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Chapter 1

Introduction to Array Signal
Processing and Higher-Order
Statistics

The goal of array signal processing is to extract certain parameters or waveforms
of signal sources of interest from the spatial and temporal information obtained
by sampling the signal field via an array of sensors that are placed at different
locations in the signal environment. Some of the source parameters which are of
interest are directions of arrival (DOAs), time delay differences, ranges, velocities,
and polarizations.

Typical application areas of array signal processing are communications, radar,
sonar, medical imaging, radio astronomy and exploration seismology.

In communications, using antenna arrays offers selectivity and spatial diver-
sity which are useful for combating multiuser interference, fading and multipath
propagation. To combat multiuser interference, arrays can be employed to steer
the receiver antenna response in the direction of one group of users at a time while
rejecting the interference from other users. Using multiple antennas offers spatial
diversity which can be used to mitigate the effect of fading; signals received by
antennas which are spatially separated can be combined as they may fade inde-
pendently. As shown in this thesis, multipaths can be combined using an array of

antennas. Arrays are also used for blind separation of communication signals by



exploiting certain features of the signals.

In radar, a transmitting antenna radiates electromagnetic waves to probe the
surrounding field, and a receiving antenna array listens for the echoes from targets
in the field. The received echoes are processed to estimate parameters such as
DOAs, ranges and velocities of the targets.

Sonar is similar to radar in principle. The receiving array consists of pressure
sensitive transducers called hydrophones, and may be towed under water. The
received echoes are used for estimating the target parameters. Radar and sonar
can operate in passive, listening as well as active mode.

In medical imaging, cross-sectional images of objects are obtained by pro-
cessing the array data collected from either transmission or reflection of a signal
scanning the object.

In radio astronomy, antenna arrays are employed to record radio emissions
from celestial objects. These emissions carry various information about the struc-
ture of the celestial objects.

In exploration seismology, an acoustic signal is sent to the interior of the earth
and the reflected signal received at the surface by an array of sensors known as
geophones is recorded. This signal is used for imaging of an interior region.

The conventional approach to solving array processing problems is to use the
first- and second-order statistics of the measurements. In this thesis, the emphasis
is on the advantages of using higher-order statistics (cumulants) in addition to
first- and second order statistics of the signals for array signal processing.

In the next section, the physics of the array signal processing problem is in-
troduced. Higher-order statistics are reviewed in Section 1.2. Then, an overview

of the thesis is presented in Section 1.3.

1.1 Physics of Array Signal Processing

The problems of interest in array signal processing are estimation of parameters
and recovery of the signal sources given the measurement samples. For this pur-

pose, an array of sensors is used to collect measurements in the field of disturbance

(8]



created by the signal sources. The type of disturbance may be either electromag-
netic or acoustic, depending on the application. Then, the collected measurements
are processed suitably to yield the desired signals and their parameters.

Signal emitters are in general point sources which produce traveling waves
whose amplitudes at a point in space are inversely proportional to the distance
to the respective sources. Therefore, the amplitude and phase of a traveling wave
at any two points lying on the surface of a sphere are equal; hence, the set of all
points lying on a sphere centered at the location of the source is called a wavefront.
If the distance of the source to the sensor array is so large that the sphericity of
the wavefront can be neglected, and the wavefront can be assumed a plane wave.
This assumption is called the far-field assumption.

Before starting any formulation, we first introduce the notation which will
be used throughout the thesis. Lower-case boldface letters represent vectors:
upper-case boldface letters represent matrices; and, lower and upper-case letters
represent scalars. The symbol “*” is used for conjugation operation, and the

t “#” is used to denote complex conjugate transpose.

superscrip

Consider the scenario in Figure 1.1. In this scenario, the antenna array
is a two dimensional one having M elements. There are P far-field sources
{s1(¢),---,sp(t)}. Suppose that the directions of arrival of the signals are {6,
--+, 0p}. In narrowband communication applications, source signal is typically a

sinusoidal carrier modulated by a message signal, as
5(t) = a(t) cos(j2m £t + (1)) (1.1)

in which f. is the carrier frequency, and the message signal m(t) = a(t)exp(j(t))
which has a bandwidth much less than the carrier frequency (i.e., the message
signal is slowly-varying as compared to the carrier signal).

In the array processing literature, it is conventional to use the analytic signal

representations. Using this convention
5(t) = Re{s(t)} (1.2)

where s(t) = a(t) exp(¢(t)) exp(j27 f.t) is the analytical signal.
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Figure 1.1: An M element antenna array and P sources

From the plane wave assumption, it follows that received signals by different
sensors due to a single source are scaled and delayed replicas of that source. Let
the response of the mth antenna to a signal from direction @ be 9gm(0). Then,
the (analytical) signal received by the mth antenna is a superposition of the

contributions from each source

P
rm(t) = ng(gp)sp(t = Tm(0p)) + nm () (1.3)

p=1
where 7,,(0,) is the time delay of the pth signal at the mth sensor, and is given
by 7 (6,) = d,d,, in which ap is called the slowness vector of the pth signal, with
|| = 1/c where ¢ is the speed of propagation of the signal. The term n,(¢) in
(1.3) represents the sensor noise which accounts for any phenomenon that can not
be modeled by our assumptions.
Another common assumption in array signal processing is narrowband opera-
tion. According to this assumption, the message part of the signal does not change
significantly during the time it takes for a wavefront to travel through the aper-

ture of the array. Consequently, a,(t —7,,(6,)) ~ ap(t) and ¢p(t — 7 (0,)) = b,(t)



forp=1,---,Pand m = l,.+-, M, and, therefore

$p(t—=7m(0p)) = a,(2) exp(¢,(t)) exp(727 fo(t—Tm(0,))) = sp(t) exp( =27 [T (0))
(1.4)
From (1.3) and (1.4), it follows that

P
Tmll)= ng(é'p)exp(—j:?;rfcrm(ﬁp)sp(t) +0n(t) m=1,---.M (1.5)
p=1
Introducing M-vector r(t) £ [r1(t), ra(2), - - -, ras(t)]7, a(0) 2 [91(0)e=727Lem1(8)

o gM(0)eTHEIMONT 5(1) £ [51(t), -+, sp(&)]F, and n(t) = [ny(t), - - SOV

we obtain the fundamental array processing measurement equation

M~

r(t) = ) a(0,)s,(t) + n(t) = As(t) + n(t) (1.6)

1

p

where A 2 [a(6,),---,a(0p)]. The M-vector a(f) and the M x P matrix A are
generally referred to as the steering vector and the steering matriz, respectively.

Steering vector of an array represents the response of the array to an incoming
signal, and it depends on various parameters such as direction of arrival, polariza-
tion, range and frequency of the signals . We refer to the set of steering vectors
by scanning the whole range of source parameters as the array manifold.

An important assumption in array processing is the non ambiguity condition
which requires any set of P (P < M) steering vectors be linearly independent.
Under this assumption, A has rank P.

The additive noise is generally assumed to be a complex and circularly symmet-
ric stationary Gaussian random process with statistically independent components

which have identical variance, and
E{n(t)} =0, Efn(t)n(1)} = oI (L.7)

The source signals are modeled as either deterministic or non-Gaussian random
processes; however, for analysis purposes such as deriving Cramer-Rao bounds, it

is common to assume the sources as independent Gaussian random processes.



1.2 A Review of Higher-Order Statistics

In this section, we first present a definiton of higher-order statistics. Then, the
properties of higher-order statistics are reviewed. This section is intended to be
a brief introduction to the area. The interested reader is referred to the tutorial

papers [47, 51] and to the books [64, 50, 3] for a detailed treatment of the topic.

1.2.1 Definition of Cumulants

The joint cumulants of order r = ki+ko+-- 4k, ofa given set of real random

variables {zy, ;- 2,} are defined [51] as
A T In®(wy,. .. w,)
Chy kg ook = (_.?) Ak ... Oookn N (18)
where
D(wy,...,wn) = E{expj(wiz; + - - - + Wy} (1.9)
is the joint characteristics function of {z1,22,-++,2,}. The joint moments of the
same set of real variables are defined as
A 00wy, w,)
ook = (—7)" 1.10
TTeky kg e i ( .7) Owkr ... Jookn e =0 ( 1 )

The joint cumulants can therefore be expressed in terms of the joint moments of
the same random variables. Formulas for calculation of cumulants from moments
and vice versa are is provided in [47]. Here we present the calculation of second-
, third- and fourth-order cumulants in terms of moments as these are the only
statistics used in the thesis. For zero-mean real random variables, the second-,

third- and fourth-order cumulants are calculated from the moments as follows

cum (z1,22) = E{zz,)
cum (zy,z7,23) = E{z2,13)
cum (xy, 3,23, 24) = E{z 22324} — E{z\z,} E{x32,}
—{z123} E{zozs}



—{.’Bl.Tq}E{IQIg} (111)

When the random variables have non-zero means, one replaces z; by z; — E{z;}
in the above formulas.

For complex random variables the above formulas are modified as

cum (z1,23) = E{z a3}
cum (21, q,73) = E{zizoa3)}
cum (21,2, 23, 2;) = E{zaeia}} — E{ziz.} E{z;a3}
—{z123} E{wsa}}
—{z12}} E{z273)} (1.12)

Depending on the application, the arguments of 2 cumulant can be arranged
in different ways. In array signal processing for example, one is often interested in
the spatial information collected by a set of sensors. For this type of applications,
therefore, signals sampled simultaneously from the array sensors are used as the
arguments of various cumulants. On the other hand, in the system identifica-
tion context, temporal information contained in successive samples of the system
output reveal important parameters of the system. In this case, the kth order

cumulant of a stationary random process, z(t) is defined as
Cra(T1,- 0y Thm1) = cum (2(t),2(t+ 1), ..., 2(t + 7e_1). (1.13)

Higher-order spectra are simple extensions of power spectrum. The kth order
polyspectrum of a random process z(t) is defined as the Fourier transform of its

cumulant, and is formulated as follows:

o0

k
Skz(wry.onywim) = Z Crz(T1y. ..y The1) €Xp (—-jzw,-r,‘) . (1.14)

Tlyers Thm] =—00 i=1

In practice, cumulants can be estimated by approximating expectations by



sample averages, e.g.,
- 1 N
Csz(m1,T2) = -fv‘z{r(fn):l)(tn-{-ﬁ)x(fn-f'?g) (1.15)

n=l1

where z(t,) is the sample recorded at time point ¢,, and N is the number of

records.

1.2.2 Properties of Cumulants

Following are some properties of cumulants [47], which will be used frequently in
the thesis:

[CP1] If¢,i=1,...,k are constants, and z;, i = 1,...,k are random variables,
then i
cum (c12y,...,ckaTk) = (H ck) U (8055 Tk) (1.16)
i=1

[CP2] Any permutation of the arguments of a cumulant gives the same cumulant.

[CP3] Cumulants are additive in their arguments, i.e.,
cum (T1 4+ Y1, T2y ..., 23) = cum (21,22, ..,2x) + cum (y1, 22, .. ., %) (1.17)

[CP4] Addition of constants to the arguments of a cumulant does not change the

value of the cumulant, i.e.,
cum (c+ 21, 22,...,2k) = cum (z1,22,...,Tx) (1.18)

[CP5] If the random variables {a;}%, are independent of the random variables
{y:}5,, then

cum (21 +y1, @2 + Yo, .., T + i) = cum (1,22, - .., ) + cum (Y1, Yo, - . ., Y
(1.19)
[CP6] If a subset of the random variables {z:}5, are independent of the rest,
then

eum (21, 23, ooy %p) =0 (1.20)



1.2.3 Applications of Cumulants

Cumulants are advantageous to use over second-order statistics for certain type of
problems. For example, cumulants preserve the phase information, and therefore
they are useful for identification of MA, AR and ARMA non-minimum phase sys-
tems. On the other hand, autocorrelation is unable to convey complete phase in-
formation about non-minimum phase models, and fails to completely characterize
non-Gaussian processes. As another example, higher than second order statistics
of Gaussian signals are zero; hence, this property can be used as an indication
of deviation from Gaussianity. Using higher than second-order statistics offers
also immunity to additive Gaussian noise for non-Gaussian signals with non-zero
cumulant. Note that third-order cumulants of symmetrically distributed signals
(such as uniform, binary symmetric or Bernoulli-Gaussian) are zero; therefore,
fourth-order statistics can be used for these types of signals. As shown in (16], the
"balanced” way of calculating a fourth-order cumulant can be used to increase
the number of signals that can be detected by a given array. Other applications
of cumulants include those in the areas of communications, time series analysis,
geophysics, sonar, radar, oceanography, and speech processing.

The drawback to the use of higher-order statistics is that they require longer

data lengths than do correlation-based methods.

1.3 Overview

In Chapter 2, a comprehensive survey of existing subspace-based (or, high resolu-
tion) approaches to the problem of direction finding with passive antenna arrays
is presented. Both second- and higher-order statistics-based approaches are in-
cluded. Except for the method of Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) [65] and its derivatives, all of these methods re-
quire that the array response is either known analytically as a function of arrival
angle, or is obtained through the calibration of the array. Array calibration is a
very undesirable process, since it requires measurement and storage of the array
response for every possible combination of the source parameters. Moreover, cali-

bration has to be redone frequently; because, the arrayv response may change with
q Y3 3 ) p Y



time due to environmental disturbances. In this respect, ESPRIT has a funda-
mental advantage over the other subspace-based methods. Another advantage of
ESPRIT is its computational simplicity. However, ESPRIT is applicable only to
arrays which are “translationally invariant”, i.e., arrays which consist of a subar-
ray and its identical copy displaced in space. The geometry of the subarray may be
arbitrary as long as its copy exists; only the measurements, and the displacement
between the identical arrays are required. However, there is a major drawback to
implementing ESPRIT arrays in practice: the main subarray and its copy must
be exactly identical; and, any mismatch in the hardware results in performance
degradation. In the cumulant-based processing framework, the method of virtual
ESPRIT [17] (VESPA) has removed the restriction of having to have an identical
copy of the subarray, while retaining the computational advantages of ESPRIT;
instead of two identical subarrays, only a subarray having two sensors that have
identical response is required. The rest of the array may have arbitrary response
and geometry. VESPA is based on the fundamental observation that given an
array of sensors, the directional information which would be obtained from the
cross correlation between certain sensors in the array and nonexisting sensors at
certain virtual locations in space can be obtained from suitably defined cumulants
that use the actual sensor measurements. Both ESPRIT and VESPA are based
on the concept of rotationally invariant subspaces, which is also the basis for the
algorithms developed in this thesis.

In Chapter 3, a subspace-based direction finding method for coherent signal
environments using cumulants is developed. The coherent (or, completely corre-
lated) signals case often arises when multipath propagation or smart jammers are
present. In this case, most of the subspace-based approaches described in Chapter
2, including ESPRIT and VESPA, fail; because, some of the signal eigenvectors
diverge into the noise subspace when some of the received signals are coherent.
The only approach which survives in coherent signal case is the Weighted Sub-
space Fitting (WSF) method; however, WSF has implementational problems,
such as the need for accurate calibration of the array and complete knowledge
of the derivative of the steering vectors with respect to the arrival angle, and a

complicated multidimensional search is required. The spatial smoothing method
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was proposed as a solution to the coherency problem for second-order statistics-
based methods; however, spatial smoothing is limited to uniform linear arrays,
and it reduces the number of resolvable signals. It is shown in Chapter 3 that,
using fourth-order cumulants, direction finding is possible in the case of coherent
signals, with a larger class of arrays than just uniform linear arrays. A uniform
linear subarray is still needed; but, the rest of the array may have arbitrary and
unknown response, and does not require calibration. The solution is based on the
same idea of VESPA. The number of resolvable signals may exceed the number
of sensors with our method. On the other hand, given the same type of an ar-
ray, the number of resolvable signals can not exceed the number of signals with
second-order statistics-based subspace methods even if there is no coherence.

In Chapter 4, we address the blind beamforming problem for coherent sig-
nal environments assuming no knowledge about the array structure or response.
Beamforming is the process of combining the sensor outputs of an array with suit-
able weight vectors such that desired signals are recovered subject to an optimality
criterion. When there are coherent signals, the optimum MVDR beamformer us-
ing spatial array covariance matrix tends to cancel the desired signal and it fails
to perform optimally. A cumulant-based blind beamforming method is developed
in Chapter 4. The method is based on the fact that for a blind beamformer the
presence of coherent multipaths does not make any difference. In other words,
the case of coherent multipath signals is identical to that of statistically indepen-
dent signals with no multipath; because, as shown in Section 4.1, each coherent
multipath from a given source causes only a reparameterization of the steering
vector of that source. Therefore, the developed method is applicable to indepen-
dent sources as well. Since the steering vectors are estimated from the data, in
some sense, the our beamformer is tuned to the data, thereby avoiding sensitivity
problems associated with mismatch in the assumed steering vectors, which occurs
in the case of covariance-based processing.

In Chapter 5, direction finding in beamspace is addressed. In beamspace pro-
cessing the array data is first projected into several beamspaces of lower equal
dimension than the number of elements in the array; then, each beamspace data

is processed to obtain DOAs and source signals in the same way as if it were
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received from a pseudoarray of lower dimension. A beamspace transformation
results in a reduced parameter space, which brings a cubic decrease in compu-
tational complexity for subspace-based methods, because, an eigendecomposition
requires computations on the order of M3 for M sensors. Besides, beamspace
transformation has been shown to offer numerous benefits such as enhanced res-
olution, improved performance in colored noise, and reduced sensitivity to sensor
perturbations. ESPRIT can not be performed in beamspace unless the beamspace
transformation has the same invariance as the array shift invariance. However,
this requirement restricts the usefulness of desired beamformers, which is a limi-
tation of covariance-based processing. Using the fact that fourth-order cumulants
have more than two arguments, we develop a beamspace VESPA which works
with arbitrary and unknown arrays provided there is an identical response sensor
pair in the array. Based on the beamspace approach, we also develop an iterative
VESPA. The motivation behind the iterative VESPA is to overcome the problem
that occurs with estimating the array cumulants in VESPA when the source sig-
nals have highly separated cumulants and powers. In this case, 1t 1s impossible to
localize all of the sources correctly with VESPA because of the undesirable Cross
terms present in the sample statistics of the weakest source due to the dominant
sources. The iterative VESPA handles the cross terms by eliminating one source
(which is the strongest one) at each step of the iteration. A real data experiment
which supports our conclusions is presented.

In Chapter 6, a subspace-based joint estimation method for polarization pa-
rameters and directions of arrival is developed. Polarized signals and antennas are
useful for several reasons. Diversity in signal polarization can be used to improve
the receiver performance. Multiple signals arriving from close directions can be
resolved on the basis of their polarizations. If the receiver antenna is matched
with that of the incoming wave, the induced power in the receiver is maximized.
Otherwise, there is a polarization mismatch, which may cause a very low signal
power in the receiver; this lets two signals having orthogonal polarizations share
the same frequency without interfering with each other. It is shown in Chapter
6 that, using fourth-order cumulants, both directions of arrival and polarization

parameters of at most M — 1 cochannel signals can be estimated using any M



element array by adding a subarray consisting of three short dipole antennas dis-
placed in space and configured in a certain fashion. This way the constraint on

the array configuration is minimized.

Conclusions and directions for future research are presented in Chapter 7.
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Chapter 2

Subspace-Based Direction
Finding Methods

Estimating direction of arrivals (DOAs) of multiple narrowband signals from mea-
surements collected by an array of sensors has been a very active research problem
for the last two decades. Typical applications of this problem are radar, commu-
nication, and underwater acoustics. One of the first techniques used for direction
finding was beamforming which has a resolution limited by the array aperture.
Spectral estimation techniques were also applied to the problem. However, these
techniques fail to resolve closely spaced arrival angles for low signal-to-noise ra-
tios. Another approach is the maximum-likelihood (ML) solution. This approach
has been well documented in the literature. In the stochastic ML method [67],
the signals are assumed to be Gaussian whereas they are regarded arbitrary and
deterministic in the deterministic ML method [84]. The sensor noise is modeled
as Gaussian in both methods, which is a reasonable assumption due to the central
limit theorem. The stochastic ML estimates of the DOAs achieve the Cramer-Rao
bound (CRB). On the other hand this does not hold for deterministic ML esti-
mates [76]. The common problem with the ML, methods in general is the necessity
of solving a nonlinear multidimensional optimization problem which has a high
computational cost and for which there is no guarantee of global convergence.
Subspace-based approaches have attracted much attention, after the work of

[67], due to their computational simplicity as compared to the ML approach,
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and their possibility of overcoming the Rayleigh bound on the resolution power
of classical direction finding methods. Subspace-based methods are also referred
to as super-resolution methods. Subspace-based direction finding methods are

summarized in this section.

2.1 Formulation of the Problem

Consider the signal scenario described in Chapter 1 where an array of M antenna
elements is receiving a set of plane waves emitted by P (P < M) narrowband

sources in the far field of the array. The received M-vector r(t) at time ¢ is
r(t) = As(t) + n(?) (2.1)

where s(t) = [s1(t),---,sp(t)]T is the P-vector of sources; A = [a(61),---,a(0p)]
is the M x P steering matrix in which a(6;), the ith steering vector, is the response
of the array to the 7th source arriving from 6;; and, n(t) = [ny(t), -+, na()]7 is
a complex and circularly symmetric Gaussian noise process.

We assume: (1) The source signals are stationary random processes that may
be statistically independent of each other, partially correlated, or completely cor-
related (i.e., coherent); the distributions are unknown; (2) The array may have an
arbitrary shape and response; and, (3) The Gaussian noise process is statistically
independent of the sources, zero-mean, and it may be either spatially white or
colored. These assumptions will be relaxed, as required by specific methods, as
we proceed.

The direction finding problem is to estimate the bearings [i.e., directions of
arrival (DOA)] {6;}Z, of the sources from the snapshots r(t),t=1,---,N.

In applications, the Rayleigh criterion sets a bound on the resolution power
of classical direction finding methods. In the next sections we summarize some
of the so-called super-resolution direction finding methods which may overcome
the Rayleigh bound. We divide these methods into two classes, those that use

second-order and those that use second- and higher-order statistics.



2.2 Second-Order Statistics-Based Methods

The second-order methods use the sample estimate of the array spatial covariance

matrix

R = E{r(t)r(t)"} = AR,A¥ + R, (2.2)

where R, = E{s(t)s(t)”} is the P x P signal covariance matrix and By o=
E{n(t)n(t)"} is the M x M noise covariance matrix. For the time being, let
us assume that the noise is spatially white, i.e., R,, = ¢2I. If the noise is col-
ored and its covariance matrix is known or can be estimated, the measurements
can be “whitened” by multiplying the measurements from the left by the matrix
A~Y?E¥ obtained by the orthogonal eigendecomposition R, = E,.AEX.

The array spatial covariance matrix is estimated as follows:

o i r(t)r(t)". (2.3)
¥ =

Some spectral estimation approaches to the direction finding problem are based
on optimization. Consider the minimum variance algorithm, for example. The
received signal is processed by a beamforming vector w, which is designed such
that the output power is minimized subject to the constraint that a signal from a
desired direction is passed to the output with unit gain. Solving this optimization

problem, we obtain the array output power as a function of the arrival angle 0 as

1
all(O)R~"a(0)

Pru(6) = (2.4)
The arrival angles are obtained by scanning the range [—90°, 90°] of 6 and locating
the peaks of F,,(0). At low signal-to-noise ratios, the conventional methods, like
minimum variance fail to resolve closely spaced arrival angles. The resolution of
conventional methods are limited by signal-to-noise ratio even if exact R is used,
whereas in subspace methods, there is no resolution limit; hence, the latter are
also referred to as super-resolution methods. The limit comes from the sample
estimate of R.

The super-resolution methods exploit the eigendecomposition of the estimated
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array covariance matrix R. To see the implications of the eigendecomposition of
R, let us first state the properties of R:

1. If the source signals are independent or partially correlated, rank(R,) =
P. If there are coherent sources, rank(R,) < P. In the methods explained in
Sections 2.2.1 and 2.2.2, except for the WSF method (see Section 2.2.1.a), it will
be assumed that there are no coherent sources. The case of coherent signals case
is considered partially in Section 2.2.3; and, a detailed treatment of this case is
presented in Chapter 3 .

2. If the columns of A are independent, which is generally true when the source
bearings are different, then A is of full-rank P.

3. Properties 1 and 2 imply rank(AR;A") = P; therefore, AR,A¥ must have
P nonzero eigenvalues and M — P zero eigenvalues. Let the eigendecomposition

of AR,A¥ be
M

ARSAH = Zo:,-e;e,-”; (2.5)
=1

then o > a3 > -+ > ap > apyy = -+ = ap = 0 are the rank-ordered
eigenvalues, and {e;}X are the corresponding eigenvectors.
4. Because R, = ¢?I, the eigenvectors of R are the same as those of AR AL

and its eigenvalues are

ai+0o? ifl<i<P,
Ai = : . (2.6)
o?, fP+1<i< M.
The eigenvectors can be partitioned into two sets: E, = [e1,---,ep] forms the
signal subspace, whereas E, = lept1,+,en] forms the noise subspace. These
subspaces are orthogonal. The signal eigenvalues A, = diag{Ay,-+-,Ap}, and the
noise eigenvalues A, 2 diag{Apy1," -+, A}
5. The eigenvectors corresponding to zero eigenvalues satisfy
ARA"e;=0, i=P+1,.-- .M (2.7)
and, hence
Afe;=0, i=P+1,--, M, (2.8)



because A and R, are full rank. Equation (2.8) means that steering vectors
are orthogonal to noise subspace eigenvectors. It further implies that, because of
the orthogonality of signal and noise subspaces, spans of signal eigenvectors and
steering vectors are equal. Consequently there exists a nonsingular P x P matrix
T such that

B, =AT. (2.9)

Alternatively, the signal and noise subspaces can also be obtained by perform-
ing a singular value decomposition directly on the received data without having
to calculate the array covariance matrix. Li and Vaccaro [45] state that the prop-
erties of the bearing estimates do not depend on which method is used; however,
singular value decomposition must then deal with a data matrix that increases
in size as the new snapshots are received. In the sequel, we assume that the ar-
ray covariance matrix is estimated from the data and an eigendecomposition is
performed on the estimated covariance matrix.

The eigenvalue decomposition of the spatial array covariance matrix, and the
eigenvector partitionment into signal and noise subspaces, leads to a number of
subspace-based direction finding methods. The signal subspace contains informa-
tion about where the signals are whereas the noise subspace informs us where they
are not. Using either subspace results in better resolution performance than con-
ventional methods. In practice, the performance of the subspace-based methods is
limited fundamentally by the accuracy of separating the two subspaces when the
measurements are noisy [46]. These methods can be broadly classified into signal
subspace and noise subspace methods. A summary of direction-finding methods

based on both approaches follows next.

2.2.1 Signal Subspace Metheds

In these methods, only the signal subspace information is retained. Their rationale
is that by discarding the noise subspace we effectively enhance the SNR, because
the contribution of the noise power to the covariance matrix is eliminated. Signal
subspace methods are divided into search-based and algebraic methods, which are

explained next.
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2.2.1.a Search-based methods

In search-based methods, it is assumed that the response of the array to a single
source, the array manifold {a(0)|¥0}, is either known analytically as a function
of arrival angle, or is obtained through the calibration of the array. For example,
for an M-element uniform linear array, the array response to a signal from angle
6 (measured with respect to the normal of the array) is analytically known and is
given by

a(0) = [l, e=i2mdsin(d) .. e—jzn(l\f—l}§sin{8)]T (2.10)

where d is the separation between the elements, and ) is the wavelength. Cal-
ibration of an array is performed by employing a high-power transmitter in the
far-field of the array, and recording the array response a(8) for each possible value
of the transmitter direction . In general, array calibration is very costly and
time-consuming, and it needs to be redone frequently since the array response
may change due to physical distrubances.

In search-based methods to follow (except for the subspace fitting methods),
which are spatial versions of widely-known power spectral density estimators,
the estimated array covariance matrix is approximated by its signal subspace

eigenvectors, or its principal components, as

R ~ i Neje; (2.11)
i=1
Then the arrival angles are estimated by locating the peaks of a function, S(6)
(—90° < 6 < 90°) which depends on the particular method. Some of these
methods and the associated function S(6) are summarized in the following [35,
46, 50]:
Correlogram method:

In this method,

S(0) = a(0)"Ra(0) (2.12)

The resolution obtained from the Correlogram method is lower than that obtained
from the MV and AR methods.
Minimum Variance (MV) [5] method:
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1
S(0) = a(0)"R-1a(0)

(2.13)
The MV method is known to have a higher resolution than the correlogram
method, but lower resolution and variance than the AR method.
Autoregressive (AR) method:

In this method,

1
S(0) = ——— 2.14
(9) WTR-Ta(d) (2.14)
where u = [1,0,---,0]7. This method is known to have a better resolution than

the previous ones.

Subspace Fitting (SSF) and Weighted Subspace Fitting (WSF) Meth-
ods:

In Section 2.2 we saw that the spans of signal eigenvectors and steering vectors are
equal; therefore, bearings can be solved from the best least-squares fit of the two
spanning sets when the array is calibrated [82]. In the Subspace Fitting Method

the following criterion is used
[0, T) = argmin ||E,W2 — A(0)T)]%, (2.15)

where ||.|| denotes the Frobenius norm, W is a positive definite weighting matrix,
E; and T' are defined by (2.9), and the notation for the steering matrix is changed
to show its dependence on the bearing vector 0. Criterion (2.15), can be minimized
directly with respect to T, and the result for T can then be substituted back into
(2.15), so that

0 = argmin Tr{(I1- A(0)A(0)*)E,WE"} (2.16)

where A# = (AHA)-1AH,

Viberg and Ottersten [81] have shown that a class of direction finding algo-
rithms can be approximated by this subspace fitting formulation for appropriate
choices of the weighting matrix W. For example, for the deterministic ML, method
W = A, — 0?1, which is implemented using the empirical values of the signal

eigenvalues, A;, and the noise eigenvalue 0. TLS-ESPRIT, which is explained in
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the next subsection, can also be formulated in a similar but more involved way.
Viberg and Ottersten have also derived an optimal Weighted Subspace Fitting
(WSF) Method, which yields the smallest estimation error variance among the

class of subspace fitting methods. In WSF
W = (A, — cI)?A? (2.17)

The WSF method works regardless of the source covariance (including coherence)
and has been shown to have the same asymptotic properties as the stochastic MI,
method; hence, it is asymptotically efficient for Gaussian signals (i.e., it achieves
the stochastic CRB). Its behavior in the finite sample case may be different from
the asymptotic case [81]. Viberg and Ottersten have also shown that the asymp-
totic properties of the WSF estimates are identical for both cases of Gaussian and
non-Gaussian sources. They have also developed a consistent detection method
for arbitrary signal correlation, and an algorithm for minimizing the WSF cri-
terion. They do point out several practical implementation problems of their
method, such as the need for accurate calibrations of the array manifold and
knowledge of the derivative of the steering vectors w.r.t §. For nonlinear and
nonuniform arrays, multidimensional search methods are required for SSF, hence

it is computationally expensive.

2.2.1.b Algebraic methods

Algebraic methods do not require a search procedure and yield DOA estimates
directly.

ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Techniques) [55, 65] :

The ESPRIT Algorithm has a fundamental advantage over the other methods
being that calibration of the array is not required. However, ESPRIT is applicable
only to arrays which are “translationally invariant”, l.e., arrays which consist
of a subarray and its identical copy displaced in space with a known distance.
The responses of the sensors do not have to be known and the geometry of the

subarray may be arbitrary, only the measurements, and the displacement between



the identical arrays are required. The computational complexity of ESPRIT is
less than that of the search-based methods.
Let r'(¢) and r?(t) be the measurements from these arrays. Due to the dis-

placement of the arrays the following holds:

r'(t) = As(t)+ny(t)
r’(t) = A®s(t)+n,(t) (2.18)

where ® = diag{e=i25sin0 ... =j27%sin ’#} in which d is the separation between
the identical arrays, and the angles {6;}7., are measured with respect to the
normal to the displacement vector between the identical arrays.

Note that the auto covariance of r'(t), R!', and the cross covariance between
r'(t) and r’(t), R*!, are given by

R'" = ADA® + R, (2.19)

and

R* = A®DA" +R,,,, (2.20)

where D is the covariance matrix of the sources, and R,, and R,,,, are the
autocovariance of n; and cross-covariance of n; and nj, respectively.

The ESPRIT algorithm solves for ®, which then gives the bearing estimates.
Although the subspace separation concept is not used in ESPRIT, its LS and TLS
versions are based on a signal subspace formulation. The LS and TLS versions
are more complicated, but are more accurate than the original ESPRIT, and are
summarized in the next subsection. Here we summarize the original ESPRIT:
(1) Estimate the autocovariance of r!(¢) and cross covariance between r'(¢) and

r(t), as

1 N
RM = FZrl(t)rl('t)H (2.21)
t=1
21 1 & 205\ 1\ H
B = N rib e (AP, (2.22)
gy - |



(2) Calculate

Rll
RZI

Il

R" -R,, (2.23)
R —R,,., (2.24)

Il

where R, and R,,,, are either known or estimated.

(3) Find the singular values \; of the matrix pencil
R" - \R¥, i=1,... P (2.25)
(4) The bearings, 6; (i =1,---, P), are readily obtained by solving the equation
\; = ¥ Rsind:, (2.26)

for 0;.

LS and TLS ESPRIT [65]:

(1) Follow Steps 1 and 2 of ESPRIT.

(2) Stack R™ and R?! into a 2M x M matrix R, as follows:

f{n
A
R = [Rm } (2.27)

and, perform an SVD of R, keeping the first 2 x P submatrix of the left singular
vectors of R. Let this submatrix be E,.

E,
(3) Partition E, into two M x P matrices E,; and E;; such that E, = [ ! ] .

Es'z

(4) For LS-ESPRIT, calculate the eigendecomposition of (EZE,;)'EHE,;. The
eigenvalue matrix gives ® = diag{e“ﬂ“i{smgl,---,6‘52”%““5'?} from which the
arrival angles are readily obtained. For TLS-ESPRIT, proceed as follows:

(5) Perform an SVD of the M x 2P matrix [Es;,Esg], and stack the last P right
singular vectors of [E,;, E,»] into a 2P x P matrix denoted F.

(6) Partition F as F £ [ Fe } where F, and F, are P x P .

y
(7) Perform the eigendecomposition of —F.F;!. The eigenvalue matrix gives
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& = diag{e~2 350 ... o=i27%sin0e} from which the arrival angles are readily
obtained.

Different versions of ESPRIT have different statistical properties. The Toeplitz
Approximation Method (TAM) [38], in which the array measurement model is
represented as a state-variable model, although different in implementation from
LS-ESPRIT, is equivalent to LS-ESPRIT; hence, it has the same error variance
as LS-ESPRIT.

A performance analysis of LS-ESPRIT for finite amount of data and the high
SNR case is presented by [45], and an expression is derived for the variance of
the DOA estimates with respect to perturbations in the assumed model due to
various factors such as finite sampling effects, calibration errors, and noise mod-
eling inaccuracies. Asymptotic variances of the DOA estimates obtained from
LS-ESPRIT and TLS-ESPRIT are derived in [60] and [53], respectively. Rao and
Hari [60] note that the LS and TLS versions of ESPRIT have the same asymptotic
accuracies; however, TLS-ESPRIT converges faster than LS-ESPRIT and may be
better for low SNR and short data lengths. In [53], the CRB is derived for the
DOA estimation error in the ESPRIT problem, and the TLS-ESPRIT algorithm
is shown, by numerical examples, to attain the CRB for the special case of a uni-
form linear array and Gaussian sources. They also remark that the performance
of TLS-ESPRIT deviates from the CRB for highly correlated sources.

The asymptotic performance of a generalized class of ESPRIT algorithms, re-
ferred to as subspace rotation (SR) methods is compared to the MUSIC algorithm
in [74]; they show that the variance of SR methods (including LS-ESPRIT) can
not be less than that of MUSIC; hence, the SR methods are less efficient than the
MUSIC algorithm especially for large arrays and large samples. They also pro-

pose an optimally weighted SR method which can achieve the same performance
as MUSIC.

Generalized Eigenvalues Utilizing Signal Subspace Eigenvectors (GEESE):
(1) Follow Steps 1-3 of TLS ESPRIT.



(2) Find the singular values \; of the pencil

E,i —\Bg, i=1+ P (2.

[ S]
o
oo
—

(3) The bearings, 6; (i = 1,---, P), are readily obtained from
A; = eftrisingi (2.29)

The GEESE method [56] is claimed to be better than ESPRIT.

2.2.2 Noise Subspace Methods

These methods, in which only the noise subspace information is retained, are based
on the property that the steering vectors are orthogonal to any linear combination
of the noise subspace eigenvectors. Noise subspace methods are also divided into

search-based and algebraic methods, which are explained next.

2.2.2.a Search-based methods

In search-based methods, the array manifold is assumed to be known, and the

arrival angles are estimated by locating the peaks of the function

1

S0) = ————— 2.30
(6) a(0)"Na(0) (2:30)
where N is a matrix formed using the noise space eigenvectors.
Pisarenko method:
In this method,
N = eyrep” (2.31)

where ey is the eigenvector corresponding to the minimum eigenvalue of R. If the
minimum eigenvalue is repeated, any unit-norm vector which is a linear combina-
tion of the eigenvectors corresponding to the minimum eigenvalue can be used as
ey. The basis of this method is that when the search angle 6 corresponds to an
actual arrival angle, the denominator of (2.30), |a(f)7eyr|?, becomes small due

to orthogonality of steering vectors and noise subspace eigenvectors; hence, S(0)

| ]
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will peak at an arrival angle.
MUSIC (Multiple Signal Classification) [67] method:
In this method,
M
N= ) epe” (2.32)
i=P+1

The idea is similar to that of the Pisarenko method; the inner product |a(9)”
T M o1 eil? is small when 6 is an actual arrival angle. The MUSIC spectrum is
equivalent to the MV method using the exact covariance matrix when SNR is
infinite, and therefore performs better than the MV method.

Asymptotic properties of MUSIC are well established (75, 76, 74, 73, 24, 57,
78, 87, 79], e.g., MUSIC is known to have the same asymptotic variance as the
deterministic ML, method for uncorrelated sources. Expressions for the variance
of the bearing estimates were derived for finite number of samples, by Li and
Vaccaro [45] for high SNR case, and by Stoica and Nehorai [75] without restriction
to high SNR. Xu and Buckley [86] present a bias analysis of the MUSIC bearing
estimates for a wide range of SNR values. It is shown by Xu and Buckley that
although, asymptotically, bias is insignificant compared to standard deviation,
it is an important factor limiting the performance for resolving closely spaced
sources when they are correlated.

In order to overcome the problems due to finite sample effects and source
correlation, a multidimensional (MD) version of MUSIC has been proposed [67,
65, 4]; however, this approach involves a computationally involved search, as in the
ML method. MD MUSIC can be interpreted as a norm minimization problem,
as shown in [21]; using this interpretation, strong consistency of MD MUSIC
has been demonstrated. An optimally weighted version of MD MUSIC, which
outperforms the deterministic ML method, has also been proposed in [82].
Eigenvector (EV) method:

In this method,

_ % 7 H 933
N= ) 3 &iei (2.33)
i=P+1 71

The only difference between the EV method and MUSIC is the use of inverse

eigenvalue [the A; are the noise subspace eigenvalues of R (see (2.6))] weighting in



EV and unity weighting in MUSIC, which causes EV to yield fewer spurious peaks
than MUSIC [35]. The EV Method is also claimed to shape the noise spectrum
better than MUSIC.

Method of Direction Estimation (MODE):

MODE is equivalent to WSF when there are no coherent sources. Viberg and Ot-
tersten [82] claim that, for coherent sources, only WSF is asymptotically efficient.
A minimum norm interpretation and proof of strong consistency of MODE for
ergodic and stationary signals, has also been reported [21]. The norm measure
used in that work involves the source covariance matrix. By contrasting this norm
with the Frobenius norm that is used in MD MUSIC, Ephraim et al [21] relate
MODE and MD MUSIC.

Minimum-Norm [37] method:

In this method, the matrix N is obtained as follows [33]:

(1) Form

En = [eP+l; e ;ei\{]g (234)

(2) Partition E,,

to establish ¢ and C.
(3) Compute

1

d= [(c”c]”lc'c , (2.36)

and, finally,
N = dd”. (2.37)

For two closely spaced, equal power signals, the Minimum Norm method has been
shown to have a lower SNR threshold (i.e., the minimum SNR required to separate
the two sources) than MUSIC [36]. Li and Vaccaro [45] derive and compare the

mean-squared errors of the DOA estimates from Minimum Norm and MUSIC



algorithms due to finite sample effects, calibration errors, and, noise modeling
errors for the case of finite samples and high SNR. They show that mean-squared
errors for DOA estimates produced by the MUSIC algorithm are always lower

than the corresponding mean-squared errors for the Minimum Norm algorithm.

2.2.2.b Algebraic methods

When the array is uniform linear, so that a(f) is given by (2.10), the search in
(2.30) for the peaks can be replaced by a root-finding procedure which yields the
arrival angles. So doing, results in better resolution than the search-based alterna-
tive, because the root-finding procedure can give distinct roots corresponding to
each source whereas the search function may not have distinct maxima for closely
spaced sources. In addition, the computational complexity of algebraic methods
is lower than that of the search-based ones. The algebraic version of MUSIC is
given next; for algebraic versions of Pisarenko, EV and Minimum-Norm, the ma-
trix N in (2.38) is replaced by (2.31), (2.33) and (2.37), respectively.
Root-MUSIC:
In root-MUSIC, the array is required to be uniform linear, and the search proce-
dure in MUSIC is converted into the following root-finding approach:
(1) Form the M x M matrix
M
N= ) ee”, (2.38)
i=P+1

(2) Form a polynomial p(z) of degree 2M — 1 which has for its ith coefficient
¢; = tri[N], where tr; denotes the trace of the ith diagonal, and i = —(M —
1),-++,0,---,M — 1. Note that ¢{rq denotes the main diagonal, ¢r, denotes the
first super-diagonal, and ¢r_,denotes the first sub-diagonal.
(3) The roots of p(z) exhibit inverse symmetry with respect to the unit circle in
the z-plane. Express p(z) as the product of two polynomials p(z) = h(z)h*(z™!),
(4) Find the roots z; (i = 1,---, M) of h(z). The angles of the roots that are very
close to (or, ideally on) the unit circle yield the direction of arrival estimates, as
B == sin“l(?\déz,-), where: = 1,.--, P.

The root-MUSIC algorithm has been shown to have better resolution power
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than MUSIC [61]; however, as mentioned previously, root-MUSIC is restricted to
uniform linear arrays. Steps (2)-(4) make use of this knowledge. Li and Vac-
caro [45] show that algebraic versions of the MUSIC and Minimum Norm algo-
rithms have the same mean-squared errors as their search-based versions for finite
samples and high SNR case. The advantages of root-MUSIC over search-based
MUSIC is increased resolution of closely spaced sources and reduced computa-

tions.

2.2.3 Spatial Smoothing

When there are coherent signals, rank(R,), and consequently rank(R) is less than
P, and hence the above described subspace methods fail. If the array is uniform
linear, then by applying the spatial smoothing method (22, 71], described below,
a new rank-P matrix is obtained which can be used in place of R in any of the
subspace methods described earlier.

Spatial smoothing starts by dividing the M-vector r(t) of the ULA into K =
M — S + 1 overlapping subvectors of size S, ré,k (k=1,---,K), with elements
{rky -+ rrss1},and vk (k= 1,- -+, K), with elements {rdraagiim s P hsonia )

Then, a forward and backward spatially smoothed matrix R/’ is calculated as

N K
- PG HOLAORENOLIO) (2:39)
The rank of R/* is P if there are at most 2M/3 coherent sources. S must be
selected such that P, +1 < § < M — P,/2 4+ 1 in which P. is the number of
coherent sources. Then, any subspace-based method can be applied to R’® to
determine the directions of arrival. It is also possible to do spatial smoothing

based only on rf, or r%;, but in this case at most M/2 coherent sources can be
handled.

2.2.4 Discussion

The application of all the subspace-based methods requires exact knowledge of the

number of signals, in order to separate the signal and noise subspaces. The number
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of signals can be estimated from the data using either the Akaike Information
Criterion (AIC) [83] or Minimum Descriptive Length (MDL) [84] methods. The
effect of underestimating the number of sources is analysed in [59], whereas the
case of overestimating the number of signals can be treated as a special case of
the analysis in [76].

The second-order methods described above have the following disadvantages:
(1) Except for ESPRIT, all of the above methods require calibration of the array
which means that the response of the array for every possible combination of the
source parameters should be measured and stored; or, analytical knowledge of the
array response is required. However, at any time, the antenna response can be
different from when it was last calibrated due to environmental effects such as
weather conditions for radar, or water waves for sonar. Even if the analytical re-
sponse of the array elements are known, it may be impossible to know or track the
precise locations of the elements in some applications (e.g., towed array). Con-
sequently, these methods are sensitive to errors and perturbations in the array
response. In addition, physically identical sensors may not respond identically in
practice due to lack of synchronization or imbalances in the associated electronic
circuitry. (2) In deriving the above methods it was assumed that the noise covari-
ance structure is known; however, it is often unrealistic to assume that the noise
statistics are known due to several reasons. In practice, the noise is not isolated;
it is often observed along with the signals. Moreover, as stated in [78], there
are noise phonemena effects which can not be modeled accurately, e.g., channel
crosstalk, reverberation, near-field, wide-band and distributed sources. (3) None
of the methods in Sections 2.2.1 and 2.2.2, except for the WSF method, work when
there are coherent (completely correlated) sources. Only if the array is uniform
linear, the spatial smoothing method in Section 2.2.3 can be used. On the other
hand, higher-order statistics of the received signals can be exploited to develop

direction finding methods which have less restrictive requirements.
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2.3 Higher-Order Statistics-Based Methods

The higher-order statistical direction finding methods use the spatial cumulant
matrices of the array. They require that the source signals be non-Gaussian so
that their higher- than second order statistics convey extra information. Most
communication signals are symmetrically distributed and hence their third-order
cumulants vanish; therefore, even-order cumulants are used, and, usually fourth-
order cumulants are employed. The fourth-order cumulant of the source sig-
nals must be nonzero in order to use these methods. One important feature of
cumulant-based methods is that they can suppress Gaussian noise regardless of
its coloring. Consequently, the requirement of having to estimate the noise covari-
ance, as in second-order statistical processing methods, is avoided in cumulant-
based methods. It is also possible to suppress non-Gaussian noise, [18], and, when
properly applied, cumulants extend the aperture of an array [17, 69] which means
that more sources than sensors can be detected. On the other hand, sample es-
timates of higher-order statistics require longer data lengths than covariances;
hence, computational complexity is increased. As in the second-order statistics-
based methods, the number of sources is estimated from the data before applying
any higher-order statistics-based direction finding method.

The fourth-order moments of the signal s(t) are
E{S"Sj'sksl"} 1=t kiEP (2.40)
and the fourth-order cumulants are defined as

C.;'s(i,j,k,f) é cum(sf, S)", Sk,S;-) = E{s,'sj'.sks,-'} = E{S;Sj‘}E{SkSJ']' (241)
—B{sisi"yE{sks;"} — E{sis;} E{sr"s1"}

where 1 < ¢,7,k,l < P. Note that two arguments in the above fourth-order mo-
ments and cumulants are conjugated and the other two are unconjugated. For
circularly symmetric signals, which is often the case in communication applica-

tions, the last term in (2.42) is zero.
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In practice, sample estimates of the cumulants are used in place of the theoret-
ical cumulants, and these sample estimates are obtained from the received signal
vector r(t) (¢t =1,---,N) as follows:

1 XN

Guelsinkil) = KZ?;(t)rj'(t)rk(t)r;'(t) (2.42)

1 N * J\r 1 N * *
= N—g;:"g(t)?‘j (t);rk(f)r‘; — K—‘ ; (f);rk(_}f)?"j (f)

where 1 <1,7,k,0 < M. Note that the last term in (2.42) is zero, and therefore,
it is omitted.

Higher-order statistical subspace methods use fourth-order spatial cumulant
matrices of the array output, which can be obtained in a number of ways by
suitably selecting the arguments 7,7, k,1 of ¢;,(z,7,k,1). Existing methods for
the selection of the cumulant matrix, and their associated processing schemes are

summarized next.

Pan-Nikias [54] and Cardoso-Moulines [6] method:

In this method, the array needs to be calibrated, or its response must be known
in analytical form. The source signals are assumed to be independent or partially
correlated [i.e, there are no coherent signals]. The method is as follows:

(1) An estimate of an M x M fourth-order cumulant matrix C is obtained from

the data. The following two selections for C are possible [6]:

cij = car(1,5,5,7) 1S4, <M (2.43)
or
M
cii = ) car(i,jymym) 1<4,j <M (2.44)
m=1

Using cumulant properties [47], and (2.1), and a;; for the ¢jth element of A,
it is easy to verify that (2.43) becomes

Za‘l’ Z jq" Wi iy Cs( Dy 75 8), (2.45)

p_ 4.7 s=1
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which, in matrix format, is
C=AB (2.46)

where A is the steering matrix and B is a P x M matrix with elements

P
b= Z Qg @jrjs Ca,5(E,q, 7, 8). (2.47)

q,r3=1

Similarly, (2.44) becomes

P P M
Gi= ). G (Z > amram'c.;_s(p,q,r,s)) "1 <4, <M (2.48)

pg=1 ris=1m=l1

which, in matrix form can be expressed as
C = ADA" (2.49)

where D is a P x P matrix with elements
P M
dij = Z Z amramsﬁc‘l;&(i)j) T:'S)' (250)
rs=1m=1

Note that additive Gaussian noise is suppressed in (2.46) and (2.49), because
higher than second-order statistics of a Gaussian process are zero.

(2) The P left singular vectors of the cumulant matrix in (2.46) corresponding to
nonzero singular values, or the P eigenvectors of the cumulant matrix in (2.49)
corresponding to nonzero eigenvalues form the signal subspace. The orthogonal
complement of the signal subspace gives the noise subspace. Any of the Sec-
tion 2.2 covariance-based search and algebraic DF methods (except for the EV
method and ESPRIT) can now be applied (in exactly the same way as described
in Section 2.2) either by replacing the signal and noise subspace eigenvectors
and eigenvalues of the array covariance matrix by the corresponding subspace
eigenvectors and eigenvalues of (2.49), or by the corresponding subspace singular
vectors and singular values of (2.46). A cumulant-based analog of the EV method
does not exist, because the eigenvalues and singular values of (2.49) and (2.46)

corresponding to the noise subspace are theoretically zero. The cumulant-based
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analog of ESPRIT is explained later.

The same assumptions and restrictions for the covariance-based methods apply
to their analogs in the cumulant domain. The advantage of using the cumulant-
based analogs of these methods is that there is no need to know or estimate the
noise-covariance matrix.

The asymptotic covariance of the DOA estimates obtained by MUSIC based on
the above fourth-order cumulant matrices are derived in [6] for the case of Gaus-
sian measurement noise with arbitrary spatial covariance, and are compared to
the asymptotic covariance of the DOA estimates from the covariance-based MU-
SIC algorithm. Cardoso and Moulines [6] show that covariance- and fourth-order
cumulant-based MUSIC have similar performance for the high SNR case, and that,
as SNR decreases below a certain SNR threshold, the variances of the fourth-order
cumulant-based MUSIC DOA estimates increase with the fourth power of the
reciprocal of the SNR, whereas the variances of covariance-based MUSIC DOA
estimates increase with the square of the reciprocal of the SNR. They also observe
that for high SNR and uncorrelated sources, the covariance-based MUSIC DOA
estimates are uncorrelated, and the asymptotic variance of any particular source
depends only on the power of that source (i.e., it is independent of the powers of
the other sources). They observe, on the other hand, that DOA estimates from
cumulant-based MUSIC, for the same case, are correlated, and the variance of
the DOA estimate of a weak source increases in the presence of strong sources.
This observation limits the use of cumulant-based MUSIC when the sources have
a high dynamic range, even for the case of high SNR. Cardoso and Moulines
state that this problem may be alleviated when the source of interest has a large
fourth-order cumulant.

Porat and Friedlander [58] method:

In this method, the array also needs to be calibrated, or its response is required in
analytical form. The model used in this method divides the sources into groups
that are partially correlated (but, not coherent) within each group, but are sta-

tistically independent across the groups, i.e.,
G

r(t) = i Ags, +n(t) (2.51)

_(,I:l
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where (7 is the number of groups each having p, sources ( oipe = B) In
this model, the p, sources in the gth group are partially correlated, and they are
received from different directions. The method is as follows:

(1) Estimate the fourth-order cumulant matrix, C,, of r(t)®r(t)* where ® denotes

the Kronecker product. It can be verified that

i A, ® A%)C,, (A, @ A", (2.52)

g=1

where C,, is the fourth-order cumulant matrix of sy. The rank of C, is 29_1 2:%;
and since C, is M? x M2, it has M? — Z_q:l p,” zero eigenvalues which correspond
to the noise subspace. The other eigenvalues corrrespond to the signal subspace.
(2) Compute the SVD of C, and identify the signal and noise subspace singular
vectors. Now, second-order subspace-based search methods can be applied, us-

ing the signal or noise subspaces, by replacing the array response vector a(6) by

a(0) ® a*(0).

The eigendecomposition in this method has computational complexity O(M?¢)
due to the Kronecker product, whereas the second-order statistical-based methods
(e.g., MUSIC) have complexity O(M?).

Chiang and Nikias [11] method:

This method uses the ESPRIT algorithm and requires an array with its entire
identical copy displaced in space by distance d; however, no calibration of the
array is required. The signals r'(¢) and r?(¢) received by these arrays are given
by (2.18).

(1) Two M x M matrices C' and C? are generated as follows:
cli; = cum(r's,rt; T rt ) 1<i, 5 k< M (2.53)

and
c"’,-_,- = cum(-rz,-,:f'lj“,rik,'rlk“) 1<4,5,k< M. (2.54)



It can be shown that

P P
cl,-j e Z Qip ( Z akqakr‘c4,3(p, q, r,s)) Qjg (2,55)
p,s=1 gr=1
and
P oo P
Czij — Z aipexp—ﬂ.-rxsm{ﬂp} Z akqakr-c4,s(qus ?‘,S) ajs (256)

ps=1 q,r=1

These relations can be expressed, in matrix form, as

C! = AEA# (2.57)

and
C?’ = ADEAX (2.58)
where ® = diag{e=2735in0 ... ¢=i27%sin 2} in which d is the separation between

the identical arrays, and E is a P x P matrix with ¢;; = Zi:l Arqair"Css(2,q,7, 7).
(2) Note that these equations are in the same form as (2.19) and (2.20) for
covariance-based ESPRIT [the noise cumulants do not appear in (2.57) and (2.58)
because the fourth-order cumulants of Gaussian noises are zero]; therefore, any
version of ESPRIT or GEESE can be used to solve for @ by replacing R!'! and
R?! by C! and C?, respectively.

Virtual Cross Correlation Computer (VC?) [17]:

In VC?, the source signals are assumed to be statistically independent. The idea
of VC? can be demonstrated as follows: Suppose we have 3 identical sensors
as in Fig. 4.1, where ry(t), r2(¢) and r3(t) are measurements, and, d;, d; and
ds (d“;, =d, + ff;;) are the vectors joining these sensors. Let the response of each
sensor to a signal from @ be a(0). A virtual sensor is one at which no measurement

is actually made. Suppose that we wish to compute the correlation between the
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virtual sensor vy(¢) and ry(t), which (using the plane wave assumption) is

P -
()} = 3 la(0,)o, e (2.59)
p=1
Consider the following cumulant
P I
cum(ry(t),m(t), r3(t),ra(t)) = D la(0,)["ype~rdem e (2.60)
p=1
P 5 g
= Y |a(6,)['y,e ke (2.61)
p=1

which shows that the cumulant in (2.61) carries the same angular information as
the cross correlation in (2.59), but for sources having different powers.

The fact that we are interested only in the directional information carried by
correlations between the sensors lets us therefore interpret a cross correlation as a
vector (e.g., d-;), and a fourth-order cumulant as the addition of two vectors (e.g.,
di 07;) This interpretation leads to the idea of decomposing the computation of
a cross correlation into that of computing a cumulant. Doing this means that the
directional information that would be obtained from the cross correlation between
nonexisting sensors (or between an actual sensor and a nonexisting sensor) at
certain virtual locations in the space can be obtained from a suitably defined
cumulant that uses the real sensor measurements.

One advantage of virtual cross correlation computation is that it is possible
to obtain a larger aperture than would be obtained by using only second-order
statistics. This means that more sources than sensors can be detected using
cumulants. For example, given an M element uniform linear array, VC? lets its
aperture be extended from M to 2M — 1 sensors, so that 2M — 2 targets can be
detected (rather than M — 1) just by using the array covariance matrix obtained
by VC? in any of the subspace-based search methods explained earlier. This use
of VC? requires the array to be calibrated.

Another advantage of VC? is a fault tolerance capability. If sensors at certain

locations in a given array fail to operate properly, these sensors can be replaced
using V' C3.
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Virtual ESPRIT (VESPA) [17]:

For VESPA, the array only needs two identical sensors; the rest of the array may
have arbitrary and unknown geometry and response. The sources are assumed
to be statistically independent. VESPA uses the ESPRIT solution applied to
cumulant matrices. By choosing a suitable pair of cumulants in VESPA, the need
for a copy of the entire array, as required in ESPRIT, is totally eliminated. VESPA
preserves the computational advantage of ESPRIT over search-based algorithms.
An example array configuration is given in Figure 4.2.

Without loss of generality, let the signals received by the identical sensor pair
be r; and 7. They are separated by d. The sensors r; and r, are collectively
referred to as the guiding sensor pair. Let the bearings {0;,---,0p} be measured
with respect to the normal to the line joining the identical sensors. We present
VESPA in a slightly different manner than is done in [17]. The VESPA algorithm
is:

1) Two M x M matrices, C! and C?, are generated as follows:
g

clyj = cum(ry,m ", ri,75") 1 <4,5 < M. (2.62)
and
i = cum(re, 1", i) 1<4,5 < M. (2.63)

It is shown in Appendix A that

P P
lej = Z Qip ( Z alqair)'c‘l,s(pa q,f’,S)) a;s (264)
1

pys5= g,r=1
P
== Za,-pa}pmlpl?"m‘,p (265)
p=1

and

P P ) )
& = Z aip (Z al_,‘.exp_ﬂ“%s“'(g‘?)alr"c.;.s(p,q,r?s)) aj,  (2.66)
1

D,§= q,r=1
P .
= 3 a;pa;-‘pexp'ﬂ”‘?s'"wp) ]a1p|274'3p (2.67)
p=1
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where a;; represents the 7jth element of A and {74‘3;,}5:1 are the fourth-order cu-
mulants (kurtosis) of the sources. In matrix form, these relations can be expressed,

as

@' = AFAT
C* = A®FAY (2.68)

where the PxP F 2 diag{¥as |ar1l*, -+, Ya,splarp|?} and @ £ diag{e=327sin(01)

, e‘jz"%"i"(gP)}. For different arrival angles, rank(A) = rank(®) = P, and D

is full-rank provided the sources have nonzero fourth-order cumulants and the first
sensor has nonzero response to the incoming wavefronts.
(2) Note that these equations are in the same form as ESPRIT and Chiang and
Nikias’s ESPRIT-like method; however, as opposed to their method, there is no
need for an identical copy of the array; only an identical response sensor pair is
necessary for VESPA. Consequently, any version of ESPRIT or GEESE can be
used to solve for @ by replacing R'"" and R* by C! and C?, respectively.

Note, also, that there exists a very close link between VC? and VESPA. Al-
though the way we chose C! and C? above seems to be not very obvious, there
is a unique geometric interpretation to it. According to V3, as far as the bear-
ing information is concerned, C! is equivalent to the autocorrelation matrix of
the array, and C? is equivalent to the cross-correlation matrix between the array
and its virtual copy (which is created by displacing the array by the vector that
connects the second and the first sensors).

In addition to hardware savings, VESPA has the following advantages over
second order-statistics based direction finding methods: (1) Direction finding is
possible with uncalibrated arrays using VESPA by just adding a pair of identi-
cal sensors; (2) Array calibration and hence sensitivity problems associated with
calibration mismatch are avoided; because, VESPA is a blind (self-calibrating)
method; (3) VESPA is more robust to perturbations in the array sensor positions
and responses than ESPRIT, because the need to maintain two entire identical
arrays is eliminated; (3) When the noise component of the signal received by one
of the guiding sensor pair elements is independent of the noise processes at the

other sensors, VESPA can supress the noise regardless of its distribution (18]. In
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practice, however, the noise does affect the standard derivations of the direction

of arrival estimates.

2.3.1 Discussion

The fact that higher-order statistics have more arguments than covariances leads
to more practical algorithms which have less restrictions on the array structure (for
instance, the requirement of maintaining identical arrays for ESPRIT is reduced
to only maintaining two identical sensors for VESPA). This fact also makes it
possible to detect more sources than the number of sensors with higher-order
statistics-based direction finding methods, i.e, the array aperture is effectively
increased. Another advantage of using higher-order statistics-based methods over
second-order methods is that the covariance matrix of the noise is not needed in
most cases.

A common problem with all of the above higher-order statistics-based high-
resolution direction finding methods is that these methods fail to estimate the
DOAs correctly when there are coherent signals, which is the case for multipath
propagation. Another problem, according to the recent study [6] of Cardoso
and Moulines which present a comparative performance analysis of second- and
fourth-order statistics based MUSIC methods, is that dynamic range of the source
powers may be a factor limiting the performance of the fourth-order statistics
based MUSIC. Our simulations and result of a real-data experiment indicate that
high-dynamic range of source powers presents a problem for VESPA too. In
this case, the resulting direction of arrival estimates are biased toward the most
powerful source.

In Chapter 3, the case of coherent signals is considered; and, a subspace-based
direction-finding method using fourth-order statistics is presented. In Chapter 6,
an iterative direction finding algorithm is presented which works even when the

source powers are widely different.
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2.4 Appendix-Derivation of VESPA Equations

Here, we show the details of derivations of (2.65) and (2.67). Equation (2.65)

focuses on (), and is:

c'ij = cum(ry(t), ri(t), mi(t), 73(2))

P P P P
= cum (Z a1984(1), Z a1, 85(E); Z Gip8u(1); Z a;-s.s;(t))
r=1 r=1 3=1

+ cum(ny(2), ny(t), ni(t), n;(t))
P P P P

=222 > amgai,aipaj,cum(sy(8), s7(1), s,(1), s3(t))

g=1r=1 p=1 s=1
P
= > apajylarp s, (2.69)
r=1
where 1 < ¢,7 < M. In the above derivation cumulant properties [CP1],[CP3],
[CP5] and [CP6] in [47] were used. We also used the fact that 4th-order cumu-
lants of a Gaussian process are zero. The last line follows from the independence

of the source signals and [CP6], i.e.,

4.5 if = =iy =
cum(sq(£),57(0), (1), 53(0)) = 4 4 L A= =R (2.70)
0 otherwise
Since the first two sensors have identical response we have
P P L
ra(t) = 3 azsy(t) = 3 a2 o) (1) (2.71)
p=1 p=1

Equation (2.67) focuses on ry(¢) and ro(t), and is

cfjcum(rg(t), ri(t), i), ri(t))

P P P P
] d c0OS - E3 Ed -
= cum (Z alqeqjgﬁx = (GQ)SQ(t)ﬂ Z ﬂ'lrsr(t)? Z ai?)‘gp(t)a Z ajs‘sa(i))
r=1 p=1

+ cum(na(t), ni(t), ni(t), nj(t))
P P P

=2 2 3 3 aiga;,aipa},e TR O cum(s, (1), 53(1), s5(1), 53 (1))

g=1 r=1 p=1 s5=1
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P
o
= = =727 < sin(f 2
= § :aipajpe g p)|‘11p| Tdysp
p=1

where 1 <i,5 < M and c is the speed of propagation of the wavefronts.



Figure 2.1: Demonstration of VC?.
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Virtual Copy

Figure 2.2: The main array and its virtual copy.



Chapter 3

Subspace-Based Direction

Finding in Coherent Signals Case

When a signal source is close to a reflecting surface (e.g., a metallic object, build-
ing, sea surface, ground) the signal propagates through a multiplicity of paths.
This phenomenon is known as multipath propagation. Multipaths originating from
the same source are merely delayed and scaled copies of the direct path signal. In
this case, when delays are short compared to the symbol duration, the source mes-
sage does not change significantly, and the multipath signals are higly correlated
(coherent). Coherent signals are also encountered in military communications
when there are smart jammers which retrieve and retransmit signals.

In the case of coherent signals, existing subspace-based direction-finding meth-
ods, except for the WSF method [81] described in Chapter 2, fail. WSF method,
on the other hand, requires a complicated multidimensional search, and it has sev-
eral implementation problems, such as the need for accurate calibrations of the
array and knowledge of the derivative of the steering vectors with respect to 6. A
variety of other solutions [15, 92, 25, 32, 71, 85, 58], were proposed to handle the
coherency problem; however, these solutions are limited due to their assumptions.
For example, if the array configuration is uniform linear, coherence can be han-
dled using the spatial smoothing method of [T1, 85] as a preprocessor to the usual
second- and higher-order statistics methods; however, spatial smoothing is limited

to uniform linear arrays and reduces the effective aperture size of the array; the
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solution presented in [15, 92] requires computationally intense multidimensional
search; and, [32] proposes using moving arrays. In [25] an attempt was made to
generalize spatial smoothing to a class of very restrictive array geometries by using
interpolated arrays; however, it was assumed that the array manifold is known,
which requires array calibration. Porat and Friedlander present a modified ver-
sion of their cumulant-based algorithm [58] to handle the case of coherent signals;
however, their method is not practical; because, it requires selection of a highly
redundant subset of fourth-order cumulants that contains O(N*) elements, and
no guidelines exist for its selection; and, 2nd-, 4th- 6th- and Sth-order moments
of the data are required.

In this chapter, we present an extension of VESPA for direction finding to
the case of coherent sources. Our method [26], which we will refer to as extended
VESPA throughout the chapter, is capable of resolving more signals than the
second-order statistics-based spatial smoothing method, and is applicable to a
larger class of arrays. A uniform linear subarray is needed; the rest of the array
may have arbitrary and unknown response, and does not require calibration. In
our method, the number of resolvable signals may exceed the number of sensors.
On the other hand, the spatial smoothing method is limited to uniform linear
arrays, and the number of resolvable signals is always less than the number of
Sensors.

In Section 3.1 we define the problem. A solution to the problem is presented
in Section 3.2. Section 3.3 explains how the avaliable data can be used more
efficiently. In Section 3.4, a theorem on non-Gaussian noise suppression is intro-
duced. Results of simulation experiments are provided in Section 3.5. Conclusions

are in Section 3.6.

3.1 Description of the Problem

Consider a scenario in which there are G narrowband sources, {u;(t)}%,. Sup-
pose that each of these signals, u;() undergo frequency-flat multipath propagation
producing a set of delayed and scaled replicas of itself, {s;(t),---,sip(t)} im-

pinging on an M-element array from directions {6;,---,0;,,}. In the sequel, the
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Figure 3.1: An example array configuration. There are M sensors, L of which are uni-
form linearly positioned; ry(t) and r(t) are identical guiding sensors. Linear subarray
elements are separated by A.

collection of p; signals, {s;1(t),:--,sip(t)} which are coherent replicas of u;(t),
will be referred to as the ith group. Let the total number of signals impinging

on the array be P, that is 1, p; = P. Our assumptions are: A1) The source
G

signals, {u;(t)}{_, are statistically independent, which is a valid assumption for
physically separated sources; A2) The source signals have non-vanishing fourth-
order cumulants; A3) The M element array is composed of an L element uniform
linear subarray and an M — L element subarray having arbitrary and unknown
location and response (see Fig. 3.1); A4) The array is a non-ambiguous one, i.e.
its response to a signal from a given direction is different from that due to another
signal from a different direction; and, A5) The number of sources is less than the
number of array elements (i.e., G < M). The reason for the linear subarray will
be made clear below.

The signal received by the array at time ¢ is
r(t) = As(t) + n(t) (3.1)

where r(t) = [ry(t), -, rar(¢)]T, A is an M x P unknown steering matrix; s(t)
is a P x 1 signal vector, and n(t) is the independent measurement noise vector

which can be Gaussian, non-Gaussian symmetrically distributed, or a mixture



of Gaussian and this type of non-Gaussian noise. We assume that N snapshots
taken at time points t = 1,---, N are available.
The coherence among the signals impinging on the array can be expressed by

the following equation:

s1() cgc 0 .-+ O uy(t)
so=| "0 =10 T Y  tqun e
| sc(t) | |0 0 -+ cg | [ uc(t) |
where s;(t) = [3,',1(t),---,s;‘p;(t)]T is a p; X 1 vector representing the coherent
signals from the ith source, u;i(t) (1 < i < G); ¢i = [cin,+,cip]” is a p; X 1

complex propagation vector for the ith source, which represents the amplitude
and phase variations of each multipath and satisfies s;(t) = c;u;(¢); and, Q is

P x G. The received signal vector, written in terms of the source signals, is:
r(t) = AQu(t) + n(t) = Bu(¢) + n(t) (3.3)

where B 2 AQ. Columns of M x G matrix B are called generalized steering
vectors.

In this case, rank(R;) = G < P, and, hence rank(R) = G (see equation
(2.2)). Consequently, Property 1 in Chapter 2 does not hold. Therefore, some of
the signal eigenvectors diverge into the noise subspace. As a result, the covariance-
based subspace direction finding methods described in Chapter 2 fail. If the
array is uniform linear, then by applying the spatial smoothing method [71, 85],
a new rank-P matrix is obtained which can be used in place of R in any of
these subspace methods; however, spatial smoothing is limited to uniform linear
arrays and results in a less number of signals than that can be resolved with
the same array under the absence of coherence. On the other hand, for VESPA,
rank(C') = rank(C?) = G < P (see equation (2.68)), and, therefore, the diagonal
elements of matrix ® which are obtained from VESPA are unknown functions of
both the response of array and the propagation vectors. Consequently, when

there are coherent signals, an explicit solution for the signal directions can not
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be obtained from VESPA. In the next section, we extend VESPA to handle the

coherent sources case,

3.2 New Solution

The solution proceeds in three steps.

3.2.1 Step 1: Estimate generalized steering vectors

Given two scalar processes z(t) and z5(t) and an M-vector process y(t), we define
cum(zy(2), z2(t), y(2), y(¢)¥) as the M x M matrix whose ij-th entry is cum(z, (¢),
22(t), yi(t), y;(t)) where y;(t) and y;(t) are the i-th and j-th components of y(t),
respectively. The (m,n)th element of B will be denoted by bp,.

Let 71(t) and () represent signals recorded by a pair of sensors arbitrarily
selected from the array, and suppose that the sensors are numbered accordingly,
l.e., these sensors are numbered as the first and the second. First, the following

fourth-order cumulant matrix is estimated from the data:
A "
Ci = cum(ry(t),r}(t), x(t), r(t)™)

G G G G
= cum (Z bimum(t), Z:l b;nu;(t),g b;u;(t), Z iju;(t),)
m=1 n= e 1=1

+ cum(n,(¢), ni(¢), n(t),n" (1))
G G G G

= > 20> bimbi,bib ™ cum(unm(t), w)(t), wilt), ui(t))

m=1 n=1i=1 j=1
G
= > Yau|b1i|*bibi”

i=1
= BABY (3.4)
where b; is the ith column of B, {74.,}:=¢ are the fourth-order cumulants of
the sources, and A 2 diag(Yau |b11]% -+ s Yaus|b1c)?). In the above derivation,
cumulant properties [CP1], [CP3], [CP5] and [CP6] in Section 1.2.2 were used.
Note that the cumulant of the additive Gaussian measurement noise is zero. The

next to the last line of (3.4) follows from the independence of the source signals
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and [CP6], i.e.,

iy if =n=1=1
cum(uy, (1), un(t), wi(8), us()) = { 0 U MTUEEEL g5
0 otherwise
Proceeding similarly, cum(ra(t), 75(¢), £(t), r(¢)") can be shown to be
c, 2 cum(r2(2), 7 (1), r(t],r(t)H)
G
= Yau;babi;bibiH
i=1
= BDAB# (3.6)
where D £ diag(gﬁ, vy %fg-).

Note that, due to assumption A4, rank(B) = G (i.e., full-rank) when the
signals arrive at the array from different angles. Here, we assume that the first
two sensors have nonzero responses to each group, i.e., the first two rows of B are
all nonzero. Under this assumption and assumption A3, D and A are nonsingular.
The case when the first two rows of B have zero entries is treated in Section 3.3.1.

Using (3.4) and (3.6) it is possible to estimate the matrix D and columns of
B (i.e., the generalized steering vectors) each to within a complex constant.

The solution is based on the idea of rotational invariance of the underlying
signal subspace which is the basis of the ESPRIT algorithm [66] and VESPA.
In ESPRIT, the rotational invariance of the signal subspace is induced by the
translational invariance of the array, i.e., an identical copy of the array which
is displaced in the space is needed. On the other hand, in our cumulant-based
algorithm, the same invariance is obtained without any need for an identical copy.
In ESPRIT, the signal subspace is extracted from the eigendecomposition of the
covariance matrix of the concatenated measurements from the main array and its
copy. Here, the signal subspace is extracted from the singular value decomposition
of the concatenated matrix of (3.4) and (3.6) which, in turn, gives D and the
columns of B, {b;}&,, each to within a complex constant.

A comparable result is not possible using just second-order statistics for arrays
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having arbitrary shape and unknown response, because a spatial array covariance-
matrix depends only on two arguments, whereas we need a statistic with at least
three arguments to obtain matrices similar to (3.4) and (3.6). If, on the other
hand, an array consists of two identical subarrays displaced in space, two covari-
ance matrices can be obtained which have a structure similar to (3.4) and (3.6).
In this case, in addition to the two arguments of the covariance matrix, one extra
argument is present due to the fact that responses of identical but displaced arrays
are identical up to a phase term, and, the phase term serves as the extra needed
argument. Nevertheless, even in this case, ESPRIT can not be applied to these
two covariance matrices if some of the incoming signals are coherent; because, the
ranks of these matrices are then less than the number of incoming signals, which
violates the rank condition of the ESPRIT problem. It is possible to restore the
ranks of these matrices using the spatial smoothing method [71]; however, spa-
tial smoothing is applicable only to uniform linear arrays. Consequently, existing
second-order statistics based methods can not handle the coherent signals case
with arrays having arbitrary and unknown geometries. Our method can.

In the Appendix, we show how the generalized steering vectors are estimated
from (3.4) and (3.6) using the TLS ESPRIT algorithm.

In order to see the forest from the trees, we summarize the computational
steps.
Step 1: From the M x 1 array data, estimate the following M x M cumulant

madtrices:

C,
C,

cum(r (£), 75(8), v (8), *¥ (1))
cum(ra(t)", 75 (1), v(), 27 (1)), (3.7)

a

and, stack these matrices into a 2M x M matrix C as follows:

Cy
C,

A

& (3.8)

Step 2: Perform SVD of C; keep the first 2M x G submatrix of the left singular

vectors of C, where G is the number of groups. Let this submatrix be Uj.



Step 3: Partition U, into two M x G matrices Uy and Uy, as in (3.36).
Step 4: Perform SVD of [Uy;, Uy,). Stack the last G right singular vectors of
(U1, Uyps] into the 2G' x G matrix denoted F.

F.

Step 5: Partition F as F = ! } where F, and F, are G x G .
y

Step 6: Perform eigendecomposition of —F,F;; keep the eigenvalues. Let the

eigenvector and eigenvalue matrices of —F.F;! be E and D, respectively.
Step 7: An estimate of B is obtained to within a diagonal matrix, as in (3.43).
Note that r;(¢) and r;(t) can be chosen as any two sensor measurements in the
array provided D and A in (3.4) and (3.6) are nonsingular. However, choosing
r1(t) and ro(t) from the linear subarray leads directly to the DOA estimates at this
step if the sources are statistically independent, because, in that case G = P, and
diag(%ﬁ-, e Eﬁ) = diag{e~72 3 sn(®) ... e‘jh%sm(af’)}, which follows from the
fact that linear subarray antennas have identical responses. Note that with the
above choice of 7(t) and r,(t) (i.e., choosing r,(¢) and r(t) as identical-response
sensor measurements), this step corresponds to VESPA. For the coherent case,
however, the matrix D does not give the DOAs explicitly; but, the estimated
generalized steering vectors can be used to find the DOAs, as explained in the

next step.

3.2.2 Step 2: Spatial smoothing

Once we have estimated the generalized steering vectors {b;}Z.,, we can esti-
mate the steering vector and, subsequently, the DOA of each received signal path.
The general form of coherence between the received signals lets us express each
generalized steering vector as a linear combination of steering vectors of one co-
herent group, independent of the other steering vectors, where the combination
coefficients are the elements of the unknown complex propagation vector for that

group. To see this, partition the matrices B and A as

B [blr Ry bG] ’ (39)
A = [Aye,Ad], (3.10)

o
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where b; is M x 1, and the steering matrix for the 7th group,

e

Al [a(ghi)" o 'la(gilpi)] (3'11)
is M x p;. Additionally, 0;,, represents the angle-of-arrival of the mth source in
the 1th coherent group with 1 < m < p;. Using the fact that the ith column of Q

has p; nonzero elements, B can be expressed as
B =AQ = [Acy, -+, Agcq]; (3.12)
therefore, the 7th column of B, b;, is
b;: = A;e; (3.13)

where:1 =1,---,G.

Now, the problem of solving for steering vectors of the received signals is
transformed into G independent problems, each solving for the steering vectors
of all the signal paths in each coherent group from the generalized steering vector
of that group. To solve each of these new problems, each generalized steering
vector b; can be interpreted as a received signal for an array illuminated by p;
coherent signals having a steering matrix A;, and covariance matrix c;cf. Then,
the DOAs of each signal could be solved for by using a second-order-statistics-
based subspace method such as MUSIC if the array is calibrated and if the rank
of c;c? is p;; however, the array is not calibrated and rank(c;cf) = 1. Therefore,
we propose to keep the part of each estimated generalized steering vector that
corresponds to the linear part of the main array, and does not require calibration.
By doing this, we will be able to incorporate spatial smoothing [71], [56] which,
in turn, will restore the rank of c;c to p;.

For this purpose, partition b; as follows:

br;
bi=| " =
b;\!—L,i

where by, ; is the portion of b; corresponding to the linear array of sensors (the

AL .
. ¢ im0 (3.14)
Anp-p;
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first L elements of b; for the array configuration in Fig.1), and Ay ; contains the
first L rows of A;. Now, by ; can be interpreted [26] as a received signal for an
L element uniform linear array that is illuminated by coherent signals from a
single source whose propagation vector is ¢;. Note that the steering matrix of
these coherent signals is Ay ;. Treating by ;b ;7 as the covariance matrix of the
received signal, spatial smoothing can be applied to restore the rank of by, ;bz ;¥
to p; for 1 =1,---,G, and then, any second-order-statistics-based high-resolution
method can be employed to find the DOAs. Note that the antenna patterns of
the sensors in the uniform linear subarray, which are the same, are not required,
i.e., calibration is not needed.

In order to derive the relationship between the number of array elements
and maximum number of detectable signals by our method, the method of spa-
tial smoothing [56], [71] is summarized next. Forward spatial smoothing for
the 2th group (¢ = 1,---,G) starts by dividing the L-vector by; into K =
L — S + 1 overlapping subvectors of size S, bf;‘z- (k =1,---,K), with elements
{bri(k),---,bri(k+ S —1)}. Partitioning Ay ; as

Ap: =

1

, (3.15)

Al_s;

in which As; is S x pi, b§; can be expressed as (this is where use is made of the

uniform linearity of the subarray)
b, = As®;F Ve, k=1, ,K i=1,---,G, (3.16)
where ®;*~") denotes the (k — 1) power of the p; x p; diagonal matrix
&, = dia‘g{c—jwcﬁsinag,]‘{c,_”’e—ijAsinQ.'lpl.;‘c}, (3.17)

in which ; ., represents the angle-of-arrival of the mth source in the ith coherent
group, where 1 < m < p;, and A is the separation between the elements of the

linear subarray under consideration. Consequently, for the kth subvector

bgl‘-bg‘in = As,i‘I’{[kr”C.‘C.'H@i(k—l)HAsi,-H, (3.18)
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which, of course is rank-one.
Define the spatially smoothed matrix bs;bs; as the average of b’g’-.l-b""',-H over
(k=1 K) i,

7]
bs:bs;

L K wk wk H
7 k=1 bS,ibS,i

1 .E H
_ o | q,:_(k—l} ; .'" I_(k-l) A t,H
As ( MZ cic;H s,

Il

=1 L (3-19)
oR,
= AsiRiAg"
The matrix R; can be expressed explicitly, as
- o.H -
(®ici)”
Rl = = Cy, (I’,‘C{, @fzcis "y Qi(h’_l)ci i,lzcx "
x| I (@de) (3.20)
((I)i{.f\’—].)ci)hr
2 LpFH
where
’- 1 v i ;K1
C,‘(l] 0 ! '12 ’ 1
F, = 1 vio Vi2 Via
p oo : ' : (3.21)
0 C;\ i .
#) L ovig, vip? oo vip S
2 GV

. . A -
in which v; ,, = e~iweAsinbim/e

with 1 <m < p;.

Under what conditions will the rank of bs',‘bsﬁ'H be restored to p;7 Note first
that the rank of R; is equal to the rank of F;, and, the rank of F; is the same as
that of V;. For the Vandermonde matrix V;, rank(V;) = min(p;, K') [56]; hence,
rank(V;) = p; if and only if K > p;, i.e., if the number of subvectors used in
spatial smoothing is greater than or equal to the number of coherent signals in

the :th group. Thus, if K = L — S+ 1 > p;, or equivalently L > p; + 5 — 1, then

o
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rank(R;) = p;. Additionally, if S > p;+1, the columns of As; (which is § x p;) are
linearly independent; and hence [see (3.19)] rank(bs,bs;) = p;. Combining both
constraints on L, we obtain the following conditions on the length of the linear

subarray, L and the parameter S under which the rank of bg,,-bs,,-H is restored to
pi by bs,ibs,«;H!

L must satisfy: L > 2p; if forward spatial smoothing is used; and,
L > 3p;/2 if both forward and backward smoothing are used [56].
This means that, if both methods are used, the linear subarray must
have at least 3p,../2 elements where p,., 1s the maximum number
of multipaths in anyone of the G groups. Given L and pjqz, the
parameter S must be selected such that ppez+1 < S < L—ppa-/2+1.

3.2.3 Step 3: Extract DOAs

By applying any second-order-statistics-based subspace technique (e.g., root-MUSIC,
etc.) to the pseudo-covariance matrix bs,;bs,:-H, 1 =1,---,G, it is possible to esti-
mate DOAs of up to 2L/3 coherent signals in each group. As just noted, a linear

subarray of minimum dimension 3p,../2 is needed.

3.2.4 Discussion

Since B is M x (7, the maximum number of groups, G, that can be resolved is
M —1. Additionally, as we have just seen, it is possible to estimate DOAs of up to
2L /3 coherent signals in each group. Consequently, the maximum total number
of coherent sources that can be resolved by our method is 2(M — 1)L/3. If all
sensors are in a uniform linear array, (M = L), then a maximum of 2(M —1)M/3
coherent sources can be resolved.

Note that in deriving our three-step method we did not restrict the entire array
to be linear. Only an L-element part of it must be linear. In contrast, when the
sources are coherent, spatial smoothing method of [56], [71] is limited to uniform
linear arrays. In addition, while our method can resolve 2(L — 1)L/3 coherent
signals, these methods can resolve at most L — 1 signals using an L element linear

array.



Another point to note is that, if a coherent group contains more than 2L/3
signals, only the DOA estimates of that group are affected, because, each group
is treated independently in the second step of our method.

Finally, even if there are no multipaths, our method works, because, in this
case, spatial smoothing does not affect the unity rank of bs,ibs,,ﬂ, since there
is only one signal in the 7th group. Note that our method works for coherent
or linearly correlated sources as well as independent sources. On the other hand,
VESPA works only for the independent sources case. The tradeoff from a hardware
standpoint is that our method requires a uniform linear subarray whose length
depends on the number of multipaths in a coherent group, whereas VESPA re-
quires two identical sensors. If one suspects any multipath will be present in the
data, EVESPA must be used.

Next, in order to improve the generalized steering vector estimates, these es-
timates can be averaged; or, the principal component of the matrix with jth

column, b;; (j=1,--+, M*(M —1)/2) can be chosen as an improved estimate of
b;.

3.3 Efficient Use of Data

In this section, we show that our method can be modified to use the available

data more efficiently.

3.3.1 Using Multiple Guiding Sensor Pairs

Just as when we chose the first two sensors as the guiding pair, the two pairs of sen-
sors (p,m) and (q,m), p # ¢ also lead to two matrices, like (3.4) and (3.6), which
are in ESPRIT form to estimate the generalized steering vectors {by;,---,br g}
On the other hand, VESPA requires guiding sensor pair elements to have identi-
cal responses, because, VESPA is based on the fact that, in the incoherent case,
responses of identical but displaced sensors are identical up to a phase constant
which contains the angle of arrival information. Consequently, we have more de-
grees of freedom in our method than in VESPA. This observation suggests that

the available data can be used efficiently by employing multiple guiding sensor

(1]
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pairs in Step 1. To demonstrate this, consider the following cumulants which are
generated by using the sensors p and m as the first guiding sensor pair, and ¢ and

m as the second guiding sensor pair
Cpm = cum(ry(t), o (1), v(t), rf(t)) = BA, B, (3.22)

Cym = cum(ry(t), v (), r(t), 7 (t)) = BD, A, B, (3.23)

where, B is the generalized steering matrix, A, ,, 2 diag{Va,u, bp151, ** * » Vauebpcbing
and Dy, = dia.g{:—‘-‘;, e %:%} The derivations of (3.22) and (3.23) are very sim-
ilar to the derivations of (3.4) and (3.6).

Just as when we chose the first two sensors as the guiding pair, the two pairs
of sensors (m,p) and (m,q), p # ¢ also lead to two matrices, as shown in (3.22)
and (3.23), which are in ESPRIT form to estimate the generalized steering vectors
{bi, -+, bg}. This observation is useful for two purposes. First, it suggests that
the available data can be used efficiently by employing multiple guiding sensor
pairs. Second, it provides a basis for a solution to a potential problem that is
associated with the practical implementation of our method, as explained next.

In Section 3.2 the first two sensors were chosen as the guiding sensor pair,
and it was assumed that the first two rows of B are all nonzero. The reason
for this assumption is explained as follows. Suppose that the ith element B(1,7)
in the first row of B is equal or close to zero. Then, A(1,7) = 0 which causes
rank(C) = G — 1 (see (3.4), (3.6) and (3.8)), and consequently the number of
independent sources appears to be one less than its actual value. As a result,
all the sources but the ith will be separated. Similarly, each zero entry in the
second row of B reduces rank(C,) by one which, in turn, partially destroys the
rotational invariance between the signal subspaces of C; and C,. In these cases,
the availability of multiple candidates for the guiding sensor pairs proves to be a
useful solution. A simple selection procedure for the “right” sensor pairs in such
cases is proposed next.

A Simple Selection Procedure: 1) Estimate the number of groups G from the
eigendecomposition of the array covariance matrix (sophisticated approaches such

as MDL or AIC can be used here); 2) Check the rank of estimated C;; for i =
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1,--+,M; and, prepare a list of values of 7 for which the rank of the estimated
C;: = G. This is a list of all the “safe” indices, from which the indices p, ¢ and
m of C,,;m and C,,, can be selected. The reason why we call this list “safe” is
that for each value of 7 in this list, the :th row of B must have all nonzero entries,
because each zero entry in the ith row of B reduces the rank of C;; by one.

In general, we can choose the pair (p, ¢) such that p # ¢ in M(M —1)/2 ways
since interchanging p and ¢ does not matter. In addition, m can be chosen in M
ways. Therefore, the sensor pairs (m,p) and (m,q) can be chosen in M?*(M —
1)/2 ways. Provided that these pairs are the “right” ones, for each choice there
corresponds an ESPRIT problem defined by the two MxM matrices C,,, and
C,m. The solutions of these problems yield M*(M — 1)/2 estimates of each
generalized steering vector b; (z = 1,---,G). Next, in order to improve the
generalized steering vector estimates, these estimates can be averaged; or, the
principal component of the matrix with jth column, b;; (7 = 1,---, M*(M —1)/2)
can be chosen as an improved estimate of b;. Since the required computations for
different choices of guiding sensor pairs are independent, they can be implemented

in parallel.

3.3.2 Using Covariance Information

Sensor to sensor independence of the measurement noise lets us use the spatial
covariance matrix of the array as side information to improve the generalized
steering vector estimates and bearing estimates in our method. If it is known
that the measurement noise is spatially white, the eigenvectors of the spatial
covariance matrix corresponding to the smallest repeated eigenvalues span the
noise subspace; and, the remaining eigenvectors define the signal subspace.
Although we can not identify the generalized steering vectors from the co-
variance matrix when coherence is present, we can improve our cumulant-based
steering vector estimates by projecting them onto the signal subspace obtained
from the spatial covariance matrix [16]. As explained in [16], the motivation
behind this approach is that the variance of covariance estimates is lower than
that of cumulant estimates for the same sample size. Note that this method is

applicable only if the noise is white or the noise covariance matris is known.



If the goal is to estimate the DOAs, we proceed to improve our generalized
steering vector estimates in extended-VESPA by:
1. Estimating the spatial covariance matrix corresponding to the uniform linear
part of the array;
2. Identifying the signal subspace eigenvectors by eigenanalysis of the spatial
covariance matrix;
3. Stacking the signal subspace eigenvectors into an LxG matrix E, (if there are
(G coherent groups, the signal subspace is G’ dimensional); and,
4. Projecting the cumulant-based generalized steering vector estimates {br;}%,
onto the signal subspace to obtain improved estimates {by; imp }y, i-€.; BLiimp =
E,Efby ;. These improved generalized steering vector estimates are used in the

spatial smoothing step of extended-VESPA.

3.3.3 Improving Generalized Steering Vector Estimates

by Beamforming

The quality of bearing estimates in each coherent group depends on the accu-
racy of the corresponding generalized steering vector estimates. In Sections 3.2.2
and 3.2.3, we worked with the generalized steering vector estimates one at a time
to extract the bearings of coherent signals in each group separately, and, when
considering each group, we did not make use of the already existing generalized
steering vector estimates of other groups. In this section we show that this lat-
ter information can be used to improve the estimate of the generalized steering
vector of each individual group. This is achieved by suppressing the undesired
groups using a suitable beamformer so that the transformed received signal con-
tains only the desired group. The same procedure is repeated for each group and
the transformed data is then processed as explained below. The transformations
and subsequent processing can be implemented in parallel.

Suppose that the generalized steering matrix B is estimated in the first step
of extended VESPA, and that we are interested in the ith group arrival angles

(i=1,---,G). From the signal model, we have
r = bu;(t) + Byiuyi(t) + n(t) (3.24)
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where M x (G — 1) matrix B, ; £ (b1, -+, biz1,bis1, -+, bg] and (G — 1)-vector
u,,;(t) = [Uy,- -+, W1, Uit1, -+, ug). Both B, ; and u,;(t) are associated with the
undesired groups.

Using the estimate b; obtained from the first step of extended VESPA, we can
find two beamformer vectors w;; and w;; such that w;‘fﬁu,; S wgﬁu'; =0, and,
wib; and wgf); are nonzero. Two such vectors are obtained by picking any two
of the left null space vectors of Bug Since b is independent of the columns of
B.. v w,lb and w; b are nonzero. Applying these beamformers to the received
signal, we obtain two signals 71(t) = wir(¢) and 7,(t) = whr(t). Ideally, these
transformations suppress the contributions of all groups but the desired group
ui(t). Hence, 71(t) &~ wibui(t) + win(t) and 7(t) ~ whbui(t) + whn(t).
Let ¢ 2 wHb; and ¢ £ wilb;, so that 7(¢) & ciui(t) + wHn(t) and 7(t) ~
cioui(t) +win(t).

Defining the cumulant vector cum(75(t),71(t),7;(t),r(t)) as the vector ! with
the kth entry as cum/(7;(t),71(t),71(t),7x(t)), an improved estimate of b; can now

be obtained to within a complex constant from the following

cum(77(¢),71(t), 71 (¢), r(t)) =~ cum(ci™wi™(t), cawi(t), cin™wi™(¢) Zb;,uk
= cum(cin™ui" (), caui(t), e w; (t),bgug(t))
G
+ cum(c;l*u;'(t),c;;u;(t),c;l*u,-"(t),Zbkuk(t))

ki

= |en| cir™vaibi : (3.25)

where 74; is the fourth-order cumulant of the ith source, and we have used the
independence of the signals and the additive Gaussian-noise, and [CP1], [CP3],
[CP5], [CP6] in Section 1.2.2. This improvement method will be referred to as
BFBI1 (short for BeamForming-Based Improvement 1). A similar formulation
was used in [19] where all signals but the desired one were assumed Gaussian, and
therefore, they were suppressed by the cumulant operations.

In general, one can choose the beamformer vectors w;, and w;,, which put nulls

"The reason why we have introduced #» will become clear later when we consider an ESPRIT-
like formulation.
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on all the undesired signals, in M —G+1 ways. Let those vectors be {wi }1;5*,

and 7(t) = wir(t). Then, further smoothing of the estimate of b; is possible
by taking the principal component of the rank-one matrix whose k-th column is
defined as cum(7;(t),7x(t),73(¢),r(¢)), k =1,---, M — G + 1. This improvement
method will be referred to as BFBI2. Note that an estimate of b; can also be
obtained from the correlation E{7;(¢)r(¢)} in the high SN R case; however, if the
undesired sources are not suppressed perfectly, we need cumulants, as explained
in the next paragraph.

Up to now, we assumed the undesired signals are suppressed perfectly so that
we are left with only one source, and we could use the cumulant vector in (22);
however, in practice, residual undesired signal terms are present in 7, (¢) and 72(¢).
In that case, the cumulant vector in (22) gives a weighted sum of generalized
steering vectors of all the sources; therefore, it is better to use an ESPRIT-like
formulation, as we did in the first step, which can handle multiple sources.

Letuds = [W,’lel,---,W,'lec;], and d, 2 [w;szl,---,wiszG] where wy;
and w;, are chosen as described above. Note that if perfect estimates of b; were
possible, all entries but w;;¥b; of dy and w;»b; of d, would be zero. Let us also
define C; = cum(#j(¢),71(t), r(¢),r¥(¢)) and Co = cum(F;(t), 75(t), r(t), v (¢)) as
the M x M matrices whose (m,n)th elements, respectively, are cum(7;(t), 71(1),
rm(t), 72*(t)) and cum(7}(t),72(t), rm(t),7»"(¢)). Using the notation x(k) for the

kth element of a vector x, a simple expression for C; is derived, as

Ci = cum(Fi(t), (1), r(t), v (1))

G G G G
= cum(z d; (k) ur™(2), Z d;(k)uk(t), Z brux(t), Z kauk’(t))
k=1 k=1 k=1 k=1

e
= 3 |di(k)[Pyaubibi”
k=1

= BAB# (3.26)

where B £ [by,  +,bg] and A 2 diag{|di(1)*y4,1, -+, |d1(G)[*v4,¢}, and we used
[CP1],[CP3],[CP5],[CP6] in Section 1.2.2. Note that if one assumes perfect
nulling, in which case all d,(k)s but d,(2) are zero, then C, is theoretically rank-

one.



Similarly, C, can be shown to be

G
C, = d,(k)*dy(k)7y4xbebi
k=1

= B®ABY (3.27)
where & £ diag{jl?.({ll)]’ — :1'-‘12_([(36}} ks

By applying ESPRIT to (3.26) and (3.27), we can obtain an improved estimate
of b;, which is then used in Steps 2 and 3 of extended-VESPA in the same way as
explained earlier. This improvement method will be referred to as BFBI3. Note
that, because we are interested only in the part of b; associated with the linear
subarray in the second and third steps of extended VESPA, we could use only the
linear part of the data to improve the linear part of b;. This is accomplished by
applying the same procedure explained here, in which r and B are replaced by
their linear parts, ry, and By, respectively.

A flow-chart of this technique is given in Fig. 3.2.

3.4 Non-Gaussian Noise Suppression

Theorem: As in VESPA, in the presence of non-Gaussian signals, additive non-
Gaussian noise suppression is possible with extended VESPA, if one of the sensors’
measurement noise is independent of the measurement noises of other sensors of
the array [17], [16].

Proof: Assume that the measurement noise of sensor m is independent of the
measurement noises of the other sensors. Using sensor m and any other two
sensors (say p and ¢) in the array, extended VESPA can be applied as explained
in Section 3.3.1. Extended VESPA starts with the estimation of the following two

cumulant matrices:
Cpm = cum(ry(t), r (), ri(t), 77 (1)), (3.28)

and
Com 2 cum(ry(t), o (t), r(t), (%)), (3.29)
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Figure 3.2: A flow-chart of the beamforming technique for improving generalized
steering vector estimates.

for k,l =1,---, M, where r,,(t), r,(t) and r,(¢) denote the received signal by the
sensors m, p and g, respectively. Since, the received signal is the sum of the signals
and measurement noise, and measurement noise is independent of the signals, each
of the above cumulants is equal to the sum of cumulant of signals and cumulant of
measurement noise by [CP35] in Section 1.2.2. However, by [CP6], the cumulant
of measurement noise is zero, because, the noise measured by the mth sensor is
independent of the noises measured by the other sensors. Consequently, the above

cumulants are theoretically noise free.

64



A
¥
Sensor |
R A
......... x A2
R AR AN H—H—A—R—H—HK—H—
A2 9(L/2) X
.--..x"y._._. _l/{z
-\
x -
A/2
-

Figure 3.3: The array configuration used in the first experiment. The antenna
elements are dipoles oriented by the angles given in the text.

3.5 Experimental Results

In this section we present results of some simulation experiments demonstrating

our method.

3.5.1 Experiment 1: 14 sensors, 20 signals

We consider the array in Fig. 3.3. Each sensor in the array is a dipole antenna
which has a response cos(f; — &;) to the jth signal where 6; is its arrival angle
and ¢; is the orientation of the ith dipole (see Fig. 3.4).

The orientations of the dipoles are chosen arbitrarily as {95°, 85°,87°,92°, 90°,
90°, 90°, 90°, 90°, 90°, 90°, 90°,90°,90°}. There are four groups, and each group
contains a direct-path signal and four scaled and delayed replicas of the direct-
path signal. The scaled and delayed replicas represent the multipaths. In this
experiment there are 20 BPSK signals. Additive white Gaussian noise and a dif-
ferent SIVR is assumed for each direct-path signal. The direction of arrivals and
propagation constants of the signals within each group relative to the direct-path
and direct-path SIVRs are chosen as follows, where unity propa.gation constants
correspond to direct-path signals:

Group 1
DOAs: {40°,68°,80°,115°,130°},



e
|

Figure 3.4: The response of the dipole antennas used in the experimental array.

Propagation Constants: {(0.2 + 0.8),1, (0.8 — 0.5¢), (0.75 + 0.65¢), (0.8 — 0.27)},
Direct-Path SNR: 20dB.

Group 2

DOAs: {50°,70°,90°,120°, 135°},

Propagation Constants: {(0.9 + 0.3), 1, (0.9 — 0.3¢), (0.8 + 0.77),0.95},
Direct-Path SNR: 18dB.

Group 3

DOAs: {45°65°,85°,110°,125°},

Propagation Constants: {1, (0.8 — 0.7¢), (0.7 + 0.74), (0.65 — 0.8:), (0.9 + 0.17)},
Direct-Path SNR: 18dB.

Group 4

DOAs: {60°,85°,105°,118°,140°},

Propagation Constants: {(0.3 — 0.8), (0.4 + 0.97), (0.8 + 0.67), (0.9 + 0.74), 1},
Direct-Path SNR: 19dB.

Taking the signals received by the rightmost two dipoles in Fig. 3.3 as ry (1)
and r(¢), we applied our method to the scenario described above. 3000 snapshots
were used to estimate the cumulant matrices. Both forward and backward spatial
smoothing with MUSIC were used in the second and third steps of our method.
Figure 3.5 shows the MUSIC spectrum for each coherent group obtained with

our method for 100 Monte Carlo runs of the experiment. The sharp peaks in the
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Table 3.1: Sample means p and standard deviations o of the arrival angle esti-
mates based on the 100 realizations of Experiment 1.

Groups
1 2 3 4
Path p | o g | o g | o g | o
1 39.98 | 0.19 | 49.96 |0.47 | 45.03 [ 0.23 [ 59.98 | 0.34
2 67.99 [ 0.76 | 70.00 | 0.36 | 64.97 [ 0.22 | 84.97 [ 0.42
3 80.01 | 0.76 | 90.03 | 0.27 | 85.00 | 0.10 | 104.93 | 0.58
4 114.99 [ 0.33 | 119.96 | 0.15 | 110.03 | 0.59 | 117.97 [ 0.79
b) 130.06 | 0.23 | 134.95 | 0.38 | 125.97 | 0.28 | 140.00 | 0.52

MUSIC spectrum give the arrival angle estimates. The actual arrival angles are
also marked in Fig. 3.5. Observe that we are able to estimate all arrival angles,
and the estimates are consistent.

In Table 3.1, the sample means and standard deviations of the arrival angle es-
timates based on the 100 realizations are given. These values should be compared
with those given above, to see that our method performs well.

Note that we have a total of 20 sources and a 10 sensor linear subarray. Covari-
ance based methods, including the spatial smoothing, fail for this case, because,

the number of signals is larger than the number of sensors.

3.5.2 Experiment 2: Effect of data length

In this experiment we investigate the effect of number of snapshots on the perfor-
mance of our method. The same antenna array and signal model as in Experiment
1 were used. The arrival angles and propagation constants were chosen the same
whereas direct-path SNRs were fixed at 20dB. We increased the number of snap-
shots by steps of 250 in the range [500,3000]. Taking the rightmost two dipoles
in Fig. 3.3 as r1(¢) and ry(t), we applied our method. Both forward and backward
spatial smoothing with Root-MUSIC were used in the second and third steps of
our method. We ran our method for 30 Monte Carlo realizations of the experi-
ment, at each value of number of snapshots. Figure 3.6 shows the sample standard
deviations as a function of number of snapshots. As seen from the figure, standard

deviations decrease as the sample size is increased.
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Figure 3.5: MUSIC spectrum estimates for each coherent group obtained with our
method for 100 runs of the first experiment. The actual arrival angles are marked

with the symbol “*7,

68



C
o4 9 1g
8 g
S >
a 8
D 0%
(1] 1]
T T
[ % a
g g ; ]
0 @ 1000 2000 3000
Number of Snapshots
Group 3 Group 4
§15 : 88— -
3 3¢
> =
@ [1}]
0 al:
L5 °
@ 0.58 @
T T
{% : S v, % i i
— . L - 0 A H
@ 1000 2000 3000 @ 1000 2000 3000
Number of Snapshots Number of Snapshots

Figure 3.6: Sample standard deviations [in degrees] of angle estimates obtained
with extended-VESPA for each signal as a function of number of snapshots based
on 30 realizations of Experiment 2. “o” signs indicate data points.

69



3.5.3 Experiment 3: Using covariance information

In this experiment we show that projecting the generalized steering vector esti-
mates onto the signal subspace obtained from the spatial array covariance matrix
yields better angle estimates than those obtained from the basic version of our
cumulant-based direction-finding algorithm. This improvement method was pro-
posed in Section 3.3.2.

For this purpose, we assumed the same signal scenario as in Experiment 1.
There are four independent groups and five signals in each group. We applied our
basic algorithm for 100 different realizations of Experiment 1; for each realization
we also applied the method described in Section 3.3.2 in order to get improved
angle estimates, i.e., we projected the generalized steering vector estimates onto
the signal space obtained from the spatial covariance matrix corresponding to
the linear subarray. The number of snapshots was 2000. For both methods we

calculated the root-mean-square errors (rmse) for each angle estimate which is

n=1

defined as rmse = \/}IV S (Oestn — 0)? where 0 and Oestn are the actual value
of the arrival angle and its estimated value for the nth realization, respectively.
The results are given in Table 3.7. Observe that, for low SNRs, our projection
method gives better angle estimates than the basic version of our cumulant-based
direction-finding algorithm. As SNR increases, both versions tend to give equal
performance. One concludes, therefore, that using the covariance information

yields better results in low SNR cases.

3.5.4 Experiment 4: Improvement by BFBI3, 2 groups

The purpose of employing the beamformer that is described in Section 3.3.3 in
the first step of improved extended VESPA is to minimize the cross-term effects
in the cumulant estimates which are present due to multiple groups. Although
different groups are statistically independent, cross-term effects are present be-
cause a finite number of samples are used in estimating the cumulants. In this
experiment, we substantiate our earlier claim that the cross-term effects are re-
duced by suppressing other groups when working with each group, one at a time.

We again consider the 14-element array in Fig. 3; but, for simplicity we assumed
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two groups, each containing five coherent signals, with the following propagation
constants and arrival angles:

Group 1

DOAs: {45°,70°,90°,100°,120°},

Propagation Constants: {0.3 — 0.8¢,0.4 + 0.97,0.8 + 0.6, 0.9 + 0.77,1}.

Group 2

DOAs: {50°,65°,80°,93°,110°},

Propagation Constants: {0.9 + 0.3¢,10.9 — 0.3, 0.8 + 0.72,1}.

The signals with unit propagation constants correspond to direct paths. We as-
sumed AWG noise, and 2500 snapshots were used. Whereas the direct path SNR
of the second group was fixed at 10dB, the first group SNR was variable and was
increased by 2dB steps in the range from 0 to 20dB. For each value of the first
group SNR, we performed a 100 run Monte Carlo experiment by running both
extended-VESPA and its improved version. For the improved version, we used
BFBI3.

Fig. 3.7 displays the RMSEs for the second group arrival angles as a function
of the first group SNR, for both regular and extended-VESPA with BFBI3 im-
provement. The second group was assumed the desired one for BFBI3. As Fig. 3.7
shows, the RMSEs curves for both versions of extended VESPA follow the same
path up to 10dB, after which the RMSE performance of regular extended-VESPA
deteriorates while the improved version gives better estimates.

These observations support our earlier claims: when the first group’s signal
powers are lower than those of the second group, cross-terms in the second group’s
cumulant estimates due to the first group are negligible (see the region for SNR
less than 10 dB in Fig. 3.7. Consequently, using BFBI3 to suppress the impact
of first group does not reduce RMSEs of the second group’s arrival angles. On
the other hand, when the first group’s signal powers are much higher than those
of the second group (when SNR is greater than 10dB), the cross-terms present in
the second group’s cumulant estimates due to the first group are powerful. They
result in poor sample estimates, and hence, degrade the RMSE performance of
the regular extended-VESPA estimates. In this case, the improved version of

extended VESPA suppresses the first group’s signals, and, therefore, reduces the
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cross terms as expected (see Fig. 3.7 for SNR greater than 10dB). This in turn,
results in better cumulant estimates and hence better DOA estimates.

Fig. 3.8 displays the RMSEs for the first group arrival angles as a function
of the first group SNR, for both regular and extended-VESPA with BFBI3 im-
provement. The first group was assumed the desired one for BFBI3. As expected,
the RMSEs decrease as the first group SNR increases. When the first group SNR
is less than the second group SNR (the region for which SNR is less than 10dB
in Fig. 3.8), the improved method gives slightly better estimates. The reason is
that, in this region, suppressing the second group eliminates the cross terms in
the first group’s cumulant estimates due to the second group. As the first group
SNR increases, impact of cross terms due to the second group reduces; therefore,

both methods give equally good estimates.

3.5.5 Experiment 5: BFBI1 versus BFBI3

In this experiment, we compare the beamforming improvement methods BFBI1
and BFBI3, which are described in Section 3.3.3. The performance measure used
for comparison is the mean-squared error. We also compare both methods to the
regular version of extended-VESPA. Note that the BFBI1 does not require the
extra eigendecomposition that BFBI3 does, and hence is computationally much
simpler than BFBI3.

The signal scenario is as in Experiment 1. There are four groups each con-
taining five signals. The propagation constants and arrival angles are given in
Experiment 1. The direct path SNR for each group was increased simultaneously
by 2dB steps in the range —10 to 30dB for all groups. For each value of SNR, we
performed a 100 run Monte-Carlo experiment by running both extended-VESPA
and its two improved versions: BFBI1 and BFBI3. The root-mean-squared errors
(RMSEs) obtained by the three methods for the first group signals are plotted
as a function of SNR in Fig.3.9. Observe that the BFBI3 has the lowest RMSE
among the three methods over a useful range of SNR values. In this experiment,
the minimum required SNR for accurate estimation of DOAs with all of these
three methods seems to be between —10 and 0dB, below which neither of the

three methods give reliable estimates since RMSEs are unacceptably high. For
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SNR greater than a threshold value, BFBII has about the same MSE performance
as BFBI3, which is better than the performance of regular extended-VESPA. At
an even higher SNR value, all three methods seem to have equal performances.

Conclusions to be drawn from this experiment are: (1) Use BFBII for high
SNR cases, since it is computationally much simpler than BFBI3; and, (2) For
higher SNRs, neither cumulant-based beamforming method yields much improve-
ment over regular extended-VESPA. Another interesting point to note is, as seen
from Fig. 3.9, for some groups, below an SNR threshold, BFBI1 may yield
even worse results than the regular extended-VESPA. This is because BFBI1
assumes that all groups, except the desired one, are perfectly suppressed, which is
only true if the generalized steering vector estimates are estimated without error.
For low SNRs, the sample cumulants, which are used to obtain the generalized
steering vector estimates, are corrupted by lots of additive noise; therefore, the
vector-based improvement method may actually deteriorate the original general-
ized steering vector estimates. On the other hand, BFBI3 overcomes this problem
by taking the principal component of a suitably defined cumulant-matrix, at the
expense of computational load. Consequently, BFBI3 always yields the best MSE
performance in the useful range of SNR values; therefore, it is recommended for
low SNRs.

No simulations have been included for BFBI2 because BFBI3 is a better al-

ternative than BFBI2 from an accuracy standpoint.

3.6 Conclusions

We have shown that, using cumulants, subspace-based direction-finding is possible
in the coherent signals case. A uniform linear subarray is needed; the rest of the
array may have arbitrary and unknown response, and does not require calibration.
We have also shown that it is possible to detect more targets than sensors, which
is an impossible task to accomplish using covariance-based subspace methods with
arbitrary arrays, even in the case of known array response and incoherent signals.

Unlike some of the proposed cures for handling coherence, our method requires

no array calibration or search procedure, and, unlike existing covariance-based
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spatial smoothing, for our method the array does not have to be entirely lin-
ear. Only some part of the array must be linear and the number of its elements
determines the maximum number of resolvable signals in each coherent group.

The entire array is fully exploited by our method, which results in increased
aperture. To be more specific, the total number of sensors determines the number
of resolvable coherent groups. As shown in Section refns, the presence of four
arguments in the cumulants we are using enables us to first estimate the gener-
alized steering vectors for each group. After estimating the generalized steering
vectors, we use spatial smoothing as a post processing scheme on each individual
generalized steering vector to find the directions; therefore, an increased effective
aperture is obtained. Since covariances only have two arguments, a formulation to
estimate the generalized steering vectors similar to Step 1 of our procedure is not
possible for them; therefore, covariance-based methods can not handle sources on
a group by group basis, which results in a reduced number of resolvable targets
when they are used.

We have also developed several methods to improve direction-of-arrival esti-
mates obtained by extended-VESPA. Among these methods, the subspace-based
beamforming improvement method, BFBI3, is found to offer the most significant
improvement for low SNRs. For high SNRs, we suggest using extended-VESPA
without the improvement methods.

Extended-VESPA can replace existing covariance-based processing in a given
array without requiring any modification in the associated hardware, provided
the given array includes a linear subarray. Since independent groups are treated

individually, processing can be parallelized to reduce the computing time.

3.7 Appendix-Obtaining Generalized Steering

Vectors
Define a new 2M x M matrix C by concatenating C,, C, as follows

B
BD

Ci
&

2

® ABY 2 SABH. (3.30)
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The singular value decomposition of C yields

20
C = [U,, U] v (3.31)
where ¥ = diag(oy,---,06); Uy = [Ula"‘sUG] and U, = [UG+1s"',l12M]- It
follows therefore that
cfu, =0, (3.32)
or, equivalently
BA*SHU, = 0. (3.33)

Since BA™ is full-rank, (3.33) implies S¥U, = 0. Using the fact that U, is
orthogonal to Uy, it follows that

span(S) = span(U,). (3.34)

Therefore, there exists a nonsingular G x G matrix T such that

U, =ST (3.35)
or, such that
U B
= (3.36)
Ui, BD

where we partitioned U, exactly the same way as S, i.e., into two M x G matrices
Uy and Uy, Equation (3.36) establishes the signal subspace and its rotationally-
invariant counterpart. Note that this rotational invariance is obtained without
requiring translational invariance of the array, as opposed to ESPRIT.

Having obtained this invariance, we follow the same steps of ESPRIT in which
we use the first G left singular vectors of the concatenated matrix of the cumulant
matrices C; and C, instead of signal eigenvectors of the covariance matrix of an
ESPRIT array.

Equation (3.36) shows that U, and Uj, share a common columnspace of

dimension G; therefore, rank([Uyy, Uys]) = G. This last result implies [66] there
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exists a 2G' x G matrix F 2 [ ]which is rank-G such that

y
U = [Uu,Um]F (3.37)
= UpF; +U,F,

= BTF, + BDTF,,

Since B is full-rank, (3.38) results in
0=TF. +DTF,, (3.38)

which is equivalent to

~F,F;' = T"'DT, (3.39)

Equation (3.39) implies that the eigenvalues of —F.F;! must be equal to the di-
agonal elements of D. To estimate the diagonal elements of D, we, therefore, need
a matrix I which satisfies (3.38). Such a matrix can be obtained by performing
a singular value decomposition of the M x 2G matrix [U;;U;,). Since (U1 Uy2)
is rank G, the last G right singular vectors of [U11Uj2] can be selected as F.

Using (3.35) and (3.39), columns of the steering matrix B can be obtained to
within a constant as follows. Let E be the eigenvector matrix of —FIF;I. From
(3.39), it follows that E = (ZT)~" where Z is an arbitrary diagonal matrix with
nonzero entries. Therefore, multiplying (3.35) by E, we find that

U,E =ST(ZT)™' =SZ7!, (3.40)
and, using the partitioning of (3.36) in (3.40), we find that
U,,E =BZ™! (3.41)

and
L].lgE:D'_l — BZ‘I, (342)

where D was estimated as explained previously. Finally, an improved estimate of



B is obtained to within a diagonal matrix by averaging these results, as follows:

BZ™' =5 (ULE + UpED™). (3.43)
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Table 3.2: Root-mean-squared errors obtained in Experiment 3 for: (a) Group 1,
(b) Group 2, (c) Group 3, (d) Group 4. The variables rmse; and rmses, refer to
root-mean-squared errors obtained using two different versions of our DF method,
the basic version and the improved version. The latter is obtained by projecting
the generalized steering vector estimates onto the signal subspace obtained from
the estimated spatial covariance matrix of the linear subarray, respectively. The

results were based on 2000 snapshots and 100 realizations, and are given for SNR
levels of [10, 5, 0, -5, -10] dB.

(a)
LSNR [ Angle 130 [ 115 ] 80 [ 68 | 40 |
-10 || rmse; || 4.08 | 7.90 | 12.11 | 7.49 | 12.04
rmsey || 3.50 | 6.89 [ 10.05 | 6.83 | 9.98
-5 rmse; || 2.38 | 2.35 | 3.24 | 2.67 | 3.07
rmsey || 2.16 | 2.10 | 2.82 | 2.63 | 2.29
0 rmsey || 1.13 | 1.01 | 2.31 | 2.34 | 0.96
rmse; || 1.01 | 0.99 | 2.30 | 2.33 | 0.81
5 rmsey || 0.75 | 0.69 | 2.21 | 2.08 | 0.75
rmsey || 0.73 | 0.68 | 2.19 | 2.07 | 0.74
10 rmse; || 0.55 | 0.61 | 1.83 | 1.78 | 0.54
rmsey || 0.54 | 0.61 | 1.83 | 1.77 | 0.53

(b)
LSNR || Angle [ 135 [120 ] 90 [ 70 | 50 |
-10 rmsey || 4.52 | 7.38 | 10.33 | 9.30 | 9.98
rmsep || 2.81 | 7.73 | 9.60 | 8.58 | 8.36
-5 rmse; || 1.33 | 1.98 | 5.32 | 4.68 | 3.39
rmses | 1.19 | 1.82 | 4.31 | 4.01 | 2.86
0 rmse; || 0.83 | 1.05 | 1.74 | 1.77 | 1.18
rmseg || 0.78 | 1.03 | 1.73 [ 1.76 | 1.16
5 rmse; || 0.50 | 0.23 | 0.30 | 0.41 | 0.53
rmses || 0.49 | 0.22 | 0.29 | 0.41 | 0.52
10 rmse; || 0.44 | 0.20 | 0.25 | 0.36 | 0.42
rmses || 0.43 | 0.19 | 0.25 | 0.37 | 0.41




(c)
I SNR] Angle [ 125 [ 110 [ 85 | 65 | 45 ||
-10 || rmse; || 5.17 | 7.37 | 6.52 | 9.45 | 8.49
rmse; || 1.95 | 4.17 | 4.27 | 3.18 | 5.33
-5 rmsey || 1.09 | 1.96 | 1.60 | 1.11 | 1.37
' rmses || 0.63 | 1.09 [ 0.29 | 0.47 | 0.65
0 rmse; || 0.45 | 0.72 | 0.15 | 0.31 | 0.40
rmse; || 0.44 | 0.74 | 0.16 | 0.32 | 0.40
3 rmsey || 0.33 | 0.68 | 0.11 | 0.11 | 0.24
rmse, || 0.33 | 0.67 | 0.11 [ 0.24 | 0.27
10 rmse; (| 0.31 | 0.66 | 0.11 | 0.23 | 0.24
rmseq || 0.31 | 0.67 | 0.11 | 0.23 | 0.24

(d)
[LSNR ] Angle ][ 140 [ 118 ] 105 | 85 | 60 |
-10 rmse; || 8.29 | 10.06 | 12.39 [ 11.90 | 9.17
rmseq || 3.29 | 5.52 | 6.47 | 5.66 | 4.48
-5 rmsey || 2.19 | 2.51 | 4.49 | 4.30 | 2.98
rmses || 1.65 | 247 | 1.93 | 1.76 | 1.29
0 rmse; || 1.08 | 1.46 | 1.87 | 1.69 | 1.16
rmsep || 1.02 | 1.54 | 1.05 | 0.76 | 0.55
B rmse; || 0.94 | 1.44 | 0.90 | 0.66 | 0.49
rmsey || 0.89 | 1.37 | 0.88 | 0.66 | 0.49
10 rmse; || 0.89 [ 1.30 | 0.81 | 0.66 | 0.49
rmsey || 0.88 | 1.30 | 0.81 | 0.65 [ 0.49
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Figure 3.7: Root-mean-squared errors (RMSEs) for the arrival angle estimates of
the second group obtained in Experiment 4 as a function of the first group SNR.
- The ordering of the signals are the same as in the text.
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Chapter 4

Blind Beamforming for Coherent

Signals

By beamforming we mean the process of combining the sensor outputs of an array
with suitable weight vectors such that desired signals are recovered subject to an
optimality criterion. In this chapter, we address the blind beamforming problem
for coherent signal environments assuming no knowledge about the array structure
or response. Before presenting our approach, we first discuss the limitations of
the existing covariance-based beamforming methods for this problem.

There are a number of second-order statistics based criteria that have been
proposed for obtaining the optimum beamforming weight vector that combines
the array sensor measurements to recover desired signals while supressing inter-
ferences. These criteria lead to the same general form for the optimum weight
- vector [48], i.e., W, = cR™'a(f;) where R is the spatial covariance matrix of
the received signal r(t), a(fs) is the array response in the desired direction (look-
direction), and ¢ is a constant whose value depends on the criterion used. In the

special case of MVDR [5], the array output power is minimized subject to a unity

H

optd(02) = 1, which results in 1/¢ = wH, R~1w,,;.

look-direction gain constraint, w opt

[t is clear that the array response in the desired signal direction must either be
known or estimated to implement the optimum beamformer. If the array response
or geometry is unknown, as in the blind beamforming problem, it is necessary to

calibrate the array to obtain the response information; however, array calibration
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is a very costly procedure. Calibration can be avoided and the array response
can be estimated using ESPRIT [66]; however, ESPRIT requires translationally
equivalent subarrays, which is often an impractical constraint, and, as for other
subspace-based methods, ESPRIT fails in the coherent signals case. Even if the
response function of the array is known or array is calibrated, due to perturbations
in the geometry and the response of the array, the response in the desired direction
may be different than its calculated value. Therefore it becomes important to use
the estimated values of the array response for fine tuning to the received signals.
There are a number of so-called property-restoring methods such as the adaptive
CMA [72] that use second-order statistics and rely on certain known properties of
the source signals; however, the signals extracted by property-restoring methods
do not necessarily have the same waveform as the actual source signals.

The optimum beamformer using second-order statistics tends to cancel the
desired signal and it fails to perform optimally when there are signals coherent
with the desired signal [63]. Moreover, it tends to cancel the desired signal in
the output [70]. A detailed explanation of signal cancellation phenomenon can
be found in [70]. Several methods have appeared in [2], [56], [70], [71], [77] to
overcome the signal cancellation problem when coherent interferers are present.
The methods of [2], [56], [70], [71] are limited to uniform linear arrays; [77] requires
some specific array configuration. None of these methods are directly applicable
to the blind beamforming problem due to their implicit constraints on the array
structure.

For a blind beamformer, on the other hand, the presence of coherent multipaths
does not make any difference. In other words, the case of coherent multipath
signals is identical to that of independent signals with no multipath; because, as
shown in Section 4.1, each coherent multipath from a given source causes only a
reparameterization of the steering vector of that source.

In the cumulant-based processing framework, the blind recovery problem has
received increased research interest. Adaptive solutions based on optimization of
various cumulant-based criteria, or solutions depending on eigendecomposition of
suitably defined cumulant matrices were proposed [80], [8], [68], [ [7], and ref-

erences therein]. In these methods, second order statistics are used to whiten
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the signal part of the received signals prior to applying cumulant-based post pro-
cessing, which is the main drawback, because the covariance matrix of the noise
needs to be estimated or known a priori. Besides, these methods have limitations.
For example, the eigendecomposition-based method in [7] fails when there are
sources having identical kurtosis, i.e. sources of the same type. An alternative
is to use only higher than second-order cumulants. An iterative approach using
only fourth-order cumulants were suggested by Cardoso [see [7], and references
therein]. In the fourth-order cumulant method of Dogan and Mendel [19], it was
assumed that the independent interfering signals are Gaussian, whereas the sole
desired signal is non-Gaussian. Cumulants were used to suppress the Gaussian
interferences and noise, so that one is left only with the desired signal statistics.

Here, we assume a more general scenario where there may be multiple de-
sired signal sources and interferences. Smart jammers can also be modeled as
multipaths. Our assumptions are: A1) The desired sources are statistically in-
dependent among themselves, and independent of the other sources; and, all of
the source signals may be subject to multipath propagation. A2) Frequency-flat
multipath propagation; A3) The desired source signals must have nonzeto kur-
tosis, but no such assumption is made about interferences—if their cumulants are
zero, they are already suppressed by the virtue of cumulants; if not, they will be
rejected by an optimum beamformer; and, A4) The array is a non-ambiguous
one, 1.e. its response to a signal from a given direction is different from that due
to another signal from a different direction. Our approach does not require any
knowledge about the array.

The organization of this chapter is as follows: We formulate the problem in
Section 4.1. In Section 4.2, a solution is proposed. Experimental results support-
ing our conclusions and demonstrating our method are provided in Section 4.3.

Finally, conclusions are presented in Section 4.4.
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4.1 Formulation of the Problem

Consider a signal scenario in which there are several narrow-band sources and
interferences. Suppose that these signals undergo frequency-flat multipath prop-
agation producing several sets of delayed and scaled replicas, which are received
by an M element array having arbitrary and unknown response and geometry.
Let a total of P signals {s,(t),---,sp(¢)}, from G independent and narrow-band
sources, u;(t), with p; multipath signals for each source (X%, p; = P), impinge
upon the array. It is assumed that the number of sources is less than the number
of array elements (i.e., G < M). The ith group contains multipaths of the ith
source and ‘smart’ jammers which are coherent with the ith source. The array
measurements are corrupted by additive Gaussian noise whose spatial correla-
tion structure is unknown. We assume that N snapshots taken at time points
t =1,---,N are available. With these assumptions, the signal received by the

array at time t is
r(t) = As(t) + n(¢) (4.1)

where r(t) = [ri(t), -+, rp(t)]T, A is an M x P unknown steering matrix; s(t)
is a P x 1 signal vector, and n(¢) is the independent measurement noise vector
which can be Gaussian, non-Gaussian symmetrically distributed, or a mixture of
Gaussian and this type of non-Gaussian noise.

Expressing the coherence among the signals as in (3.2), the received signal

vector, written in terms of the source signals is:
r(t) = AQu(t) + n(t) = Bu(¢) + n(t) (4.2)

Our objective is to recover the signals {u;(¢)}{, without any information about

the array structure.

4.2 Proposed Solution

Our solution proceeds in three main steps: (1) Estimate the generalized steering

vectors; (2) Using the estimated generalized steering vectors in the previous step,
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design beamformers to recover each signal one at a time; and, (3) Correct the
constellation rotation. Since all of the signals are estimated one at a time regard-
less of which signals are desired, temporal structures of the signals can be used to

differantiate one from the other.

4.2.1 Step 1: Estimation of Generalized Steering Vectors

The generalized steering vectors {by,--- ,bg} are estimated following Step 1 of
Chapter 3. Any pair of “right” sensor measurements can be used in (3.4) and
(3.6). The ideas presented in Sections 3.3.1 and 3.3.3 can be used here to improve

the generalized steering vector estimates.

4.2.2 Step 2: Optimum Beamforming

Using the generalized steering vector estimates {by, -, bg} obtained in the pre-
vious step, and second-order statistics, we can design optimum beamformers to
recover the source signals {u;()}, to within a complex constant, one at a time,

as follows. The received signal at time point ¢ can be expressed as

r(t) = biui(t) + Biinu; ine () + n(2) (4.3)
where 7 = 1, -+, G; all the source signals except u;(t) are treated as interferences;
b; is the generalized steering vector of u;(¢) and Biint = [by, -+, bi—1,biy1,+ -, bg]

is the generalized steering matrix of the other sources, Wi ine(t) = [ug, -+, uiog,
T
Uipt, *+,ug)T.

Using (4.3), the spatial array covariance matrix can be written as:
R = o7b;b{ + Riin (4.4)

where 0 = E{u;(t)u;i(t)*}, and R, is the array covariance matrix of all other
sources except u;(¢) and includes the noise.

A number of different criteria for optimum recovery of the signals {u;(¢)}£.,
lead to the same beamformer structure which is given by w; = ¢R~!'b;, where

R is the array covariance matrix, and the constant ¢ depends on the criterion
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being used. The minimum-variance distortionless-response (MVDR) beamformer
weight vector is obtained by minimizing the array output power E{lwHr(t)]*} =
w;"Rw; subject to the unity gain (distortionless response) constraint w;b; = 1
for the desired signal. We denote this weight vector as Wi mudr- 1he solution for
Wi mudr 18 [48]:

- -
Wimudr = Cimudr1 R by (4.5)

where ¢; mydr1 = Sgﬁl—_Tb—

The maximumlsigna.l—to-interference-plus-noise ratio (SINR) beamformer weight
vector is obtained as follows: the signal power at the array output is given by
E{lw:" bui(t)|*} = of|wibi|?. The interference-plus-noise power is E{|w;
(Bijint Ui int +0(t))[*} = wi; R, jnsw;. SINR is defined as

2 |[wif'b;|?

SINR(W,) =0; m

(4.6)

Applying the Cauchy inequality to (4.6), we find that

2 W) (R,
| (Rz,intwt) (Rt.mf b‘) i} < a?b,HR-_l b; = SINRper (4.7)

1,int

SINR(W,) = 0'3

wiHR; jnew;

where equality is achieved if and only if
Wi SINR = Ci,sINRIR 1 b (4.8)

in which ¢; srvg1 is a nonzero constant.
Wi sivgr in (4.8) can be expressed in terms of the available array covariance

matrix R, by first rearranging (4.4), as
Riint = R —o7b;b{, (4.9)

and, then applying the Matrix Inversion Lemma to (4.9), and, then computing
(4.8), as

-1
WisINR = CisINRIR;,bi
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= cisivm [R™ = R7'bi(b/R™'b; — o7%) 'bIR!| by
= csivmBR™'b; [1- (b R™'b; — 07%) bR "b)]
= csivmBR7bi(b]R7'bi —07?)7! [bIR'b; — 072 — bTR™'b]

2
—Ci,SINRIT; 1
= R~ 'b;
bTR-!b; — 072
= csivreR 7Dy, (4.10)
A g sriie
where Ci SINR2 = b?;f{;:’?—lzr 5
Finally, the source signals {u;(t)}{, are each recovered to within a complex
constant by replacing b;, in the above optimum beamformers by its estimate b;,

obtained in Step 1, and replacing R by its sample estimate, so that
() = wiflr(t) (4.11)

where ¢ = 1,-+-, G, and w; is either w; s;vr or Wi muar-

Step 2 can be done in parallel for all G sources.

4.2.3 Step 3: Constellation Rotation Correction

In the first step of our source recovery algorithm, the generalized steering vectors
for each source are estimated to within a complex constant [see (3.43)]. Using
these estimates in the above beamformers results in source estimates which are
rotated arbitrarily from their original constellations. Since the choice of optimum
decision regions depends on the signal constellation, a method is needed to recover
the actual constellation. In this section we show how this can be done for one-
dimensional signal constellations; the two-dimensional case can be corrected using
cumulants.

Let u;(t) be the one-dimensional signal of interest, and @;(t) be its perfect
estimate to within a complex constant ce?, i.e., @;(t) = ce’%u;(t). The constant
¢ accounts for both the arbitrary scaling and the signal power so that w;(t) is

normalized to have unit power. Noting that u;(¢) is real, the following hold:

R{t;(t)} = ccos Ou;(t), S{(t)} = esin Ouy(t). (4.12)
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The correlations
E{R{1:(t)}*} = c? cos* 0, E{S{@;(t)}*} = *sin? 0, (4.13)

and

E{R{t:(t)}3{:(?)}} = * cosOsin § (4.14)

can be estimated from the beamformer output @;(¢). Using these results, § and ¢

can be obtained as

& = E{R{a:(1)}?} + E{S{u:(t)}?} (4.15)

and

0 = arctan (E{?R{ﬁ,-(t)}‘i?{ﬂ;(t)}}) (4.16)

E{R{@(t)}*}

Finally, the actual constellation of u;(t) can be recovered, to within a sign ambi-
guity, as

uit) = %e’jﬁﬂg(t) (4.17)

where ¢ = 1,---,G. The sign ambiguity comes from the fact u;(t) and —u;(t) have
equal powers. However, it is possible to overcome the sign ambiguity problem by
attaching a known sequence to each signal before transmitting, and comparing

the demodulated sequence with the orginal sequence at the receiver side.

4.3 Simulation Experiments

4.3.1 Experiment 1

The scenario consists of three independent binary phase shift keyed (BPSK)
sources which are subject to multipath propagation, and arrive at the array in
Fig. 4.1 from four, two and three different directions, respectively. The arrival
directions and propagation constants were chosen arbitrarily as: [50°, 70°, 90°,
100°] and [1, —=0.8 4+ 0.2, —0.3 — 50.7, 0.6 + 50.6]; [60°, 80°] and [1, —0.1 + 50.8];
and, [45°, 65°, 85°] and [1, 0.5 — j0.6, 0.7 + 50.4]. Unity propagation con-
stants belong to direct paths, and direct path SNRs equal 10dB. The array
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Figure 4.1: The array geometry used in the first experiment; L is the wavelength.

elements were assumed to be arbitrarily rotated dipole antennas. The array
response to a signal from angle 6 is given by [1, cos(d — 85°)e~ 7 (sin(6)+cos(d))
cos(ﬂ - 870)e—jﬁ4sin(u‘?], cos(0 — gzo)e—jn‘(sin(ﬂ}»«kcos[ﬂj), cos(t‘) _ 800)e—jr[Zsiu(B]+2cos[9)),
cos(0—T75%)ei7(2sin(0)+3c0s(0) | c5(f —95°)e=Im(2sin(0)+4cos())] 3000 snapshots were
taken. The problem of interest is to recover each source message, one at a time.

We tested our cumulant-based beamforming method, which assumes no infor-
mation about the array geometry or response, and the classical MVDR beam-
former for which we had to assume that arrival angles of the desired signals (the
direct paths from each source) and the array response in those directions are
perfectly known. The beamformer outputs from both methods are presented in
Fig. 4.2. Observe that, whereas cumulant-based beamformer outputs are localized
around 1 and —1, the MVDR beamformer fails to recover the source messages.
The MVDR beamformer fails because of signal cancellation. Spatial smoothing,
as explained in Section 2.2.3, is a remedy to signal cancellation in the MVDR
beamformer for coherent signals; however, spatial smoothing is applicable only to
uniform linear arrays, whereas the array in this experiment is a nonuniform one.

This experiment supports our earlier claim that multiple coherent signals re-
ceived by an array of arbitrary geometry and unknown response can be recovered

by our cumulant-based optimum blind beamformer.
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4.3.2 Experiment 2

In this experiment we compare our method to an MVDR beamformer using the
spatial smoothing method [71] (S-MVDR). Since spatial smoothing is limited to
uniform linear arrays, we restrict ourselves here to this case although our method
is applicable to any array. We assume that two coherent 3000 bit BPSK signals of
equal power and of zero relative phase impinge upon a ten-element uniform linear
array.

First, we assumed that the two signals arrive from broadside from closely-
spaced directions {90°,95°} (measured with respect to the endfire). For this
scenario, we tested both our method, and the classical-MVDR (C-MVDR) and
smoothed-MVDR (S-MVDR) beamformers. In our cumulant-based blind beam-
former, we used the first two sensors in the 0° direction as the guiding pair, and
our rotation-correction algorithm. For the C-MVDR beamformer, we must assume
that the desired signal direction is either known or estimated; therefore, assuming
the desired signal is the one arriving from 90°, we designed the C-MVDR beam-
former. For the S-MVDR beamformer we used a subarray of length 6 (subarray
length= L/2 +1,L = 10) for backward and forward smoothing. The outputs of
these three beamformers for the desired signal at 0, 10 and 20 dB SNRs with
fixed noise power are shown in Figure 4.3 a-c. As seen, the C-MVDR beamformer
fails. On the other hand, S-MVDR beamformer recovers the signals as SNR is
increased; however, for equal SNRs, our cumulant-based beamformer is always
better than the S-MVDR beamformer.

Second, we assumed that the two signals arrive from closely spaced direc-
tions {0°,5°} near endfire. Reddy et al [63] have shown that, for this case, spa-
tial smoothing loses its decorrelating power for moderate smoothing lengths and
therefore results in increased signal cancellation as SNR is increased. In our
cumulant-based method we used the pairs (ry(¢),r,(¢)) and (r(t),r2(t)) where
r1(t) and ro(t) are the first two sensor measurements in the 0° direction. Assum-
ing the desired signal direction is 0°, we designed the C-MVDR beamformer. For
the S-MVDR beamformer we used the same smoothing as before. Figures 4.4 a-c
show outputs of the three beamformers for 0, 10 and 20 dB SNRs with fixed noise
power. The presence of coherence helps the C-MVDR and S-MVDR beamformers
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at low SNRs, but, these beamformers deteriorate as SNR is increased [63]. On the
other hand, comparison of the first column of Fig. 4.4 with the other two columns
indicates that our method is always better than the S-MVDR beamformer at equal
SNRs, and that our method improves as SNR is increased, because our method

combines coherent signal powers effectively instead of trying to decorrelate them.

4.3.3 Experiment 3

We evaluate the output signal-to-interference-plus-noise-ratio (SINR) performance
of our cumulant-based beamformer and compare it to those of the classical-
MVDR (C-MVDR), smoothed-MVDR (S-MVDR) and an MVDR beamformer
(E-MVDR) which uses the exactly known generalized steering vector of the de-
sired signal. Note that due to the multipaths, in reality, it is impossible to know
the generalized steering vectors prior to processing even if the array is perfectly
known or calibrated; hence the EEMVDR beamformer is rather a hypothetical one
which is designed as a benchmark for our cumulant-based beamformer.
Assuming the same signal scenario and C-MVDR, S-MVDR and cumulant-
based beamformers as in Experiment 2, and using the new E-MVDR beamformer,
we performed: 1) Two 10-point Monte-Carlo experiments for the case of broad-
side arrivals, for SNR=10 dB and 0 dB. The output SINR for S-MVDR, E-MVDR
and our cumulant based beamformer are plotted in Figs. 4.5 and 4.6 for each of
these SNRs. The cumulant-based beamformer performs best even for very small
number of snapshots, and converges to the maximum possible output SINR value
quickly. The difference in the large-snapshot output SINR between cumulant-
based and S-MVDR is around 19dB at SNR=10 dB and 12 dB at SNR=0 dB.
More interestingly, the cumulant-based beamformer outperforms the E-MVDR,
that uses the exact value of the generalized steering vector of the desired signal.
Note that the only difference between our cumulant-based beamformer and the
E-MVDR is that whereas the E-MVDR uses the exact values of the generalized
steering vectors, our beamformer uses the estimated values of them. The simu-
lation results show that our blind beamformer “tunes” to the data better than
the E-MVDR; 2) Two 10-point Monte-Carlo experiments for the case of endfire
arrivals, for SNR=10 dB and 0 dB. The output SINR for S-MVDR, E-MVDR
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and our cumulant based beamformer are plotted in Figs. 4.7 and 4.8 for each of
the SNRs. The cumulant based beamformer performs best even for very small
number of snapshots, such as 50, and converges to the maximum possible output
SINR value quickly. The difference in the large-snapshot output SINR between
cumulant-based and S-MVDR is around 11 dB at SNR=10 dB and 2.5 dB at
SNR=0 dB. Again, the cumulant-based beamformer outperforms the E-MVDR.

In this experiment, the output SINRs of the classical-M VDR beamformer were
very low, therefore, we do not display them with the other three beamformers here.
These results suggest that not very many snapshots are needed before excellent
performance is obtained with our new beamformer.

Finally, note that, whereas the smoothed-MVDR beamformer can utilize only
the smoothing subarray, our method uses the entire array, i.e., our method uses

a larger aperture.

4.3.4 Experiment 4

In this experiment we compare our blind beamforming method to the spatial
smoothing-based MVDR beamformer in terms of resolvable number of signals. We
demonstrate that our beamformer can separate sources even if the total number
of incoming signals is more than the number of sensors, and show that spatial
smoothing fails to separate the sources in this case. Since spatial smoothing is
limited to uniform linear arrays, we restrict ourselves here to this case, although
our method is applicable to any array having arbitrary and unknown response.
We assume four independent BPSK signals of equal power and 3000 bits long
which are subject to multipath propagation resulting in coherent signals. The
array is assumed to be a 10-element uniform linear array with omnidirectional
components. The four source signals arrive at the array from two, three, four
and five different directions, respectively. Note that the total number of signals
impinging on the array is 14 which is more than the number of sensors. The
signal arrival angles and propagation constants were chosen as: [55°,30°] and
[1,0.7 + 70.6]; [40°,90°,60°] and [1,0.6 — j0.7,0.5 + 50.8]; [70°,80°, 120°,100°]
and [1,0.8 + j0.5,0.7 + 70.6,0.5 + 0.6]; [110°,65°,130°, 140°, 150°] and [1,0.6 +
70.6,0.7 — 50.7,0.5 + 70.6,0.8 — 70.6].
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Table 4.1: Bit error rates (BERs) obtained in Experiment 4. BER.., and
BE Rsmen refer to bit error rates obtained using our cumulant-based method and
smoothed-MVDR method, respectively.

SNR=10dB SNR=0dB SNR=-5dB

Source No | BEReun | BE Romth | BE Rewn | BE Romen | BERewn | BE Roprn

1 0 0 0 0.0013 0.0010 0.0397
2 0 0.5000 0 0.4687 0.0030 0.3900
3 0 0.2087 0 0.1937 0.0080 0.2173
4 0 0.2277 0 0.2123 0 0.2087

For this scenario, we tested our cumulant-based beamformer and smoothed-
MVDR beamformer. In our method, we used the first two sensors in the end-
fire direction as the guiding pair, and our rotation correction algorithm. In the
smoothed MVDR beamformer we had to assume that the desired signal directions
are either known or are estimated, because MVDR depends on the array response
in the desired signal direction; therefore, we assumed that, for each source, the
desired signal is the direct path and its arrival angle is known. Note that, for
our method, angle-of-arrival information is not needed. For the smoothed-MVDR
beamformer we used a subarray of length 6 (subarray length= L/2+1, L = 10), for
backward and forward smoothing. Figures 4.9-4.10 show outputs of both beam-
formers for 10 and —5 dB SNRs. Observe that the smoothed-MVDR method
fails while our method can separate all of the four sources successfully. The bit
error rates (BERs) obtained by employing a threshold detector at the output of
both beamformers are given in Table 4.1. Note that our cumulant-based method

results in either zero or very small BERs for the SNRs used in the experiment.

4.4 Conclusions

We have developed a cumulant-based optimum blind beamformer for recovery of
independent sources in the presence of coherent multipath propagation, which is
applicable to any arbitrary array configuration; it does not require any knowledge
about array response, and relies solely on the measurements. There is no need to

estimate the directions of arrival. Our approach is based on the observation that



using cumulants of received signals, two matrices can be formed which conform
to the ESPRIT architecture. In this approach, multipath powers are effectively
utilized instead of decorrelated.

The two matrices permit us to estimate the generalized steering vectors for
each source blindly. Then, a number of cumulant-based beamformers can be de-
signed whose optimality have already been shown in the second-order statistics
framework. Note that since the steering vectors are estimated from the data, the
beamformer is tuned to the data, thereby avoiding sensitivity problems associ-
ated with mismatch in the assumed steering vectors, which occurs in the case of
covariance-based processing. A comparable result using just second-order statis-
tics does not exist for the the blind beamforming problem. Both Gaussian and
non-Gaussian noises with unknown statistics can be suppressed as long as they
are independent of the signals of interest. Simulation results have verified our

theoretical work.
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Figure 4.2: Cumulant-based and MVDR beamformer outputs for Experiment 1.
SNR=10dB. “CBOB” refers to cumulant-based optimum beamformer.

97



Cumulant-based

SRk

-2 0 2

real

Cumulant-based

el e e
2 -
2 0 2

real
Cumulant-based

2
1

g

E 4] - .
-1
2 :
=2 0 2

real
Cumulant-based

2
1

g

E 0 Beaaiges devlisy
=11
% 0 2

real

Smoothed-MVDR

(a)

Smoothed-MVDR

real real

(b)

Smoothed-MVDR

(c)

2
1 .....
o
1}
-2
2 0 2
real

(d)

Figure 4.3: Various beamformer outputs for two coherent signals near broadside from
closely spaced directions {90°,95°} at (a) SNR=0dB, (b) SNR=10dB, (c) SNR=20dB,

(d) SNR=30dB.
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Figure 4.4: Various beamformer outputs for two coherent signals near endfire from
closely spaced directions {0°,5°} at (a) SNR=0dB, (b) SNR=10dB, (c) SNR=20dB,

(d) SNR=30dB.
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Figure 4.5: Output SINR of S-MVDR, E-MVDR and our cumulant-based beamformer
as a function of number of snapshots obtained from 10 Monte-Carlo runs. SNR=10dB.
Signals are received from broadside. “o” denotes the cumulant-based beamformer; “x”
denotes the S-MVDR beamformer; “*” denotes the E-MVDR beamformer.
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Figure 4.6: Output SINR of S-MVDR, E-MVDR and our cumulant-based beamformer
as a function of number of snapshots obtained from 10 Monte-Carlo runs. SNR=0dB.

Signals are received from broadside. “0” denotes the cumulant-based beamformer; “x”
denotes the S-MVDR beamformer; “*” denotes the E-MVDR beamformer.
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Figure 4.7: Output SINR of S-MVDR, E-MVDR and our cumulant-based beamformer
as a function of number of snapshots obtained from 10 Monte-Carlo runs. SNR=10dB.

Signals are received from endfire. “0” denotes the cumulant-based beamformer; “x”
denotes the S-MVDR beamformer; “*” denotes the E-MVDR beamformer.
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Figure 4.8: Output SINR of S-MVDR, E-MVDR and our cumulant-based beamformer

as a function of number of snapshots obtained from 10 Monte-Carlo runs. SNR=0dB.

Signals are received from endfire. “o” denotes the cumulant-based beamformer; “x”
denotes the S-MVDR beamformer; “*” denotes the E-MVDR beamformer.
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Figure 4.9: Cumulant-based (first column) and smoothed-MVDR (second column)
beamformer outputs for the fourth experiment. SNR=10dB.
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Figure 4.10: Cumulant-based (first column) and smoothed-MVDR (second column)
beamformer outputs for the fourth experiment. SNR=—5dB.
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Chapter 5

Beamspace and Iterative Virtual
ESPRIT

Preprocessing array data prior to applying high-resolution direction finding algo-
rithms has been shown to offer numerous benefits such as enhanced resolution,
improved performance in colored noise, reduced sensitivity to sensor perturbations
and reduced computation. Preprocessing, which is also referred to as beamspace
transformation, involves suitably projecting the array data (of, say, dimension
M) into several subspaces (called subbands) of lower or equal dimension (say V).
Then, each subband data is processed to obtain DOAs and source signals in the
same way as if it were received from a pseudoarray of size N. By doing this,
the gain of the beampattern outside each spatial sector can be reduced, thereby
filtering out signals located outside the sector. Apart from these advantages, a
beamspace transformation results in a reduced parameter space, which brings
a cubic decrease in computational complexity, because, an eigendecomposition
requires computations on the order of M? for M sensors.

Maximum-likelihood direction finding in beamspace was considered by Xu and
Buckley [88]. Lee and Wengrovitz [39] have shown that beamspace processing can
significantly reduce the SNR resolution threshold of the MUSIC algorithm and
they have derived the associated optimum beamspace transformation. Zoltowski
et al [94] presented a beamspace root-MUSIC algorithm. All of these methods

assume calibrated arrays. ESPRIT, on the other hand, which does not require
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calibration and relies on the shift invariance structure of the array, is difficult to
implement in beamspace, because the shift invariance is lost during a beamspace
transformation. A beamspace version of ESPRIT was developed, however, by Xu
et al [89], who showed that if the beamspace transformation has the same invari-
ance as the array shift invariance, then the lost invariance can be restored. Such
requirements restrict the usefulness of desired beamformers, which is a limitation
of covariance-based processing. In contrast, the availability of more than two
arguments in cumulants can make beamspace processing possible with arbitrary
beamspace transformations.

In this chapter, we present a beamspace version of the virtual-ESPRIT algo-
rithm (VESPA) [17] that retains the most desirable property of VESPA, namely,
that there is no need for an identical copy of the array; only an identical response
sensor pair is required. The proposed beamspace-VESPA works with arbitrary
transformations. Using the beamspace approach, we have also developed an iter-
ative VESPA. Iterative VESPA can handle highly dynamic range of signal powers
as opposed to VESPA. This problem was noted by Cardoso and Moulines in [6].

In Section 5.1 we formulate the problem. We present our beamspace VESPA
and iterative VESPA in Sections 5.2 and 5.3, respectively. Simulation experiments
that demonstrate the beamspace VESPA and a real data experiment that demon-
strate the iterative VESPA are presented in Section 5.4. Section 5.5 concludes

the chapter.

5.1 Formulation of the Problem

Suppose we have an M element antenna array which contains a pair of identical
sensors, and that P statistically independent narrowband sources {sp(t)}_, are
impinging on the array from directions {8p}f:1. We assume that: (1) the array
structure is arbitrary except that it must have two antennas having identical
responses; and, (2) the array is uncalibrated, i.e., its response is unknown. The

problem is to estimate {0,}_| and to recover the sources {s,(t) r_y blindly.



The received signal is given by
r(t) = As(t) + n(t) (5.1)

where A = [ay,--+,ap] is an M x P unknown steering matrix; s(¢) is the P-vector
of the sources; n(t) is additive Gaussian noise independent of the signals, with
unknown auto-correlation.

Suppose that the array data is projected to a beamspace by a transformation

matrix, T, of dimension, N x M (N < M), as follows:

t(t) = Tr(t) = TAs(t) + Tn(t) = As(t) + i(t) (

[
)
g

Note that the beamspace data ©(¢) can be interpreted as received from an V-
element array having the N x P steering matrix A. The arrival angles {6}~ can
be estimated using covariance-based ESPRIT if the beamspace steering matrix
A has a displacement invariance. However, even if the steering matrix A has
a displacement invariance, this property does not necessarily hold for A when
an arbitrary beamspace transformation T is employed; it only holds for specific
transformations [89]. Consequently, covariance-based ESPRIT can not be used
with arbitrary beamspace transformations. In contrast, we will show that the
availability of more than two arguments in cumulants makes beamspace direction

finding possible with arbitrary beamspace transformations.

5.2 Beamspace VESPA

Without loss of generality, let the two identical response sensors be the first two
sensors in the array, and denote the measurements from these sensors by r(¢)

and ry(t), which are given by

p

(D) = X apsl) (53)
p; «2xd _»

ra(t) = ) ape™ 3 Bty (1) (5.4)

p:l
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where a,,, denotes the (m,n)th element of A, and d is the distance between the
identical response sensors. We assume that the first two sensors have nonzero
responses to the incoming signals.

Our beamspace VESPA is:
Step 1: First we estimate the following fourth-order cumulant matrix using the

element-space identical sensor measurements and beamspace data together:

C1 = cum(ry(t), r}(2), #(t), §(t)")
P

= Z"ﬁl-plalp'zépéf
p=1

= AAAH (5.5)

where #(t) = Tr(t); A = [ay,---,ap); {74p}0-, are the (non-zero) fourth-order
cumulants of the sources; and, A £ diag{]au|2‘r4,ls“-,]a1P|2'r4,p}. Equation
(5.5) was derived using cumulant properties [CP1], [CP3],[CP3], [CP6] in [47).
Note that the fourth-order cumulant of the additive Gaussian measurement noise
is zero.

Next, we estimate:

C, 2 cum(ry(¢t), ri(t), #(1), #(¢) )
P
25 ging, 5
= Y oyl s 5,5
p=1
= ADAAH (5.6)
where ® 2 diag{e=3%"sin0s ... e‘-"g":i_d“i"gf’}.
Having estimated the matrices C; and C,, the arrival angles and the source

signals can be obtained as follows.
Step 2: Stack C, and C; into a 2N x N matrix C as follows:

C,
C,

-

and, perform the SVD of C; keep the first 2V x P submatrix of the left singular
vectors of C. Let this submatrix be U;.
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Step 3: Partition U, into two N x P matrices U, and Ujs,.
Step 4: Perform the SVD of [U};, Uj;). Stack the last P right singular vectors
of [Uy, Uyg] into the 2P x P matrix denoted F.

.y Fx
Step 5: Partition F as F = [ ] where F; and F, are P x P .

v
Step 6: Perform the eigendecomposition of —F,F;!. The eigenvalue matrix gives

$ 2 diag{e~3°F im0 ... =i%Fsn%} from which the arrival angles are readily
obtained. Let the eigenvector matrix of —F.F;! be E.

Step 7: For signal recovery, an estimate of A is obtained to within a diagonal
matrix, as A = 1 (UE + UpE®~). Columns of A can be used to recover the

sources by MVDR [5] beamformers as follows:

AR
ty=—2—F@t) p=1,---,P 5.8
ot) = e t0) 2 (53)

where 4, is the p-th column of A, and R is the sample beamspace array covariance
matrix, R = Lyy NORORE

Note that the above steps are the same as VESPA, except that the third and
fourth arguments in C, and C, are chosen from the beamspace data. We can
also use beamspace data as the scalar arguments of (5.5) and (5.6) in place of the
element-space data. In this case, we again follow the above steps; however, the
eigenvalue matrix in Step 6 does not give the correct arrival angles, because, this
time, the first two beamspace arguments in the new matrix used in place of (5.6)
don’t necessarily have the displacement-invariance structure as in (5.4). However,
the arrival angles can be obtained using the estimate A found in Step 7; this
is achieved by first obtaining A as A = T#A where # stands for pseudoinverse
operation, and then dividing the responses of the two identical sensors. Again,
columns of A are used to recover the sources, as in (5.8). This approach is

demonstrated in Experiment 1.



5.3 Iterative VESPA (IVESPA)

Like all subspace-based methods, VESPA relies on sample statistics of the ar-
ray measurements which suffer from cross terms due to the presence of multi-
ple sources. When some of the sources have very small powers and cumulants
compared to those of other sources, undesirable cross terms are present in the
sample statistics of the weak sources due to the other sources for small numbers
of samples. In this case, VESPA fails to accurately localize the weak sources.
In practice, this case occurs when the source signals have different constellations
and significantly different powers. Note that the denser the source signal con-
stellation becomes, the smaller the cumulant of the signal becomes, because the
signal looks more Gaussian. For example, fourth-order cumulants of unit-power
BPSK, 4QAM and 16QAM signals are -2, -1 and -0.68, respectively. In addition,
sources having small powers are deemphasized during the calculation of sample
higher-order statistics, because higher than second-order powers of the data are
computed.

The presence of source signals having widely separated powers and cumulants
can be detected in VESPA by comparing signal singular values of the array cu-
mulant matrix after the separation of the signal and noise subspaces. Note that
separation of the signal and noise subspaces requires that the number of sources
are detected accurately. If presence of such sources is detected VESPA can not
be used. For this case, we propose a new beamspace-based approach, the itera-
tive VESPA which also works even if the source powers are not separated. Most
importantly, iterative VESPA does not require estimating the number of sources.
Therefore, we suggest replacing VESPA by iterative VESPA when extra compu-
tational load is acceptable.

[terative VESPA is as follows:

Step 1: Estimate

C, 2 cum(ry (¢), 75(¢), v(t), r(t)¥)
C» £ cum(ra(t), 75(8), x(t), r(t)¥) (5.9)

where 7 is the kth component of r(¢). If the signal subspace singular values of
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C, are very separated, then, fori =1,---, P:

Step 2: If i = 1, go to Step 4. Otherwise, form a modified signal, r;(t) =
N;_iri-1(t) where N;_, is the left null-space matrix of the steering vector a;_; of
the most powerful source obtained from VESPA at the previous step (N; = I,

ri(t) = r(t)). Doing so suppresses the most powerful source in r;(t).

Step 3: Estimate the following two (M —i+1) x (M — i+ 1) cumulant matrices:

Cir £ cum(ra(t), 75 (1), ri(t), ri(1)™) (5.10)
Cir £ cum(raa(t), 75y (2), r:(t), r:(2)¥) (5.11)

where 7 (t) is the kth element of (M — i + 1)-vector r;(t).

Step 4: Assuming only one source is present, find the modified steering vector

b; of that source following the procedure in the Appendix.
Step 5: Compute a; = pinv(IN;_,)b;, where pinv denotes pseudoinverse.

Step 6: Use the elements of a; corresponding to the identical response pair of
sensors to find the direction ¢; of the ith source. This is done as follows:

Let the identical response pair be the m-th and (m + 1)th sensors. Then the
responses of these sensors to the i-th wavefront, i.e. the m-th and m + 1-th el-
ements of a;, are in the form ¢im = ¢ and @iy = ciedEsind where d is
the separation between the m-th and (m + 1)th sensors. Consequently, ¢; can be

found from a;,, and Ai(m+1)-

Step 7: Recover the ith source using a; in an MVDR [5] beamformer.

110



S L
x |7
= sz— —)2 -)2—-;
. ] A
%

Figure 5.1: The Y-array used in Experiments 1 and 2. L is the wavelength.
5.4 Simulation Experiments

5.4.1 Experiment 1: Separation of two closely spaced

sources using Beamspace VESPA

We assume two 4QAM sources with 3dB and 60dB SNRs impinging on an array of
7 sensors from directions 20° and 25°. The array consists of dipole antennas having
different orientations and configured as in Figure 5.1. Each dipole has a response
cos(f) where 0 is the angle measured in the counter-clockwise direction from the y-
axis. If the antenna has an orientation of o, the response becomes cos(d —a). The
orientations of the antennas were selected arbitrarily as [2°, 4°, 6°, 8°, 0°, 0°, 0°].
The measurements are corrupted by additive circularly symmetric white Gaus-
sian noise. 2000 snapshots were taken. Note that the array does not have a
displacement structure that can be exploited by ESPRIT. Figure 5.2 shows the
covariance-based MUSIC spectrum obtained for 50 realizations by assuming the
array manifold is known. Observe that the peak corresponding to the 3dB source
is not as clear as that corresponding to the 60dB source.

Using the 6th and 7th sensors as the identical sensor pair, we applied VESPA
to this scenario. VESPA assumes no apriori information about the array response
except that the 6th and Tth sensors have identical response. Table 5.1 shows the
means and standard deviations of the angle estimates obtained from element space

VESPA for 50 realizations. It is seen that VESPA estimates are biased toward the
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Figure 5.2: MUSIC Spectrum obtained for 50 realizations of Experiment 1.

most powerful source and fails to estimate the arrival angle of the weak source.

For the beamspace-VESPA, we used the following 2 x 7 transformation matrix:
T=D,"'Bf (5.12)

where E, is the 7 x 2 signal subspace eigenvector matrix and D, is the cor-
responding eigenvalue matrix obtained from the sample array covariance ma-
trix. The element space data was projected to the beamspace as in (5.2). Let
the beamspace measurement vector be expressed as & = [f;,7]7. Then we
estimate the 2 x 2 cumulant matrices C; = cum(f(¢),7;(¢), £(t),t(¢)”) and
Cy = cum(7y(t),75(t), £(¢),£(¢)7). The 2 x 2 beamspace steering matrix A is
obtained following Steps 2-7. As explained earlier, the arrival angles are ob-
tained using the estimated beamspace steering matrix. For this purpose, we first

obtain the 7 x 2 element space steering matrix A as follows:
A =T#A, (5.13)

Finally, the arrival angles are obtained as follows:

A(6,1)
am)/™

0, = sin™'(£(



A(6,
AT,

]
—

0> = sin™*(£(

)/) (5.15)

(]

)

The means and standard deviations of the arrival angle estimates obtained from
beamspace-VESPA for 50 realizations are given in Table 5.1 . It is seen that the
arrival angles are estimated correctly despite the 57dB power difference between

the sources.

Table 5.1: The means and standard deviations of the arrival angle estimates
obtained from element space VESPA and beamspace-VESPA for 50 realizations.

[ [ VESPA [ Beam VESPA |
[L | Mean | St. Dev. || Mean | St. Dev.—ﬂ

0, = 20° || 24.93 0.10 20.74 0.98
0y = 25° | 25.05 0.09 25.01 0.01

5.4.2 Experiment 2: VESPA versus Beamspace VESPA

for separation of two closely spaced sources

In this experiment, we compare VESPA and Beamspace VESPA when there are
two, closely spaced 4QAM sources, one very strong and the other very weak. We
used the same 7-element Y-array as in Experiment 1. The two sources impinge
on the array from directions 20° and 23°. The power of the source at 20° was
fixed at 70dB, whereas the power of the source at 23° was varied in the range
0 — 50dB. Measurements were corrupted by additive circularly-symmetric white
Gaussian noise. 2500 snapshots were used. Recall that this array does not have
a displacement structure that can be exploited by ESPRIT.

We conducted a 20-run Monte-Carlo experiment on this data and compared
VESPA and Beamspace VESPA. Using the 6th and 7th sensors as the identical
sensor pair, we applied VESPA to this scenario for 20 realizations. VESPA as-
sumes no apriori information about the array response except that the 6th and
7th sensors have identical response. For the Beamspace VESPA, we used the same
2 x 7 transformation as in Experiment 1 and followed the same steps for the same

20 realizations.
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The sample means and standard deviations of the arrival angle estimates ob-
tained from both methods are plotted in Figs. 5.3 and 5.4 as a function of the
power of the source at 23°. It is seen that, when this source is weak, VESPA
estimates are biased toward the most powerful source at 20°, and VESPA fails to
estimate the bearing of the weak source at 23°. As the power of the source at
23° increases, VESPA tends to estimate its bearing better. On the other hand,
when the source powers are very different, the Beamspace VESPA can estimate
the source bearings fairly well except for a small bias for the weak source. It
is also observed from Fig. 5.3 that, for this particular choice of the beamspace
transformation, as the source powers get closer, the Beamspace VESPA estimates

become more biased.

5.4.3 Experiment 3: Beamspace VESPA for reduction of

computations

In general, the resolution of DOA estimates increases with the number of array
elements; however, the drawback is a cubic increase in the computational load, be-
cause, the major computational complexity of VESPA is due to the singular value
decomposition which requires O(M?®) computations. Beamspace VESPA was in-
troduced as a way to reduce computational complexity. An important part of
beamspace VESPA is the design of a useful beamspace transformation. In this ex-
periment, we present a transformation for a uniform linear array, which is suitable
when the user has a general idea about which sector of the space the targets are
in. The experimental results show that the resolution of beamspace VESPA with
this transformation is nearly identical to that of elementspace VESPA, whereas
the computations are reduced approximately by a factor of 8.

An L = 10 element ULA with half-wavelength spacing is used in the simula-
tions. There are two independent BPSK sources at —0.5° and 0.5° with respect to
broadside. The source powers are equal, and are varied in the range 0 —18dB with
respect to the additive white circularly symmetric Gaussian noise power. Note
that the sources are separated by 1° which is nearly one-tenth of the Rayleigh sepa-
ration, 11.5° [Rayleigh separation= sin~'(2/L)]. For the design of the beamspace

transformation, the sources were assumed known to be in a 45° sector centered at
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Figure 5.3: The sample means of the arrival angle estimates obtained from element
space VESPA and Beamspace VESPA for 20 realizations, as a function of the
power of the source at 23°.
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a function of the power of the source at 23°.

115



the broadside.

The rows t; of a 5 x 10 beamspace transformation matrix T, (or, in other

words, the beams) were chosen as follows:
t: = [, exp(jmu;), exp(j2mu;), - -, exp(j(L — 1)mw;)] (5.16)

where u; = 2i/L and i = —2,—1,0,1,2. Then the data was transformed to
beamspace as ry(t) = Tr(t). With this transformation, each element Thi(t) be-
comes the discrete-time Fourier transform (DFT) of the measurement vector r(¢)
evaluated at frequency u; = sin(0;) (=1 < u; < 1), where 6; is the pointing direc-
tion of the ith beam. The response of each beam is a sin(u;)/u; function centered
at the corresponding pointing direction, and has nulls at both sides of u;, at points
spaced éu = 2/L radians (Rayleigh separation) away from the pointing direction
and each other. A DFT beamformer like this was used by Zoltowski et al [94].
With these values, the five beams, altogether, cover a 47° sector from —23.5° to
23.5°, centered at the broadside.

We conducted a 50-run Monte Carlo simulation using VESPA and beamspace
VESPA on the elementspace data and transformed data, respectively. We used the
10 x 10 cumulant matrix pair cum(ri,ry,r,r¥) and cum(r;,ry,r,rf) for VESPA;
and, the 5x5 pair cum(r,ry, vy, rf!) and cum(r;, ry, ry, rff) for beamspace VESPA.
Note that the SVD of the latter pair of matrices requires 8 times less computations
than that of the former, because the dimensions of the latter pair of cumulants
are half that of the former. We display the means and standard deviations of
the DOA estimates obtained with both methods in Table 5.2, as a function of
source SNRs. It is observed that the resolution of beamspace VESPA with this
transformation is nearly identical to that of elementspace VESPA in this range of
SNR values, as mentioned earlier.

Further reduction in the computational load is possible by choosing a smaller
sector of interest. For example, choosing a 23° sector from —11.5 to 11.5°, which
is achieved with 3 beams using ¢ = 1,0, —1, results in a reduction of (10/3)% in
computations when compared with VESPA; however, this choice requires more a
priori information about the locations of the sources. Table 5.3 shows the sample

means and standard deviations obtained for this case.
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Table 5.2: Sample means and standard deviations of the bearing estimates ob-
tained with elementspace VESPA and beamspace VESPA as a function of SNR,
when 5 beams were used.

Sample Mean
VESPA Beamspace VESPA
SNR [dB] || Signal 1 | Signal 2 | Signal 1 | Signal 2
18 -0.501 0.495 -0.500 0.494
15 -0.492 0.488 -0.493 0.489
12 -0.496 0.498 -0.497 0.499
9 -0.485 0.520 -0.487 0.513
6 -0.516 0.488 -0.505 0.496
3 -0.580 0.575 -0.625 0.539
Sample Std
VESPA Beamspace VESPA
SNR [dB] [| Signal 1 | Signal 2 | Signal 1 | Signal 2
18 0.032 0.046 0.032 0.046
15 0.057 0.041 0.058 0.043
12 0.091 0.076 0.096 0.079
9 0.123 0.151 0.138 0.157
6 0.247 0.231 0.245 0.264
3 0.438 0.462 0.526 0.562




Table 5.3: Sample means and standard deviations of the bearing estimates ob-
tained with elementspace VESPA and beamspace VESPA as a function of SNR,
when 3 beams were used.

Sample Mean
VESPA Beamspace VESPA
SNR [dB] || Signal 1 | Signal 2 | Signal 1 | Signal 2
18 -0.499 0.507 -0.498 0.506
15 -0.492 0.488 -0.493 0.489
12 -0.495 0.496 -0.497 0.499
9 -0.509 0.513 -0.513 0.514
6 -0.481 0.497 -0.470 0.455
3 -0.581 0.675 -0.531 0.807
Sample Std
VESPA Beamspace VESPA
SNR [dB] || Signal 1 | Signal 2 | Signal 1 | Signal 2
18 0.042 0.042 0.041 0.042
15 0.057 0.041 0.058 0.043
12 0.096 0.081 0.095 0.083
9 0.106 0.127 0.107 0.161
6 0.178 0.212 0.253 0.274
3 0.521 0.487 0.571 0.787




5.4.4 Experiment 4: Real data processing with VESPA
and Iterataive VESPA

In this experiment, we demonstrate IVESPA and compare it with VESPA by
means of the following experiment, using a set of data provided by our sponsor,
CRASP 1,

Three signals of 1000 symbols each are generated. The signal types are BPSK,
BPSK and 16QAM, and they occupy a bandwidth of 350 KHz. These signals were
used to modulate a wavefront simulator designed to approximate uniform plane
waves impinging upon an 8-element uniform linear array with an element spacing
of one half wavelength at 900 MHz. The arrival directions are: BPSK1 at 6.3°,
BPSK2 at 25.2° and 16QAM at 40°. The 900 MHz 8-channel measurements were
downconverted and sampled at 5.12 MHz.

The eigenvalues of the estimated 8 x 8 array covariance matrix are as follows:
10* % [6.25,0.47,0.03, 0.00, 0.00, 0.00, 0.00, 0.00] (5.17)

First, VESPA was applied to this data. VESPA starts by choosing a guiding
sensor pair and estimating two cumulant matrices. In our case, any two of the
sensor measurements can be used as the guiding sensor pair since the array is
uniform and linear. We used the first two sensors for this purpose, and estimated

the following fourth-order cumulants:

C1 £ cum(ry (t), 75(2), x(t), x(t)")
Cy £ cum(ry(2), 7 (), x(t), r(t)™) (5.18)

Before applying the rest of the VESPA steps we first checked the singular val-

ues of C; and C,; e.g., the singular values of C, are found to be:

10% = [3.73,0.06,0.004, 0.00, 0.00, 0.00, 0.00, 0.00] (5.19)

Observe that the the second and third signal singular values which belong to

'Center for Research on Applied Signal Processing
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the second BPSK source and the 16QAM source, respectively, are very small
compared to the first singular value, which belongs to the first BPSK signal. One
reason why the singular values of the cumulant matrix are more separated than
the eigenvalues of the covariance matrix is that, the computation of fourth-order
cumulant estimates requires fourth powers of the data, and these increase faster
than the second powers for high signal levels. Yet another reason is the difference
between the fourth-order cumulants of equal-power BPSK and 16QAM signals,
as mentioned in Section 5.3. Applying VESPA, we obtained the following angle
estimates:

6.37°,6.30°%,7.43° (5.20)

which shows that VESPA is biased towards the most powerful source.
Second, we applied IVESPA to this data, and obtained the following angle
estimates:

6.34°,25.86°, 40.59° (5.21)

It is seen that the arrival angles are estimated correctly with IVESPA.

Finally, we show that as the sample size is increased, VESPA gives accurate
estimates. To show this, we simulated the same real data experiment in the
computer paying particular attention to the signal conditions. We increased the
sample size by 500 steps in this range, and for each sample size, we ran both
VESPA and IVESPA on the simulated data for 10 realizations of the experiment.
The averaged direction-of-arrival estimates obtained from VESPA and the actual
values of DOAs are plotted as a function of data length in Figure 5.5. It is observed
that for short data lengths VESPA fails to give reliable estimates; however, as the
data length increases, the estimates converge to their actual values. On the other
hand, IVESPA worked fine for all the values of the data length.
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Figure 5.5: Average value of the direction-of-arrival estimates obtained from 10
realizations of VESPA as the data length is varied. The actual values of the
directions-of-arrival are marked as “*” on the plot.



5.5 Conclusions

We have presented the beamspace VESPA and the iterative VESPA for direction
finding and waveform recovery of narrowband signals. The Beamspace VESPA
works with arbitrary and unknown arrays provided there is an identical response
sensor pair in the array. The proposed method is applicable to arbitrary beamspace
transformations as opposed to its covariance-based counterpart, beamspace-ESPRIT.
Experimental results demonstrating the method were also presented.

Iterative VESPA is more general than VESPA and is applicable also to cases
where VESPA is applicable. IVESPA has the following advantages over VESPA:
1) It can handle the case where the data length is short and some of the sources
have very small powers and higher-order statistics compared to others, in which
case VESPA needs more data to localize the weak sources; 2) Detection of num-
ber of sources is not required for IVESPA; 3) It can be applied to uncalibrated
and arbitrary-shape arrays provided the array has two sensors having identi-
cal response-the same requirement as in VESPA; and, 4) IVESPA can replace
VESPA when extra computations are acceptable. Results of a real data experi-

ment demonstrating the method are presented.

5.6 Appendix-A procedure for estimating the
arrival angle and steering vector of the most

dominant source

A modified form of TLS ESPRIT [66] for one source:
Step 1: Stack C;; and C;; into a 2(M —i + 1) x (M —i+1) matrix C as follows:

Ca
Ci,

A

C (5.22)

and, perform the SVD of C; keep the first left singular 2(M — i + 1)-vector of C.

Let this vector be u;.



Step 2: Partition u; into two (M — ¢ 4 1)-vectors uy; and uy,.

Step 3: Perform the SVD of [uy;,u;s]; keep the last right singular vector of

[uy1, uss). Let this 2-vector be f.

fy

Step 4: Partition f as f 2 [ fz J

Step 5: An estimate of the modified steering vector of the source is obtained to

within a scalar, as b; = uy; — %‘iuu.
I



Chapter 6

Polarization and Direction of
Arrival Estimation with

Minimally-Constrained Arrays

It is advantageous to use diversely polarized signals and antennas for several
reasons. Diversity in signal polarization can be used to improve the receiver
performance. Multiple signals arriving from close directions can be resolved on
the basis of their polarizations when diversely polarized antennas are used. If
the receiver antenna polarization is matched with that of the incoming wave, the
induced power in the receiver is maximized. Otherwise, there is a polarization
mismatch, which, in the worst case may cause a zero signal power in the receiver;
this lets two signals having orthogonal polarizations share the same frequency
without interfering with each other, or an undesired signal can be nulled out by
an antenna having orthogonal polarization.

The problems of estimating directions of arrival and polarization parameters of
multiple cochannel signals has been considered in various works [23, 34, 91, 40, 44].
In the framework of second-order statistics, Ferrara and Parks [23] extended the
ML, MUSIC, and adapted angular response (AAR) algorithms, which were de-
signed for identically polarized arrays, to diversely polarized arrays. Ziskind and
Wax [91] developed a different version of the ML method for diversely polarized
arrays. A smoothed version of MUSIC and Pencil-MUSIC was given by Hua [34]
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to handle coherent signals, and a performance analysis was presented by Cheng
and Hua [10]. Swindlehurst and Viberg used a subspace fitting algorithm for an-
gle and polarization estimation. In all of these methods, however, it was assumed
that the array manifold is either known or obtained through array calibration.
In [40], Li and Compton used ESPRIT [66] to estimate direction of arrival and
polarization paramaters of multiple signals. ESPRIT is computationally efficient
and the undesirable procedures of array calibration and multidimensional-search
are totally avoided and the parameters of interest are obtained directly; however,
ESPRIT is applicable only to antenna arrays having a special structure called
displacement invariance. As a consequence, in Li and Compton’s method, to es-
timate parameters of at most M — 1 signals, it is required that the array be a
2M element ULA consisting of M-pairs of crossed dipoles. In the higher-order
statistics framework, the virtual-ESPRIT algorithm for direction finding [17] has
removed the restriction of having to have an identical copy of the array, while re-
taining the computational advantages of ESPRIT; instead of two identical arrays,
only a subarray having two sensors that have identical response is required.

In this chapter, it is shown that, using fourth-order statistics, both directions
of arrival and polarization parameters of at most M —1 multiple cochannel signals
can be estimated using any M-element array having M — 3-elements that are of
arbitrary and unknown response and geometry, and a subarray consisting of three
short dipole antennas displaced in space and configured in a certain fashion. This
way the constraint on the array configuration is minimized. For a totally linear
array, our method requires 50% less hardware than Li and Compton’s.

In Section 6.1, the problem is formulated. We propose a solution in Section 6.2.
The overall computational procedure is presented in Section 6.3. Section 6.4

provides four simulation experiments. Conclusions are presented in Section 6.5.

6.1 Formulation of the Problem

Suppose there are P elliptically polarized signals {s;(¢),---,sp(t)} from statisti-
cally independent non-Gaussian sources, impinging on a planar array of M an-

tennae from directions {¢y,---,¢p} in the same plane as the array. Let r(t) be
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the M-vector representing the signal received by the antenna array. Then r(t) is

expressed by the measurement equation

r(t) = As(t) + n(t) Zapsp n(t) (6.1)

where A = [a,,---,ap| is an M x P steering matrix whose columns represent the
(unknown) responses of the subarray to the incoming wavefronts, s(t) is the P-
vector of the sources signals {s;(t)}{Z,. We make the following assumptions about
the model in (6.1): 1. {si(¢)}{Z, are non-Gaussian, statistically independent, and
have non-zero fourth-order cumulants; 2. n(t) is a Gaussian noise process that
may have arbitrary and unknown cross-statistics, and is statistically independent
of s(t); and, 3. The columns of A are linearly independent for the given direction
of arrival and polarization parameters. This nonambiguity assumption is common
in array processing.

The array is assumed to be composed of two subarrays, one having a regular
geometry, and the other having an arbitrary and unknown response and geometry.
The regular subarray will be designed such that it contains a minimum number of
elements required to estimate the angle and polarization parameters of interest.
Later, we show such a regular subarray consists of three short dipole antennas.
First, we introduce the polarization concept.

Polarization of a transverse electromagnetic (TEM) wave is characterized by
the ellipse traced by the extremity of its electric field vector [49] as time progresses.
The electric field must be observed along its direction of propagation. Polarization
is classified as linear, circular, or elliptical. If the electric field vector as a function
of time is always directed along a line, the field is said to be linearly polarized.
Linear and circular polarizations are special cases of elliptical polarization. A
typical polarization ellipse is shown in Fig. 6.1.

The polarization ellipse is defined by two constants, namely the ellipticity
angle o and the orientation angle 3. For a given polarization, specified by o and

B3, the electric field vector can be written [49] as

e = E,ﬁ e; + Ey €y (6.2)



|

Figure 6.1: A typical polarization ellipse.
where the horizontal and vertical components, £; and Ej; are given by
Ey = Ecosv, Ey = Esiny e (6.3)

in which E is the electric field amplitude, and v and 7 are the following functions
of a and g

cos2y = cos2a cos?2[3,

tann = tan2a csc20. (6.4)
The parameters o and 3 can be expressed in terms of v and n as follows

tan28 = tan2y cosn,

sin2a = sin2y sinn. (6.5)

The ranges of a, 3, v and n are defined as —7/4 < a < /4, 0 < B < m,
0 <y < w/2and —7 < n < 7. The polarization parameters are conveniently
displayed on the Poincare sphere [14] as in Fig. 6.2.

Using (6.3) the electric field vector of the wave can be expressed in rectangular

coordinates as

e=—F cosysinge,+ E cosy cosd e, — E sinye’” e.. (6.6)



Figure 6.2: Poincare sphere. Any polarization (a, ) is represented by a point on the
Poincare sphere with coordinates (a, 8), The relationship between (v,7) and (a,8) is
easily seen on the sphere. The points L, H, V and E correspond to linear, horizontal,
vertical and elliptical polarizations, respectively.

Consequently, a plane wave impinging on the array is characterized uniquely
by the four parameters {¢, E, v, n} or {¢, E, a, 3}. Parameters of the pth wave
will be denoted by {¢,, E,, a,, 3,} where 1 <p < P.

The problem of interest is to estimate the parameters {gép,ap,ﬁp}f:l given N
snapshots received by the array. The parameters {E,}_, are not needed because
they are not useful for discriminating the sources. In our formulation we focus

on first determining {#,, 7,, 7, } after which a;, and 3, can be determined using
(6.5).

6.2 New Solution

Consider an M-element array consisting of three short dipole antennas and an
M — 3 element arbitrary subarray. Assume that two of the dipoles are crossed,
and that the third dipole is placed in parallel to either of the other two at a known
distance, as shown in Fig. 6.3. The other M — 3 elements may have arbitrary and
unknown responses and locations.

Since the dipoles are assumed to be short, the measurement from each dipole

1s proportional to the electric field component along the dipole [40]; therefore,



E |

(M-3) element arbitrary part

Signal

Figure 6.3: The array structure.

the measurement from the first and third dipoles will be proportional to the z-
component of the electric field, whereas the measurement from the second dipole
will be proportional to the z-component of the electric field. Hence, from (6.6),
and by considering the separation between the first and third sensors, the received

signals at the first three sensors are given [49] by

P .
ri(t) = = siny, e’ s,(t) (6.7)
p=1
P
ro(t) = = cos7, sing, spy(t) (6.8)
p=1
i - s2nmd
r3(t) = —) siny, e e I X 5% g (1) (6.9)
r=1

where s,(t) = E,a,(t)e?<*%) in which a,(t) is the modulating signal and 6, is
the carrier phase. The modulating signal a,(t) is assumed to be non-Gaussian,
which is a valid assumption for communication signals.

The geometry of the assumed regular subarray leads to three cumulant-based
invariance properties that may be exploited by the ESPRIT algorithm to jointly
estimate the arrival angles and polarizations. We use fourth-order cumulants as
they are typically the least-order non-zero cumulants of communication signals.
Odd-order cumulants of communication signals are generally zero; because, these

type of signals are symmetrically distributed. First, we shall show what the above
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mentioned invariance properties are and how they can be obtained through the use
of cumulants. Then, we shall consider the estimation of the appropriate cumulant
matrices and provide a step-by-step summary of the proposed solution.

Consider first the M x M fourth-order cumulant matrix of the signals r(¢)

and r(t) formed as follows:
Co £ cum(rl(t) ri(t), v(t), v (2))

P P P
= cum ( Z siny; € s; Z siny; €77 s3(t), Z ask(t), Z aszr(t))
1=1 k=1 =1

+cum(ny (t),n7(t),n(t),n"(t))
P P P P

= >3 cum(siny; €™ s;(t), siny; €9 s5(t), arsk(t), af s (t))
i=1 j=1 k=1 I=1
P

= Y cum(sin; €™ s;(t),siny €7 s} (t), as;i(t), a” si(1))

i=1

+ 2 H
= Y sin®yaaf py;
1=1

= AAA# (6.10)

where {p14:}{, are the fourth-order cumulants of the source signals which are

assumed to be non-zero, and
[ANET .2 .9 .
A = diag{sin®y; 4,1, - - ,sin’ yp py p} (6.11)

which is nonsingular provided ~; # 0, ¢ = 1,---, P. In deriving (6.10), we used
the cumulant properties [CP1], [CP3], [CP5] and [CP®] in [47], the facts that
cumulants of Gaussian processes are zero, and that cumulants of independent
processes are delta functions.

Consider next the following M x M cumulant matrix of the signals r;(t), ro(t)

and r(t):

A .
Ci = cum(ri(t),r3(t),r(t), r7(t))
P
= Zsin i cosy; sin ¢; e’ a; a p,
i=1
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= AP AAY (6.12)

where 5 5
sin @ sin ¢p
2 d AW, s DR S :
d, = 1ag{ —— T } (6.13)

Equation (6.12) was derived in a similar way to the derivation of C.

Consider, finally, the following M x M cumulant matrix of the signals r, (%),
r3(t) and r(t):

C: £ cum(ry(t),r3(t), x(2),x7(2))
P
= Zsinzﬁ,qej%_d“’w‘a; af‘rp4lf
i=1
= AP,AAT (6.14)
where
®, £ diag{e! 3 o9 ... iR cosory (6.15)

Equation (6.14) was also derived in a similar way to the derivation of C.

The matrices Cy, C; and C; essentially give correlations between the main
array and its two hypothetical copies in terms of a new set of signals which are
power-scaled versions of the original signals. Since scaling of signal powers does
not affect estimation of the parameters of interest, our solution is similar to the
one proposed by Li [40]; however, we use only three regular elements to achieve
the same result instead of requiring two copies of the main array, or restricting it
to be linear.

The cumulant matrices Cy, C; and C; possess two invariance structures char-
acterized by @, and ®, which allows us to jointly estimate the polarization param-
eters and arrival angles of the incident waves. The diagonal matrix ®, contains
the arrival angles, whereas ®; contains both the arrival angles and polarization
parameters; hence, these parameters can be extracted from estimates of ®,; and
®,. We show next how ®, and ®, are estimated using the cumulant matrices
Cy, Cy and C; in (6.10), (6.12) and (6.14), respectively.

The solution is based on the idea of rotational invariance of the underlying

signal subspace which is the basis of the ESPRIT algorithm [66]. In ESPRIT,
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the rotational invariance of the signal subspace is induced by the translational
invariance of the array, i.e., an identical copy of the array which is displaced in
the space is needed. On the other hand, in our cumulant-based algorithm, the
same invariance is obtained without any need for an identical copy. In ESPRIT,
the signal subspace is extracted from the eigendecomposition of the covariance
matrix of the concatenated measurements from the main array and its copy. Here,
the signal subspace is extracted from the singular value decomposition of the
concatenated matrix of Co, Cy and C, in (6.10), (6.12) and (6.14), respectively
which, in turn, gives estimates of ®, and ®,.

Let us define a new 3M x M matrix C by concatenating Cy, C; and C, as

follows
Co A
C2|c | =] A®, | AAE. (6.16)
Cs Ad,
————
2B

Due to the nonambiguity assumption, for different arrival angles and polarization
parameters, columns of A are linearly independent; therefore, if A is nonsingular,

then rank(C)=P. Consequently, the singular value decomposition of C yields

20
C = [U,Uy] vH (6.17)
0 0
Al .z, A A
where ¥ = diag(ay,---,0p); Uy = [uy,---,up] and Uy = [upyy, -, uzy]. It
follows therefore that
ciu, =o, (6.18)
or, equivalently
AA'BU, = 0. (6.19)

Since AA™ is full-rank, (6.19) implies BFU, = 0. Using also the fact that U, is
orthogonal to Us, it follows that

span(B) = span(U,). (6.20)



Therefore, there exists ! a nonsingular P x P matrix T such that

U, =BT (6.21)
which means that
U“ A
Ulg — A‘i’l T (6.‘22)
U;s Ad,

where we partitioned U, exactly the same way as B, i.e., into three M x P matrices
Uy, Uj; and Uy3. Equation (6.22) establishes the signal subspace and two of its
rotationally invariant counterparts.

Note that these rotational invariances are obtained without requiring trans-
lational invariances of the array, as in ESPRIT. Having obtained these invari-
ances, we apply the idea of ESPRIT twice as will be explained shortly. Equation
(6.22) shows that Uy, Uj, and U,z share a common columnspace of dimension
P; therefore, only P columns of [Ujy, Uys) and [Uyy, Uyg] are linearly indepen-
dent. Consequently rank([Uy;, Uj2]) = rank([Uy;, Uys)) = P which means that
(U1, Uyz) and [Uyy, Uys) have nullspaces of dimension P. This last result implies
there exists two 2P x P matrices F £ [F;; F,] and G = [G;; G,] which are rank-P

such that

0 = [Uy,Up)F
= UnkF:+UpF,
= ATF.+ A®,TF,, (6.23)

and,

0 = [Upn,UylG
= UnuG: + UG,
= ATG; + A2, TG,, (6.24)

! Theorem: Let A and B be n x m matrices. There exists a nonsingular matrix C such that
AC =B if and only if A and B have the same column space [31].
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Since A is full-rank, (3.23) and (3.24) result in
0=TF, + ®,TF,, (6.25)

and

0=TG, + ®,TG,, (6.26)

respectively, which are equivalent to
- FxF;l =T7'®,T, (6.27)

and
- G,G;' =T71@,T. (6.28)

Equations (6.27) and (6.28) imply that the eigenvalues of —F.F;! and -G, G;*
must be equal to the diagonal elements of ®, and ®,, respectively. The reason
is that (6.27) and (6.28) are similarity transformations and they preserve eigen-
values. To estimate the diagonal elements of ®; and ®,, we, therefore, need two
matrices F and G which satisfy (6.23) and (6.24). Two such matrices can be ob-
tained by performing singular value decomposition on the two M x 2P matrices
[U11, Uyz) and [Uyy, Uyg). Since [Uyy, Uys) and [Uyy, Uys) are both rank P, the
last P right singular vectors of [Uy;, Ujs] and [Uyy, Uys) can be selected as F and
G, respectively.

Once @, and @, are obtained, the next step is to extract the polarization
parameters and arrival angles from diagonal elements of ®; and ®,.

The polarization parameters can be determined using ®; and ®,; however to
do so, we must first find the correct pairing of the diagonal elements of ®, and ®,
so that the i-th diagonal elements of ®; and ®, contain parameters that belong
only to the i-th source ( = 1,---, P). The reason is that, the diagonal elements
of @, and @, (which are the eigenvalues of —-FIF;1 and —GIG;I, respectively)
are ordered without regard to which sources they belong to during the eigende-
compositions of —~F,F;* and —-GrG;1, i.e., the i-th diagonal element of ®; may
contain parameters which belong to the i-th source whereas i-th diagonal element

of @, may contain parameters which belong to the j-th source. This makes the
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solution for polarization parameters impossible from just ®, and ®,, which are
coupled in terms of polarization parameters, unless the diagonal elements of @,
and ®, are correctly paired.

The pairing can be done as follows, the idea of which was first used in [40].
Let P be the product of —F,F;' and —(GJ,G;I)_I. From (6.27) and (6.28) it
follows that

P=T"1®;®;, T (6.29)

which implies that the eigenvalues of P must be the ratios of the diagonal elements
of @, to those of ®,. Let the eigenvalues of P be {)\,}]_,. Focus on the jth
diagonal element of ®,, ®,(7,7) (j = 1,---, P). Then the diagonal element of @,

that is correctly associated with ®3(7,7) is found by minimizing

®,(i,i)
®2(7,5)

yi,p=1,---, P, (6.30)

Reordering the elements of ®; and ®, so that they are paired correctly, we
obtain two diagonal matrices &ml and ti»g. The arrival angles and polarization
parameters can then be extracted from these matrices easily, as explained next.

The arrival angles ¢;, i = 1,---, P can be determined from & as [see (6.15)]

= D anglelds i 6.31
¢; = arccos - 28 e(® (7,1)) (6.31)
where &, (1,7) is the i-th diagonal element of &o.

The polarization parameters n; and v; ¢ = 1,---, P, can then be determined,
as [see (6.13)]:

n; = angle (‘i;l (i,z’)) (6.32)
v = arctan (Sin i /| @1 (z,z)|) (6.33)

Finally, the polarization parameters «; and ; are obtained from #; and ~;

using the inverse relationships in (6.5).



6.3 Overall Computational Procedure

We provide a complete 12 steps computational procedure in this section, that is
based on Section 1.3.
Step 1: From the M x 1 array data, estimate the following M x M cumulant

matrices:

Co = cunl(?‘l('ﬁ),?‘t(t),I'(t),I'H(?f))
C = cum(r(t),73(2),x(t), (1))
c, & cum(ry (¢), 75(¢), r(t), 7 (1)), (6.34)

&3 (6.35)

Step 2: Perform SVD decomposition of C; keep the first 3M x P submatrix
of the left singular vectors of C, where P is the number of the sources. Let this
submatrix be Uj.

Step 3: Partition U, into three M x P matrices Uy, U2 and U, as follows:

Un A
U12 == A@}_ T- (6-36)
Ujs A®,

Step 4: Perform singular value decompositions of [Ujq, Ujs] and [Uyy, Uys).
Stack the last P right singular vectors of [Uy;, U] and [U;;, Uyg) into the 2P x P
matrices denoted F and G, respectively.

j ot G
]anng[

v

Step 5: Partition F and G as F &

£ i
respectively, where
v

Fos By, Gpy Gy are Px P
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Step 6: Perform eigendecomposition of —F,F,! and —G,G;’; keep the eigen-
values. Let the eigenvalue matrix of —F,F;! and —G;G;! be @, and ®,, re-
spectively.

Step 7: Multiply —F,F;' by — (GxG;‘l)—l from the right; let the product be
IT. (Note that IT = T-'®,®,'T).

Step 8: Perform an eigendecomposition of II. Let the eigenvalues of IT be
Bl

Step 9: For j =1,---, P, minimize the following function with respect to i and

p. - .
®,(i,1)

®2(3,7) 7

Record the values of i corresponding to each j. Reorder the elements of ®; and

e e B (6.37)

®, such that the ith element of ®, corresponds to the jth element of ®,. Let the
reordered matrices be &, and &.

Step 10: Determine the arrival angles ¢;, i = 1,---, P, from &, as

, A = e
¢; = arccos (ﬁ angle(®» (z,z))) (6.38)

where @, (i,7) is the i-th diagonal element of &.,.

Step 11: Determine the polarization parameters ; and ~4;,7 = 1,---, P, as:
n = angle (& (; ) (6.39)
v = arctan (sin éi /| @ (z,z)|) (6.40)

Step 12: Determine the polarization parameters a; and £; from 7; and ~;,

g = 10w P ugitig:

tan28; = tan2+v; cosn;,

sin2a; = sin2y; siny;. (6.41)

where a;, B;, 7 and 7; are restricted as —7/4 < ; < 7/4,0< B < 7w, 0< 45 <
/2 and —7 < ; < 7.
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6.4 Simulation Experiments

6.4.1 Experiment 1

This experiment demonstrates our new joint polarization and bearing estimation
algorithm. We assume four statistically independent sources having diverse po-
larizations. The array has five elements with the configuration in Fig. 6.4. The
first three elements are short dipole antennas: the other two are assumed omni-
directional sensors. The arrival angles and polarization parameters of the sources
are as in Table 6.1 The measurements are contaminated by circularly symmetric
white Gaussian noise that is independent of the signals. The signals have equal
signal-to-noise ratios. We considered two SNR values (20dB and 10dB) in this ex-
periment. The Section 6.2 procedure was used to estimate the direction of arrival
(¢) and polarization parameters (e, 3) of the signals. 2000 snapshots were used.
We performed a 100 run Monte Carlo experiment for each SNR value. The esti-
mates are plotted as a function of realizations in Figs. 6.5 and 6.6 for SN R = 20dB
and 10dB, respectively. We also present the sample mean and standard deviations
of these estimates in Tables 6.2 and 6.3, respectively. Observe from the figures
and tables that the means of the estimated signal parameters are very close to
their actual values (given in Table 6.1), and the standard deviations are low. This
experiment supports our earlier claim that it is possible to estimate bearings and
polarizations of as many as M — 1 signals with M sensors, M — 3 of which are

arbitrary.

Table 6.1: The arrival angles and polarization parameters (in degrees) of the
sources

” Source No “ DOA I o ‘ J¢] ”

1 -60 | 40 | 70
2 -20 | 10 | 50
3 50 | -10 | 30
4 70 |-30 |10
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Separation between elements: -21-'

Figure 6.4: The array used in Experiments 1-3.

6.4.2 Experiment 2

In this experiment we examine the mean-squared error (MSE) performance of
our joint DOA and polarization estimation method. We used the same array as
in Experiment 1. One linearly polarized signal was assumed, i.e., @ = 0°. The
measurements are contaminated by circularly symmetric white Gaussian noise
that is independent of the signals with SNR = 10dB. The arrival angle ¢ was
variable in the range (0°,90°). For each value of ¢, the polarization parameter 3
was increased by 10° steps in the range (10°,170°). For each value of ¢ and 3 we
ran a 50-point Monte-Carlo experiment. For DOA estimates we used the usual
measure for the mean-squared error. For polarization estimates, the estimation
error is more conveniently defined as the spherical distance between the two points
E and F on the Poincare sphere that represent the actual polarization (e, )
and the estimated polarization (&,3) [see Fig. 6.7]. This measure of error was
chosen, because it was shown [14] that the response of a receiving antenna of one
polarization to a signal of different polarization depends only on the spherical
distance between the two points. Let A be the angular distance between the two

points. Then, A is given by
cos A = cos 2y cos 29 + sin 27 sin 29 cos(n — 7). (6.42)

The MSEs in dB in the DOA and polarization estimates obtained by averaging
50 Monte Carlo runs are shown in Figs. 6.8 and 6.9, respectively on a logarithmic
scale. Note that the mean-squared error in the DOA and polarization estimates
decreases as the actual value of the DOA is increased. The reason is that the
signal power received by the second sensor is proportional to sin® ¢ which is max-

imum when ¢ = 90°. When ¢ = 0° or 180° the second sensor signal power is zero,
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Figure 6.5: Bearing and polarization parameter estimates as a function of realizations
for Experiment 1. SN R = 20dB. "*' denotes the actual value of the paramater.
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Figure 6.6: Bearing and polarization parameter estimates as a function of realizations
for Experiment 1. SNR = 10dB. ™’ denotes the actual value of the paramater.
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3

Figure 6.7: Polarization error on the Poincare sphere. E represents the actual value of
polarization. F represents the estimate of E.

i.e., only noise is received; therefore, mean-squared error in the DOA estimates
increases. Note, also, that as 3 approaches 90°, MSE in the DOA estimates de-
creases, because, the total power received by the first three sensors is proportional

to 1 +sin? 3 [Note that v = 3 for @ = 0°]. This power is maximum when 8 = 90°.

6.4.3 Experiment 3

In this experiment we continue examining the mean-squared error (MSE) perfor-
mance of our joint DOA and polarization estimation method. We used the same
array as in Experiment 1. One elliptically polarized signal was assumed. The
ellipticity angle a was variable in the range —45° 45°, and the orientation angle
B = 90°. The measurements are contaminated by circularly symmetric white
Gaussian noise that is independent of the signals with SINR = 10dB. The arrival
angle ¢ was variable in the range (0°,90°). For each value of ¢, the ellipticity
angle a was increased by 5° steps in the range (—45°45°). For each value of ¢
and a, we ran a Monte-Carlo experiment using 1500 snapshots for 50 realizations.
For DOA estimates we used the usual measure for the mean-squared error. For
polarization estimates, the estimation error is defined as in Experiment 2.

The mean-squared errors in the DOA and polarization estimates obtained by
averaging 50 Monte Carlo runs are shown in Figs. 6.10 and 6.11, respectively on a

logarithmic scale. Note that for this case, 7 = 90°; and, from the Poincare sphere
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Table 6.2: Sample means and standard deviations of the bearing and polarization
parameter estimates. SN R = 20dB.

DOA a It}
Source No || mean | std | mean | std | mean | std |
1 -59.9 |1 0.57 | 40.1 [0.96 | 70.2 | 2.76

-19.9 | 0.61 | 9.8 [0.99| 49.5 |4.16
49.7 | 1.49] -10.0 | 0.76 | 29.6 | 1.55
69.8 |2.70 | -298 | 0.71 | 9.7 | 1.90

e | QO] D

o

-5

Maan Squared Error of DOA Estimates (dB)

L L " L
20 40 B0 100 120 140 160
Beta (dogrees)

Figure 6.8: Mean-squared errors in the DOA estimates. DOAs are in degrees.

tes (dB)

4 Error of F

Mean Sq
1

20 40 a0 a0 100 120 140 160
Beta (degrees)

[ligure 6.9: Mean-squared errors in the polarization estimates. DOAs are in degrees.
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45° < v £ 90° for —45° < a < 0° and, 90° > v > 45° for 0° < a < 45°. The
signal amplitudes at the first, second and third sensors are proportional to sin(y),
cos(y)sin(¢) and sin(vy), respectively. Consequently, the signal power at the
second sensor increases with increasing ¢; hence, the mean-squared errors in the
DOA and polarization estimates decrease as ¢ increases. Observe from Fig. 6.11
that, for a fixed DOA, the mean-squared errors in the polarization estimates
decrease as o gets near 0°. The reason is that the signal powers at the first and

third sensors peak when v = 90° (i.e., a = 0°).

6.4.4 Experiment 4

In this experiment we continue examining the mean-squared error (MSE) per-
formance of our joint DOA and polarization estimation method. The 8-element
Y-array in Fig. 6.12 which consists of 4 pairs of crossed short dipole antennas
is used. Note that this array is a special case of the one in Fig. 6.3, in that all
of its elements are short crossed dipoles. The response a(f) of the Y-array to a

polarized signal received from 0 with polarization parameters 7 and « is given by

a(0) = [sinye', sinfcosy,

e—}‘::cosﬂ 1€-J‘.ITC069

sin~y e’” sin @ cos 7,
e-p.-[z cos f+sin ) sin ~ e_m’ em_;fr(z cos @+sin ) sin @ cos ~,

e—jﬂ'{? cos @—sin &) —jm(2cosf—

siny e’”, e 5in% sin 0 cos 7] (6.43)

We assume two polarized signals arrive at the array from the closely spaced
directions ¢; = 42° and ¢, = 40°. The polarization parameters of the signals
are as follows: the orientation angles are 8y = B, = 45°; the signal from 42° has
ellipticity angle a; = 45° whereas the other signal has a; = 45° — Aa where A«
is varied in the range [0° — 90°] by 5° increments. Note that the arrival angles
are close to each other, and that the only difference between the polarizations of
the two signals is their ellipticity angles. The measurements are contaminated
by circularly symmetric white additive Gaussian noise with SNR = 10dB. For
each value of A, we ran a Monte-Carlo experiment using 2000 snapshots for 25

realizations. For DOA estimation we used the usual mean-squared error. For
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Figure 6.11: Mean-squared errors in the polarization estimates. DOAs are in degrees.



Figure 6.12: The Y-array used in Experiment 4.

polarization estimates, the estimation error is defined as in Experiment 2.

The mean-squared errors in dB in the DOA and polarization estimates, ob-
tained by averaging 25 Monte Carlo runs, are shown in Figs. 6.13 and 6.14, re-
spectively on a logarithmic scale. Observe from Figs. 6.13 and 6.14 that the
mean-squared errors decrease as the polarization difference A of the two signals
increase even though the arrival angles are very close to each other. This can be
explained as follows. When the arrival angle and polarization parameters of the
signals are close to each other, the columns of the steering matrix become nearly
identical which means that the rank of the steering matrix is less than the num-
ber of the signals. In this case it is impossible to correctly identify the DOA and
polarization parameters using the subspace-based DF methods including VESPA.
However, the arrival angles may be close but the polarizations different, which
is the case considered in this experiment. In this case, as demonstrated by the
experimental results, the parameter estimates improve as the difference between
the polarizations increases. Consequently, this experiment demonstrates that po-
larizations of the signals can be utilized into VESPA to incorporate diversity into

the DOA estimation problem.
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Figure 6.13: Mean-squared errors in the DOA estimates. DOAs are in degrees.

d Error of Polari

] 10 220 30 40 50 60 70 BO 50
Difference in alpha (degreas)

Figure 6.14: Mean-squared errors in the polarization estimates. DOAs are in degrees.



Table 6.3: Sample means and standard deviations of the bearing and polarization
parameter estimates. SNRE = 10dB.

DOA o 3
SOL‘ITCB NO mean] Std mean { Std meanl Std I
1 -59.9 [ 0.66 | 40.1 |0.98 ] 70.4 | 3.26
2 19.9 [0.66 | 9.7 | 1.17 | 49.65 | 4.25
3 49.7 | 1.74 [-10.12 | 1.10 | 29.16 | 1.83
4 69.60 | 3.20 | -29.75 | 1.0 | 9.89 | 2.34
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6.5 Conclusions

We have presented a new method to estimate both arrival angles and polarization
parameters of narrowband cochannel signals that is applicable to any arbitrary
array of unknown geometry and response provided there exists a subarray consist-
ing of three dipoles arranged in a fashion described in Section 6.2 and depicted in
Fig. 6.3. With our method, parameters of M — 1 signals can be estimated using
an M-element array. This represents a 50% savings in hardware over the recently
published method in [40]. Our solution requires estimation of three cumulant

matrices followed by steps that are much like those of the ESPRIT algorithm.
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Chapter 7
Conclusions

In this thesis, we have addressed the problems of parameter estimation and sep-
aration of multiple cochannel signals using antenna arrays. The conventional
approach to solving these problems is to use the first- and second-order statistics
of the measurements. In this thesis, the emphasis is on the advantages of using
higher-order statistics (cumulants) in addition to first- and second order statistics
of the signals for array signal processing. The key idea in this thesis is realizing
that the extra arguments cumulants have can be utilized to obtain algorithms that
are less-constrained in application than second-order statistics-based methods.
In Chapter 3, a cumulant-based subspace direction-finding method, extended
VESPA, is developed for coherent signal environments. The coherent signals case
often arises in practice when multipath propagation and/or smart jammers are
present. In this case, most of the subspace-based approaches, including MUSIC,
ESPRIT and VESPA which are the most favorable ones, fail. Cures have been
proposed in the literature to the coherency problem; however, they are limited to
very restrictive array configurations or impose unreasonable assumptions. More-
over, these solutions reduce the effective aperture of the array. We have shown
that, using cumulants, direction-finding is possible in the coherent signals case,
with arrays that have arbitrary configuration and unknown response, provided the
array contains a linear subarray. We have also shown that both aperture ex-
tension and non-Gaussian noise suppression are possible for the coherent signals

case. In other words, it is possible to detect more targets than sensors, which
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is impossible to accomplish using covariance-based methods for arbitrary arrays,
even in the case of known array response and incoherent signals. A uniform lin-
ear subarray is needed; the rest of the array may have arbitrary and unknown
response, and does not require calibration. Unlike some of the proposed cures
for handling coherence, we require no array calibration or search procedure. Qur
method, exztended VESPA, can replace existing covariance-based processing in a
given array without requiring any modification in the associated hardware, pro-
vided there is a linear subarray. Extended VESPA is a three-step procedure. The
first step is based on our earlier work, the virtual ESPRIT algorithm (VESPA),
in which the generalized steering vectors are estimated. In the second step the
generalized steering vector for each coherent group is interpreted as a single snap-
shot received from the actual signal. Then, a spatial smoothing technique is used
to restore the rank of the pseudo-covariance matrix estimated from the part of
the generalized steering vector corresponding to the linear subarray. The third
and final step is to apply any subspace technique to the pseudo-covariance matrix
whose rank was restored in the previous step in order to get the angle-of-arrivals.
Since the second and third steps are repeated for each coherent group, and they
depend only on the results of the first step, the computations after the first step
can be parallelized for drastic reduction in the computational load. We have also
shown ways to improve the accuracy of extended-VESPA and to use the available
data more efficiently. Among the three beamforming-based improvement methods
described in our work, BFBI3 yields the best MSE performance; therefore, it is
recommended for low SNRs. The performance of our method and the proposed
methods for improvement were demonstrated in various scenarios by means of
extensive simulations.

In Chapter 4, a cumulant-based blind beamformer for coherent signal envi-
ronments is developed. Existing covariance-based beamforming methods assume
that the array manifold is either known or can be estimated. If array manifold
is unknown it is necessary to calibrate the array; however, array calibration is a
very costly procedure requiring measurement and storage of array response for
all possible signal parameters. In the incoherent case, the array manifold can

be determined blindly using ESPRIT; however, ESPRIT requires translationally
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equivalent subarrays with known displacement vectors, which is usually an im-
practical constraint on the array configuration. Besides, as in any other subspace
method, ESPRIT fails in the coherent sources case. As mentioned in the previ-
ous paragraph, the existing cures to handle the coherent signals case are limited
to very specific array configurations. In addition, existing beamformers fail to
perform optimally when there are interferences coherent with the signal. More-
over, they tend to cancel the desired signal in the beamformer output. We have
developed a cumulant-based optimum blind beamformer for the coherent signals
case which is applicable to any arbitrary array configuration, that does not need
any knowledge about its response, and relies solely on the measurements. For a
blind beamformer the presence of coherent multipaths does not make any differ-
ence. In other words, the case of coherent multipath signals is identical to that
of statistically independent signals with no multipath. Therefore, the developed
method is applicable to independent sources as well. Our approach is based on
the observation that using cumulants of received signals, two matrices can be
formed which conform to the ESPRIT architecture. Neither identical subarrays
nor an identical sensor pair is needed as opposed to ESPRIT or VESPA. The two
cumulant matrices permit us to estimate the generalized steering vectors for each
source blindly. Then, a number of cumulant-based beamformers can be designed
whose optimality have already been shown in the second-order statistics frame-
work. Note that since the steering vectors are estimated from the data, in some
sense, the beamformer is tuned to the data, thereby avoiding sensitivity prob-
lems associated with mismatch in the assumed steering vectors, which occurs in
the case of covariance-based processing. The next step is constellation rotation
correction which handles the phase ambiguity problem inherent in the estimation
of generalized steering vector. In our approach, powers of multipaths are effec-
tively combined instead of trying to decorrelate them. As in extended VESPA,
both Gaussian and non-Gaussian noise with unknown statistics can be suppressed
as long as they are uncorrelated with the signals of interest. A comparable re-
sult using second-order statistics is not possible. Simulation results indicate that
even if the array is restricted to be uniform linear, our method performs better

(by as much as 10dB for hard-to-resolve cases) than second-order statistics-based



beamformer using spatial smoothing.

In Chapter 5, the beamspace VESPA and the iterative VESPA algorithms are
developed. In beamspace direction finding the array data is first projected into
several beamspaces of lower or equal dimension; then, each beamspace data is pro-
cessed to obtain DOAs and source signals in the same way as if it were received
from a pseudoarray of lower or equal dimension. A beamspace transformation
results in a reduced parameter space, which brings a cubic decrease in compu-
tational complexity. Besides, beamspace transformation has been shown to offer
numerous benefits such as enhanced resolution, improved performance in colored
noise, and reduced sensitivity to sensor perturbations. The ESPRIT algortihm, is
difficult to implement in beamspace, because the shift invariance induced by the
two identical subarrays is lost during a beamspace transformation. A beamspace
version of ESPRIT was developed, however, by Xu et al, who showed that if the
beamspace transformation has the same invariance as the array shift invariance,
then the lost invariance can be restored. This requirement restricts the useful-
ness of desired beamformers, which is a limitation of covariance-based processing.
Using the the fact that fourth-order cumulants have more than two arguments,
we have developed a beamspace version of the VESPA that retains the unique
property of VESPA, namely, that there is no need for an identical copy of the
array; only an identical response sensor pair is required. The beamspace VESPA
is applicable to arbitrary beamspace transformations as opposed to its covariance-
based counterpart, beamspace-ESPRIT. Using the beamspace approach, we have
also developed an an iterative VESPA which can handle a problem that exists
with VESPA: when the source cumulants and powers are highly different it is
impossible to localize some of the sources correctly with VESPA due to the un-
desirable cross terms present in the sample statistics of the weakest source due to
the dominant sources for small number of samples. In practice, this case occurs
when the source signals have different constellations and powers that are signif-
icantly separated. The iterative VESPA handles the cross terms by eliminating
one source (which is the strongest one) at each step of the iteration. This is
achieved at the expense of computational load. We demonstrated the iterative

VESPA on real data.
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In Chapter 6, a joint estimation algorithm is developed for bearing and polar-
ization parameter estimation of multiple signals with arrays that are minimally-
constrained in response and geometry. It is advantageous to use diversely polar-
ized signals and antennas for improved localization and discrimination of signals.
Conventional methods for this problem assume that the array manifold is either
known or obtained through array calibration. Li and Compton used ESPRIT
which avoids array calibration; however, in their method, to estimate parameters
of at most M — 1 signals, it is required that the array be a 2M element ULA
consisting of M-pairs of crossed dipoles. Their method is not applicable to arbi-
trary arrays. using fourth-order cumulants, We have shown that both directions
of arrival and polarization parameters of at most M — 1 cochannel signals can be
estimated using any M element array by adding a subarray consisting of three
short dipole antennas displaced in space and configured in a certain fashion. This
way the constraint on the array configuration is minimized. Our solution requires
estimation of three cumulant matrices followed by steps that are much like those
of the ESPRIT algorithm. Simulation results support our claims.

In all of the above work, we have successfully addressed challenging array
processing problems which are either impossible or impractical to solve using just
second-order statistics.

Two fundamental issues remain unexplored:

o Performance analyses of the higher-order statistics based methods developed in
this thesis.
o Development of adaptive implementations of these algorithms for moving tar-

gets and nonstationary environments.
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