3-D neural-network pro-
cessors. Progress has also been rapid in the area of Diffractive Optical Ele-
ment (DOE) [Jahns, 1994] and microlens [Oikawa and Hamanaka, 1994] fabrica-
tion. The availability of DOE and microlens foundries enable the fabrication of
compact optical interconnection systems that can be used for neural-network com-
putations. These DOE-based interconnection systems are designed on a digital
computer, and they are fabricated using the same photolithographic techniques
that are standard in the microelectronic semiconductor industry. Thus, the 3-D
PMCM neural network architecture leverages off, and can benefit from improve-
ments in, state-of-the-art manufacturing processes.

In the semiconductor industry, the term “Multichip Module” (MCM) refers
to a package consisting of multiple bare die (chips) that are attached directly
to a common silicon or ceramic substrate [Licari, 1995]. This style of packaging
avoids the use of a chip carrier and its associated high-capacitance I/O pins. The
result is that significantly lower capacitance, higher bandwidth, and more finely
spaced electrical interconnects can be fabricated in comparison with a conven-
tional printed circuit board. Typically, the chips in an MCM are packaged in
a 2-D (planar) layout, although there are development efforts underway in the

implementation of 3-D electronic MCM'’s [Garvin, 1995].
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Several research groups are investigating the use of free-space optical intercon-
nections to replace or augment the metallic interconnections used in conventional
planar multichip modules. Optical interconnections offer the potential of higher
bandwidth, lower power consumption, and lower crosstalk than their electronic
counterparts when the interconnect length exceeds a minimum break-even point
[Feldman et al., 1988]. At Bell Labs, Jurgen Jahns et al. have worked for sev-
eral years on “planar optics” imaging systems that can be used for multichip
module communication (e.g., see [Jahns, 1994]). At the University of California
at San Diego (UCSD), Fan ef al. have developed algorithms for the placement
of processing elements in an optically-interconnected planar multichip module
[Fan et al., 1995]. At the University of North Carolina, Feldman et al. have de-
veloped a prototype module that incorporates GaAs laser array chips and silicon
CMOS chips which are flip-chip bonded onto a transparent MCM substrate; com-
parisons between optical interconnects and electrical interconnects show that for
a 5-cm link the dissipated power can be reduced by at least an order of magnitude
(for data rates between 700 MHz and 4 GHz) when optical interconnects are used
[Feldman et al., 1994].

The above research addresses point-to-point optical interconnections between
chips in a planar multichip module. In this dissertation, we analyze a com-
pact optical interconnection system for a stack of chips in a 3-D multichip mod-
ule. Related research into 3-D photonic structures from other groups is briefly
summarized in the following. Researchers at Georgia Tech are investigating

optically-interconnected stacks of chips; they are studying digital point-to-point
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interconnection architectures for a 3-D mesh-connected parallel image proces-
sor [Wills et al., 1995]. Veldkamp el al. have discussed 3-D photonic struc-
tures in the context of multi-layered focal planes that are inspired by biologi-
cal visual processing systems [Veldkamp, 1993]. At UCSD, Yayla et al. have
recently demonstrated a prototype 3-D optically interconnected neural network
[Yayla et al., 1994]. Their system differs from that discussed in this dissertation
in that it utilizes neither DOE nor optoelectronic hybridization technology.

The remainder of this chapter discusses the design and initial tests of our
3-D PMCM neural-network architecture. In Sec. 5.2, an overview is given in
which each layer of the 3-D PMCM neural network is briefly described. Sec-
tions 5.3 and 5.4 discuss the functionality of the 3-D PMCM input-layer chip and
the associated mapping between neural-network signals and their optical repre-
sentations. Section 5.5 discusses details of the design, simulation, and testing of
the input-layer CMOS VLSI chip. In Section 5.6, the design and fabrication of
the 3-D PMCM neural-network diffractive optical interconnection system is de-
scribed in some detail. Finally, Sec. 5.7 concludes with a discussion and possible

extensions of this work.

5.2 Overview of 3-D PMCM neural-network
hardware

A 3-D PMCM neural network consists of several stacked optical and opto-
electronic layers, as shown in Fig. 5.1 (a). The figure shows a vertical cross

section of a three-dimensional stacked structure. In Fig. 5.1 (b), this same cross
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section is represented as a standard 2-layer feedforward neural network architec-
ture, consisting of a layer of input signals, a hidden layer with sigmoidal activation
functions, and a single linear output unit. An overview of the complete multi-layer
stack is given below, but this chapter focuses primarily on the design and fabrica-
tion of the bottom-most chip (“photonic signal-shifting chip”) and the diffractive
optical layers (“microDOE” and “microlens” arrays). The “optical power bus”
and “programmable neural-network chip” have not yet been designed for use in a
3-D PMCM neural network, although preliminary versions of these devices have
been previously demonstrated [Demars, 1997] [Asthana et al., 1990].

The Si/GaAs hybrid chip at the bottom of the stack serves as the input
layer of the network. A 2-D plane of electronic signals representing the input-
pattern information, such as image pixels or Fourier descriptors of audio wave-
forms, enter the PMCM at the bottom of the stack and are converted into optical
signals using reflective GaAs modulators that have been flip-chip bonded onto
a silicon electronic chip [Kyriakakis et al., 1995] [Ananthanarayanan et al., 1995]
[Goossen et al., 1995]. This input layer is a key component of the PMCM for two
reasons. First, it converts the electrical input signals into optical signals that can
be processed by the diffractive optical elements. Second, the input layer circuitry
can provide the capability for the shifting of a temporal or spatial input signal
during neural network processing. As will be described in Sec. 5.3, input signal
shifting allows the photonic neural network to analyze a scrolling window of the
input signal, thereby allowing a relatively small neural network to analyze a much
larger 1-D or 2-D input signal by temporally multiplexing the neural network
computation. To emphasize the importance of the input signal shifting function-

ality, we refer to this input-layer chip as the “photonic signal-shifting chip”. In
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Figure 5.1: A 3-D PMCM neural network (a) hardware description and (b) func-
tional architecture. In part (a), a 3-neuron cross-section of the PMCM stack is
shown; a corresponding section of the functional architecture is shown in (b). For
clarity, the readout beams for only 2 modulators are shown in (a). Substrate

thicknesses are not drawn to scale.
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Fig. 5.1, the photonic signal-shifting chip is operating in a “dual-rail” mode, where
dual-rail refers to the use of two modulators to represent one input unit (which
explains why there are 6 modulators in part (a) of the figure but only 3 neural
input units in part (b)).

The optical modulators on the photonic signal shifting chip are read out with
an external coherent source (e.g., a laser diode) and an “optical power bus”
[Ananthanarayanan et al., 1995] that distributes the readout beam over the 2-D
array of optical modulators. The optical power bus is a multiple-ribbed waveguide
structure [Nishihara, 1989], in which each rib supplies the readout power to one
row of optical modulators. A readout beam enters a rib of the optical power bus
from the side of the PMCM stack, and light is outcoupled vertically to each of
the optical modulators by blazed outcoupling gratings in the waveguiding layer
[Nishihara, 1989]. At present, preliminary versions of the optical power bus (with
unblazed gratings) have been fabricated in LiNO3 and GaAs [Demars, 1997], but
there are still technical issues (beyond the scope of this dissertation) to be resolved
in the construction of a power bus suitable for use in a compact PMCM.

Fach of the modulated beams addresses a microlens and a “micro-Diffractive
Optical Element” (microDOE) [Huang, et al., 1997] [Kuznia el al., 1995]. A mi-
croDOE is a small-sized (e.g., 125 pm on a side) diffractive optical element
[Jahns, 1994] that splits a single coherent beam into an array (e.g., 3x3) of fanout
beams with (possibly) varying intensities. The phase-relief pattern etched into a
microDOE determines the relative intensities of its fanout beams. These beams
are focused onto a plane of detectors by a corresponding diffractive (as shown) or

refractive microlens [Jahns, 1994] [Oikawa and Hamanaka, 1994], and the overlap
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of the spots generated by nearby microlenses causes an incoherent superposi-
tion to occur at the detector plane (angularly-multiplexed beams add in inten-
sity [Jenkins and Tanguay, 1992]). Thus, the microlens and microDOE arrays
can optically implement one layer of local weighted neural interconnections, in
which each interconnection weight is proportional to a corresponding fanout-beam
diffraction efficiency. Because an incoherent superposition takes place at the detec-
tors, only unipolar (positive) interconnection weights can be directly implemented
using the microDOE array. However, the use of dual-rail pairs of detectors with
an electronic subtraction capability (as described previously in Chapters 3 and 4)
allows the interconnection weights to be effectively bipolar.

Finally, the programmable neural-network chip at the top of the PMCM stack
implements the sigmoidal activation functions and the second layer of neural in-
terconnections shown in Fig. 5.1 (b). This second layer can be fabricated using
standard CMOS silicon VLSI processing; the dual-rail detectors and sigmoidal
activation functions can be implemented with PN photodiodes and differential
amplifiers (respectively) [Asthana et al., 1990], while the programmable intercon-
nection weights can be implemented using digital weight storage and (if necessary)
multiplying-digital-to-analog converters (MDAC’s) [Chiang and Chuang, 1991]
[Yayla et al., 1994]. By utilizing a hybrid approach in which a programmable
electronic neural network follows a fixed diffractive optical layer, the strengths
of both optical and electronic technologies are emphasized. The optical elements
provide the high-bandwidth computation required for the first layer of intercon-
nection weights, while the programmable electronic neural network provides the
flexibility for the solution of a variety of pattern recognition tasks.

Although this and the next chapter focus on two-layer neural networks (one
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layer of optical weights and one layer of electronic weights), it should be noted
that the 3-D PMCM neural network architecture can be extended to more than
two neural-network layers. For instance, if the programmable neural-network chip
contained both detectors and (hybridized) modulators, and the chip were flipped
right-side up, then another optical-power-bus/microDOE/microlens combination
could be placed on top of it. In order to make this work, however, the silicon
substrate needs to be transparent so that the incident light reaches detectors on
the top surface of the chip. Unfortunately, silicon is not transparent to light at the
operating wavelength of the GaAs/AlGaAs modulators on our photonic signal-
shifting chip (850 nm), but GaAs/InGaAs modulators that operate at a more

suitable wavelength are also available [Ananthanarayanan et al., 1995].

5.3 Photonic signal-shifting chip functionality

A key element of the 3-D PMCM neural-network architecture is the photonic
signal-shifting chip. As discussed above, this chip combines two functions: it
converts electronic input signals into optical signals for photonic neural network
processing, and it also provides the signal-shifting capability that allows a rela-
tively small neural network to analyze a much larger input plane through tem-
poral multiplexing. Fig. 5.2 shows how this temporal multiplexing proceeds. In
Fig. 5.2 (a), a neural network scrolls from right to left over the input data plane.
At each clock cycle the neural network moves one column to the left, analyzes the
current input window through feed-forward neural network processing, and the
output unit yields a final result. We refer to this type of temporal multiplexing
as “1-D scrolling”, in that the input window moves in only one direction over

the input data plane (although the input window is itself 2-D). In 2-D scrolling
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applications (Fig. 5.2 (b)), the neural-network input window scrolls, in both di-
mensions, over every possible location of the 2-D input data plane.

Typically, applications that use 1-D neural network scrolling require analysis
of a parallel set of 1-D signals, while those that use 2-D scrolling involve image
analysis. A good example of a neural-network architecture that can take ad-
vantage of 1-D scrolling is the Time Delay Neural Network (TDNN), which has
been used for speech recognition algorithms that have yielded impressive results
[Waibel et al., 1989]. For a TDNN, the horizontal axis of the input data plane
represents time, and the other axis (into the page) typically represents various
time-windowed Fourier components of a speech signal. Image processing applica-
tions, such as automatic target recognition (ATR) or object tracking systems, can
make use of 2-D neural network scrolling. For example, the eye detection system
discussed in the next chapter requires a neural network to analyze every possible
window of an input image. At each clock cycle the neural network reports whether
or not the current input window contains a centered human eye.

The photonic signal-shifting chip described in this chapter can directly imple-
ment 1-D neural network scrolling, as shown in Fig. 5.3. In the figure, the three
main layers of a 3-D PMCM neural network are depicted: a photonic signal-
shifting chip, a microDOE array, and a programmable neural-network chip. As
shown, n electronic signals {D;[t] : i = 1...n} enter the left side of the photonic
signal-shifting chip at discrete time-step t. After a delay of m clock cycles, where
m is the number of columns in the photonic signal-shifting chip, the same n sig-
nals electronically exit the chip. The entire 2-D array of optical modulators on
top of the photonic signal-shifting chip is read out at every clock cycle, thereby

allowing the vertically stacked opto-electronic neural network to analyze an n x m
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Figure 5.2: Scrolling neural network: (a) 1-D scrolling, (b) 2-D scrolling
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Figure 5.3: Photonic signal-shifting chip provides a scrolling input to the 3-D
PMCM neural network. The n electronic input signals are delayed by m clock
cycles before they exit the chip. The entire 2-D array of optical modulators is
read out each clock cycle.

window of the input data that scrolls in one dimension.

A comparison between the electronic input/output (I/O) bandwidth and the
optical 1/O bandwidth in the system shown in Fig. 5.3 demonstrates the useful-
ness of photonics in applications that require analysis of a scrolling 2-D plane.
At each clock cycle, n pixels enter the chip and n pixels exit the chip, yielding a
data rate of 2nf pixels/sec of electronic I/O for a clock frequency of f Hz. The

data rate that needs to be transmitted to the neural network analyzing the input
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data is much larger. Since the entire 2-D array of modulators is read out at each
clock cycle, mnf pixels/sec are transmitted to the scrolling neural network. The
photonic signal-shifting chip we fabricated has m = 20 columns, which implies
that the optical I/O bandwidth is an order of magnitude greater than the elec-
tronic /O bandwidth. Thus, the signal-shifiting application is very well suited to
photonic implementation; the relatively modest electronic bandwidth is handled
by conventional I/O pads that are restricted to the periphery of the chip, while
the much more I/O intensive task of transmitting 2-D planes of data is handled
by the 2-D array of optical modulators.

Fither analog or digital electronic circuitry can be used to implement the
signal-shifting functionality. The chip that we fabricated is digital: the input
signals {D;[t] : ¢ = 1...n} are binary valued, the signal-shifting circuitry is
composed of digital D flip-flops, and the modulators are driven to either the
minimum-reflectivity (off) or maximum-reflectivity (on) state. In our case, the
restriction to binary-only input signals is undesirable, but we were limited by
the capabilities of the SEED modulators and the digital CMOS VLSI processing
to which we had access. In the future, it would be very useful to design an
analog version of the photonic signal-shifting chip. Such a chip could use analog
CCD technology to provide the signal-shifting functionality, together with analog
circuitry to drive the optical modulators.

In order to implement the 2-D scrolling necessary for image processing appli-
cations, additional electronic hardware that interfaces with the photonic signal-
shifting chip is needed. This additional electronic hardware will be called the “2-D
scrolling module” (Fig. 5.4). We assume that the image to be processed is stored

electronically and can be serially raster-scanned into the 2-D scrolling module. For
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example, an image that is detected on a CCD chip is shifted out in a raster-scanned
fashion. In the figure, the numbering in the raster-scanned image indicates the
order in which the pixels are assumed to be shifted out. The image pixels are
re-rastered into the 2-D scrolling module before being shifted out to the photonic
signal-shifting chip. If the 2-D scrolling module is designed to be used with the
CCD (analog) version of the photonic signal-shifting chip described above, then
the 2-D scrolling module should itself be a CCD shift-register similar to that de-
scribed in [Chiang and Chuang, 1991]. If the 2-D scrolling module and the pho-
tonic signal-shifting chip store binary-valued signals, then a thresholding stage
(not shown) binarizes the raster-scanned image pixels. The 2-D scrolling module
and photonic signal-shifting chip must operate at the raster-scanning clock rate.
If the input images have 256 x 256 pixels/frame and are updated at 30 frames/sec,
this implies that the 2-D scrolling module and photonic signal-shifting chip must
operate at approximately 2 MHz.

Figure 5.5 shows graphically how the 2-D scrolling module functions in con-
junction with the photonic signal-shifting chip in order to implement the 2-D
scrolling diagrammed in Fig. 5.2 (b). First, a total of N x n clock cycles are
required in order to fill the 2-D scrolling module. After another m cycles, the
upper-right n x m window of the raster-scanned image is present in the photonic
signal-shifting chip. With each subsequent clock cycle, the contents of the signal-
shifting chip move one column to the right, which can be viewed as the n x m
window shifting one column to the left in the raster-scanned image (right-most
column exits the signal-shifting chip, new column enters at left-most column). Af-
ter a total of N xn+N clock cycles, the window has reached the upper-left portion

of the raster-scanned image. During the next m — 1 clock cycles the contents of
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the photonic signal-shifting chip are invalid, due to the wrap-around nature of the
2-D scrolling module. During this period, the neural network output should be
ignored because the input window is corrupted. After a total of N x n +m clock
cycles the contents of the photonic signal-shifting chip are once again valid. The
2-D scrolling proceeds in this fashion until all possible (N —n+41) x (N —m+1)

valid windows have been present in the photonic signal-shifting chip.

5.4 Optical representation of neural-network
signals and weights

As discussed previously, the PMCM neural-network architecture requires a
dual-rail representation in order to optically represent bipolar interconnection
weights. The basic dual-rail concept should be familiar to the reader from Chap-
ter 3 and Chapter 4, in which an electronic subtraction between positive and
negative detection channels takes place in the neuron units. In this section, we
apply the dual-rail concept to the case of the PMCM neural-network architec-
ture for three related purposes: the implementation of (1) bipolar interconnection
weights, (2) bipolar neural input signals, and (3) optical bias cancellation. The
photonic signal-shifting chip was designed with the flexibility to operate in either
a single-rail mode or one of four possible dual-rail modes. These five modes of
operation each have a set of associated advantages and disadvantages that will be

discussed below.

5.4.1 Dual-rail optical modulators

In Fig. 5.6, the optical modulators on the photonic signal-shifting chip are grouped
into dual-rail pairs, where RE,—H and Rgv—} represent the two modulator reflectivities

that optically encode the single input signal x;. The modulators are read out using
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the optical power bus described previously. The combination of the microlens and
microDOE arrays results in a set of diffractive optical interconnections between
each modulator and the detectors in its local fan-out region. Iach neuron ¢
in the programmable neural-network chip electronically differences its detected

intensities /{1 and Iﬁit_}, which are defined according to

M/2

I =1 Z iR 4 g R (5.1)
and
M/2
Ié;t_) — I z n;_—; ]R( ) + nu '+}R(+) (5.2)
i=1

() are labeled as shown in Fig. 5.6, 1, is

where the intensity diffraction efficiencies n;;
the readout intensity at each modulator, and M is the total number of modulators.
(For simplicity, we have assumed that the modulators and detectors have equal

areas.)

If the microDOE’s are designed under the constraints that

g =l =) (5.3)
and
ni® =g =g (5.4)

then it is easily shown that the difference between the dual-rail detected intensities

is equal to

on
on
S—

M/[2
+ i— (+ + = :
Ic?et} :fer) = 1" Z 7}%3 ) r?:_1' })(R( ) Rj' })' (’- 3

The mapping between these dual-rail optical representations and the desired
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tions.
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neural-network computation is derived by defining the bipolar input signals x; to
be
Lj = (R_E—H - R(_))/(Rmar - Rmin); (56)

p

in which R,u0r and R, correspond to the maximum and minimum (respectively)
modulator reflectivities, and the input signals are normalized to vary between
—1 and 1. Similarly, the bipolar neural-network interconnection weights can be

defined by

wij =) — ), (5.7)

where w;; is the weighted interconnection between input signal =; and neuron 1.

Substituting Eqs. (5.6) and (5.7) into Eq. (5.5) shows that

, ‘ M/2
I:E:::} - Ijt‘lrt ) = !f(Rmﬂx — Rmin) Z WijTj, (58)

i=1

which verifies that the desired bipolar weighted summation takes place at each
neuron. Note that this analysis assumes that the reflectivity difference R0 —
R,.in is approximately constant over the whole modulator array.

Besides allowing for bipolar input signals, the use of a dual-rail pair of optical
modulators to represent one input signal has another important advantage: the
residual optical bias due to finite contrast-ratio modulation (Ryez/Rmin # 00)
can be canceled out. Consideration of finite contrast-ratio modulation is particu-
larly relevant for non-resonant devices such as the SEED modulators used on our
photonic signal-shifting chip. These modulators typically have a poor contrast
ratio, between 2:1 and 3:1 [Krishnamoorthy et al., 1996] [Hinton et al., 1994].

The two finite contrast-ratio modulator reflectivities corresponding to input



signal x; can be modeled as

R£+) — (rﬁrnﬂr = Rmin)wg"—) + -Rﬂ’lfﬂ.

R'(...-_) = (Rmaz: = Izmin)x_(?'_] + Rm:’rn (59)
in which :.':_(,-'H and :cg_] vary between 0 and 1, and where Eq. (5.6) implies the
relation

g; =y =gl (5.10)

Egs. (5.9) show that while neither modulator can reach a full-off state when Ry is
non-zero, the difference between the two reflectivities can be zero because the R,
terms cancel out. As Egs. (5.6) and (5.8) show, only the difference in reflectivities
is important in terms of a neural-network computation. Thus, the effect of finite
contrast ratio can be eliminated through the use of a dual-rail representation.
The photonic signal-shifting chip we fabricated was designed to allow the user

to choose an appropriate signal representation. The optical modulators are driven

EH and :z:}_) to being either 0 or 1. When the
(=)

i

by D flip-flops, which restricts x

chip operates in what we call the (D,0) mode, i’ is held at 0 and a:;ﬂ =3
is either 0 or 1. In this mode the input signals are unipolar, but as per the
above discussion, the effect of finite contrast ratio has been eliminated. When

the chip operates in what we call the (D,D) mode, the paired modulators are

complementary: ;nff—] =1- :1:5”. In this mode, the input signals {z;} are bipolar
(either —1 or +1). The choice of whether to use (D,0) mode or (D,D) mode
depends on the specifics of the neural-network application and how the hidden-

layer sigmoids are biased in the programmable neural-network chip.
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Additional dual-rail modes

Two additional dual-rail modes are available on the photonic signal-shifting chip:
(D,D) mode and (D,1) mode. These two modes are “special cases” in that the
microDOE constraints given in Eqgs. (5.3) and (5.4) and the bipolar signal mapping
given in Eq. (5.10) do not apply.

The (D,D) mode can be used to give the system a degree of redundancy, in
case a few isolated modulators are not functioning properly. This redundancy is
obtained by driving each dual-rail pair of modulators with the same unipolar sig-
(+) ()

i =uw; = x;. After the photonic signal-shifting chip has been fabricated

nal: «
and tested, the optical power bus can be custom-designed to read out only one
(functioning) modulator from each dual-rail pair.

The (D,1) mode can be used to provide optical bias signals to the neuron
units in the programmable neural-network chip. In this mode, each dual-rail pair

(=) )

of modulators is driven according to z;’ = 1 and :cg-+ = a;. The input bias

signal for a given neuron unit in the programmable neural-network chip will be

determined by the design of the microDOE’s above the :nf,-_) modulators. The
input bias can be different for each neuron unit in the programmable neural-

network chip.

5.4.2 Single-rail optical modulators

While the dual-rail representations have the advantages noted above, they also
have the notable disadvantage that they require M modulators to represent M /2
input signals. There may be applications for which M independent input signals

are needed to adequately represent the neural-network input layer. For this reason,
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the photonic signal-shifting chip can also be used in a single-rail mode. Fig. 5.7
shows the single-rail case, in which all M modulators are fully independent. It
should be noted that the single-rail configuration has twice as many independent
interconnection weights as the dual-rail configuration (Fig. 5.6), as the weight
constraints given in Egs. (5.3) and (5.4) do not apply.

In deriving the mapping between the single-rail optical representations and the
corresponding neural signals, a similar derivation to the one given above yields

the following results:

y ; M
[c({:':) = f‘g'g) S - - Z Wi, (8.11)
!
in which
T; = Rj/R,mw (512)
and
w;; = r},(? — 7;,!;). (5.13)

Eq. (5.12) shows the two main disadvantages inherent to the single-rail approach:
the input signals are unipolar, and they are bound from below by the inverse of

the contrast ratio, Rmin/Rmaz-

5.5 VLSI design and electrical testing of the
photonic signal-shifting chip

In this section, a detailed description is given for the VLSI design and electrical

testing of the photonic signal-shifting chip. The chip design is first discussed af
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Figure 5.7: PMCM optical representation: single-rail modulators. Fach mod-
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the digital gate level. The VLSI layout is then described in conjunction with
photographs of the fabricated chip. Finally, simulation and electrical-test results

for the photonic signal-shifting electronic chip are presented.

5.5.1 Functional description of digital CMOS circuitry

The overall layout of the photonic signal-shifting chip is shown in Fig. 5.8. The
digital CMOS circuitry consists of 10 parallel shift registers, each of which contains
20 D flip-flops. This digital CMOS circuitry (0.8 um feature size) was fabricated
through the MOSIS service. Subsequently, AT&T attached a 10x20 array of GaAs
SEED modulators to the CMOS chip using their flip-chip bonding and substrate-
removal processes [Goossen et al., 1995]. Each of the 200 SEED modulators is
driven by one of the CMOS D flip-flops.

The photonic signal-shifting chip consists of two repeated circuit structures:
“dual-rail signal generators” and “basic cells” (Fig. 5.9). Each shift register con-
sists of a dual-rail signal generator and 10 basic cells, where a basic cell consists of
a pair of D flip-flops that drive adjacent modulators. Three control lines configure
the dual-rail signal generators and basic cells to operate in one of the five possible
optical representation modes described previously.

The dual-rail signal generation circuitry is used to convert a single input signal
into a dual-rail pair of signals, as determined by the control lines SO and S1. Fig-
ure 5.10 shows that each input signal Din is converted into a pair of output signals
D1 and D2, such that D1=Din and D2 is one of 4 possible Boolean functions of
Din. For example, the control values S1=0,50=1 select the (D,D) mode, where
output signal D2 is the complement of output signal D1. The 4 boolean functions

are implemented using an exclusive-or gate and a 2-to-1 multiplexer.
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10 x 20-bit shift registers

>
Diny — Dout,
Diny —Dout,
Ding —» —Douty
Ding —» —Douty
Ding —® —Doutg
Ding —» —Doutg
Din; —» —Dout;
Ding —» Doutg
Ding Doutg
Dinyo Doutyq

]
S1 SO0 Sel

L S —
Control lines

H = Optical modulator (GaAs) @ = CMOS circuitry (Si)

Figure 5.8: Overall layout of the photonic signal-shifting chip
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10 basic cells per shift register

R

C ~
o et - Dout4
Ding s - Doutp
Ding ceoe - Doutg

. . .
cee - Doutqg
Dual-rail | | =
signal generation S1 S0 Sel Basic cell

Control lines

B = Optical modulator (GaAs) i = CMOS circuitry (Si)

Figure 5.9: Circuit structures in the photonic signal-shifting chip: basic cells and
dual-rail signal generation
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Figure 5.10: Dual-rail signal-generation circuitry. Control signals S1 and S0 select
which of the 4 dual-rail representation modes are used.

The basic-cell circuitry is shown in Fig. 5.11. The cells are arranged such
that inputs D1 and D2 are connected to outputs Q1 and Q2 from the previous
cell (respectively), except that the first basic cell in each row is connected to the
dual-rail signal generator. Internally, each basic cell contains two D flip-flops FF'1
and FF2 that drive SEED modulators M1 and M2 (respectively). The control
signal Sel determines how the binary signals flow through the cell. When Sel=1
the dual-rail mode of operation in selected, in which a pair of bits is shifted into
the cell and a pair of bits is shifted out from the cell in one clock cycle. When
Sel=0 the single-rail mode of operation is selected, in which the binary signals
follow a 2 clock-cycle serpentine path through the cell: D1 — FIF'1 — FF2 — QL.
A complete shift register is formed between an input Din and output Dout by

connecting 10 basic cells in series (as shown in Fig. 5.9). There is a delay of 10
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clock cycles between Din and Dout when Sel=1; when Sel=0 there is a 20 clock

cycle delay between Din and Dout.

5.5.2 VLSI layout and chip photographs

The VLSI layout for the photonic signal-shifting chip was constructed from a set
of 3-metal-layer scalable-CMOS standard cells supplied by AT&T, MOSIS, and
Tanner Research. The layout is shown in Fig. 5.12. It consists of approximately
12,000 transistors and occupies a 1.95 pm x 1.95 pm area using a 0.8 um feature
size. The SEED modulators are electrically contacted through 20 pm x 20 um
solder-bump bonds deposited by AT&T, and we accessed the solder-bump bonds
using metal-3 (third layer metal) lines. The chip was designed to operate at a
clock frequency of at least 2 MHz (the raster-scan rate for a 256 x 256 image
updated at 30 frames/sec).

Figure 5.13 shows photographs of the fabricated chip taken under a microscope.
In Fig. 5.13 (a), the complete 10 x 20 array of modulators is visible in the interior
portion of the chip. The 10 x 20 array of modulators has a pitch of 62.5 pm in
the horizontal dimension and 125 gm in the vertical dimension. Figure 5.13 (b) is
a closeup of one basic cell that drives a pair of modulators. The AT&T substrate

removal process allows visual access to both the CMOS circuitry and the GaAs

SEED modulators.

5.5.3 Simulation and electrical-test results

One of the 10 identical shift registers was extracted from the VLSI layout using

the “:extract” command in the MAGIC layout editor. The extracted “.ext” file
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Figure 5

Q2

.11: Basic-cell circuitry. When Sel=1 (dual-rail mode selected), at each

clock cycle a pair of bits is shifted into the cell (from D1 and D2) and a pair of
bits is shifted out to the next cell (through Q1 and Q2). When Sel=0 (single-rail
selected), at each clock cycle 1 bit is shifted in from D1 to FF1, 1 bit is shifted
from FF1 to FI'2, and 1 bit is shifted from FF2 to the next cell through output
Q1 (D2 and Q2 are ignored). The flip-flops FF1 and FF2 drive SEED modulators

M1 and M2.
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Figure 5.12: Photonic signal-shifting chip VLSI layout
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1.95 mm

Basic cell SEED modulator

(b)

Figure 5.13: Photonic signal-shifting chip photographs; (a) whole chip (b) closeup
of a basic cell.

119



aansencey o teawaslid TuNw W I8 e

- ENATT OO

Control Signal il Single-rail Dualjrail

Shift Register Input --“—” _ﬂ_ﬂ _ﬂﬂ_l_ﬂ
Shift Register Output | mﬂﬂﬂ m_l_ﬂ_” [ﬂ_ﬂm

20 clock cyclés 10 dlock dycles|

=

=
=

Figure 5.14: Switch-level circuit simulation results (irsim). In single-rail mode
(Sel=0), there is a 20-bit delay between the shift-register input and shift-register
output signals. In dual-rail mode (Sel=1), there is a 10-bit delay between the
shift-register input and shift-register output signals.

was then converted to a “.sim” file (using the “ext2sim” command on our UNIX
system), which was then used as the input file for the switch-level simulator,
“irsim”. The simulation results are shown in Fig. 5.14. Initially, all 20 flip-flops
were reset to 0 and the single-rail mode was selected by setting the dual-rail
select line to Sel=0 (see Fig. 5.11). An oscillating binary signal (1 MHz) was then
input to the first flip-flop in the shift register. As shown in the figure, there was
a 20 clock-cycle delay between the shift-register input and output signals, which
indicates that the single-rail mode was functioning correctly. After all 20 flip-flops
were cleared, a dual-rail mode was selected by setting the dual-rail select line to
Sel=1. (The settings on the S1 and SO control lines were irrelevant for these
simulations.) As shown in the figure, a 10 clock-cycle delay occurred between the

shift-register input and output signals, which indicates that the dual-rail mode

was functioning correctly.
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AT&T delivered a packaged electrical-only version of our chip for testing pur-
poses. The first test was to verify that none of the 200 D flip-flops was permanently
stuck in either the Q = 0 state or the = 1 state. This was verified by oper-
ating the chip in single-rail mode and daisy-chaining the output of each 20-bit
shift register to the input of the next 20-bit shift register (i.e., Dout, — Ding,
Douty — Ding, ete.). In this way, all 200 D flip-flops were connected into one long
shift register, and if any one of the flip-flops were stuck at @ = 0 or () = 1 then
the input signal could not reach the output of the final flip-flop. The oscilloscope
traces from the first test are shown in Fig. 5.15. A 2 MHz clock signal is shown
in the upper trace and the output signal from the last flip-flop is shown in the
lower trace. The output signal oscillates at the same frequency as the 1 MHz
input signal (the input is not shown), which indicates that all 200 flip-flops are
operational.

The next test was to verify that each shift register functions as a 10-bit delay
line when operating in a dual-rail mode and that it functions as a 20-bit delay line
when operating in the single-rail mode. Figures 5.16 and 5.17 verify that both
modes function correctly. The 2 MHz clock signal is shown in the upper traces,
and the output from one of the ten shift-registers (Dout;) is shown in the lower
traces. Initially, all flip-flops were reset to 0. In the experiment shown in Fig. 5.16,
10 clock cycles elapse before the output signal starts to oscillate, thereby verifying
that the dual-rail mode is functioning correctly. Figure 5.17 shows the single-rail
case, in which 20 clock cycles elapse before the signal starts to oscillate.

The above tests indicate that the CMOS electronics on the photonic signal-
shifting chip is functioning correctly. Optical testing of the 2-D array of SEED

modulators has not yet been completed, however. These optical tests will be left

121



<4— Clock

ol Output of
final flip-flop

Figure 5.15: Electrical test of all flip-flops in the photonic signal-shifting chip.
All 200 D flip-flops are daisy-chained together into one long shift register. Upper
oscilloscope trace is a 2 MHz clock signal. Lower trace is the output signal from
the final flip-flop (the input signal is not shown).
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Figure 5.16: Electrical test of the photonic signal-shifting chip operating in a
dual-rail mode. Upper oscilloscope trace is a 2 MHz clock signal, lower trace is
the output signal from one shift register. All flip-flops were initially reset to 0.
The oscilloscope was triggered off the first rising edge of the 1 MHz input signal
oscillation (not shown). There is a 10 clock-cycle delay between the input signal
oscillation and the output signal oscillation
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Figure 5.17: Electrical test of the photonic signal-shifting chip operating in single-
rail mode. Upper oscilloscope trace is a 2 MHz clock signal, lower trace is the
output signal from one shift register. All flip-flops were initially reset to 0. The
oscilloscope was triggered off the first rising edge of the 1 MHz input signal os-
cillation (not shown). There is a 20 clock-cycle delay between the input signal
oscillation and the output signal oscillation
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for a future investigation.

5.6 Design and fabrication of space-variant
microDOE’s

In this section, the focus of the discussion shifts to the optical interconnection
elements that were shown in Fig. 5.1. Once the input signals are converted into
optical signals by the photonic signal-shifting chip, the function of the microDOE
and microlens arrays is to optically compute the weighted fan-out and fan-in
required by the first layer of neural-network interconnections. We designed several
such microDOE and microlens arrays (as a collaborative project described below)
and had them fabricated by Honeywell. In the discussion below, we first describe
the neural-network computations implemented by the microDOLE array at the
systems level, and then go on to discuss some technical issues that arose during
the design process. The design parameters for an optical system composed of
a space-variant microDOE array and a corresponding microlens array are then
derived, in order to show the feasibility of constructing a compact 3-D PMCM

optical interconnection system using currently available technology.

5.6.1 Computational complexity and space-variant
microDOE’s

A microDOE array interfaces with the photonic signal-shifting chip as shown

in Fig. 5.18 (drawn in 1-D for convenience). As discussed previously, each micro-

DOE causes a modulated input beam to be split into a set of weighted fan-out

beams. The optical superposition of the fan-out beams from nearby microDOE’s
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MicroDOE
interconnections
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Figure 5.18: MicroDOE interconnections and a shifting input signal. If the in-
terconnections are space-invariant, then the neural input potentials are related
according to piy[t + 1] = pi[t], where ¢ denotes a discrete time step. If the in-
terconnections are space-variant, then all potentials must be recomputed at each
time step.

results in one layer of local neural-network interconnections. If each of n micro-
DOE’s fans-out to F' hidden-layer neurons, then n x F' multiplications and n x F'
additions are computed at each clock cycle. As these computations are ana-
log, they should be considered arithmetic operations (low precision) rather than
floating-point operations. If the photonic signal-shifting chip operates at f clock
cycles per second, then the diffractive optical elements can compute 2 xn x F' X f
arithmetic operations per second. Using numbers appropriate for the hardware we
have fabricated to date (n = 10 x 20, F' = 3x 3, [ = 2 MHz), a very small-scale (2
mm %2 mm in cross-section) system can compute 7.2 x 10° arithmetic operations

per second.
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As indicated in Fig. 5.18, the space variance of the microDOE array is crucial
to the above computational complexity analysis. If the fan-out weights from each
microDOE are identical, meaning that the design is space invariant, then the fan-in
weights entering each neuron are also identical. (Technically, true space invariance
is impossible because the fan-out weights at the left and right edges must be
different than the internal fan-out weights. This “edge effect” can be ignored for
a sufficiently large input layer.) In this case, each neural input potential (weighted
summation) p;[t] calculated by hidden-layer neuron i at time-step ¢ is identical
to the potential p;y1[t + 1] calculated by hidden-layer neuron z + 1 at time-step
t + 1. Therefore, almost all of the 2 x n x F' calculations performed by the
microDOE array are redundant. Disregarding the “edge effect” described above,
only the 2 x F' multiplications and additions that compute the left-most (internal)
input potential are required at each clock cycle. This reduces the computational
complexity from 7.2 x 10° down to 36 x 10° arithmetic operations per second using
the parameters given above. As a result, we primarily designed space-variant

microDOE arrays for fabrication by Honeywell.
5.6.2 Space-variant microDOE-array design process

The process of designing the space-variant microDOE arrays involved several com-
puter processing steps. This was a collaborative effort, in which the tasks were

divided as follows:

1. Specification of neural-network interconnection weights. These weights can
either be designed by hand to transform the input layer into a feature-
extracted hidden-layer, or the weights can be trained for a specific applica-

tion using a neural-network learning algorithm such as backpropagation. In
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either case, the weights must conform to the local fan-out constraints im-
posed by the microDOE-array hardware. The microDOE’s discussed in this
dissertation were specified (by the author) using the feature extraction ap-
proach. The weights implement “space variant edge detection” operations,

which are shown to be useful neural-network features in Chapter 6.

Design of periodic phase-only patterns thal yield diffraction efficiencies pro-
portional to the neural-network interconnection weights. This work was
done by Ching-Chu Huang (from Dr. Jenkins’ research group at USC),
who used a variant of the Gerchberg-Saxton algorithm (as described in
[Huang, et al., 1997]) to design the space-variant microDOE arrays. These
phase-only patterns were quantized to 8 uniformly-spaced phase levels, in

accordance with the DOE fabrication process available from Honeywell.

Conversion of phase-only patterns into mask definition files. The 8 uniformly-
spaced phase levels were etched using 3 fabrication masks, for phase lags of

s

r, /2, and 7 /4 radians (see [Jahns, 1994] for more fabrication details). Dr.
Charles Kuznia wrote the software that converts the phase-only patterns

into 3 “CIF” (Caltech Intermediate Form) mask definition files.

Data compression using polygon descriptors. It was found that the orig-
inal CIF data files were prohibitively large because they were defined by
minimum feature-sized square blocks. For example, Fig. 5.19 (a) shows one
period of a DOE mask that is described by a collection of individual square
features. We found that the file sizes could be substantially reduced by
merging the individual square features into a minimum number of equiva-

lent polygons, as shown in Fig. 5.19 (b). Although some VLSI layout tools
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(b)

Figure 5.19: Data compression using polygon descriptors. In (a), one period
of a DOE is represented as a large number of minimum-feature sized blocks.
Our custom software merges the individual features into a minimum number of
equivalent polygons, shown in (b). The file size is reduced by a factor of 12 (in
GDSII format) for the example shown.
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(such as L-Edit) can perform this merging operation, we found that custom
software was needed to rapidly process the hundreds of microDOE’s that
had been designed for our space-variant neural-network interconnections.
The program “polygonize” (written by the author) rapidly compresses CIF
data files using a simple polygon tracing algorithm. The program resides
on our UNIX system at USC SIPI. Compression of the data files is very im-
portant from a practical point of view, in that mask fabrication costs scale

with the size of the data files.

5.6.3 3-D PMCM optical system design

The microDOE arrays were designed to operate in a 3-D PMCM optical system
such as that shown in Fig. 5.20. As shown in the figure, the microDOE array
interconnects each modulator on the photonic signal-shifting chip to a local set
of detectors on the programmable neural-network chip. The microlens array im-
ages the modulator plane onto the detector plane. Under idealized assumptions
(point-source modulators, no aberrations, infinite lens aperture), each microDOE
diffracts the incident light into point sources on the detector plane in proportion to
the Fourier transform of its phase-only transmittance function [Goodman, 1996].
The transmittance function of each microDOE is thus designed to yield a Fourier
transform consistent with the desired neural-network interconnection weights. To
show the feasibility of constructing such an optical system in a compact volume,
we calculate below the propagation distances and diffraction-limited spot sizes of
a 3-D PMCM optical system, where the finite extents of the modulators, micro-
DOE’s, and microlenses are taken into account.

The optical interconnection system parameters were determined using four
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Figure 5.20: 3-D PMCM optical system parameters
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design constraints:

.

Imaging condition. To satisfy the optical imaging condition between the
modulator and detector planes, propagation distances Z; and Z, are related

to the microlens focal length f in accordance with [Goodman, 1996]

%+%=% (5.14)
Hllumination of one microDOE/microlens. We assume that the optical
power bus (not shown in the figure) outputs a uniform-phase and uniform-
amplitude beam with (1-D) spatial extent A. This uniform beam imme-
diately reflects off of a modulator and expands, due to diffraction, into a
beam with a (1-D) spatial extent equal to D, where D represents the mi-
croDOE/microlens aperture. If the microDOE/microlens plane is in the

Fraunhofer regime with respect to the modulator plane (which will be sub-

sequently verified), then

D =2\Z;/A (5.15)

must be satisfied in order for the central lobe of the Fraunhofer diffraction

pattern to illuminate one microlens and one microDOE [Goodman, 1996].

Spot spacing equals detector spacing. The spacing A between diffracted
spots is related to the microDOE period length T', propagation distance Z,,

and wavelength A through the relation [Huang, et al., 1997]

A = AZ,/T. (5.16)
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The propagation distance and period length are chosen such that A is equal

to the spacing between detectors on the programmable neural-network chip.

. Spot size less than spot spacing. The shape of the detected spots can be
modeled as the convolution of the geometric-optical image of the illumi-
nation source with the Fourier transform of the imaging-system exit pupil
[Goodman, 1996]. For simplicity, we assume a diffraction-limited imaging
system, which implies a uniform pupil function with an extent equal to the
microlens/microDOE aperture D. Thus, the intensity of the imaged spot

can be modeled (in 1-D) as

I(z) o [rect[z/(MA)] # sinc[e D/ (AZ:)]|° (5.17)

where = is a spatial variable evaluated at the detector plane,
rect(x) A 1 for |z| < (1/2) and 0 otherwise, sinc(z) A sin(wz)/(7z), and
M = Z,/Z, is the optical magnification between the modulator and detec-
tor planes. The spot size .S, which can be taken as the central-lobe width
of I(z), must be smaller than the spot spacing A to avoid high levels of

crosstalk. Preferably, S < A/2.

In order to image each of the 200 photonic signal-shifting chip modulators

onto the detector array, the microDOE/microlens apertures can be no larger than

the 62.5 pm modulator pitch. It was found that with only 62.5 pm x 62.5 pum

of microDOE area, it was necessary to use a 1.5 pm minimum feature size in

order to achieve the space-bandwidth product required by the neural-network

interconnection weights. A feature size of 1.5 pm may be pushing the limits

of current DOE fabrication technology, and it is also approaching the optical
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wavelength A = .85 pm, which implies that complicated vector-diffraction theory
may be required for reasonably accurate microDOE design [Goodman, 1996]. As
a result, the optical system described below uses a 125 um x 125 pm microDOE
and microlens aperture with a minimum feature size of 2.5 gm. In so doing, half
of the modulators on the photonic signal-shifting chip are unused in the optical
system, resulting in a 10 x 10 array of usable modulators rather than the full
20 x 10 array.

The optical system parameters for one of our microDOE array (identification
code: D9504Hf) and corresponding microlens array (identification code: L9504Bf)
designs are given as follows: D = 125 pm, Z, = 1103 pm, Z; = 1470 pm,
M =133, f =630 um, A =15 pm, A = .85 um, T' = 20 pm, and A = 62.5
pm. These parameters are consistent with Eqs. (5.14)-(5.16) given above. The
Fraunhofer approximation implicit to Eq. (5.15) is checked by verifying that the
Fraunhofer condition Z; > (2A42)/A [Goodman, 1996] is satisfied in this case. The
spot size calculation given in Eq.( 5.17) is numerically evaluated in Fig. 5.21 using
the parameters given above. The figure indicates a spot size of S = 30 pum, which
approximately satisfies the condition S < A/2.

A portion of the fabricated 10 x 10 array of microDOE’s designed using the
above parameters is shown in Fig. 5.22. The microDOE’s were designed to provide
weighted fan-out to a 3 x 3 nearest-neighbor set of neurons in the programmable
neural-network chip, which corresponds to a 6 X 3 physical fan-out due to the
dual-rail encoding of the bipolar interconnection weights. The figure shows a
photograph of the glass (Si0;) microDOE elements. A portion of a corresponding
10 x 10 array of 125 gm x 125 pm microlenses is shown in Fig. 5.23. These

microlenses were designed (by Jen-Ming Wu, from Dr. Sawchuk’s research group)
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Figure 5.21: Spot size calculation
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Figure 5.22: A photographed portion of a 10 x 10 microDOE array (identification
code: D9504Hf). Each microDOE is 125 pm on a side.

to have a focal length of f = 630 pum assuming A = 850 nm and free-space
propagation. Both the microDOE and microlens arrays have an SiO, substrate
thickness of 0.5 mm. The quality of the fabricated microDOE and microlens
arrays will be assessed in a future investigation.

The optical system diagrammed in Fig. 5.20 is a simplified model of the ac-
tual 3-D PMCM neural network. Specifically, free-space optical propagation was
assumed, when in reality multiple substrates with different indices of refraction
are present in the 3-D PMCM. Following the method described in Appendix E,
the modulator-microlens and microlens-detector spacings must be increased to
account for the presence of the component substrates. Essentially, the appendix
shows [Eq. (E.4), in which A" = A] that wavefront propagation through a distance
Z in free space is equivalent to propagation through a distance Zn in a medium
with index n. For example, it would take 2.2 mm of propagation through a LiNO3
(n & 2.2) substrate for an optical wavefront to diffract equivalently to a 1.0 mm

propagation through free space. (This analysis ignores constant phase factors.
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Figure 5.23: A photographed portion of a 10 x 10 microlens array (identification
code: L9504Bf). Each microlens is 125 um on a side.

The overall phase delay is not the same in the two cases.)

In Fig. 5.24 a 3-D PMCM neural network is shown, in which we assume a
LiNO; optical power bus with a 1 mm substrate, an SiO; (n & 1.5) microlens array
with a 0.5 mm substrate, and an SiO; microDOE array with a 0.5 mm substrate.
The .3 mm and 1.1 mm spacings were chosen so that the equivalent free-space
propagation remains at Z; = 1103 gm and Z; = 1470 pm. The photonic signal-
shifting chip and programmable neural-network chip substrates were each assumed
to be ~ 1 mm thick. (Note that, as discussed earlier, only half of the modulators
on the photonic signal-shifting chip are read out.) Under the above assumptions,
the total (unpackaged) volume of the 3-D PMCM neural network is equal to 2 mm
x 2 mm x 5.4 mm = 21.6 mm?®. This system volume is remarkably small when
compared to typical free-space optical interconnection systems. For example, in
[Yayla et al., 1994] the authors reported a 3-D optically interconnected neural

network with 64 weights (compared with 900 weights in our system described
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Programmable 1.0 mm

neural-network chip

1.1 mm

MicroDOE array 0.5mm (Si02, n = 1.5)

Microlens array 0.5mm (Si0g, n = 1.5)

0.3 mm

Optical power bus 1.0mm (LiNO3, n=2.2)

Hns

Photonic
signal-shifting chip

1.0 mm

Figure 5.24: Optical propagation in a 3-D PMCM neural network. The photonic
signal-shifting chip has an area of 2 mm x 2 mm, which implies that the total

(unpackaged) 3-D PMCM neural-network volume is equal to 2 mm X 2 mm X

5.4 mm = 21.6 mm?>.

above) that occupied a volume of & 2370 mm?®.

5.7 Discussion

One of the lessons we learned during the design of the 3-D PMCM neural network
is that the limited space-bandwidth product available for each microDOE is an
important consideration in terms of how the system can be scaled up in future
versions. If current trends continue, CMOS feature sizes will shrink dramatically
in coming years, which will allow more transistors per unit area on the photonic

signal-shifting chip and the programmable neural-network chip. This increase in
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transistor density can be utilized by decreasing the size of each pixel and/or in-
creasing the amount of circuitry in each pixel. If the pixels are decreased in size,
then the microDOE’s and microlenses will need to decrease in size proportionally.
However, if the optical wavelength remains approximately constant, then micro-
DOE design algorithms that take into account vector diffraction theory will need
to be developed in order to take advantage of the technological improvements in
photolithography. The simpler alternative is to keep the pixel size approximately
constant, and to instead use the improvements in CMOS transistor density to
put more electronic processing in each pixel on the photonic signal-shifting and
programmable neural-network chips.

There are many interesting extensions of this work that could be pursued in
the future. For example, development of Vertical Cavity Surface Emitting Laser
(VCSEL) arrays is proceeding at a rapid pace both in academia and in industry.
If VOSEL arrays could be successfully flip-chip bonded onto the CMOS signal-
shifting circuitry (as are the GaAs optical modulators), then the optical power bus
could be eliminated from the stack, and it would no longer be necessary to use an
external laser source to optically power the PMCM. Another possibility for future
research is to combine the microDOE and microlens arrays into one element. This
approach requires more space-bandwidth product, but it eliminates one optical
element from the PMCM stack. More practical issues such as the development of
techniques for aligning, spacing, and attaching the PMCM components together

also need to be addressed before a fully implemented system is realizable.

139



Chapter 6

A 3-D photonic
multichip-module neural
network: eye detection
simulations

6.1 Introduction

An increasingly important application area for artificial neural network pattern
recognition systems, both commercially and at the university research level, is the
processing of human facial images [Samal and Iyengar, 1992]
[Poggio and Beymer, 1996] [Johnson, 1996]. Depending on the specific applica-
tion, this image processing may include the detection and location of one or more
faces in a scene [Yang and Huang, 1994]  [Sung and Poggio, 1994]
[Rowley et al., 1995] [Krueger et al., 1996], the identification of an unknown in-
put face (e.g., [Lades et al., 1993] [Pentland et al., 1994]), facial expression recog-
nition [Fellous, 1996], or the detection of specific facial features such as the eyes,

nose, and mouth [Debenham and Garth, 1992] [Hegelin and Hewit, 1994]. The
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main motivation for this increased research activity is the demand for more effi-
cient human/computer interfaces, as well as more efficient biometric security sys-
tems that can help to authenticate automatic-teller-machine cards, credit cards,
or the access codes to secure areas.

In this chapter, we will focus on the real-time detection and accurate location of
the eyes in an image of a human face. To date, the demonstrated electronic hard-
ware and software systems such as those described in [Debenham and Garth, 1992]
and [Hegelin and Hewit, 1994] have been limited in speed, in detection accuracy,
and to a relatively large system volume (i.e., desktop computer systems). We
present simulation results to show that a 3-D PMCM neural network, as described
in the previous chapter, has the potential to accurately detect, in real time and
with compact photonic hardware, the location of the two eyes in an image of a
face. Such a real-time eye detection system would have several potential applica-
tions. In addition to serving as the first stage of a real-time face recognition or
face detection system, a real-time eye detector could also be used, for example,
either as a pre-processor for an authenticating retinal-scanning system, or as part
of an eye-tracking human/computer interface to replace or augment input from a
mouse-based pointer [Jacob, 1993] [San Jose Mercury News, 1996].

The eye detection task, described in the context of this chapter, is defined to
be the decision whether or not an eye is located at the center of the input plane of
an artificial neural network. The neural network has a 2-D input plane in which
each neuron represents one pixel of the input image, and the network has a single
output neuron that should yield a positive response when the 2-D input plane
contains an example of a centered eye. The network can then be scrolled over

each pixel location of the input image, outputting an eye-detection decision for
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each of the pixel locations. Fig 6.1 illustrates an idealized example of eye detection
using a scrolling neural network. As shown in the figure, the original gray-scale
input image is transformed into an output image that is, ideally, completely black
except for two bright pixels corresponding to the locations where the eyes have
heen detected.

This formulation of the eye detection task maps very well into the capabilities
of 3-D PMCM neural network hardware, in that the required spatial and temporal
bandwidths are well suited to the constraints imposed by current photonic technol-
ogy. For example, most current multiple-quantum-well SLM’s are limited to rela-
tively small array sizes, such as the 10x20 photonic signal-shifting chip discussed
in the previous chapter. However, these GaAs devices have a very impressive
temporal bandwidth greater than 250 Mbits/sec per pixel [Goossen et al., 1995].
A scrolling neural network system of the type described above illustrates one way
to trade off some of the available temporal bandwidth for an effective increase in
spatial bandwidth. While only a small fraction of the input image is analyzed at
a given point in time, the network effectively analyzes the complete input image

through the temporal multiplexing of its available spatial resources.

6.2 A space-variant edge detection neural model

For the simulations described in this chapter, a two-layer feed-forward neural
network scrolls over the input image to perform the eye detection task. As shown
in the 1-D representation of Fig. 6.2, the neural model is a fairly standard two-
layer feedforward multi-layer perceptron [Rumelhart and McClelland, 1986]. The

unique aspects of the model stem from the constraints imposed by 3-D photonic
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(N-m+1)

Output Image

Scrolling Neural Network

Input Image

N

Figure 6.1: Eye detection using a scrolling neural network. The input image
has NxN pixels; the neural network input window has nxm pixels. The neural
network scrolls over all (N-n+1)x(N-m+1) possible window locations, outputting
an eye-detection decision at each location.
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multichip module hardware. Specifically, the first layer of weights is constrained
to be fixed and locally connected, because the weights are designed to be imple-
mented with etched micro-diffractive optical elements (microDOE’s) that have a
limited space-bandwidth product. The second layer of weights is allowed to be
adaptive and globally connected, because this layer is designed to be implemented
using silicon electronics. [The relatively small number of electronic weights (200)
makes global electronic connections feasible.] Thus, the neural network as a whole
can be trained to solve a variety of problems by training the second layer, but the
first layer is fixed and should therefore serve as a useful feature-extraction layer
for a whole class of problems rather than just a single problem. As a result, we
designed the first layer of weights by hand rather than with a two-layer learning
algorithm such as backpropagation.

The first layer of weights was designed to perform a space-variant edge de-
tection (SVED) operation. Edge detection has been shown to be a useful pre-
processing step for many neural network (e.g., [Denker et al., 1989]) and classical
image processing (e.g., [Pratt, 1991]) operations. A feed-forward neural network
of the type shown in Fig. 6.2 can implement edge detection pre-processing by
choosing the first layer of weights such that the hidden units respond to local
pixel intensity differences in the input layer. The nonlinear activation function
implemented in each hidden unit acts as the edge/non-edge decision function. In
a conventional space-invariant edge detection computation, a single convolutional
template is applied uniformly across the entire image (i.e., the set of fan-in weights
is the same for each hidden-layer neuron). In a space-variant edge detection com-
putation, however, each hidden-layer neuron has a unique set of fan-in weights

that determines the characteristics (e.g., orientation) of the edge it is detecting.
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Output unit:
linear

Global electronic
interconnections
(adaptive, bipolar)

Hidden layer (10x20):
unipolar sigmoid

Local optical
interconnections
(fixed, bipolar)

Input Layer (10x20)

Figure 6.2: Neural network model used for eye detection. Input and hidden layers

are 2-D planes (shown in 1-D for convenience).
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Figure 6.3: Space-variant edge detection hidden-layer map. Each square corre-
sponds to one of the 10x20 hidden units, and each letter corresponds to a different
set of edge-detection fan-in weights. These fan-in weights are defined in Figs. 6.4
and 6.5.

A complete hidden layer is then defined by assigning an appropriate set of fan-in
weights to each hidden unit.

While space-variant processing requires many more computations than space-
invariant processing when the network is scrolled over the entire input image
(see Section 5.6.1 for more details), the additional flexibility provides the ability
to give the neural network a priori information about the class of objects to be
recognized. For example, in many applications it may be known that the objects of
interest have edges that form simple convex shapes such as boxes or ellipses. Eye
detection is an example of such an application, as are military target recognition
tasks such as the detection of buildings and vehicles from overhead images of a
scene [Rogers et al., 1995]. By properly designing an SVED layer of weights, a
network can be designed that filters out noise caused by edges that appear in

unexpected orientations.
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Figure 6.4: Space-variant edge detection fan-in weight definitions
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Figure 6.3 shows the 10x20 space-variant design used for the eye-detection
simulations. In the figure, a set of fan-in weights corresponding to an oriented
edge detector is assigned to each hidden-unit. The letters in the figure correspond
to the 8 compass directions: North West, North, South, etc. (“North” is taken
as “up” in Figs. 6.4-6.5.) The edge detectors have been designed in the shape of
“concentric rectangles”. That is, edge detectors near the top of the input window
respond only to edges oriented in the North direction, edge detectors near the
right of the input window respond only to edges pointing in the East direction,
etc. The same basic pattern repeats itself, from the outermost rectangle to the
innermost rectangle. In this way, the system is given a certain amount of scale
invariance together with the ability to filter out edges in unexpected regions of
the input image (€.g., a South edge near the left of the input window).

Figure 6.4 defines eight of the sixteen sets of edge-detection fan-in weights
that were used to compose the first layer of weights. A hidden-layer neuron
with fan-in weights from the “North” (N) mask, for example, will respond to its
nearest-neighbor 3x3 region of the input image if the lowest row is darker than the
mean of the upper two rows. (That is, the edge points in the northward direction,
moving from dark to light.) The fan-in weights shown in gray along the borders of
the figure correspond to special “border cases” in which a portion of the nearest-
neighbor 3x3 window is outside of the 10x20 input window. Fig. 6.5 gives the
definitions for these border cases. For these simulations, we restricted ourselves
to 3x3 local fan-in in order to be consistent with the diffractive optical elements
currently in fabrication, but 5x5 fan-in is also feasible and would significantly
increase the variety of implementable edge detectors.

In order to minimize the effects of poor modulator contrast ratio, the sets of
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Figure 6.5: Space-variant edge detection border cases.

fan-in weights were designed such that the sum of all 9 weights in each set is equal
to zero. Using this constraint the effect of a common bias signal is eliminated, as

is shown using the relation

pi = Y wii(z; +bi) = Y wijzs + bi ) wij, (6.1)
j i J

in which p; is the input potential for hidden-layer neuron i, {w;; : j = 1...9}
is the set of fan-in weights to neuron ¢, and b; represents a constant bias term
for inputs fanning in to neuron 7. Eq. (6.1) shows that the input potential p; is
unaffected by a bias signal b; when the sum of the fan-in weights 7, w;; is equal
to zero. This analysis does assume, however, that the modulator bias is constant

over each 3x3 local fan-in region.
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A unipolar shifted-sigmoid response at the hidden-layer was used as the trans-

formation between neural input potential and output activation:

fp) =1/[1 + exp(—(p/ K - 5))], (6.2)

in which f(p) is the neural activation function, K = 10 is an empirically chosen
normalization constant, and the bias constant 5 was chosen to satisfy f(p =0) =
0. With this shifted sigmoid response, a hidden-layer neuron responds only when
an edge is oriented in the correct direction. If the edge has the wrong polarity then
p is negative, which yields an output f(p) near zero. None of the hidden-layer
neurons responds to a uniform input, because in this case p = 0 [using Eq. (6.1)],
and f(p = 0) = 0 by design. The choice to use a unipolar sigmoid in these
simulations, rather than a bipolar sigmoid, was made for two reasons. First, a
unipolar sigmoid is easier to implement in the electronic analog hardware. Second,
it is more convenient to visually inspect the output of the hidden layer when it is

unipolar (see Sec. 6.4 for examples).

6.3 Neural network training

The first layer of the neural model, as described above, is a fixed feature extraction
layer that can be implemented using optical hardware. This layer is, by design,
not specific to a given problem. In order to solve a particular problem, the second
(adaptive) layer of weights in Fig. 6.2 needs to be specified. In the following, we
describe how the second layer of weights was trained using a database of facial

images.
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6.3.1 Face database

A database of faces was obtained from Dr. Jean-Marc Fellous, who at the time
was part of Dr. Christoph von der Malsburg’s research group at USC. Dr. Fellous
obtained the database by frame grabbing a 256x256 image of each subject’s face
using a CCD video camera. The database is shown in Fig. 6.6. Each of the
26 faces in the database has 128x128 pixels with 8 bits of gray-scale resolution.
The original 256x256 images obtained from Dr. Fellous were reduced to 128x128
pixels, so that the eyes in each image were able to fit into a 10x20 pixel window
in accordance with the photonic signal-shifting chip hardware described in the
previous chapter. This image scaling was accomplished by reducing each 2x2
square block of the original 256x256 image down to a single pixel with an intensity
equal to the average of the 2x2 pixel intensities. The resultant degradation in the
apparent quality of the images was minimal.

Although an attempt was made to obtain the images under controlled illu-
mination and optical imaging conditions, the images were obtained on different
days and times. Thus, significant illumination differences between the faces in
the database are evident. There are also scale differences between some of the
faces; for example, the face of the woman shown in the right-most column and
third row down is noticeably larger than that of the man shown directly beneath
her. Non-idealities such as those shown in the database are unavoidable in most
real-world pattern recognition scenarios. This database is thus a fairly realistic
test of the robustness of our neural model in the presence of real-world distortions

and noise.
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Figure 6.6: Database of faces. Each face is an 8-bit gray-scale, 128x128 image.
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6.3.2 Extraction of training data

A total of 52 examples of eyes (26 faces x 2 eyes/face) were extracted from the face
database, as shown in Fig. 6.7(a). We extracted these images by visually inspect-
ing the images to determine our best estimate for the center of each eye. These 52
eyes were then transformed into the space-variant edge detected (SVED) images
shown in Fig. 6.7(b), using the SVED interconnection weights and hidden-unit
sigmoids described previously in Sec. 6.2. Similarly, a total of 10,400 examples of
“non-eyes” (26 faces x 400 non-eyes/face) were extracted from the face database,
where a non-eye is defined to be a randomly selected 10x20 region of the input
image that is not centered in either of the 5x5 windows surrounding the two eyes.
That is, a non-eye can include a portion of an off-centered eye, but it must be
shifted off center by at least 3 pixels in either the horizontal or vertical direction.
An example set of 400 non-eyes extracted from one face is shown in Fig. 6.8, along
with the corresponding set of 400 SVED versions of these non-eyes.

Comparing the SVED eye images in Fig 6.7 with the SVED non-eye images
in Fig. 6.8, the most striking difference between the two is that there are many
more black pixels in the non-eye images. One reason for this difference is that the
non-eye locations were chosen randomly, and as a result there are many “boring”
images that have a nearly uniform intensity. Furthermore, even when the non-
eyes do have edges, they are randomly oriented with respect to the SVED hidden
layer and therefore only a fraction of them are detected. The eyes, on the other
hand, have many more edges that are oriented such that the SVED hidden-layer
detects them. The fact that the SVED eyes and non-eyes appear to be statistically
separable is quite promising in terms of training the second layer of weights in

Fig. 6.2.



A more detailed viewing of the raw-data and SVED non-eye images also verifies
that the space-variant edge detection layer is indeed sensitive to edge orientation.
For example, in Fig. 6.8 the bottom-left image has an edge in the raw data;
however, no edge appears in the SVED image because it is a northeast edge
located in the southeast portion of the image. Conversely, an edge does appear
in the leftmost SVED image third from the bottom, because in this case the edge
is oriented in the correct direction given its spatial position. For the SVED eye
images, it is a bit more difficult to see the edge detection because of the large
number of edges in such small images. Also, light reflections from the pupil can
cause spurious edges to appear in the center of the eye (e.g., the top pair of SVED

eye images).

6.3.3 Weighted least squares training

Fach of the eye and non-eye images discussed above were transformed into column
vectors by raster scanning the 10x20 images into vectors of length 200. Four sets
of training vectors were obtained: a set of raw-data eye vectors {e; : 1 =1... 52},
a corresponding set of SVED eye vectors {e/; : i = 1...52}, a set of raw-data
non-eye vectors {n; : i = 1...10,400}, and a corresponding set of SVED non-eye
vectors {n’; : i = 1...10,400}. All vectors were augmented with an additional
component with value 1 for biasing [Duda and Hart, 1973], bringing the total
length to 201 components. Only the SVED eye and non-eye vectors were used for
the two-layer neural network training discussed in the remainder of this section;
the raw-data eye and non-eye vectors are discussed later in Sec. 6.4.2.

In order to fully utilize a limited amount of training data, the cross-validation
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Figure 6.7: Extraction of eyes from database: (a) raw data, (b) space-variant edge
detected. Each eye (both raw and edge detected) is a 10x20 image.
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Figure 6.8: Extraction of non-eyes from database; (a) raw data, (b) space-variant
edge detected. Each non-eye (both raw and edge detected) is a 10x20 image. Four
hundred non-eyes were randomly chosen from each image.
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procedure known as “leave-one-out” [Fukunaga, 1990] was employed during train-
ing. This procedure eliminates the need to divide the available data into indepen-
dent training and testing sets. Instead, a different neural network is trained for
each image in the database, where the data from the image being tested is not
used during training (i.e., one image is “left out” during each training session).
In this way, all 26 images in the database can be used for testing, and a different
set of 25 training images is used for each training session.

or each training session, the 50 SVED eye vectors (25 training faces x
2 eyes/face) and 10,000 SVED non-eye vectors (25 training faces x 400 non-

eyes/face) were stacked into a matrix M’ given by

T
€,

T
1 10,000

in which 7' denotes the matrix transpose operation. The second layer of weights
was then determined using a weighted-least-squares solution for w in the expres-

sion

M'w = t, (6.4)

where w is a raster-scanned representation of the second layer of weights and t



is a vector of target values (41 for the eyes, -1 for the non-eyes). The weighted-

least-squares solution of Eq. (6.4) can be expressed as [Mendel, 1987]
W = (M DM')"'M'" Dt, (6.5)

where W is the weighted-least-squares solution for w, and D is an arbitrary diag-
onal weighting matrix used to define the relative importance of each of the com-
ponents in the target vector t. For these eye detection simulations, the weighting
matrix D was employed to compensate for the vast difference between the number
of available eye vectors (50) and the number of available non-eye vectors (10, 000).
As explained in Appendix A, we compensated for this difference by setting the
diagonal elements of D corresponding to the eye vectors (the first 50 rows) equal
to the ratio 10,000/50 = 200 and set the remaining diagonal elements (the final
10,000 rows) equal to 1. This choice for the weighting matrix D leads to the
same solution W that is obtained with the (unweighted) least-squares solution of
Eq. (6.4), provided that each of the eye vectors is replicated 200 times in forming
the matrix M’ and target vector t. Thus, in a sense we equalized the number of

eyes to the number of non-eyes using the D matrix.

6.4 Simulation results

6.4.1 Space-variant edge detection results

Having determined both layers of interconnection weights in the neural network

model of Fig. 6.2, the performance of each of the leave-one-out-trained networks
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was assessed by scrolling the network (as diagrammed in Fig. 6.1) over the com-
plete facial image that was left out during training. These results are shown in
Fig. 6.9, where the output images are arrayed in the same fashion as shown in
Fig. 6.6. When the neural network output is less than or equal to zero (indicating
a non-eye) a black pixel is drawn. For outputs greater than or equal to zero,
a gray-scale pixel is drawn with an intensity proportional to the output value.
(Each image was normalized so that the highest output value in the image corre-
sponds to a maximally bright pixel.) Defining a “false positive” as a pixel that
has an intensity greater than 0 and is outside of the 5x5 regions centered at the
two eyes, the SVED neural network yielded a very low false-positive rate of 0.73%
[false-positive rate = (# false positives)/(# pixels in output image outside of the
5x5 eye regions)] . At the same time, there was only 1 “false negative” out of 52
eyes (= 2%), where a false negative is defined as a case in which all 5x5 pixels are
black in the region surrounding an eye. Note that the 5x5 regions used in these
performance definitions correspond to the definition for a non-eye that we used
during training.

In order to find the two most likely positions of the eyes in each image, a digital
post-processing algorithm was employed. The algorithm uses a priori information
specific to the eye detection problem. In particular, the estimated locations of the
two eyes are constrained to be within a certain horizontal and vertical distance
from each other. These horizontal and vertical distance constraints were deter-
mined by inspection of the training data. In the horizontal direction, it was found
that the distance between the two eyes could be loosely bounded by the range
|Az|min = 20 and |Az|mee = 40. In the vertical direction, the distance was

bounded from above by |Ay|mar = 3. These bounds describe the two rectangular
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Figure 6.9: SVED neural network output (no post-processing).
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Figure 6.10: Two rectangular search regions for the second eye. The origin rep-
resents a candidate eye location; the two shaded regions are searched for the best
candidate matching eye location.

regions shown in Fig. 6.10. The relatively large variation in the horizontal direc-
tion was necessary because of the significant differences in scale between some of
the images, while the vertical bound could be much tighter because head rotation
was not as significant an issue.

The post-processing algorithm is described by the following steps. First, the 10
brightest pixels in a given output image serve as a set of candidate eye locations.
For each of these 10 candidate eye locations, the brightest pixel among those
in either of the two rectangular regions defined above serves as the most likely
location for the second eye. A set of 10 scores is thus obtained, where the score
for a pair of eye locations is the average of the two candidate pixel intensities.
The pair of candidate eye locations with the highest score is the final output of
the post-processing algorithm.

Fig. 6.11 shows the results of applying the post-processing algorithm to the
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output images given in Fig. 6.9. In the figure, an estimated eye location is drawn
as a 5xH block of pixels, corresponding to the goal of locating the center of an
eye within an accuracy of a 5x5 window. If the estimated eye location is indeed
within the stated 5x5 window, then the block of pixels is drawn in white; otherwise,
the block of pixels is drawn in black. The overall performance of the two-layer
neural network and post-processing algorithm is quite impressive: out of a total
of 52 eyes tested, there are only 2 errors, yielding a post-processed error rate
of &~ 4%. It should be noted that after post-processing, there is no longer a
distinction between false-positive and false-negative errors as there was in the
previous discussion; post-processing of an image always results in two estimated
eye locations, of which there are either 0, 1, or 2 errors.

The total computation time was approximately 20 seconds per image on a
SPARC 10 workstation. (This is feed-forward processing time, not the time re-
quired for training the neural network.) Out of this 20 seconds, greater than 19
seconds was occupied by the multiplications, additions, and sigmoid calculations
required by the feed-forward neural network processing. Less than 1 second was
occupied by the digital post-processing algorithm. (Exact times were not mea-
sured.) Thus, the computationally intensive processing is well suited to parallel
optical computations that can be performed by 3-D PMCM neural-network hard-
ware, while the post-processing algorithm can be readily handled by conventional
electronic hardware.

Comparing these detection results to those reported in the literature, the re-
cent work from Hagelin & Hewitt at the University of Dundee (UK)
[Hegelin and Hewit, 1994] is the most relevant. Their goal was also to find the

eves in an image of a face using a neural network that scrolls over the input image.
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Figure 6.11: Post-processed SVED neural network output. A white square indi-
cates a correct eye location (within a 5x5 window of actual center), a black square
indicates an incorrect eye location. Post-processed error rate: 2/52 =~ 4%.
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They trained a radial basis function neural network using an extension of the re-
stricted coulomb energy (RCE) [Reilly et al., 1982] [Debenham and Garth, 1992]
learning algorithm. In their first experiments, the facial images of real subjects
were taken under varying ambient lighting conditions and camera aperture set-
tings (as were the images used in our database). The authors reported that the
results were not satisfactory, although no quantitative measure of performance was
given. To overcome this problem, they then used digitized student photographs
(presumably taken by a professional photographer) as their training and testing
database. Under these more controlled conditions, the authors reported an error
rate of 2.5% (with the same 5x5 region definition of “error” that we used) using
20 training images and 40 testing images. The processing time was 10 seconds
per image on a 486DX personal computer, although the authors claim that this

time could be reduced to 0.12 seconds with a TMS320C30 DSP chip.

6.4.2 Single-layer network results

It is also useful to compare the eye detection performance of the SVED two-layer
neural network model to that of a simpler single-layer network. This comparison
is an important one to make, because a single-layer network is significantly easier
to implement in real-time using standard digital electronic hardware (e.g., a DSP
chip). Fig. 6.12 diagrams a single-layer network model. It is a fully linear model
with 10x20 raw-data inputs and one output unit. A performance comparison
between the two models helps to quantify the relative importance of the compu-
tationally demanding space-variant edge detection layer present in the two-layer
neural network model.

The single layer of weights was trained in a fashion very similar to that used
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Figure 6.12: Single-layer network model. Input to network is raw gray-scale image
data.

for the second layer of the two-layer network. Referring to Sec. 6.3.3, the only
difference was that rather than using the SVED matrix M’, which was formed by
stacking the SVED eye and non-eye vectors {e’} and {n’}, the raw data matrix M
(formed by stacking the {e} and {n} vectors) was used to determine the unknown
weight vector w in Eq. (6.5). The diagonal weighting matrix D and target vector
t were the same for both models. Once again, the leave-one-out cross-validation
method was used in order to avoid dividing the available data into training and
test sets, yielding a total of 26 single-layer weight vector solutions.

Using the resultant set of single-layer weight vector solutions, each network
was scrolled over the image that was left out during training. The output images
are shown in Ilig. 6.13. As shown in the figure, the single-layer network did solve
the eye detection problem to a certain extent, but the performance was not as
good as it was for the SVED neural network case. In particular, the performance

on the faces with glasses was poor, and the single-layer network was not as able
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to suppress spurious detections caused by hair line edges.

In order to adequately compare the single-layer and SVED neural network
outputs (before post-processing) shown in Figs. 6.13 and 6.9, a quantitative mea-
sure is needed to determine how well the neural networks have separated the eye
locations from the many non-eye locations. A reasonable quantitative measure
would be a comparison between the false-positive and false-negative error rates
associated with each of the networks. Using this performance measure, the single-
layer network yielded approximately twice the number of false positives (1.4%) as
did the SVED neural network (0.72%), while both models yielded the same num-
ber of false negatives (1 eye). Although this measure does correctly indicate that
the SVED neural network had superior performance, the difference between the
two models is underestimated because the relative intensities of the false-positive
pixels (compared to the intensities in the 5x5 regions surrounding the correct eye
locations) have been ignored in the comparison.

A better quantitative measure of the separation between eyes and non-eyes is
described by the following: find the maximum pixel intensity for each of the two
5x5 eye regions, use the lesser of the two maxima as a threshold, and then count
the number of “significant false-positive” pixels that have an intensity greater
than the threshold. In this way, the comparatively weak false positives, which
can be filtered out by a reasonable post-processing algorithm, are ignored in the
performance measure. Using this revised performance measure, the total number
of significant false positives, averaged over all 26 images, was approximately 1.7
pixels for the SVED neural network compared to 10.0 pixels for the single-layer
network. This factor of ~ 6 differentiating the two networks is supported by

the post-processed results shown in Fig. 6.14. As shown in the figure, when
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Figure 6.13: Single-layer neural network output (no post-processing).
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the post-processing algorithm described previously is applied to the single-layer
output images, the post-processed error rate is &~ 27% compared to &~ 4% for the
SVED neural network output images. In terms of computation time on a SPARC
10 workstation, as expected the single-layer network required much less time to
detect the eyes: including post-processing, the single layer network took less than

1 second, compared to approximately 20 seconds for the SVED neural network.

6.5 Binary image eye detection

The simulation results presented above have assumed that the scrolling neural
network used for eye detection has a 2-D analog input plane. That is, the CCD-
version of the photonic signal-shifting chip described in the previous chapter has
been assumed. A valid question is then, how much will the performance degrade
if the binary signal-shifting chip described in the previous chapter is used instead?
Clearly one would expect there to be some degradation, given that the amount
of image information present at the input plane has been drastically reduced. In
the remainder of this section, we will quantify the performance degradation by
repeating the SVED and single-layer neural network eye detection simulations for
the case of binary faces rather than gray-scale faces.

The original gray-scale face database was transformed into a binary face
database by setting the pixel intensity threshold equal to an empirically deter-
mined fraction of the mean pixel intensity; it was empirically determined that a
reasonable fraction is 68%. That is, if the intensity of a pixel is greater than or
equal to 68% of the average pixel intensity over the entire face, then the pixel is

set to “white”; otherwise, the pixel is set to “black”. The resultant binary images
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Figure 6.14: Post-processed single-layer network output. A white square indicates
a correct eye location (within a 5x5 window of actual center), a black square
indicates an incorrect eye location. Post-processed error rate: 14/52 ~ 27%
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are shown in Iig. 6.15. Due to the significant illumination differences between the
original gray-scale images, as well as differences in skin complexion, hair color,
and amount of hair, some of the binarized images are inadequate representations
of the original gray-scale images. For instance, the eyes are not clearly visible in
the image found in the fourth row down and second column from the right. It
is possible that a more sophisticated thresholding technique (for example, basing
the threshold on the gray-scale pixel intensity histogram of the original image
[Debenham and Garth, 1992]) will yield better performance.

Following the same procedure described previously, 2 eyes and 400 non-eyes
were extracted from each image in the binary database. These eyes and non-
eyes were then transformed into the SVED eyes and non-eyes that were used for
training the second layer of weights. Figs. 6.16 and 6.17 show the binary training
data, before and after space-variant edge detection. For the binary case, we
increased the empirically chosen normalization constant in Eq. (6.2) from K = 10
to ' = 50, in order to compensate for the increased brightness of the binary
images.

Training the second layer with the extracted SVED eyes and SVED non-eyes,
and then scrolling over each of the binary faces using the leave-one-out tech-
nique, yielded the direct neural-network output results shown in Fig. 6.18. Post-
processing these direct output images resulted in a post-processed error rate of
46%. (The post-processed images are not shown because the black and white
squares that indicate the estimated eye locations are not easily visible when over-
layed on binary images.) Clearly, there is a noticeable degradation in performance
when the binary images are used as input, as the post-processed error rate in-

creases by an order of magnitude. The single-layer network performance using
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Table 6.1: Summary of eye-detection results

Performance measure Gray-scale Binary
SVED Single-layer | SVED  Single-layer
False-positive rate | 0.72% 1.4% 1.8% 1.6%
False negatives (# eyes) | 1 1 1 2
Sig. false positives (# pixels/image) | 1.7 10.0 24.8 22.9
Post-processed error rate | 4% 27% 46% 46%
Total processing time (sec.) | =20 <1 ~20 <1

binary input images was the same as the above SVED results: the post-processed

error rate is 46%

6.6 Summary of results and discussion

Table 6.1 summarizes the results presented in this chapter. The basic conclusion to
be drawn is that space-variant edge detection is a time consuming pre-processing
operation when implemented on a digital computer, but it yields impressive de-
tection results for gray-scale images. The number of significant false positives
and the post-processed error rate decreased by a factor of 6 in comparison to
the single-layer network case. The use of 3-D PMCM neural-network hardware
potentially allows this computationally intensive algorithm to be implemented in
real time, in an optoelectronic module with a volume on the order of tens of cubic
millimeters (see previous chapter for details).

The table also shows, however, that the binary-image results were signifi-
cantly inferior to the gray-scale results. One conclusion to be drawn is that it
makes sense to pursue development of the CCD-version of the photonic signal-

shifting chip discussed in the previous chapter. Another approach is to use the
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Figure 6.17: Extraction of non-eyes from binary database; (a) raw binary data,
(b) space-variant edge detected. Each non-eye (both raw and edge detected) is a
10x20 image. Four hundred non-eyes were randomly chosen from each image.

174



Figure 6.18: SVED neural network output (binary images, no post-processing).



binary photonic signal-shifting chip, but develop more sophisticated methods of
image binarization, such as half-toning (e.g., [Knuth, 1987]) or histogram-based
techniques [Debenham and Garth, 1992].

For future work, it would be interesting to experiment with more general
types of space variant pre-processing. In this dissertation we concentrated on
space variant edge detection, but the pre-processing could also be based on a
wavelet or Fourier decomposition, for example. These alternatives may make the
object detection system more general than the “concentric rectangle” assumption

inherent to the space-variant edge detection layer used in our system.
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Chapter 7

Conclusions

This dissertation has discussed three classes of photonic neural-network mod-
els: (1) photonic neural networks based upon probability density estimation, (2)
photorefractive neural-network models, and (3) vertically stacked photonic neu-
ral networks that utilize hybridized CMOS/GaAs chips and diffractive optical
elements. In each case, we showed how previously developed neural-network
learning algorithms and/or architectures must be adapted in order to allow an
efficient photonic implementation. For class (1), we showed that conventional “k-
Nearest Neighbors” (k-NN) density estimation is not suitable for an analog pho-
tonic neural-network hardware implementation, and we introduced a new density
estimation algorithm called “Continuous k-Nearest Neighbors” (C-kNN) that is
suitable. For class (2), we showed that the diffraction-efficiency decay inherent to
photorefractive grating formation adversely affects outer-product neural-network
learning algorithms, and we introduced a gain and exposure scheduling technique
that resolves the incompatibility. For class (3), the use of compact diffractive

optical interconnections constrains the corresponding neural-network weights to
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be fixed and locally connected. We introduced a 3-D Photonic Multichip-Module
(3-D PMCM) neural-network architecture that utilizes a fixed diffractive optical
layer in conjunction with a programmable electronic layer, to obtain a multi-layer
neural network capable of real-time pattern recognition tasks such as locating the
eyes in an image of a human face.

In the discussion of class (1), we first introduced the C-kNN density estima-
tion algorithm from an analytical viewpoint. A proof of statistical consistency
for the new algorithm was given, along with empirical simulation results that
suggest performance improvements in comparison to the conventional k-NN and
Parzen Windows techniques. The remainder of Chapter 2 focused on neural net-
work implementations and applications for C-kNN density estimation. Radial Ba-
sis Function (RBF) architectures were presented for C-kNN density estimation,
Bayesian pattern classification, and nonparametric regression applications. Em-
pirical simulation results showed better pattern classification performance when
the density estimate was based on C-kNN than when the density estimate was
based on Parzen Windows (the difference in performance was not statistically sig-
nificant when compared to k-NN). As a potentially useful extension of this work,
we suggested that it was possible to apply the C-kNN concept to a more general
class of RBF neural networks; standard clustering algorithms could be used to de-
termine the first layer of weights, but the basic concept of the kernel width being
dependent on the input through a feedback mechanism could still be applied.

The discussion of class (1) continued in the next chapter, with the presentation
of photonic architectures for neural networks based upon probability density es-

timation. Volume and planar holographic architectures for RBF neural-network
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implementations of probability density estimation, Bayesian pattern classifica-
tion, and nonparametric regression were presented. Photonic architectures for
both C-kNN and Parzen Windows techniques were given, including a derivation
of the relationship between Spatial Light Modulator (SLM) gain and estimation
kernel width. These photonic architectures allow the computation of all the re-
quired square-distance calculations in parallel, thereby allowing the possibility of
real-time pattern classification even when the training set is large.

The next chapter presented an analysis of neural-network class (2). We derived
a gain and exposure scheduling technique that compensates for photorefractive
diffraction-efficiency decay when applied to outer-product neural-network learn-
ing algorithms. Equations that map the photorefractive grating update equations
into neural-network weight updates were presented, along with empirical simu-
lation results which verify that our method works correctly when applied to the
Exclusive-OR (XOR) problem. It was shown that the method applies to both
Single-Coherent-Source (SCS) and Incoherent/Coherent (I/C) optical representa-
tions.

The final two technical chapters of this dissertation discussed neural-network
class (3). The 3-D PMCM neural-network hardware architecture was presented
first. In the hardware architecture chapter, we presented the VLSI design, com-
puter simulation results, and electrical test results for the “photonic signal-shifting
chip” that provides a scrolling-window input to the neural-network processor.
Derivations for the mapping between neural-network signals and 3-D PMCM op-
tical representations were given. The 3-D PMCM diffractive optical intercon-
nections system was also discussed. We presented examples of fabricated micro-

diffractive optical elements designed for neural-network edge detection, and we
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derived optical imaging system constraints which showed that the 3-D PMCM
optical components can be stacked compactly. Several potential extensions of
this work were discussed, including the use of Vertical Cavity Surface Emitting
Laser (VCSEL) arrays in place of the optical power bus/optical modulator com-
bination, as well as the design of a CCD-version of the photonic signal-shifting
chip to allow a gray-scale input plane.

In the last technical chapter of this dissertation, a two-layer neural network
that is consistent with the 3-D PMCM hardware architecture was simulated for
the application of detecting the positions of the two eyes in an image of a hu-
man face. Space-variant edge detection, which requires only local neural-network
connectivity, was shown to be a useful pre-processing stage for eye detection.
Simulation results on a database of real facial images showed significant perfor-
mance improvements compared to a simpler single-layer network. We showed that
the two-layer neural-network algorithm is computationally intensive when imple-
mented on a digital computer: it took over 20 seconds to process a single image
using a SPARC 10 workstation, while the 3-D PMCM neural network can poten-
tially process the images in real time (1/30 second per image). As potential future
work, we discussed the possibility of using the diffractive optical interconnection

layer to implement a more general wavelet or Fourier decomposition.
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Appendix A

Interpretation of the
weighted-least-squares diagonal
matrix

In Sec. 6.3.3, the weighted-least-squares expression [Mendel, 1987]
w = (M"DM')"'M'"Dt, (A.1)

given a diagonal weighting matrix D, was introduced as the solution for the linear

set of equations

M'w = t. (A.2)

A useful interpretation of the D matrix is derived in this appendix.
The weighted-least-squares solution given in Eq. (A.1) minimizes the weighted-

squared-error J [Mendel, 1987], where J is defined according to

J(w) = (t —t)"D(t - ), (A.3)



in which the estimated output f is given by
t = M'w. (A4)
Because D is a diagonal matrix, iq. (A.3) can be rewritten in the form

J(W) =" di(ti — 1)?, (A.5)

=1

where the weighting element d; corresponds to component 7 of the error (t; — {;),
and N is the dimensionality of the target vector t. In the following, we assume
that {d;} are integers.

One way to interpret the D matrix is to note that Eq. (A.1) is equivalent to

the unweighted least-squares solution
W = (Mr(new)TMr{new))—le(new)Tt{ncw}’ (AG)

in which M/®™e%) and t(%) are defined by replicating each row 7 in M’ and t
into d; identical rows. In so doing, the dimensionalities of M"("¢W) and t/("eW)
grow to size ; d;. The equivalence of Eq. (A.6) and Eq. (A.1) is shown by noting
that Eq. (A.6) solves for the weight vector W that minimizes the unweighted

least-squares error,

(Z, dy)
J[ncw}[w) — Z (tt(_'new] . tgnew))zl (AT)
i=1

However, J("*)(%) must be equal to J(W), because the d; repeated additions

of replicated squared-error (tEnew) - EE“‘“”))? in Eq. (A.7) has the same effect as
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the multiplicative factor d; in Eq. (A.5). Therefore, the solution W that mini-
mizes [q. (A.5) will be identical to that which minimizes Eq. (A.7), and likewise

Eq. (A.1) yields the same solution as q. (A.6).
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Appendix B

I/C weight update convergence
proof

The neural interconnection weight update for the 1/C architecture is given by

wip(n 4+ 1) = wy(n) + (e*/4)8:(n + Dak(n + 1)

+ «a (\/5‘7"(31 + wik(n) — \/(Hn - l)w.‘_k(”)) \/:m_.(n. +1), (B.1)

in which &F is the positive component of &; [§ = (1/2)(d; + |&])] and &7 is
the negative component of §; [67 = (1/2)(6; — |&:])]. The two unipolar weight
components w} and w, are related to the bipolar weight w;; through the relation

w;, = wh — wi. Clearly, Eq. (B.1) is not equivalent to the usual outer-product

neural update given by

wir(n + 1) = wik(n) + adi(n + Dak(n + 1). (B.2)

[t might seem surprising, therefore, that gradient descent neural network algo-
rithms that were designed to converge using Eq. (B.2) will still converge using

Eq. (B.1).
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Gradient descent algorithms will still converge using Eq. (B.1) because the
sign of the weight-change (wix(n + 1) — wik(n)) is the same as that given by the
standard outer-product rule of Eq. (B.2). The sign of the [/C weight-change
shown in Eq. (B.1) is equal to the sign of §;(n + 1), because the input signals
xi(n + 1) are assumed to be positive, as are the unipolar weight components
wh(n) and wj,(n). Similarly, the sign of the standard weight-change shown in
Eq. (B.2) is also equal to the sign of d;(n + 1).

The fact that both the weight-changes have the same sign is important for
the following reason. All gradient descent neural network algorithms seek to

minimize an error function by altering the interconnection weights. The change

in error function J given a set of weight-changes {w;..} is approximately equal to

aJ
AJ = %: Aw,-k Bw,-k’ (33)

in which small weight updates are assumed. The above equation shows that
when the weight updates are chosen to be in a direction opposite to the error
gradient (i.e. gradient descent) the decrease in error is maximized. However,
it is not necessary to implement a true gradient descent in order to guarantee
network convergence. It is only necessary to show that the sign of the RHS of
Eq. (B.3) is negative at each iteration. If the sign of Aw;; is the same as that

3

of the gradient descent weight-change —8f;:k, then Eq.(B.3) shows that AJ must

be negative. Therefore, if the standard update given by Eq. (B.2) implements a
gradient descent of any error function J, then any other update rule that yields
weight-changes of the same sign will always decrease J (but the decrease will not

be in the optimal gradient descent direction). This implies that the I/C weight
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update must decrease the network error at each iteration, because the sign of
the weight-change given in Eq. (B.1) is the same as that of the gradient descent

weight-change given in Eq. (B.2).
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Appendix C

Proportional control for C-kININ
feedback

An analog proportional controller [Kailath, 1980] can be used to determine
the kernel width h,(x) for an RBF neural network implementation of C-kNN
density estimation, under the constraint that the restricted kernel function ¢,(-)

is a monotonically decreasing function of its input argument:
o (p) <0 Vp>0. (C.1)

We prove the above assertion as follows.
For the C-kNN density estimation application, a proportional controller can
be defined by the equation (see Fig. 2.6),

dhn(x) "

L2 = ok - S0, (C:2)

where

n (x— ()
Sx) =3¢ ( el ) (C.3)

i=1

and «a is a positive constant. Convergence to the correct kernel width is shown
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using a Lyapunov error function defined by
J =[S(x) — k). (C.4)

Taking the time-derivative of Eq. (C.4) yields

dJ —t0) ; GHE“(X) ;
= = 2[S(x) - K] [zqs ( )] (—ha(x)?) (T) (C.5)

ha(X)

Substitution of Eq. (C.2) into Eq. (C.5), while noting that the summation term
in Eq. (C.5) is negative due to Eq. (C.1) and that h,(x) is always positive, shows
that ‘fi—f is a negative quantity. Therefore, because J is non-negative by definition,
the steady state solution to Egs. (C.2) and (C.3) must satisfy the constraint

S(x) = kO .
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Appendix D

Equivalence of voting C-kNN
and volumetric C-kNN
classification rules

For the N = 2 case, the voting C-kNN rule using parameter () is equivalent
to the volumetric C-kNN rule using parameter £(®)/2, when ¢(x) is continuous.
This relationship is proved as follows. We assume without loss of generality that
the voting C-kNN rule chooses class w,; for a given input vector x and smoothing
parameter £(°), and we show that the volumetric C-kNN rule will also choose
class w; when smoothing parameter k(%) /2 is used.

If the voting rule chooses wy, then by definition Z(w|x) > Z(w2|x). Using

Eq. (2.28), it is clear that the relations

Z(wi|x) > k)2 (D.1)

Z(walx) < k{O/2 (D.2)

must hold. If the value of h,(x) determined by the voting rule in Eq. (2.28) is
denoted hAyote, and the two values of h,(x) obtained for the volumetric rule using

smoothing parameter kf,c)/‘z are denoted h, (for class w;) and hy (for class w,),
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then it must be true that A; < hyote and hy > hype. This is because the RHS
of Eq. (2.27) is identical to the LHS of Eq. (2.26). During the volumetric C-
kNN procedure, if the kernel width starts out as h,(x) = hyote, then hy,(x) must
decrease from its initial value to arrive at its final value h; because the LHS of
Iiq. (2.26) applied to class wy is larger than k{9 /2, due to Eq. (D.1). Similarly, for
class ws, h,(x) must increase from hyoee to its final value hy. Therefore, hy < ho,

and the volumetric C-kNN classification rule also chooses class w; 0.
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Appendix E

Effect of substrate thickness
and /or wavelength on optical
wavefront propagation

When designing diffractive optical elements (DOE’s) for complicated optical
systems, it is frequently useful to neglect the thickness and refractive index of the
DOE substrate(s), and to assume a known wavelength of operation. In the actual
optical system, however, substrate thicknesses may have a significant effect on the
propagation of the optical wavefront, and it also may be necessary to alter the
operating wavelength. This appendix describes a simple method that allows an
optical engineer to design diffractive elements such as microlenses, microDOE’s,
or apertures without needing to fix the wavelength and/or substrate thicknesses
before specifying the required transmittance functions.

An example of a simplified diffractive optical system in which the substrate
is ignored is given in Fig. E.1 (a). In the figure, a diffractive microlens that
was designed to operate at wavelength A is shown. (It should be noted that
the following derivation applies to all diffractive optical elements, not just to
microlenses.) A planar wavefront is transformed by the thin diffractive element

into a converging beam with complex amplitude u(z; z = 0) at the plane z = 0.
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Figure E.1: Compensation for changes in refractive index and wavelength. In
part (a), a thin DOE with no substrate is assumed. In part (b), the wavelength
is altered and a finite substrate is present.

After propagating a distance d through free space, the complex amplitude becomes
u(z; z = d).

In Fig. E.1 (b), the operating wavelength has been changed to A, and a sub-
strate with thickness ¢’ with an index of refraction equal to n is present. In the
following, we show that the same microlens design used for Fig. E.1 (a) can be
applied to the new optical system, under the condition that the propagation dis-
tance and etch depth are properly chosen. If a new spacing d' and a new etch

depth are chosen such that

w(z;z=d 4+ 1) = ulz;z = d), (E.1)



in which u' is the new complex amplitude and ¢’ represents the substrate thickness,
then the final complex amplitude of the optical wavefront shown in part (b) is
the same as that originally designed for the simpler system shown in part (a).
The optical wavefront will then propagate to any subsequent components in the
optical system as originally designed.

The propagation of an optical wavefront through free space [part (a) of the

figure] can be expressed in the Fourier domain as [Goodman, 1996]

U(f;z =d) =U(f;z = 0)exp[—jm f2\d], (E.2)

in which U(f;z) is the Fourier transform of u(z;z), j is /=1, and a constant
phase factor that does not influence wavefront propagation has been ignored.
This expression represents the Fresnel approximation to free-space propagation,
and therefore it only applies in the paraxial limit [Goodman, 1996]. The two
wavefront propagations shown in part (b) of the figure can be combined using the

expression

Uf;z=t'+d)=U'(f;z=0)exp[—jaf2(Nt'/n + Nd')]. (E.3)

If the Fourier-space equality U'(f;z = t' +d') = U(f;z = d) is satisfied,
then the spatial-domain equality given in Eq. (E.1) must also be satisfied. A
comparison between Eqs. (E.2) and (E.3) shows that the distance d’ should be

chosen such that

Nt [n + Nd' = M, (E.4)
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or

& = (MN)d —t'/n. (E.5)

A comparison between Eqgs. (E.2) and (E.3) also shows that the Fourier-domain

equality U'(f;2z = 0) = U(f; z = 0) must be satisfied, or, equivalently,

t'(zie=0)=u(dz =0). (E.6)

This equality between the two complex amplitudes will be satisfied if the phase-
only transmittance functions for the two microlenses are the same. Because the
phase-only transmittance function of a diffractive element is proportional to the
ratio between its point-wise thickness and the wavelength of operation, Eq. (1£.6)
is satisfied if the etch depth for the system shown in part (b) is scaled by the
wavelength ratio A’/A.

To summarize, diffractive optical elements can be designed without needing to
fix the substrate thickness and/or wavelength of operation a priori. Provided that
the spacing between optical components is adjusted according to Eq. (E.4), and
the etch depth is scaled in proportion to the ratio between the new and original
wavelengths, the DOE design is independent of any changes in substrate thickness

and/or wavelength.
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