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Abstract

Optical architectures for fully connected and limited-fanout space-variant weighted
interconnections based on diffractive optical elements for fixed-connection multilayer
neural networks are investigated and compared in terms of propagation lengths, system
volumes, connection densities, and interconnection crosstalk. The architectures are
designed to be physically compact, and to be usable for optical interconnections between
optoelectronic smart-pixel arrays for 3-D optically interconnected multichip modules. For
a small overall system volume the limited-fanout architecture can accommodate a much
larger number of input and output nodes. However, the interconnection crosstalk of the
limited-fanout space-variant architecture is relatively high due to noise from the
diffractive optical element reconstruction. Therefore, a crosstalk reduction technique
based on a modified design for diffractive optical elements is proposed. It rearranges the
reconstruction pattern of the diffractive optical elements such that less noise lands on each
detector region. This technique is verified by simulating one layer of an interconnection
system with 128 x 128 input nodes, 128 X 128 output nodes, and 5 X 5 nearest neighbor

weighted connections from each input node to the output nodes.

We have also analyzed and simulated the effect of incorrect illumination wavelength
and etch depth error on DOE reconstruction. The DOE-independent properties found in
the simulations for binary-phase-level DOEs are theoretically verified. A way of
cancelling the effect of etch depth error on DOE reconstruction by adjusting the

illumination wavelength is described. The effect of incorrect illumination wavelength and

Xviii



etch depth error on DOE reconstruction with more than two phase levels has founded to be

DOE-dependent.

Two design algorithms, Gerchberg-Saxton and simulated annealing, are studied and
modified for better DOE performance. A dual-cost-function simulated annealing
algorithm that produces better DOE performance than the original simulated annealing
algorithm has been proposed. Finally, a new design approach that increases design
freedom without increasing fabrication complexity is developed. It allows the design
algorithm to find the best non-uniform quantization of phase levels and can generally

obtain DOEs with substantially better performance.

XixX



Chapter 1

Introduction

1.1 Motivation and Objectives

Neural networks have important applications in many fields such as image processing,
vision, speech recognition, pattern recognition, and associative memory [1]. The key
components of neural networks are neuron units and weighted interconnections (synapses)
between neuron units. The number of weighted interconnections will increase as the square
of the number of neuron units in a fully connected network [6]. Both electronic and optical
implementations of artificial neural networks have been intensively studied [1, 2, 3, 4, 5].
Recently, there has been a great deal of interest in optoelectronic implementations of neural
networks [7, 8,9, 10, 11, 12, 13, 14]. Usually, an optoelectronic neural network uses optics
in the third dimension to implement interconnections (either weighted or unweighted),
while it employs a two-dimensional electronic chip to implement neural functionalities
such as summing the inputs, nonlinear thresholding, or other more complex processing.
There are different ways to implement weighted interconnections in optics [3, 4, 5]. In the
case of fixed-connection neural networks, one possible way of implementing weighted
interconnections is to use diffractive optical elements (DOEs). Diffractive optical elements

can provide high diffraction efficiencies and they can be physically very small because they



are manufacturable using lithographic techniques in conjunction with single or multiple
etch or deposition steps standard in semiconductor processing [25, 26]. The other
components of the system (e. g., optoelectronic devices for neuron unit array) can also be
made small and the collection of the components can be assembled into a mutually
compatible, small, integrated structure. Therefore, optoelectronic implementations and
employment of diffractive optical elements have the potential for building large scale

neural networks with small size [10, 11, 15, 16, 17].

We are interested in optoelectronic implementations of large scale space-variant (S-
V) fixed-connection neural networks with physically compact multilayer structures [11,
12, 13]. Such structures can process a two-dimensional array of interconnection channels
in parallel with the potential for high bandwidth (100 MHz per channel) operation.
Therefore, such a system can be applied to many fields that need to process large amounts
of data in parallel. One example is the early vision processing of mammals. In these
biological vision systems, the optical signal detected by the retinal photoreceptors is
processed by a number of layers of neuron units in the retina for low level signal
processing before being communicated to the visual cortex [36, 37, 38]. In adult
mammals the interconnections among layers of the retina are generally believed to be
nonadaptive, mostly local, and highly parallel [39]. Thus, neural-inspired vision
preprocessing operations may make an interesting application for a parallel, multilayer
optoelectronic system. If the system is also physically compact, it may have uses in a

variety of intelligent-sensing applications.



In this effort, we focus on the interconnection portion of these networks by
investigating possible free-space optical architectures. The desired interconnection
system should have the following characteristics: it should be capable of analog weighted
fan-out, cascadable to form multilayer feedforward structures, and capable of short
propagation length between layers. Moreover, the system should be designed so that it
can be fabricated using semiconductor processing techniques in order to have the potential
for large-volume and low-cost manufacturing. Based on the use of diffractive optical
elements, the purpose of the first part of this thesis is then to study what interconnection
architectures are suitable for multilayer feedforward structures for neural network
implementations in terms of system size, space-bandwidth product requirement, and
interconnection crosstalk. Since diffractive optical elements are the key components of
the interconnection systems, the second portion of the thesis focuses on the analysis of the
effect of incorrect illumination wavelength and etch depth error on DOE reconstruction.
Lastly, because the performance of diffractive optical elements is critically dependent on
the design algorithm used, we have investigated two design algorithms, Gerchberg-Saxton
and simulated annealing, and, based on these two original algorithms, developed new

design approaches that are substantially better than the original algorithms.

1.2 Organization of the Thesis

Chapter 2 describes previous related works by other researchers. Because diffractive
optical elements are the key components in the systems of interest, we investigate the

properties of DOEs and establish a reconstruction model of DOEs in Chapter 3. In this



thesis, we investigate architectures that have different connection patterns for different
neuron units. These types of architectures are referred as space-variant (S-V)
interconnection systems. Of the space-variant systems, we have studied two different
architectures: the fully connected system in which each neuron unit connects to all other
neuron units; the limited-fanout system in which each neuron unit only connects to its
nearest neighbor. Chapter 4 studies the characteristics of the fully connected space-variant
interconnection architecture such as propagation length, lateral dimension, system aspect
ratio, interconnection density, space-bandwidth product requirement, and interconnection
crosstalk. Chapter 5 analyzes the characteristics of the limited-fanout space-variant
interconnection architecture and compares them with the fully connected space-variant
interconnection architecture. Although the limited-fanout space-variant architecture can
provide a compact system size for large scale neural networks, the interconnection
crosstalk is unacceptably high due to noise from the reconstructions of the surrounding
diffractive optical elements. Therefore, we propose a crosstalk reduction technique by
modified DOE design for a limited-fanout S-V system in Chapter 5, verify its validity by
additional simulations, and discuss the other potential advantages and limitations of this

crosstalk reduction technique.

In order to have good performance from a designed diffractive optical element, the
DOE needs to be etched correctly in fabrication and illuminated by laser source with the
correct wavelength. In the second portion of the thesis, we will investigate the effect of an
incorrect illumination wavelength and/or incorrect etch depth on the reconstruction of the

DOE. In Chapter 6, we will study the effect on DOE reconstruction when the illumination



wavelength is different from the designed optical wavelength. In Chapter 7, we will
investigate the effect of etch depth error in fabrication on the reconstruction of a
diffractive optical element. In the last part of the thesis (Chapter 8), we will develop new
design approaches that will increase the performance of DOEs and compare the designed
DOE results of the new approaches with DOEs designed using two commonly used
algorithms (Gerchberg-Saxton and simulated annealing). Finally, Chapter 9 summarizes

the key results of this thesis and describes future research directions for related work.

1.3 Contributions

The original contributions of this dissertation are summarized as follows:

(1) Properties and Reconstruction Model of Diffractive Optical Elements:
Characterized the properties of diffractive optical elements and categorized the
reconstructed diffraction orders. Derived the relations among the diffraction
orders and developed a reconstruction model that takes the non-ideal
reconstruction lens into consideration.

(2) Fully Connected Space-Variant Interconnection Architecture: Analyzed the fully
connected space-variant interconnection architectures for DOE-based multi-layer
feed-forward 3-D computational structures and their important characteristics such
as propagation length, lateral dimension, system aspect ratio, interconnection
density, and space-bandwidth product requirement. The interconnection crosstalk

for the fully-connected interconnection system was also analyzed and simulated.



(3) Limited-Fanout Space-Variant Interconnection Architecture: Analyzed the
limited-fanout space-variant interconnection architectures for DOE-based multi-
layer feed-forward 3-D computational structures and their important
characteristics such as propagation length, lateral dimension, system aspect ratio,
interconnection density, and space-bandwidth product requirement. The
characteristics of the limited-fanout space-variant interconnection architecture
were then compared with the characteristics of the fully connected space-variant
interconnection architecture. The interconnection crosstalk for the limited-fanout
interconnection system was analyzed and simulated. The crosstalk was likely too
high for most of the applications. A crosstalk reduction technique based on a
modified design for diffractive optical elements that rearranges the reconstruction
pattern such that less noise lands on each detector region is then developed.
Simulations showed that the technique can effectively reduce the crosstalk in the
system.

(4) Effect of Incorrect Illumination Wavelength on DOE Reconstruction: Analyzed
and simulated the effect of incorrect illumination wavelength on the reconstruction
of multiple-phase-level DOEs. Theoretically verified the special properties found
in the simulations for binary-phase-level DOEs. Similar expression also derived
for unconventional binary-phase-level DOEs.

(5) Effect of Etch Depth Error in Fabrication on DOE Reconstruction: Analyzed and
simulated the effect of two different kinds of etch depth error in fabrication on the

reconstruction of multiple-phase-level DOEs. For both conventional and



unconventional binary-phase-level DOEs, the combined effects of incorrect
illumination wavelength and etch depth error on reconstruction were theoretically
derived. A way of cancelling the effect by adjusting the illumination wavelength
was described.

(6) New Design Approaches for Diffractive Optical Element: Modified two commonly
used design algorithms (Gerchberg-Saxton and simulated annealing algorithms)
for better DOE performance. Developed a new design approach that relieves
unnecessary constraints and increases the number of degrees of freedom in the
DOE design. The new approach is based on non-uniform phase quantization in the
DOE design and keep the number of etch steps unchanged. This new design
approach can substantially increase the performance of diffractive optical elements

without increasing the fabrication complexity of diffractive optical elements.



Chapter 2

Previous Related Work

2.1 Space-Variant Interconnection System Using a

Sub-Hologram Array

In this thesis, we consider optical architectures that can connect a two-dimensional array of
light transmitters (modulators or emitters) to a two-dimensional array of detectors. In a
multilayer feedforward neural network, the light transmitters represent the outputs from
neuron units in the previous layer and the detectors represent the neural receptors of next
layer. The transmitters can be treated as the input nodes of the interconnection system and
the detectors can be treated as the output nodes of the interconnection system. The
interconnection patterns are assumed to be space-variant i.e., the fan-out pattern for every
input node is different. The space-variant interconnections can be implemented by a two-
dimensional array of sub-holograms, one for each input node. Here, each sub-hologram
can be an optically recorded hologram, a computer generated hologram, or a diffractive
optical element. For a fully connected system, each input node connects to all of the output
node and the interconnections are effectively four-dimensional. Each sub-hologram must
encode the connections from one input node to all the output nodes. This means that the

space-bandwidth product of each sub-hologram must be at least N?ina system with N X N



neuron units. Ineach layer, yielding a space-bandwidth product of at least N* for the entire

sub-hologram array.

This type of optical architecture that employs a sub-hologram array for space-variant
interconnections was first described by Jenkins et al. for digital optical computing
applications [61]. They also analyzed the interconnection crosstalk in such an
architecture and the effect on the maximum number of fan-in for each logic gate.
Caulfield later applied this sub-hologram concept to implement weighted interconnections

of neural networks [6].

Keller and Gmitro developed a similar space-variant architecture for weighted
interconnections of neural networks but using diffractive optical elements (DOEs) instead
of computer generated holograms [42, 62]. They also estimated that current DOE
fabrication technology can support weighted interconnections for 5000 neuron units to
5000 neuron units. Conventional computer generated holograms use amplitude
modulation and detour phase (or other kinds of techniques) to represent the complex wave
fronts. Because of the amplitude modulation, conventional computer generated
holograms have low diffraction efficiencies (~ 10%) [42]. On the other hand, diffractive
optical elements use only phases to encode the complex waveform and usually have much
higher diffraction efficiencies (60% ~ 90%) [28, 29]. However, because of the phase-only
representation of complex waveforms data, a diffractive optical element will reconstruct
undesired noise as well as desired signals. When many diffractive optical elements
diffract light at the same time, the interconnection noise in the system could be serious and

need to be carefully analyzed.



While the approaches above use optics to implement fan-out and fan-in, Yayla et al.
recently proposed a different approach for space-variant interconnections [9]. They used

optics for fan-out from neuron units but used electronics for fan-in to each neuron unit.

2.2 Compact Multilayer Structures Using Micro-Optic

Components

Veldkamp described a multilayer electro-optic architecture that blend layers of analog
circuitry, microoptics (diffractive optical elements), microlaser arrays and detector arrays
for neural retinal designs [10]. Each neuron unit only connects to some nearest neighbor
neuron units in the next layer. These localized interconnections are achieved by using two-
dimensional arrays of diffractive optical elements, one for each neuron unit. All the micro-
components in the system can be fabricated by a sequence of compatible production
processes. This common fabrication technology not only eliminates the need for external
components and alignment in the system, but also reduces size and weight, improves

stability, and creates possibility of large-volume low-cost mass production.

Tanguay et al. suggested another dense 3-dimensional integrated electronic/photonic
computing structures enabled by diffractive optical elements [11, 12, 18, 19]. Figure 2-1
shows the multilayer MCM structure. In this multilayer structure, each layer consists of
an optoelectronic module, which is integrated by filp-chip bonding a silicon-based signal
processing electronic chip with a multiple quantum well light modulator array chip, a

waveguide array as an optical power bus to provide highly compact readout of reflection

10



mode optical modulator array in the third dimension, and an array of diffractive optical
elements to provide localized weighted interconnections to the next layer (or a volume
holographic optical element to provide the global interconnection to the next layer). The
incoming information at each neuron unit is processed by the electronic circuitry next to
the neuron unit, fanned out to the next layer through the light modulator and diffractive
optical element. The three-dimensional integration of silicon modules with parallel
optical interconnections will have the potential of high capacity computational ability for

analog and digital applications in a compact, lower power module.

Det. Elect.

e A

MQW Mod.

Det. Det.

Figure 2-1: Integrated 3-D electronic/photonic multi-chip module (MCM) structure.
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2.3 Diffractive Optical Elements

Diffractive Optical Elements have applications in many fields [27, 28, 29] such as optical
interconnection systems [20, 21], optical head for optical disks [22], photonic circuit
packaging [23], fiber communication [24], laser beam shaping [31], spot array generation
[32, 33, 34]and many others [30, 35]. In this thesis, we assume DOEs are two-dimensional,
consisting of C X C replications of two-dimensional DOE periods of size T X 7. Each DOE
period is made up of J X J phase elements, each of size A X A. The phase element is the
smallest physical feature in the DOE. Each phase element takes on a constant discrete
phase value over its A X A aperture that corresponds to the phase delay it imparts on the
light striking it. Figure 2-2 shows the layout and phase distribution of a 4 X 4 period DOE
containing 16 X 16 phase elements in each period, in which each phase element can be one

of four values: 0, /2, &, or 37/2.

Usually a lens is placed immediately after a DOE to obtain the reconstructed
intensity pattern at the focal plane of the lens. The reconstructed intensity and the DOE
amplitude transmittance are therefore related by a squared-magnitude of Fourier
transform. Figure 2-3 shows the center portion of the reconstructed intensity pattern of

the DOE in Figure 2-2 with C = 4.

In order to have good performance from a well designed diffractive optical element,
the DOE needs to be fabricated appropriately. In the fabrication process for DOEs, an
incorrect etch depth for each phase element, an incorrect phase element size, and a non-

vertical sidewall are the commonly seen fabrication error.  Jahn et al. [31] described the
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Figure 2-2: The layout and phase distribution of a four-phase-level DOE. T represents the period
length and C represents the compression ratio. In this design, T'= 16 phase elements.

fabrication process for DOEs and characterized the error sources for an incorrect etch
depth and an incorrect phase element size from the fabrication processing for binary phase

level DOEs.

In order to obtain the desired reconstructed intensity pattern from a diffractive
optical element, the phase distribution in a DOE needs to be designed carefully. In
general, because a DOE is a phase-only element, a phase-only distribution that gives the
exact desired intensity pattern does not exist. Therefore, the goal of the design process is
to optimize the phase distribution of the DOE to obtain a reasonable approximation to the

desired reconstruction. Many different DOE design algorithms have been proposed and
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Figure 2-3: The center portion of the reconstructed intensity pattern of the DOE in Figure
2-2 with a compression ratio (C).of 4.

investigated [40, 42, 43, 44, 56, 57, 64, 65, 66, 67, 69, 70]; the two most commonly used
algorithms are Gerchberg-Saxton [42, 45, 46, 47, 48, 49, 58, 59, 60, 63] and simulated
annealing [50, 51, 52, 53, 54, 55, 52, 52, 68]. The Gerchberg-Saxton algorithm is an
iterative Fourier transform procedure that attempts to iteratively satisfy the required
constraints on both the DOE plane and reconstruction plane. These constraints include a
discrete phase-only distribution (amplitude is equal to one) in the DOE plane, and the
desired intensity (magnitude) connection pattern in the reconstruction plane. The phases

in the reconstruction plane are generally arbitrary and can be used as available degrees of
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freedom in the design process. Usually, the Gerchberg-Saxton algorithm converges to a

reasonable solution in a short amount of time.

Simulated annealing, on the other hand, is a very time-consuming process that can
theoretically obtain an optimum solution by using statistical searching procedures with an
appropriate annealing schedule and unlimited computation time. The algorithm begins
with a randomly selected phase distribution and a initial annealing temperature. In each
iteration, the algorithm randomly select a phase element from one period of the DOE
and randomly change its phase to one of the pre-defined discrete levels. An
appropriate cost, which is usually some figure of merit of DOE performance, is
then calculated for this trial DOE phase distribution. If the cost of the trial is less
than the original cost, the change is unconditionally accepted. Otherwise, the
change is accepted only if the probability of accept, which is usually some function
of the annealing temperature and the difference between the trial cost and the
original cost, is greater than some randomly selected minimum probability. This
mechanism of accepting a bad change is very important because it is used to move the
algorithm out of a local minimum. After some time, the annealing temperature is
decreased to reduce the probability of accepting a bad change. This process is then
repeated till it converges to the final solution. Because, in each iteration, the simulated
annealing algorithm operates on only one of the phase elements in one period of the DOE
rather than on all the phase elements in one period of the DOE simultaneously as in the
case of the Gerchberg-Saxton algorithm. Therefore, the simulated annealing algorithm

will, in general, take much more iterations to converge than the Gerchberg-Saxton
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algorithm. Further, the total number of iterations will also increase as the number of phase

levels increases.

Conventional diffractive optical elements usually use discrete phase levels that are
equally distributed between 0 and 7t. diffractive optical elements of this kind are easier to
design and fabricate. Feldman et al. [50] suggested a non-conventional phase level
assignment for binary-phase-level DOEs. In stead of using 0 and T for the two phase level
assignment, they have used simulated annealing algorithm to search for the optimum
phase level assignment and the optimum phase distribution at the same time for the DOE.
Using their proposed scheme, they have designed the DOEs for spot array generators and

have found the optimum phase level assignment other than 0 and .
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Chapter 3

Properties and Reconstruction Model of
Diffractive Optical Elements

In this chapter, we will derive the relations between a diffractive optical element and its
reconstructed diffraction orders.  These relations are necessary for the system
characteristics study in Chapters 4 and 5. We will also derive the relations among
reconstructed diffraction orders. Based on the relations among diffraction orders, we then
establish the reconstruction model necessary for analyzing the interconnection crosstalk in

Chapters 4 and 5.

3.1 Characteristics and Properties of Diffractive Optical

Elements

In this section, we will derive the relations between a diffractive optical element and its
reconstructed diffraction orders as well as the relations among reconstructed diffraction
orders. These relations are necessary for analyzing the crosstalk in Chapter 4 and 5. In this
thesis, we assume DOEs are two-dimensional, consisting of C X C replications of a two-
dimensional DOE period of physical size Tx T. Each DOE period is made up of J X J
phase elements, each of physical size A X A. The phase element is the smallest physical

feature in the DOE. Each phase element takes on a constant discrete phase value over its

1)



A X A aperture that corresponds to the phase delay it imparts on the light striking it. Figure
1(a) shows the layout and phase distribution of a 4 X4 period DOE containing 16 X 16
phase elements in each period, in which each phase element can be one of four values: 0,
T 3

5,75,01'7.

Because of its periodicity, the DOE amplitude transmittance function, g (x,y) , can

be expressed as a linear combination of two-dimensional complex exponential functions

[40] as
g(xy) = rect[%,]ibrect(%,)ogl(x, ), (3-1)
where
g (ny) = iﬂ éf(r’ 5 exp{ jon {2 ), (3-2)
with
49 = 4 J g, exp 7212 Jacay (3-3)
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where X is any one complete period of g ; (X.Y) » The term
rect [x/ (CT)] -rect[y/ (CT)] in Eq. (3-3) imposes the finite aperture size of the DOE

with the rect function defined as

1 <l
sk = { 2. (3-4)
0 otherwise

If i (p, q) represents the complex amplitude transmittance of the (p, g)’th phase element

in one period of g (x, y), then a single DOE period can be expressed as

J-1 J-1

e = 3 S o) ee(E2), @

p=0g=0

where J is the number of phase elements along each dimension of a single DOE period.
Equation (3-5) describes the continuous period of g (x,y) as a discrete set of J X J phase

elements, each of physical size A X A.

Because the integral portion of Eq. (3-3) integrates over one period of g ; (x,y) , we
can substitute the expression for one DOE period g (x,y) of Eq. (3-5) in for g, (x, y) in
Eg. (3-3), and take the integration region Z to be coincident with the DOE period defined

in Eq. (3-5) to obtain
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J-1 J-1

A(r,s) = J_zsinc(i;) : sinc[%) D Z h(p, q)exp( ujin(rp +5q) ), (3-6)

P= U q= 0
where the sinc function is defined by
. sin (7tx)
sinc (x) = ————=. (3-7)
nx

Note that the double summation portion of Eq. (3-6) can be calculated by the two-
dimensional discrete Fourier transform of 4 (p, ¢). The function A (r, s) is the product of
a periodic function (with a period of J in each dimension) and an envelope given by
Sinc( f) . sinc(f)
S 7 7)

If we assume a transmissive DOE illuminated by a normally-incident unit-amplitude
plane wave, then under the conditions that allow the DOE diffraction to be described by
scalar diffraction theory [40, 41], the complex amplitude distribution immediately behind

the DOE is

g(x,y) = rect( %) . rect( E'y?) i A(r,s) exp[jz?n (rx+sy) ) (3-8)
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In Eq. (3-8), g (x,y) canbe treated as a linear combination of many apertured plane waves
with different directions [42]. We refer to each of the plane waves as one diffraction order.
If a lens is placed immediately behind the DOE, the complex amplitude distribution,

G( Xp Y f), at the focal plane behind the lens is the Fourier transform of g (x, y), given by

oo

= Q(xf)yf) . 2

r=—oco §

A (r, 5) sinc [%(Af_r_?r)] o I:%(yf_ ST)Lf]:l , (3-9)

L

with

2.3 '
cT exp[%(xﬁ-i-yﬁ):l

= 3-10
Q (x5 ) Y ; (3-10)

where f is the focal length of the lens and A is the optical wavelength. The corresponding

intensity distribution, I (xf, yf), is given by

1(xpyp) =|G(x,y)| (3-11)

21



Equation (3-9) describes a diffraction pattern with infinitely many spots. The (r, ) th spot

is the Fourier transform of the corresponding diffraction order and has an amplitude profile

A (xpy) = Q (xpy) ¢ A(r,5) sinc [%(xf— r_?f)] sinc [%(}y— "'—?f)] . (3-12)

2.9 jT, 2 2
C T exp [?Lf(xf +yf)] e

Without loss of generality, the phase and constant factor,

M
dropped in the following sections for simplicity. From Eq. (3-12), it can be seen that each
; : . rAf sAf) . ; ;
diffraction order spot is centered at T T with a spot width (the width between the
first zeros of the sinc function) of
20
= o 3-13
8= Th (3-13)
and a center-to-center spot spacing of
A
55 =4 (3-14)

The diffraction angle of each diffraction order relative to the optical axis of the lens is

22



6,6, = (wd (2), ui' (2) ). (3-15)

There are two important properties that can be observed from above equations. If we define
the resolution at the reconstruction plane as the ratio of spot spacing, S, to the spot width,
S,.» then the resolution is equal to g and is independent of wavelength (L), focal length (f),
and period length (7). Hence, the number of periods in a DOE in each dimension, C, is also
referred to as the compression ratio [40]. The compression ratio (C) is usually greater than
two in order to ensure a minimum separation for the reconstructed spots. It is also

convenient to consider the compression ratio in terms of the resulting diffraction pattern.

25
Thus C = —S, or twice the center-to-center spot spacing normalized by the spot width.
W
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3.2 Reconstruction Model of Diffractive Optical Elements

Equation (3-6) shows that the complex amplitude of each diffraction order, A (r, s), is a
sinc enveloped periodic function with a period of J in each dimension. The number of
independent diffraction orders in the reconstruction is equal to the number of phase
elements in one period of a DOE. Therefore, to create a DOE whose reconstruction has
Jy X J, independently weighted fan-outs, each period of a DOE needs to have at least
Jo X J,, phase elements. Additional phase elements are usually used to improve the DOE
performance (such as diffraction efficiency, uniformity between diffraction orders, and
signal-to-noise ratio). We define the ratio of J over J; as the oversampling ratio, B. Thus,
J=BJ, and T = BJ,A. The oversampling ratio is usually greater than one for
performance reasons. Accordingly, there are BJ,, X BJ,, independent diffraction orders in
the reconstructed pattern. We refer to the BJ,x BJ,, diffraction orders centered at the
optical axis of the lens as the mainlobe of the reconstruction and each adjacent set of
BJ,x BJ,, diffraction orders as one sidelobe. The reconstruction consists of one mainlobe
and many surrounding sidelobes. The amplitude of each diffraction order in any sidelobe
is dependent (through the sinc envelope) on the amplitude of the corresponding order in the
mainlobe. We refer to the J,, X J,, desired diffraction orders within the mainlobe as the
signal diffraction orders or simply signals. Each sidelobe contains an array of J, X J,
diffraction orders centered within the sidelobe that corresponds to the signals weighted by
the envelope sinc function. We refer to these diffraction orders as signal sidelobes (SS’s).

The remaining of the diffraction orders in both the mainlobe and sidelobes are spurious
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diffraction orders (SDO’s). Hence, a reconstructed pattern will consist of signals, signal

sidelobes, and spurious diffraction orders, as shown in Figure 3-1. Signal sidelobes and
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Intensity
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Figure 3-1: The reconstruction pattern (shown in one dimension) of a typical DOE consists of signals,
signal sidelobes (SS), and spurious diffraction orders (SDO). The overall envelope (due
to the finite size of the phase elements) is shown by the dashed curve. The example
shown has 8 X 8 phase elements in one period of a DOE. The mainlobe and two
complete sidelobes of the reconstruction are plotted.

spurious diffraction orders are undesired noise that causes interconnection crosstalk, as will

be shown later, in a limited-fanout space-variant interconnection system. We will use

(Jo=-1) (Jo—-1)
(u,v) to represent the indices of J,XJ, signals (- 5 Su<g 5 and
(Jo—-1) (Jo— 1)

—TS v< =% assuming Jj is odd) and (k,, k,) to represent the indices of
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sidelobes (kl, kz e {0,%1,%2,...} and (k,, kz) # (0,0) ). For the (u,v)’th signal, the
corresponding  signal  sidelobe in the  (k,k,)’th sidelobe is in the
(k,BJy+ u, kyBJ, +v) th diffraction orders of the DOE. By replacing J with BJy, we can
calculate the intensity ratio of the signal sidelobe over the corresponding connection order

from Eq. (3-6) as

I(k,BJy+u, k,BJy+v) (BJO

I (u, R v
— () ot (mr)

: (3-16)

Note that the relative strength of a given signal sidelobe diffraction order (u, v, k; and k;
fixed) is only dependent on the oversampling ratio (B) for a given J. This relative strength

becomes lower if the oversampling ratio gets larger.

While the reconstruction above assumed a perfect Fourier transform lens, in reality
the actual reconstructed pattern will depend on the type (e.g., refractive or diffractive) and
the aberration properties of the lens. In general, the reconstructed intensity pattern from a
DOE will be a relatively accurate rendition of its power spectrum in a local region near the
lens optical axis, but will degrade due to aberrations and non-paraxial effects farther away
from the axis. To approximate these effects, we model the paraxial-region reconstruction
as the exact power spectrum of a DOE, and the reconstruction everywhere outside this

paraxial region as an uniform-intensity blur [denoted as non-paraxial region noise (NRN)]
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as shown in Figure 3-2. Because of the sinc squared intensity envelope, if the paraxial
region includes at least the region out to the second zero of the sinc function (in each
dimension), most (>90%) of the light energy is in the paraxial reconstruction region near

the optical axis of the lens, and relatively little light energy is in the NRN region.
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Figure 3-2: Taking non-idealities of a lens into consideration, the reconstruction pattern of a DOE
consists of signals, signal sidelobes (SS), spurious diffraction orders (SDO), and non-
paraxial region noise (NRN). The overall envelope (due to the finite size of the phase
elements) is shown by the dashed curve. The example shown has 8 x 8 phase elements in
one period of a DOE.
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Chapter 4

DOE-Based Multi-Layer Feed-Forward
Fully Connected Space-Variant
Interconnection Architecture and

Crosstalk Analysis

In this chapter, we investigate the interconnection architectures for optoelectronic
implementations of fully connected neural networks. Section 4.1 describes the generic
DOE-based interconnection architecture for optoelectronic implementation of multi-layer
feed-forward neural networks. Section 4.2 focuses on the fully connected space-variant
interconnection architectures and their important characteristics such as propagation
length, lateral dimension, system aspect ratio, interconnection density, and space-
bandwidth product requirement. Section 4.3 describes the origin and definition of the
crosstalk in such DOE-based space-variant interconnection systems. Section 4.4 then
presents the analysis and simulation of the interconnection crosstalk for the fully-connected

interconnection systems.



4.1 Optoelectronic Implementation of Multi-Layer Feed-

Forward Space-Variant Interconnection Architecture for

Neural Networks
Shown in Figure 4-1 is the DOE-based multilayer feed-forward space-variant

interconnection architecture considered in this thesis. Each layer of the architecture

) . Area for electronic circuitry
Reconstruction optics

Sub-DOE array

Detector
Optoelectronic chip

Input to
the network

F S

Ist layer A 2nd layer

Figure 4-1: Schematic diagram for optoelectronic implementation of multilayer feed-forward neural
networks. Note that the light emitter array (or modulator array and readout-illumination

optics) on the back side of each optoelectronic chip is not shown. Note that the figure is
not to scale.

contains four different functional elements. The first functional element (from left to right

in Figure 4-1) is an optoelectronic chip comprising a two-dimensional array of contiguous
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nodes. Each node consists of one detector with some electronic circuitry for post-detection
processing on the input side of the chip, and one active (emitter such as a vertical cavity
surface emitting laser) or passive (modulator) optical source on the output side of the chip.
Following the optoelectronic chip are some collimation optics to collimate the output light
from the optical sources, in turn illuminating the next functional element, a two-
dimensional array of contiguous sub-DOEs. The sub-DOE array together with
reconstruction optics provides the space-variant weighted interconnections to the next
layer. in this thesis, we assume that the lateral physical size of a node on the optoelectronic
chip is equal to the lateral physical size of a sub-DOE, and their shapes are both square. We
further assume that the optoelectronic chip, the collimation optics, the sub-DOE array, and
the reconstruction optics all have the same lateral physical sizes to maintain cascadability
over layers. Therefore, the center-to-center spacing, or pitch, of sub-DOEs is equal to the
pitch of detectors (or nodes) on the optoelectronic chip. Depending on the kind of neuron
units (unipolar or bipolar) implemented in the system, each neuron unit can consist of one
or more nodes on the optoelectronic chip. Without loss of generality, we assume that each
neuron unit consists of one node in this thesis. In order to have space-variant
interconnections, each node must have a dedicated sub-DOE to provide the weighted fan-

out.

The operations of the multilayer feed-forward space-variant interconnection system
can be described as follows. The input scene to the system is detected by the two-
dimensional array of detectors on the optoelectronic chip in the first layer. The detected

information is processed (e. g., thresholded) by the electronic circuitry of each node.
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After the post-detection processing, the result is encoded onto the output light beam of the
corresponding optical source on the back side of the optoelectronic chip of the first layer.
The light beams of the source array are then collimated to illuminate the sub-DOE array of
the first layer. The sub-DOE array and reconstruction optics then provide the weighted
interconnection fanout to the second layer. Therefore, each detector in the second layer
will receive a fan-in of weighted signals (weighted by the corresponding interconnection
weight) from the first layer. We assume that the degree of fanout from each sub-DOE is
the same as the degree of fan-in for each detector. These operations of detection,
processing, and weighted fanout are carried out through each of the following layers in the
system. Note that except for the first layer of the system, each detector acts as a neuron

unit receptor and collects a weighted sum of the inputs to that detector.

in this thesis, we focus on the interconnection portion of the system (i.e. the sub-
DOE array and reconstruction optics). In our analysis, there are many interrelated
parameters. For the work described in this thesis, we choose a set of independent system
parameters as follows (some of the definitions given below are repeated from those given

in Chapter 3 for the reader’s convenience):

N: number of nodes in one dimension, assumed equal in the input and output planes,

also assumed even
A: optical wavelength
A: lateral width of each phase element, assumed square

P: lateral width of each detector, assumed square
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B: oversampling ratio (number of phase elements per sub-DOE period in each

dimension divided by the fan-out in each dimension)
C: compression ratio (number of periods in each dimension of a sub-DOE)

M: fanout from each node in the input plane in one dimension for limited-fanout

architectures, assumed odd (explained below in Chapter 5)

Y: crosstalk reduction parameter in each dimension for limited-fanout architectures
(explained below in Chapter 5)

and consider all other parameters as dependent on these. Throughout this and next chapters

when we discuss the effects of changing one of the independent parameters, it is implied

(even though not always explicitly stated) that the other independent parameters are being

held constant. We also assume that the independent parameters A, B, C and M for every

sub-DOE is the same for a given architecture. Therefore, all the sub-DOEs have the same

period length, 7, for a given architecture.

4.2 Fully Connected Space-Variant Interconnection

Architecture

In a fully connected space-variant interconnection system, each neuron unit in any layer
must have the weighted interconnections to all the neuron units in the next layer. The
weighted interconnection patterns will be different for some (or all) of the neuron units in
the same layer in order to be space-variant. A possible realization of a layer for a fully

connected space-variant interconnection system is shown in Figure 4-2 [42, 61, 62]. Note
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Figure 4-2: Optical architecture for fully connected space-variant interconnection systems (shown in
one dimension, not drawn to scale). In the input plane, there is an array of sub-DOEs. In
the output plane, there is an array of detectors. The solid lines represent the principal rays
of the diffraction orders. The space between detectors is for electronic circuitry.

that only the sub-DOE array, the reconstruction optics, and the detectors of the
optoelectronic chip are shown. As shown in Figure 4-2, we refer to the sub-DOE plane as
the input plane of the interconnection system and the detector plane as the output plane of
the interconnection system (or the reconstruction plane of the DOE). Here, the
reconstruction optics is a Fourier transform lens, whose aperture accommodates light from
all sub-DOE elements. Each sub-DOE, together with the Fourier transform lens,
reconstructs a set of N x N weighted interconnections (synapses) to all of the detectors in

the output plane. Because of the shift property of the Fourier transform, the reconstruction
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patterns from all the sub-DOESs will coincide on the detector array. Therefore, each detector
in the output plane has a fan-in of N%. The fully connected architecture has the advantage
of global interconnections. However, the space-bandwidth product (SBWP) requirement of
each sub-DOE in the system will be proportional to N? and the space-bandwidth product of
the entire sub-DOE array will be proportional to N* [14]. This large space-bandwidth
product requirement may limit the number of neuron units that can be implemented in the

system.

Using the independent parameters given above, the one-dimensional period length
of each sub-DOE, 7, is equal to BNA, the size of each node (or sub-DOE) is CT x CT, and
the area available for electronic circuitry in each node is equal to the node area minus the
detector area, (CT) 2_P*. An optoelectronic chip with more intelligence will require
more area for electronic processing, hence, for a fixed detector size, a larger C or T is
needed. A smaller detector size is usually preferred since a smaller detector has a smaller
capacitance, hence can operate at higher speed. Moreover, the choice of the detector size
affects the interconnection crosstalk level in the system as will be shown later. The
required space-bandwidth product (numbers of phase elements) of each sub-DOE is
(CBN)2 and the space-bandwidth product of the entire sub-DOE array is Nz(CBN)z. The
width of the sub-DOE array (or the optoelectronic chip) is N(CBNA). The propagation
length (Z or f) between layers can be calculated by forcing the spot spacing (S), equal to

the detector spacing (C7), i. e.,
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M- cr.

A (4-1)
Solving Eq. (4-1) for f and substituting 7 with BNA, we have
C 2
Z.=f= % (BNA)~-. (4-2)

Table 4-1 shows the required space-bandwidth product (SBWP) of the entire sub-DOE
array in each layer, lateral dimension (W) of the sub-DOE array, propagation length (Z)
between layers, system aspect ratio (W/Z), f-number of the lens, number of interconnections
(NI) in each layer, volume (V) of interconnection system between layers, and
interconnection density per unit volume. Note that the f-number of the lens is the reciprocal

of the aspect ratio. The f-number of the lens can be small for some choices of independent

parameters.
Table 4-1: Characteristics of fully connected space-variant interconnections
SBWP of | Width of Proistat Aspect R System Connection
sub-DOE | sub-DOE ]r:l]"‘:ﬁ;‘ (';)“ ratio ‘;*;‘]’gn:’ NI'|  volume density
array array (W) & (W/Z) (ZW%) (Nh‘ZWz)
C 1Y\ A A C3BANSAY ( A )( 1
2p2 2 ok 2 b | e = 4 b L it o ey | G
CHRE | CBAN® | 5 (NG (B)(A) B(l) N Fy C3BiA* NE)
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4.3 Definition and Origin of Interconnection Crosstalk

In order to study the interconnection crosstalk of the fully connected and limited-fanout
systems, an appropriate measure of interconnection crosstalk is needed. In digital systems,
maximum noise over minimum signal provides a worst-case measure of crosstalk [61].
This crosstalk measure is appropriate when essentially error-free performance of each bit
operation is required. For the neural case, such a measure isn’t so appropriate. Instead, a
crosstalk measure that scales more reasonably with the size of the network and with the
degree of fan-in to each neuron unit is more appropriate [38]. In this case, we wouldn’t
require a neuron unit with high fan-in to give error-free performance for all possible input
states, but instead use a measure that is more indicative of typical crosstalk than worst-case
crosstalk. Let [y represent the maximum possible signal power and [; represent the

maximum possible noise power in an output-plane detector, then we can define crosstalk,
B, as:

[
ly

p= (4-3)

Here, noise is referring to any light other than the signals that enter a detector region. Note
that, in both fully connected and limited-fanout space-variant systems, maximum noise and
maximum signals occur when all the input nodes are fully on. in this thesis, we consider
the interconnection crosstalk caused by sub-DOEs only and analyze its characteristics.
Sub-DOEs can provide the desired signal connections for the systems, but the development

below shows that they can also cause significant interconnection crosstalk. As mentioned
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in Chapter 3 and shown in Figure 3-2, besides the signals, the reconstructed intensity
pattern also contains signal sidelobes (SS), spurious diffraction orders (SDO), and non-
paraxial region noise (NRN). All these three components are possible sources of
interconnection crosstalk. There is a fourth crosstalk component that results from the fact
that not all of the reconstructed spot energy lies within the detector area. Instead, a small
amount of the energy extends outside the intended detector and falls on other detectors.

This crosstalk component arises from the tails of reconstructed spots.

For the purpose of crosstalk analysis, we assume the input light beams are mutually
incoherent. Consequently, the total light intensity on a detector is equal to the sum of the
intensities of all the diffraction orders on that detector. If the input light beams are
coherent, they will create interference fringes on the aperture of each detector. Because a
detector takes a spatial average over its active area, the result is approximately equivalent

to an incoherent sum under conditions of interest in this thesis [61].

4.4 Interconnection Crosstalk in a Fully Connected Space-

Variant System

In a fully connected space-variant interconnection system, the shift property of Fourier
transforms will cause the reconstruction patterns from all the sub-DOEs to coincide on the
detector array. Each detector receives N? weighted signals (weighted by the corresponding
interconnection weights). Signal sidelobes, spurious diffraction orders, and non-paraxial

region noise will all fall outside the detector array area. The only crosstalk component due
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to the theoretical DOE reconstruction is the tails of the reconstructed spots. Hence, the
maximum signal power should be much higher than the maximum noise power at any

detector. This implies a low level of interconnection crosstalk.

In general, the crosstalk level will be different at different detector locations for a
given system. In this thesis, we focus on the crosstalk level for the detector located at the
center of the output plane since, on average, it receives the largest number of the tails of
the other reconstructed spots. The maximum signal power, /;, and maximum noise power,
[, can be calculated as follows. From Eq. (3-12) and the fact that the reconstructed spot
pitch is equal to the detector pitch, it is clear that each input node in the input plane will

T T ) in the output plane, where

(m,n) represents the indices of the detector locations in the output plane

(-‘%’rs:nsg—l, -‘%’snsN

generate N? weighted signals, each centered at (

— 1). Each weighted signal will have an intensity profile of

: CT mAf\].. ,[C1T nlf)
ws 2| =2 g 20 2) == X =
](m, n) (4L,j) ~ v{iJ) W(m.n)(fg)smc I:lf(lf T ):I sinc I:?Lf(yf T ] ) (4-4)

where V/; j represents the signal intensity illuminating the (i,j) th sub-DOE and (i, j) is

the indices of the sub-DOE (or node location) in the input plane

e e =
( 2_1_2 l’ 2

interconnection from the (i, ) th sub-DOE in the input plane to the (m, n)’th detector in

<j< %(— 1). The W{m‘n) (i) term in Eq. (4-4) represents the weighted

the output plane. At the center detector location (m = 0 and n = 0), the intensity profile of

each weighted signal is Vﬁ‘ﬂW(O‘U)({.lns;ir1(:2 [CTx/ (M)] sinc? [CTy/ (M)] . Since the
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system is fully connected, the intensity profile of the total weighted signals at the center

detector is

ﬁ’_l &1

CIx CTy
i F f
To,00 xpyp) = Z Z (i) (00)(5,;}51“‘32[ N )5'"02( W J (4-5)
N, N .

T T

and the total signal power on the center detector will be integral of Eq. (4-5) over the P X P

region of the center detector,

P E N 8

by = ,[ J 2 2 VipVoopsine lf sinc? ijdyf (4-6)
» p . _-N._-N
NV PRE .

Since the maximum signal power and maximum noise power occur when all the input
nodes are fully on, we will use the largest value of each input signal to calculate the
maximum signal power from Eq. (4-6) with the assumption of 0< V(‘ L o T
Physically, V,,,, is the situation where the light intensity illuminating each sub-DOE is
identical and is equal to the maximum that could occur in system operation. Further, we
will use the average connection weight of the layer, <W> to calculate the average crosstalk

in the system. The average maximum signal, [y, at the center detector location can be

obtained directly from Eq. (4-6) as
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At an off-center detector location (m, n fixed and (m, n) # (0, 0) ), each weighted

signal will have an intensity profile as shown in Eq. (4-5) and the total intensity profile of

N? such weighted signals at that detector location will be

L, ny (Xp Yp)
N N
5=1 3=1

= 1 . m?\.f
_Z Z (iy) (mn)(, J)Smc I: ]sm

, . (4-8)
M\TTT e [i;(’ l_;f)]

i

sz

The center detector will receive some portion of the tail of the intensity profile in Eq. (4-8)

and the power it collects can be calculated by the integral of Eq. (4-8) over the P X P region

of the center detector,

P
2
J J!ir(m, n) (x_p yf) dxjdy[ . (4-9)
I)

2 2

}]'=

o I

The total tail power collected by the center detector can be calculated by summing Eq. (4-

9) over all the off-center detector locations as
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Using V,,,.x and <W>, the maximum noise power, /|, at the center detector location can be

readily obtained from Eq. (4-10) as

Z Z N Hlﬂx

Hl-—— J'-—
2 C 2

(m,m) # (0,0) . . (4-11)
]i j:psmc2 [gj:[ H?f )] sinc? [CM?:[ n;f )] dxfd}’f
2 2

In general, the near-center reconstructed spots contribute much more than the far-
from-center reconstructed spots to the maximum noise power, /;, at the center detector
location. Therefore, the crosstalk in a fully connected system should only increase
slightly as the number of the nodes in each dimension, N, increases for a sufficient large
value of N. The crosstalk in the system should decrease as the separation of the adjacent
reconstructed spots (relative to the reconstructed spot size) increases. As mentioned in
Chapter 3, this separation is a function of the compression ratio, C, (the number of periods
in each dimension of a sub-DOE) only. Furthermore, the crosstalk should also depend on

the detector size (relative to reconstructed spot size) in the system. For the purpose of
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crosstalk analysis, we define the normalized detector width, K, as the ratio of the detector

CTJ,C The value K = 1 indicates that the width

of the reconstructed spot is equal to the width of the detector and K > 1 indicates that the

width, P, to the reconstructed spot width,

detector width is greater than the reconstructed spot width. With change of variables and

K= };i;j Equation (4-7) and (4-11) can be simplified to:
K K
l, = DNV, (W) j j sinc? (x) sinc? (y) dxdy, (4-12)
KK
and
N N
7~ z-l K K
Iy =D Z Z szmx(W)_[ Isincz (x—mC)sinc2 (y —nC) dxdy, (4-13)
-N -N K -K
m = ? n= ?
(m,n) #(0,0)
2
where D (= éfzf;) is a constant,

To study the effect of the number of the nodes in the system on the crosstalk level,
we calculated the maximum signal power, /;, and maximum noise power, /,, from Eq. (4-
12) and (4-13) as a function of N with compression ratio as a parameter (C = 2, 3,4),
and fixed normalized detector width (K = 1). As shown in Figure 4-3, the crosstalk level
in the system (/y//;) only increases slightly for N =30 with fixed values of C and K. To

study the effects of compression ratio and normalized detector width, N = 100 is assumed
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Figure 4-3: Crosstalk of a fully connected space-variant interconnection system as a function of N
(number of nodes in each dimension) for K (normalized detector width) = 1 and C (com-
pression ratio) = 2, 3, 4.

for calculating the asymptotic crosstalk levels. Shown in Figure 8 is the crosstalk level
calculated from Eq. (4-12) and (4-13) as a function of compression ratio, C, and
normalized detector width, K, with N = 100. Because the size of a sub-DOE is assumed
to be equal to the size of a node, the size of a detector must be smaller than the size of a
sub-DOE. This constrains the allowable values of C and K. This constraint can be

derived as follows. Using Eq. (4-2) for the propagation length, the reconstructed spot

2Af

T can be found as

width,

S¢ = 2(BNA) = 2T, (4-14)
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where 7 (= BNA) is the period length of each sub-DOE in each dimension. The width of
the detector, P, can then be expressed as 2KT . Because the with of the detector (P) can not
be greater than the width of the sub-DOE (CT), C and K are constrained by the relation
C=2K. In addition, when C = 2K, the detector size is equal to the sub-DOE size and
there is no space for electronic processing circuitry. Therefore, C > 2K is required in a
practical system. Accordingly, a minimum C value of 2K+ 1 is assumed for each
different K value in Figure 4-4. As shown, for a constant normalized detector width, K, the
crosstalk decreases as the compression ratio increases because the reconstructed spots are
better separated. On the other hand, the crosstalk level increases as normalized detector
width, K, increases for a fixed value of compression ratio. In this case, the detector width
(normalized by the reconstructed spot width) is increasing, while the reconstructed spot
spacing (also normalized by the reconstructed spot width) is held constant. This change
results in an increase in crosstalk because, when the detectors are enlarged, they collect
more signal light as well as more tail noise, but the fraction of increase for the noise is larger
than that for the signals. Therefore, reducing the normalized detector width, K, will reduce
the crosstalk in the system. This is true even for a detector size that is smaller than the
reconstructed spot size. As shown in Figure 4-4, the K =0.5 curve has the lowest crosstalk
level although some portion of the signal light is wasted. In general, a lower crosstalk Ievel
can be obtained either by increasing the compression ratio, C, (hence, a larger system size,
since system lateral width W and propagation length Z are each proportional to C) or

reducing the detector size.
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Figure 4-4: Crosstalk of a fully connected space-variant interconnection system as a function of C
(compression ratio) for K (normalized detector width) = 0.5, 1, 2, 4, assuming the
number of nodes in each dimension (N) = 100.
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Chapter 5

DOE-Based Multi-Layer Feed-Forward
Limited-Fanout Space-Variant
Interconnection Architecture and

Crosstalk Analysis

In this chapter, we investigate the interconnection architectures for optoelectronic
implementations of limited-fanout neural networks. In Section 5.1, the important
characteristics such as propagation length, lateral dimension, system aspect ratio,
interconnection density, and space-bandwidth product requirement will be derived and
compared with the characteristics of a fully connected system. The interconnection
crosstalk in such a system will then be analyzed and simulated in Section 5.2. The limited-
fanout architecture is more suited for physically compact but computationally large-scale
multilayer neural networks because the required propagation length is much smaller than
the propagation length of the fully connected architecture. However, the interconnection
crosstalk of the limited-fanout space-variant architecture is likely too high for many
applications, due to noise from the reconstructions of the surrounding diffractive optical
elements. Therefore, a crosstalk reduction technique based on a modified design for

diffractive optical elements is proposed in Section 5.3. The key is to rearrange the
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reconstruction pattern of each diffractive optical element such that less noise lands on each
detector region (and more noise lands between detector region.) This technique is verified
by simulating one layer of an interconnection system with 128 x 128 input nodes, 128 x
128 output nodes, and 5 X 5 nearest neighbor weighted connections from each input node
to the output nodes. In Section 5.4, the additional advantages and possible limitations of
the crosstalk reduction technique are discussed. In addition to the crosstalk reduction, it
will be shown that the technique can also be used to reduce the propagation length and

system volume.

5.1 Limited-Fanout Space-Variant Interconnection

Architecture

If we replace the bulk lens in a fully connected system with an array of microlenses and
restrict each sub-DOE fan-out pattern to a neighborhood region in the next layer, then the
system becomes a limited-fanout space-variant interconnection system (Figure 5-1) [10,
12]. For this limited-fanout neural network interconnection, each sub-DOE stores one
weighted fanout pattern that connects to the nearest M X M neighbors in the output plane.
Each detector in the output plane has a fan-in of M?. Each period length of a sub-DOE (7)
now changes from BNA to BMA. The space-bandwidth product requirement of each sub-
DOE becomes (CBM)? and the space-bandwidth product of the entire sub-DOE array is
N?(CBM)?. The propagation length (Z) can be calculated by forcing the spot spacing equal

to the detector spacing and substituting 7 with BMA. The propagation length is
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Figure 5-1: Optical architecture for limited-fanout space-variant interconnection systems (shown in
one dimension, not drawn to scale). In the input plane, there is an array of sub-DOEs. In
the output plane, there is an array of detectors. The solid lines represent the principal rays
of the diffraction orders. The space between detectors is for electronic circuitry.

Z == %(BMA)Z. (5-1)

If N is much larger than M, then because of the localized interconnections, the space-
bandwidth product requirements will be much less and the propagation length will be much
shorter than those of the fully connected system. In addition, the low f~number requirement

on the lens is now relieved since the limited-fanout space-variant system has one microlens
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for each sub-DOE. The characteristics of the fully connected and limited-fanout systems

are shown in Table 5-1.

Table 5-1: Characteristics comparison between fully connected systems (the first row) and limited-fanout
systems (the second row)

SBWP of Aspect Connection

sub-DOE W Z ratio f ;i;a;::g:r NI ]Systemwz density
array (W/Z) VORI (ZW') (NI/ZW?)
(9 | 1) (a) C3BANSAY | 7 __ A I
2n2nd 2 — 2 e = — 4 PR - S | Nt
cew | coane | S | (5)(3 e | 3 \(;3;3454)[;\&)
2B2N2 2 ¢ 2 (1)(&)[5] (é) 22| C3BINZMAAS ( A )(L]
c2p2nem? | cBamN| 3 Mm? | ()5 5) | MB(3) | mewe - S

From Table 5-1, it can be seen that the propagation length, system volume, and
connection density in one layer are proportional to M?, N*M*, and 1/M? for the limited-
fanout space-variant system, and are proportional to N?, NS, and 1/N?* for the fully
connected space-variant system, respectively. Therefore, for constant values of the other
independent parameters, the limited-fanout space-variant system will have a much shorter
propagation length as well as a much smaller system volume if N is much larger than M. It
is also interesting to notice that although the fully connected space-variant system has
more interconnections, the limited-fanout system has higher connection density. As an
example, Table 5-2 shows the resulting interconnect characteristics for the two systems
calculated using the following values: N = 100, A = 850nm, A = 2um, B = 2,
C = 2,and M = 10. Itis clear that the fully connected architecture is limited to a much
smaller number of input and output nodes although it can provide global interconnections.

On the other hand, the limited-fanout system can be used in a much smaller volume and is
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therefore better suited for compact multilayer structures. However, the crosstalk levels of
the limited-fanout system can be high due to reconstruction noise (e.g., signal sidelobes
and spurious diffraction orders) of each sub-DOE. In the next section, the crosstalk levels

of the limited-fanout system will be examined.

Table 5-2: An example for comparing fully connected S-V systems and limited-fanout S-V systems with
parameters: N = 100, A =850 nm, A=2 pum, P=20pum,B=2,C=2,and M = 10.

Width of
SBWP of | sub-DOE | Propagation | Aspect | f-number System c ; ;
onnection densit
Type sub-DOE array length (Z) ratio of NI | volume l? 3)(
array (W) (mm) (W/Z) lens D (connections/mm™)
(mm)
Fully 9 5 g £ :
coimecteq | 16x10 80 376 0.21 4.7 108 2.4x10 4.2x10
Limited-
paiout | 6RO 8 3.76 2.1 47 106] 2.4x107 4.2x10°
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5.2 Interconnection Crosstalk in a Limited-Fanout Space-

Variant System

In a limited-fanout S-V interconnection system, each sub-DOE has its own Fourier
transform lens. Therefore, the reconstructed pattern of a sub-DOE will be centered at the
optical axis of its own reconstruction lens. Under the reconstruction model of a sub-DOE
from Chapter 3, each sub-DOE will reconstruct in the output plane M? desired
interconnections and other undesired high diffraction orders terms (signal sidelobes and
spurious diffraction orders) within its paraxial reconstruction region centered at the optical
axis of its own lens as shown in Figure 5-2). The reconstruction outside the paraxial region
of each sub-DOE will depend on the aberration properties of the Fourier transform lens, and
is modeled as an uniform-intensity blur (denoted as non-paraxial region noise NRN). Non-
paraxial region noise is normally much weaker than the signal sidelobes and spurious
diffraction orders from the same sub-DOE. Each output plane detector will receive M?
desired weighted signals and many undesired diffraction order terms from the many
paraxial reconstruction regions of input plane sub-DOEs. In addition, each detector will
also receive NRN noise from the many different reconstruction regions of input plane sub-
DOEs and many reconstruction tails from all other detector locations. The strength of the
signal sidelobes, spurious diffraction orders, and non-paraxial region noise from one well-
designed sub-DOE are usually much lower than the strength of the signal diffraction orders
of the sub-DOE. However, as an increasing number of reconstruction patterns are

superimposed (with relative shifting) on the detector array, the accumulated noise level at
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Figure 5-2: Sources of interconnection crosstalk for limited-fanout space-variant interconnection
systems. Solid lines represent the desired connections and dashed lines represent the
noise connections (signal sidelobes or spurious diffraction orders). Only two sets of
sub-DOE reconstructions are shown.

an output plane detector can become comparable to the sum of the M? weighted signals at
that detector. Consequently, the interconnection crosstalk can be much higher than the

crosstalk in a fully connected system.

The expressions for the maximum signal power and four different components of
maximum noise power are developed as follows: We still focus the crosstalk analysis for
the center detector in the output plane. Because each sub-DOE generates M?
interconnections to the output plane, the center detector will receive one desired

interconnection from each of the center M x M sub-DOEs. We refer to this set of sub-
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DOE:s as the paraxial signal reception sub-DOEs, X, of the center detector. If the paraxial
reconstruction region of each sub-DOE is of physical size L X L, then any sub-DOE
located within the center L X L region of the input plane but outside the region containing
X; will have an undesired interconnection (either signal sidelobes or spurious diffraction
orders) to the center detector. We refer to the sub-DOE:s in this region that generate signal
sidelobes as the paraxial signal sidelobe reception sub-DOEs, X, of the center detector.
We also refer to the sub-DOE:s in this region that generate spurious diffraction orders as
the paraxial spurious diffraction order reception sub-DOEs, X3, of the center detector. The
center detector is in the non-paraxial reconstruction region of any sub-DOE not in X;, X,
and X3. We refer to this set of sub-DOEs as the non-paraxial reception sub-DOEs, X, of
the center detector. The center detector receives M? desired interconnections (each
denoted as W) from the sub-DOEs in X; group, many signal-sidelobes (each
denoted as Wf(f{))(f ‘ﬂ) from the sub-DOEs in X, group, and spurious-diffraction-order
interconnections (each denoted as W;f()?(;’j)) from the sub-DOEs in X3 group. The

intensity profiles at the center detector from these three different sources can be written as

CTx CTy
Stgna! _ . L }f)
(0 0) (x’}f) - 2 z max {OO)(&J)SIHC2(T]SIHC2[TJ¢. ) (5-2)
ijeX,
CTx €T
!(0,0) (“ﬁyf) = z Z max (00](1‘1")%1“(:2( Af )Smc( Kf (5-3)
Lje X,
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and

(0 0) (xpyp) = > Z max (00){:,;}51“‘3( )“nc[ °

W W (5-4)
Lj€ X,

Note that we have used V,,,, for the signal level of each input node since the maximum

noise and maximum signals occur when all the input nodes are fully on. The intensity

profile at the center detector due to these components is:

S:gnm‘

0,00 XpYp) =1 g.0) (Xp¥ )”(00) (xﬂ)”{om( Yp) - (5-5)

The maximum signal power at the center detector is the integral of the intensity profiles of

M? weighted signals in Eq. (5-2) over the P X P region of the center detector as follows

T—

Il
—, B D
—

) 2(CTxf]' 2(C‘T li
2 E max {00)(i‘j}51nc Tf $Inc xfdyf (5-6)

ije X,

|
[T ]

ol

Using the normalized detector width, K, and some variable substitutions, the maximum

signal power at the center detector can be simplified to
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iy = i .[ .[ Z 2 niax (0 (])(;L,eri“C:2 (x) sinc? (y)dxdy. (5-7)
-K -K Lje X,

The calculation of the maximum noise power at the center detector is much more
complicated because it consists of signal sidelobes, spurious diffraction orders,
reconstructed spot tails, and non-paraxial region noise. The maximum noise power due to
signal sidelobes collected at the center detector location, Efs , is the integral of the intensity

profile in Eq. (5-3) over the P X P region of the center detector,

l"\-u..
— 2
oy C— NI

=

CTx CTy
WS ? g iy 1
Z ZV,HM (O,UJ(,J)smc’( Y3 )51nc2(Tf) dxdyy, (5-8)

20

iLje X,

2]

and can be simplified to

K K
=D J I Vmaxw(om(;,;)““c (x) sinc? (y) dxdy. (5-9)
-K -K

i,je X,
Similarly, the maximum noise power due to spurious diffraction orders collected at the

y SDO . . ; ; ;
center detector location, [, is the integral of the intensity profile in Eq. (5-4) over the

P x P region of the center detector,
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SDO

CTx CT}:
——J |sinc? f| dx g
z; XZ o (Oﬂ]szmcz( 7 )smc"(v) dxdy;  (5-10)

NI-:"'—n (5]l
—

[Tl

and can be simplified to

SDO Do . :
=D I J 2 Z s (Oowﬁsmcz(x) sinc2 (y) dxdy. (5-11)
-K -K je Xy

At any off-center detector location, the intensity profile, / (i) (x ) f) (m and n are the
indices of the detector and (m, n) # (0,0)), is centered at the corresponding detector
location and has similar form as Eq. (5-5) except that the values of interconnection weights
(both desired ones and undesired ones) will be different. The reconstructed spot tail power
from each off-center detector location is the integral of 1 i ) (xf, yf) over the PX P
region of the center detector. The total reconstructed tail power, [ ;a“, collected by the

center detector can be calculated by summing over all the off-detector locations as

N, N_ PP
2 2 2 2
tail )
fl = 2 j Jl I(_m! n) (‘lﬁ yf) dxjdyjﬁ (5' 12)
_ =N __N P P
m = —-2—- n= 2 _E _5

(m,n) = (0,0)
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and can be simplified to

K K
[T T w (5 y)dxay (5-13)
K

(m, n) # (0,0)

We calculate the total non-paraxial region noise I;VRN, as follows. Let the paraxial
reconstruction region of each sub-DOE be of physical size L X L, and the nonparaxial
reconstruction region that includes the detector array region be called the nonparaxial
region of interest. Also let the integrated light power in the paraxial reconstruction region
of the sub-DOE, expressed as a percentage of the light power incident on the sub-DOE, be
N, Then the percentage of light power in the nonparaxial reconstruction region of that sub-
DOE is (1-m,), and we assume that this light power is uniformly distributed over the
nonparaxial region of interest. Therefore, the center detector will collect some portion of
the non-paraxial region noise from all the sub-DOEs in the non-paraxial reception region,
X4, and then I‘;VRN is the sum of all of these contributions. An accurate model for the non-
paraxial region noise is unimportant for the crosstalk analysis since, as mentioned in
Chapter 3, the light energy in this region is small.

. . . ss . Spo il NRN . .
The maximum noise power, [;, is the sum of /,~, [}, t;m ,and /7" . in this

thesis, we denote the four crosstalk components at the center detector as Bgg, due to signal

sidelobes, Bspo, due to spurious diffraction orders, B, due to all reconstructed spot tail,
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and Bngrns due to non-local region noise. These four crosstalk components can be

calculated as

;58
Bss = - (5-14)
0
;SPO
Pspo = __1{0 , (5-15)
Imia‘
Bmi! = _]I_’ (5-16)
0
and
JNRN
Brry = LIO_ (5-17)

As mentioned in Chapter 4, the reconstructed spot tail crosstalk depends on the relative
reconstructed spot spacing and relative detector width (with respect to the reconstructed
spot width). The non-local region noise should decrease as the detector size decreases
since a detector will collect less uniformly distributed non-local region noise. Taken

together, these two crosstalk components can be greatly reduced either by using a larger
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compression ratio (hence, a larger sub-DOE area and system size), or by decreasing the
detector size. On the other hand, the strength of the signal sidelobes and spurious
diffraction orders generated by a sub-DOE are only dependent on the design of the sub-
DOE. These two higher order terms are the undesired interconnections. As can be seen in
Eq. (5-2), (5-3), and (5-4), these two higher order terms have the same reconstructed spot
sizes and spacings as the desired interconnections. Therefore, the crosstalk due to signal
sidelobes and spurious diffraction orders for a given designed sub-DOE array can not be
reduced by increasing the compression ratio or decreasing the detector size. Since
B = Bgs +Bspo * B,ais + Bygy- increasing the compression ratio or decreasing the
detector size can at best reduce the overall crosstalk to Bgg + Pgpg- Thus, Bgg + Bgpg 18

the absolute lower bound of the overall interconnection crosstalk in the system.

To evaluate these crosstalk terms, a weighted interconnection with 128 X 128 nodes
in both the input and output planes has been simulated. Nine different sub-DOE's (having
16 phase levels, 8 x 8 phase elements per period, and an average diffraction efficiency of
79%) were designed using the Gerchberg-Saxton algorithm, each of which connects an
input node to the nearest 5 x5 neighbors in the output plane with randomly chosen
connection weights between zero and one. Each of the required 16,384 (= 1282) sub-
DOE's in the system were randomly selected from this set of nine sub-DOE designs. Also,
for the system scale sizes of interest, we assume that the paraxial reconstruction region,
L x L, of each sub-DOE is of size equal to two DOE reconstruction periods in each
dimension (as shown in Figure 5-3). Calculating from Eq. (5-14) to (5-17) for the

designed interconnection system, Figure 5-4 shows the resulting crosstalk at the center
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Figure 5-3: The reconstruction pattern form a DOE (with 8 x 8 phase elements in one period and
assuming a paraxial reconstruction region of 2 X 2 sub-DOE period).

detector as a function of the C and K with the same constraint of C = 2K + 1 mentioned in
Chapter 4. As predicted, the overall crosstalk is much higher than the crosstalk in a fully
connected system for typical choices of parameters. In fact, B,; of a limited-fanout
system alone is comparable in magnitude (not shown in Figure 5-4) with the total
crosstalk of a fully connected system because both of them are the crosstalk due to the
reconstructed spot tails. The overall crosstalk still can be reduced by increasing the
compression ratio (hence, a larger system size, since system lateral width W and
propagation length Z are each proportional to C) or reducing the detector size (thereby
reducing {3, ., + Bygy» @ predicted above). For the interconnection system of this study,

the crosstalk component due to signal sidelobes is about 0.11 and the crosstalk component
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Figure 5-4: Crosstalk of the limited-fanout space-variant interconnection system as a function of C
(compression ratio) for K (normalized detector width) = 0.5, 1, 2, 4. The sum of the major
components, fgs + Bspo, is shown by the dash line.

due to spurious diffraction orders is about 0.04. Also shown in Figure 5-4 by the dashed
line is the sum of these two crosstalk components, Bgg and Bgpg, Which sets the absolute
lower bound on interconnection crosstalk for the system. Given our definition of
crosstalk, the resulting crosstalk level for the center detector is always greater than 0.15,
which might be too high for some neural network applications. In the next section, we

will develope a crosstalk reduction technique for the limited-fanout system.
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5.3 Crosstalk Reduction for Limited-Fanout Space-Variant

Systems by Modified DOE Designs

We now consider employing an alternative sub-DOE design to reduce the major crosstalk
components Bgg and Bspo. The high crosstalk problem in the system is due to the signal
sidelobes and spurious diffraction orders from every sub-DOE reconstruction. These two
components fall on, and not between, the detectors. Our approach to reduce the crosstalk
is to rearrange the reconstruction in the sub-DOE design such that some of the signal
sidelobes and spurious diffraction orders fall in off-detector locations in the output plane.
We accomplish this by inserting Y- 1 (Y > 1) spurious diffraction orders between every
pair of signal orders in each dimension when designing the sub-DOE's. We assume Y is a
prime integer in this thesis. The standard sub-DOE design in Section 5.2 corresponds to
the case of Y = 1. In the next two sub-sections, we discuss the crosstalk reduction for

spurious diffraction orders and signal sidelobes respectively.

5.3.1 Spurious Diffraction Order Crosstalk Reduction for the Limited-Fanout

Space-Variant Interconnection System

For the crosstalk reduction parameter Y > 1, the sub-DOE is designed using only every
Y’th diffraction order in each dimension as a specified signal. The sub-DOEs are designed
so that in the system these signals line up with the detectors. There are no detectors
between these signal locations. The diffraction orders between each pair of adjacent signal
orders are intended to be available as innocuous locations for noise energy, and therefore

become additional spurious diffraction orders, which do not fall on detectors. If the sub-
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DOE is designed appropriately, then most of the energy in spurious diffraction orders will

fall on these off-detector locations.

Of course, outside of the signal diffraction order region, there will still be spurious
diffraction orders that fall on detectors, as before. However, only 1 out of each set of ¥?
spurious diffraction orders will fall on the detectors. Here, we refer to the spurious
diffraction orders that fall on any detector as the detected spurious diffraction orders and
the spurious diffraction orders that will not fall on any detector as the non-detected
spurious diffraction orders. In order to reduce the crosstalk substantially, the detected
spurious diffraction orders need to be suppressed in the design process as much as
possible. The DOE design algorithm has to be modified to incorporate this additional
constraint. Figure 5-5 shows the modified Gerchberg-Saxton algorithm for suppressing
the detected spurious diffraction orders when Y> 1. In this thesis, this modified
algorithm is referred as the crosstalk-reduction Gerchberg-Saxton algorithm. A DOE
illuminated by an input light beam will modulate only the phase profile of the input beam.
After passing through the DOE, the light will diffract into many different diffraction
orders. We refer to the plane immediately behind the DOE as the diffraction plane. The
goal is to design the discrete phase distribution in one period of the DOE such that the
intensity distributions of the diffracted orders will be a good approximation to the M?
desired interconnection weights. Note that the design parameters are the number of phase
elements in one period of the DOE in each dimension, J (= BMA), and the number of
discrete phase levels. As mentioned in Chapter 2, we choose J to be greater than M

(hence, B> 1) to improve the performance of the DOE. The number of periods in the
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Figure 5-5: Schematic diagram of the crosstalk-reduction Gerchberg-Saxton algorithm.

DOE, size of the phase element, optical wavelength, and focal length of the lens will only
affect the spot spacing and spot size after the lens focuses the diffracted light onto the
reconstruction plane. Therefore, they are not the parameters in DOE design process. The
DOE plane and the diffraction plane are related by Eq. (3-6). The complex amplitude of
each diffraction order, A (r,s) (r and s are the indices of the diffraction orders with

r,se {0,%1,%2, ...}), can be computed by

A(r,s) = J_zsinc(g)sinc(:;)DFT{b (P, q )} (5-18)
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where h(p,q) (p and g are the indices of the phase elements with
p,q€ {0,1, ..., J-1})is the complex amplitude transmittance distribution in one period
of the DOE and DFT is the two-dimensional discrete Fourier transform. The intensity of

each diffracted order is obtained by
I(r,s) = |A(r,9)|?. (5-19)

As mentioned in Chapter 3, the number of independent diffraction orders is equal to the
number of the phase elements in the DOE. Therefore, we only need to calculate the
complex amplitude for r, s € {:22-], . %— 1} (assuming Jis even). Similarly 4 (p, g) can
be calculated by

2
hip.q) = DFT_]{ 405 )} (5-20)

%inc(f)sinc( g
' J J

e G ; ; ; i . y
Where DFT ~ is the inverse discrete Fourier transform. The design process begins with a
set of random phase values, @ (r, s), and the initial set of desired intensity distribution of

diffraction orders, Iy (r,s), defined as

= Y
F ) = {W(u, v) for (r, s.) (Yu, Yv) ’ (5-21)
0 otherwise
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where W (u, v) represents the desired interconnection weights and (u, v) is the indices of

(-1 WMm-1)
5 e i

that the signals are now in the (Yu, Yv)’th diffraction orders of the DOE. The complex

the connection weight (u,ve {———— ———=1}, assuming M is odd). Note

amplitude, A (r, s), of each diffraction order is synthesized as

A(r,s) = JI,(r,s)ef2™®(59) (5-22)

Then, the complex amplitude transmittance, h (p, q), of the DOE grating then is computed
from Eq. (5-20) (labeled as inverse transform in Figure 5-5). In the DOE plane, the
transmittance magnitude of each phase element is set to one (phase only) and the phase of
each element is quantized to one of multiple levels by an appropriate quantization schedule.
The purpose of the quantization schedule is to gradually quantize the phase of each element
to one of the predefined phase levels for avoiding the stagnation problem [46]. Afterward,
the complex amplitude, A (r,s), and intensity, I (r,s), of each diffraction order are
calculated from Eq. (5-18) and (5-19) (labeled as forward transform in Figure 5-5). In the
diffraction plane, the learned phases of all diffraction orders from the iteration are saved for
the next iteration. The intensities of the signals, I (Yu, Yv) , are reset to the corresponding
connection weight, W(u, v). The intensities of the non-detected spurious diffraction
orders are saved since they are not on detectors. On the other hand, the intensities of the
detected spurious diffraction orders are attenuated in order to reduce the spurious
diffraction order crosstalk. This process then continues until it converges to an acceptable

solution.
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In this thesis, we want to compare the crosstalk levels for different values of ¥ with
the same space-bandwidth product in each sub-DOE and the same system volume. For a
given phase element size, the lateral width of each sub-DOE, S (= CT = CBMA), and
the lateral width of entire sub-DOE array, W (= NS), are therefore the same for different
values of Y. In order to have the same volume for a given S and W, the propagation length,

Z, has to stay constant. The propagation length (Z or f) due to the cascadability

requirement over layers can be shown to be ‘% (detailed in Section 5.4). Since Zis
proportional to the ratio £ , the oversampling ratio (B) and the number of phase elements

Y

in one period of each sub-DOE in each dimension (J) must be increased in the same
proportion as Y to hold constant the propagation length and system volume.
Consequently, the corresponding compression ratios (C) needs to be decreased by a factor
of Y to hold constant the space-bandwidth product of each sub-DOE. The crosstalk will

be studied as a function of the compression ratio, C, and the normalized detector width, K

(the ratio of the detector width, P, to the reconstructed spot width, %), for different Y

values. The constraint on the values of C and K due to the allowable size of the detector

can be derived as follows. Using the expressions for the propagation length (Z) and the

2Af

lateral width of a sub-DOE (S), the reconstructed spot width, T can be found as

_ 2(BMA) _ 2T

Sw Y Y’

(5-23)
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where T (= BMA) is the period length of each sub-DOE in each dimension. The width of

the detector, P, can then be expressed as 2K (BMA) (1)3} Ma)

can not be greater than the width of the sub-DOE (), C and K will be constrained by the

. Because the width of the detector (P)

relation C 2 27[{ Accordingly, a minimum C value that satisfies C 2 2—}{{ + 1 was assumed.

Using the crosstalk-reduction Gerchberg-Saxton algorithm, the sub-DOEs were
redesigned and additional sets of simulations (details described in Section 5.2) were
performed for values of ¥ = 2. The number of the phase elements in one period of each
sub-DOE is increased from 8 X8 to 16 X 16 to hold constant the system volume for a
given size of the sub-DOE. There is one spurious diffraction order in between every pair

of signal orders in each dimension (Figure 5-3). Hence, only one out of every four

A . Sidelobe ., Mainlobe Sidelobe

b 'd B
» % >

Intensity
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A: Signals A Signal sidelobes (SS) A: Spurious diffraction orders (SDO) [ : Detector

Figure 5-6: The reconstruction pattern form a DOE (with 16 x 16 phase elements in one period) for
crosstalk reduction parameter (Y) = 2 case. Note that there is one spurious diffraction
order between each pair of detectors but signal sidelobes still fall on detectors.
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spurious diffraction orders will fall on the detectors. With the success of suppressing the
detected spurious diffraction orders (at the expense of a stronger non-detected spurious
diffraction orders), the spurious diffraction order crosstalk (Bspg) should be reduced
substantially. However, the signal sidelobe crosstalk (Bgg) will not be reduced since all of
the signal sidelobes still fall on the detectors as shown in Figure 5-3. On the other hand,
the tail crosstalk (By,;) will increase slightly due to the tails of non-detected spurious
diffraction orders between the detectors. Figure 5-7 shows the overall crosstalk as a
function of the compression ratio, C, and normalized detector size, K. Similar to the
crosstalk for the case of ¥ = 1, the crosstalk decreases as C increases or K decreases.
However, the total crosstalk is lower than the crosstalk for the case of ¥ = | since one of

the major crosstalk components has been reduced.
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Figure 5-7: Crosstalk of the limited-fanout space-variant interconnection system for crosstalk
reduction parameter (¥) =2 as a function of C (compression ratio) and K (normalized

detector width) = 0.5, 1, 2, 4. The sum of the major components, Bgs + Bspo. is
shown by the dash line.
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5.3.2 Signal Sidelobe Crosstalk Reduction for the Limited-Fanout Space-Variant

Interconnection System

Unlike the spurious diffraction orders, signal sidelobes can not be suppressed by DOE
design process because they are sidelobes of the signals. This can be justified by finding
the strength of the signal sidelobe relative to the connection order in the sub-DOE. As
mentioned in Section 5.3.1, the connection orders are in the (Yu, Yv)’th diffraction orders
of each sub-DOE for the case of Y > 1. For a given connection order (fixed values of ¥, u,
and v), the corresponding signal sidelobe in the (k,,k,)’th sidelobe is in the
(k,BM + Yu, kyBM + Yv)'th diffraction orders of the sub-DOE. Using Eq. (3-16), the
intensity ratio of the signal sidelobe order in the (k, k,) th sidelobe to the corresponding

connection order can be found as

(L) P | (&) F
HeBM+ Y8+ 1) | \BM) | . | \BML (5-24)
I(Yu,Yv) K +(ﬁi_) ¥ +[ﬁ)
17"\ BM 2 \B

Note that the relative strength of a given signal sidelobe diffraction order (u, v, k; and k,

fixed) is dependent only on the ratio, -, as can be seen from Eq. (5-24). The relative

Y

strength of the signal sidelobes can not be reduced by the design process and it can be
reduced only by increasing the ratio, % of the sub-DOE. On the other hand, we want to

fix the ratio, g, to hold constant the propagation length and system volume for different Y
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values (Section 5.3.1). Therefore, a different approach other than increasing the ratio,

B/Y, for reducing signal sidelobe crosstalk is needed.

The goal is to move some or all of the signal sidelobes to off-detector locations.
First, we exam that the spatial relation between signal sidelobes and the detector locations.
It can be shown that the signal sidelobes of each sub-DOE will always fall on the detectors
if the number of the phase elements in one period of each sub-DOE in each dimension, J
(= BM), is divisible by the crosstalk reduction parameter Y. On the other hand, if J is not
divisible by Y, then, within the paraxial reconstruction region of each sub-DOE, only one
out of each set of ¥ signal sidelobes will be detected and the remaining signal sidelobes
become non-detected. However, since we have to increase J by a factor of Y to hold
constant the propagation length and system volume, J will be always divisible by Y.
Therefore, we will only increase J by a factor that is slightly different from Y to make it
not divisible by Y. The resultant propagation length and system volume will only be
approximately the same as those for ¥ = 1. We have analyzed this crosstalk reduction
approach for the case of ¥ = 3. The sub-DOEs were redesigned and additional sets of
simulations (details described in Section 5.2) were performed. For the reason stated
above, we have used 22 x 22 (rather than 24 X 24 ) phase elements for one period of each
sub-DOE. There are two spurious diffraction orders in between every pair of signal orders
in each dimension. Hence, only one out of every nine spurious diffraction orders will fall
on the detectors. We use the crosstalk-reduction algorithm to suppress the detected
spurious diffraction orders in the sub-DOEs design process to further reduce the spurious

diffraction order crosstalk. On the other hand, because we have chosen the paraxial
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reconstruction region, LX L, of each sub-DOE to be of size equal to two DOE
reconstruction periods in each dimension for the system size of interest, there is no signal

sidelobe falling on the detector for the case of ¥ = 3 (Figure 5-8). Therefore, the signal

4 ; Sidelobe Mainlobe : Sidelobe

> o
Ll |

A
v
A
h

Intensity

Af
H B H #H B8 8B B B B B 8B 8B 8B B 8 B B 83 B3
< ple e >
NRN Paraxial reconstruction region " NRN

‘: Signals A Signal sidelobes (8S) A: Spurious diffraction orders (SDO) -: Detector

Figure 5-8: The reconstruction pattern form a DOE (with 22 x 22 phase elements in one period) for
crosstalk reduction parameter (Y) = 3 case. Note that there are two spurious diffraction
orders between each pair of detectors and signal sidelobes do not fall on detectors.

sidelobes within the paraxial reconstruction region of each sub-DOE become non-detected
and the signal sidelobe crosstalk (Bgs) is entirely eliminated. In Figure 5-9 the simulated
major crosstalk components, Bgg and Bspp, and their sum are shown as a function of the
crosstalk reduction parameter, Y. As can be seen in Figure 5-9, the sum of the major
crosstalk components (Bgg + Bgpp ) is reduced by a factor of 27 in going from ¥ = 1 to

Y = 3. This significant reduction is due to the use of non-detected spurious diffraction
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orders and non-detected signal sidelobes as well as the suppression of the detected

spurious diffraction orders. Figure 5-10 shows the total crosstalk for the case of ¥ = 3 as

Bss + Bspo

0.08

0.06

Major Crosstalk components

0.04

0.02

0 1 1 1
1 2 3

Crosstalk reduction parameter (Y)

Figure 5-9: The major crosstalk components (Bgg + Bspo. Bss, and Bspo) of the limited-fanout
space-variant interconnection system as a function of crosstalk reduction parameter

(1.

a function of the compression ratio, C, and normalized detector size, K. The total
crosstalk still decreases as C increases or K decreases. These results show that B¢¢ and
Bspo have been reduced to the point where they are no longer the dominant components
of the total crosstalk. The other crosstalk components, B, and Byry, have increased

somewhat (compared with the case of Y = | in Figure 5-4), because of a lower average

sub-DOE diffraction efficiency (79% for Y = 1; 58% for Y = 2; 52% for Y = 3) and
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the tails of non-detected spurious diffraction orders. Even so, the total crosstalk is

significantly reduced for most parameter values of interest.
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Figure 5-10: Crosstalk of the limited-fanout space-variant interconnection system for crosstalk
reduction parameter (¥) = 3 (with 22 x 22 phase elements in one period) as a func-
tion of C (compression ratio) and K (normalized detector width) = 0.5, 1, 2, 4. The
sum of the major components, Bgs + Bgpg, is shown by the dash line.

We have shown that, by using non-detected spurious diffraction orders and a
crosstalk-reduction design algorithm, spurious diffraction order crosstalk can be
significantly reduced. In addition, signal sidelobe crosstalk can be reduced by choosing a

proper value of J that is not divisible by the crosstalk reduction parameter used. Although
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the simulations are preformed for systems with a small paraxial reconstruction region for
each sub-DOE, the crosstalk reduction technique should directly applicable to systems

with a larger paraxial reconstruction region for each sub-DOE.
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5.4 Advantages and Limitations of the Crosstalk Reduction

Technique

The idea of inserting spurious diffraction orders in between signal diffraction orders can be
usefully extended to any prime integer ¥ > 3 with a proper choice of J. If there are signal
sidelobes within the paraxial reconstruction region of each sub-DOE, there is only one out
of each set of Y2 signal sidelobe orders falling on the detectors. Hence, a larger Y is
preferred to reduce the signal sidelobe crosstalk. The reduction of spurious diffraction
order crosstalk, Bspg, will depend on how effectively the DOE design algorithms suppress
the detected spurious diffraction orders. Our design programs tended to reduce Bspg as ¥
increased, showing additional preference for larger Y. However, as mentioned, the
compression ratio (C) becomes smaller as Y gets larger for a given sub-DOE size and
system volume. Consequently, the spacing between adjacent reconstructed spots becomes
smaller as Y increases. At some value of ¥, the reconstructed spots will begin to overlap,
and crosstalk performance will degrade. This will constrain the maximum allowable value
of Y for a given set of physical dimensions. For neuron array devices that have smarter
pixels in the output plane, the increase in device area for electronics corresponds to an
increase in the detector-to-detector spacing (Figure 5-1), so that larger values of Y can be

accommodated.

There is another advantage for using Y > 1, which is the potential to reduce the

propagation distance (and hence the system volume). Because the connection orders are
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now in the (Yu, Yv)’th diffraction orders of each sub-DOE, the diffraction angle of each

connection order relative to the optical axis of the sub-DOE becomes

(8y,,0y,) = (taﬁl [%),tau‘l (Y—;}”D (5-25)

Therefore, within the paraxial region, the diffraction angle of a given connection order is
proportional to ¥ for a given T and A, so Y>1 implies a shorter propagation length
between layers. The propagation length (Z or f) can be calculated by forcing the
reconstructed spot spacing between the connection orders (which now becomes Y—;ff ) equal

to the detector pitch, which is the same as the width of a node or sub-DOE (), i.e.,

YAf .
- = S. (5-26)

Substituting T = BMA, the propagation length can be expressed as

_ S(BMA) ]
z=>552 (5-27)

Because the propagation length is proportional to 7 in all the simulations discussed
in Section 5.3, the oversampling ratio (B) was increased approximately in the same

proportion as Y to hold constant the propagation length and study the effect of ¥ on

78



crosstalk. If we now increase the oversampling ratio by a proportion less than Y (i.e., we
increase B and Y such that the ratio B/Y decreases), then the propagation length will be
reduced. Therefore, we will be able to reduce the propagation length and interconnection
crosstalk at the same time. However, the crosstalk reduction will not be as significant as
the reduction found in Section 5.3, since one period of the sub-DOE now contains fewer
phase elements and it becomes more difficult for the design algorithm to suppress the
detected spurious diffraction orders. This behavior has been verified by an additional
simulation for the case of ¥ = 3 and a sub-DOE period of 16 X 16 phase elements. As
expected, the overall crosstalk (Figure 5-11) is higher than the crosstalk for the case of
Y = 3 and a sub-DOE period of 22 X 22 phase elements (as in Section 5.3), but the
propagation length will be reduced by a factor of % Taking the crosstalk reduction
parameter (Y) into consideration, Table 5-3 shows the characteristics of limited-fanout
systems with a given set of independent parameters (N, A, A, S, B, M, Y), to explicitly
show the dependence on Y. It can be seen that a shorter propagation length, smaller

volume, and higher connection density can be obtained if we increase the oversampling

ratio by a proportion less than Y.

Table 5-3: Limited-fanout space-variant systems with crosstalk reduction parameter, Y.

SBWP of Propagation SRR f-number System Cannzotion
sub-DOE | W | /P @) Rilo o | | vl ZW2) aennlty
array g (W/Z) (NI/ZW2)
NZg2 S(BMA) ( r)( :&J( N) [3)( A) S3 (BMA) N? AMY
LA ) a7 | e 2a2| 22 (BMA) N~ .
2 N %% s al\m)| My \3) | MV %7 S5 (BA)

As an example, we have calculated the characteristics of a limited-fanout system in

the first three rows of Table 5-4 with independent parameters N = 128, M = 5,
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Figure 5-11: Crosstalk of the limited-fanout space-variant interconnection system (with 16 x 16
phase elements in one period) for crosstalk reduction parameter (¥) = 3 as a function
of C (compression ratio) and K (normalized detector width) = 0.5, 1, 2, 4 (from bot-
tom to top). The sum of the major components, Bsg + Bspo, is shown by the dash
line.

A = 850nm, A = 2um, S = 96um, and P = 32um for different values of ¥. Note that,
as mentioned in detail in Section 5.3.1 and 5.3.2, we want to compare the crosstalk levels
for different values of Y while holding constant the space-bandwidth product in each sub-
DOE, and holding approximately constant the propagation length (Z or f). Therefore, we
have to increase the oversampling ratio (B) approximately by a factor of Y since the
propagation length Z is proportional to the ratio % Consequently, the corresponding

compression ratios (C) are decreased approximately by a factor of Y to hold constant the
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space-bandwidth product of each sub-DOE. In Table 5-4, the compression ratio, C

(= E%A)' and normalized detector width, K (= W), are calculated from the

values of the independent parameters for different ¥. The interconnection crosstalk levels
of the systems are then obtained from Figure 5-4, 5-7, 5-10 and 5-11 for the calculated
values of C and K in each case. In the first three rows of Table 5-4, it can be seen that the

overall crosstalk has been reduced by a factor of 2.6 in going from Y = 1 to Y = 3.

Table 5-4: An example for limited-fanout S-V systems, showing different values of the oversampling ratio
(B) and the crosstalk reduction parameter (Y) for N =128, M=5,A=850nm,A=2 um, S =96
pm, and P =32 um.

No. of phu.se Sateator Width of Prapagation Normalized
elements in - sub-DOE detector Crosstalk
; width (P) | B Y length (Z) C :
one period array (W) i) width ®»
of sub-DOE (Hm) (mm) (K)
8% 8 32 16 | 1 12.3 1.81 6.0 1.0 0.1889

16 %16 32 32 | 2 12.3 1.81 3.0 1.0 0.1746
22x22 32 44 | 3 12.3 1.67 22 1.1 0.0736
22%22 16 44 | 3 12.3 1.67 22 0.55 0.0316

In going from ¥ = 1 to Y = 3 in Table 5-4, although the two major crosstalk
components, Bgg and Bspo, were greatly reduced (as shown in Figure 5-9), the total
crosstalk B was reduced only moderately. This is because the other two crosstalk
components (reconstructed tails and non-local region noise) can become dominant for
sufficiently low values of compression ratio C (cf. Figure 5-4, 5-7, 5-10 and 5-11). As can
be seen from these figures, the interconnection crosstalk due to reconstructed tails and
non-local region noise can be reduced significantly by increasing the compression ratio or

decreasing the normalized detector width K. Since the total crosstalk is the sum of all the
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crosstalk components, a value of Y> 1 together with either a larger value of C or a
smaller value of K can be used to greatly reduce the total crosstalk. For example, further
crosstalk reduction can be achieved (compared with the third row of Table 5-4) by
reducing detector width from 32um to 16pum (thereby reducing the normalized detector
width, K, by a factor of two) as shown in the fourth row of Table 5-4; the tradeoff is a
reduction in the detected light energy. This reduces the total crosstalk by a factor of 6
when compared with Y=1 (first row of Table 5-4). If instead we decrease the crosstalk by
increasing the compression ratio C, the space-bandwidth product (or size) of each sub-
DOE (or node) must become larger for a fixed sub-DOE period length (fixed B, M, and A).
Table 5-5 shows the resulting characteristics for systems with the same set of independent
parameter values as in the first three rows of Table 5-4 except a larger sub-DOE width of
192um. A crosstalk reduction factor of 7.3 has been achieved in going from Y = 1 to
Y = 3 because the crosstalk components due to reconstructed tails and non-local region

noise are greatly suppressed.

Table 5-5: Same example as in the first three rows of Table 5-4 for limited-fanout S-V systems except for a
larger sub-DOE width (S = 192 pm). Different values of the oversampling ratio (B) and the
crosstalk reduction parameter (¥) are shown for N =128, M =5, A =850 nm, A=2 um, and P =

32 pm.
No‘. of ph.a_se Dt chith of Propagation Normalized —
elements in : sub-DOE detector rossta
: width(P) | B length (Z) C :
one period (um) array (W) - width (B
of sub-DOE (mm) (K)
8x8 32 1.6 24.6 3.6 12.0 1.0 0.1572
16x 16 32 32 24.6 3.6 6.0 1.0 0.1287
22x22 32 4.4 24.6 33 4.4 1.1 0.0214
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If minimization of the overall system size is important, the period length of the sub-
DOE can be reduced while keeping the space-bandwidth product of the sub-DOE
constant. This increases the diffraction angles, resulting in a decrease in propagation
length. For example, Table 5-6 is based on the same values of independent parameters as
the third row of Table 5-4, except the oversampling ratio B (and therefore the sub-DOE
period length) is smaller in Table 5-6. As can be seen in this example, the tradeoff is a
slight increase in total crosstalk. It is also possible to reduce the crosstalk and propagation
length at the same time, and this can be seen by comparing an 8 X 8 sub-DOE period
length using ¥ = 1 (first row of Table 5-4) with a 16 X 16 sub-DOE period length using

Y = 3 (Table 5-6).

Table 5-6: An example for limited-fanout S-V systems that will reduce crosstalk and propagation length at
the same time for N =128, M=5, A =850 nm, A=2 um, S =96 um, and Y = 3.

No. of phase Width of : Normalized
elements in D-e[ccmr sub-DOE Propagation detector Crosstalk
: width(P) | B Y length (o ;
gth (2)
one period (lim) array (W) ) width (B)
of sub-DOE | ‘M (mm) (K)
16 % 16 32 321 3 12.3 1.20 3.0 1.5 0.0933

The maximum crosstalk that can be tolerated in an actual system will vary
depending on the neural network model and on the application. For applications that have
tight crosstalk requirements, a high crosstalk reduction parameter together with either a

large sub-DOE size or a small detector width can be used.

By using the crosstalk reduction technique, it is possible to obtain a much lower
crosstalk level for limited-fanout systems than is possible with the standard design

(Y = 1). Because the crosstalk can be reduced to a fairly low level (e.g., B = 0.0214 in
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the third row of Table 5-5), the system will have a much higher accuracy. The fully
connected space-variant system can also take the advantage of a shorter propagation
length by using Y > 1, although the crosstalk will increase slightly due to the non-detected

spurious diffraction orders in between detectors.

This crosstalk reduction method should reduce crosstalk for physically small
systems with the propagation length on the order of millimeter (results shown above) as
well as for physically larger systems. An additional set of simulations have been
performed for a physically larger system by assuming that the propagation length is long
enough such that the paraxial reconstruction region will be larger than the entire
optoelectronic chip area. Under this assumption, there are three crosstalk components, i.
e., Bss: Bspos and By, Figure 5-12 shows the interconnection crosstalk as a function of C
and K. Figure 5-13, and 5-13 show that the crosstalk has been significantly reduced by

using the crosstalk reduction technique.

Although the designs in this chapter were based on the Gerchberg-Saxton algorithm.
However, because the principle of the crosstalk reduction technique is based on
rearrangement of noise orders and suppression of the remaining detected noise orders, this

technique should also be applicable to other design algorithms.

In conclusion, the characteristics of the DOE-based fully connected and limited-
fanout S-V interconnection architectures for fixed-connection multilayer feed-forward
neural networks were analyzed and compared in terms of the propagation length, system
volume, connection density, and interconnection crosstalk. A crosstalk reduction method

with the potential to reduce system size for the limited-fanout S-V architecture was
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Figure 5-12: Crosstalk of the physically large limited-fanout space-variant interconnection system as

a function of C (compression ratio) for K (normalized detector width) = 0.5, 1, 2, 4.

The sum of the major components, Bgg + Bspo. is shown by the dashed line.
described and a DOE design algorithm that incorporates this method was developed. Its
validity was verified by simulating one layer of an interconnection system with 128 x 128
input nodes, 128 x 128 output nodes, and 5Xx35 nearest neighbor weighted
interconnections from each input node to the output nodes. This method can reduce
crosstalk for physically small systems with the propagation length on the order of
millimeters (results shown) as well as for physically larger systems. Similar analyses
should be applicable to other DOE-based analog (or digital) space-variant or space-

invariant interconnection systems. Thus, by designing the sub-DOEs from the perspective
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Figure 5-13: Crosstalk of the physically large limited-fanout space-variant interconnection system

for crosstalk reduction parameter (¥) =2 as a function of C (compression ratio) and K
(normalized detector width) = 0.5, 1, 2, 4. The sum of the major components, Bgg +
Bspo. is shown by the dashed line.

of the interconnection system rather than from the perspective of each diffractive element,

the interconnection system can achieve a higher accuracy and lower crosstalk level.
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Figure 5-14: Crosstalk of the physically large limited-fanout space-variant interconnection system

for crosstalk reduction parameter (¥) =3 as a function of C (compression ratio) and K
(normalized detector width) =0.5, 1, 2, 4. The sum of the major components, Bgg +
Bspo, is shown by the dashed line.
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Chapter 6

Reconstruction of Diffractive Optical
Elements at Wavelengths Different from
the Designed Wavelength

A DOE is usually designed and fabricated for one specific wavelength only. However,
there are times that the illumination wavelength is not the same as the designed wavelength.
For example, we might want to do initial testing on a DOE that is designed and fabricated
for infrared wavelength using visible wavelengths for convenience. Also, when DOEs are
in use in a system, the actual illumination wavelength may vary during operation of the
system due to temperature or other effects. Therefore, it is important to understand how the
reconstruction of a DOE will be affected when the illumination wavelength is different
from the designed wavelength.

In this chapter, we will study the effect on the reconstruction of a DOE when the
illumination wavelength is different from the designed optical wavelength. In Section 6.1,
we will derive the relation between DOE reconstruction and illumination wavelength. We
will see that, in general, the deviation on the reconstructed diffraction order is dependent
on the phase distribution of a DOE. Also, this deviation varies from one diffraction order
to another. Simulations on the effect of the wavelength change are performed for DOEs

designed for a 3x3 spot array generator and a 3x3 triangular connection pattern.
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From these simulations, we have found that binary-phase-level DOEs behave
differently from multiple-phase-level DOEs when the illumination wavelength changes.
The simulations show that binary-phase-level DOEs still generate symmetric
reconstruction patterns even when the illumination wavelength changes. Furthermore, the
percentage deviation of any of the off-axis reconstructed diffraction orders for a binary-
phase-level DOE is the same for all the off-axis diffraction orders. In Section 6.2, we will
develop a theoretical proof of this behavior of binary-phase-level DOEs. From the
theoretical derivation, we have found that the percentage deviation of any of the off-axis
reconstructed diffraction orders for a binary-phase-level DOE is only dependent on the
ratio of the designed wavelength and the illumination wavelength. We have also
considered the effect of wavelength change on DOE reconstruction for DOEs with phase
delays other than 0 and 7. The effect of wavelength change for those DOEs is somewhat

different from the effect of wavelength change for the conventional DOE:s.

6.1 The Relation between DOE Reconstruction and

Illumination Wavelength

For a Z-phase-level DOE, the phase level index, PI(p, q) (p and g are the indices of the
phase elements with p,g e {0, 1, ....., J— 1} and J is the number of the phase elements in
one period of the DOE in each dimension), of a phase element can have any integer value

from O to (Z-1). Each phase level index corresponds to one of the Z possible phase delays.
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The phase delay of each phase element, PD(p, q), is associated with the phase level index

by

PD(p,9) = o PIp,q). (6-1)

Let’s assume that the DOE is designed for a particular optical wavelength, A,. Then, in
order to have the correct phase delays, each of the phase elements must be etched correctly.
First, let’s derive the correct etch depth, d(p, q) , for each of the phase elements. Shown in
Figure 6-1 is a typical phase profile of a multiple-phase-level DOE. Let D represent the
largest etch depth and n represent the index of refraction of the DOE material, then the
phase delay of a phase element relative to the phase delay of the phase element with zero

phase index can be calculated as

21 2m
_'d(p’Q)_'_"'D
k{] xO

Il

S8

PD(p, q) - [D-d(p,q)] -n+

(6-2)

|3

= [D-dp, 9] (n-1)

ol
(=]

Note that we have assumed that the index of refraction is | outside the DOE in Eq. (6-1).
We can find the expression for the largest etch depth by using the fact that the phase index
is (Z-1) and the phase delay is 2?“ - (Z-1) when there is no etch needed (d(p, g) = 0).

From Eq. (6-1) and Eq. (6-2), the largest etch depth can be shown as follows
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PI(p.q)= (Z-1

n>1

Light Illumination

Figure 6-1: Discrete phase profile of a multiple-phase-level DOE. D is the largest etch depth and n is
the index of refraction.

A (Z-1)

= ZooD (6:3)

Combining Eq. (6-2) and Eq. (6-3), we can immediately obtain the expression for the

correct etch depth as

A
dp,q) = - [(Z-1) - Pl(p,q)] . (6-4)

4
(n—1)
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Table 6-1 shows the relations of the phase indices, relative phase delays, and the correct

etch depth for the designed wavelength, A, for a multiple-phase-level DOE. Note that,

Table 6-1: The relation of the phase indices, relative phase delays, and the correct etch depth.

PI(p, q) 0 I (Z-2) (Z-1)
2 i
PD(p, 9 0 iz Z(z-2) Zz-1
. 2o (Z-1) 2o (Z-2) X "
P9 n-DZ n-10Z oo i=-DZ

when the DOE is binary-phase-level, there is only one etch depth and it is equal to the
designed wavelength, ?“0' ifn=15.
From the expression for the phase delay in Eq. (6-1), the complex transmission

function of each phase element, % (p, g) , can be expressed as

B(p.a) = exp[ /PG, @) (6-5)

and the reconstructed diffraction intensity pattern, / (r, s) , can be calculated by

I(r,s,y) = lj_zsinc[g]sinc[‘%)DFT{h (p,q) } ;

5 (6-6)
= ’J_ sinc(i]sinC(;]DFT{exp [szn - PI(p, fi’)] }

and the intensity of the zeroth diffraction order can be calculated as



2

(F=1y (=13

ey Y exp[j%“‘-m(p, q)]

p=0 g=0

I1(0,0,%y) = (6-7)

Now, if the DOE is illuminated by light with wavelength A,, then from Eq. (6-2), the

phase delay PD(p, q) with respectto PI(p, q) = O can be calculated as

PDp,q) = 3= [D~d(p, )] -n+i—n-d(p,q)—i—“-9
! 1

- [D-dp,q)] - (n-1)
, (6-8)

_on [?LU(Z—I) Ao
L Zn-1) Zn-1)

2m\[ Mo
7)(1—) .

- [(Z-1) - Pl(p, Q)]] v (1)

Basically, all the phase delays are now scaled by a constant factor, (A,/A,) , due to the

wavelength change, and they are now equally spaced between 0 and

[-Z—ZE) [l_OJ (Z-1). The complex transmission function of each phase element,
1

h(p, q) , now becomes

>| >

1) = exo|i(F) (

0}— PI(p. q)] . (6-9)

The reconstructed diffraction intensity pattern, 7 (r, s, l[) , now becomes
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"

I(r,s,\)) = ’J_zsinc(g)sinc(E}DFT{ﬁ (p,q)}

2 (6'10)
= J_gsinc(f)sinc(ijFT exp 1(2—“) . - PI(p, q)
J J Z A :
and the intensity of the zeroth diffraction order can be calculated as
) (-0 (-1 . Ao 2
I(ana?b]) =|J e 20 20 exp[j(—z—) (XIJPI(P’L})] (6“11)
=0 4=

From above, it is clear that the relation between I(r,s, kl) and I(r,s, KU) are, in
general, dependent on both the phase distribution of the DOE and the diffraction order
index (r,s).

Let’s examine a few general properties of DOE reconstruction with incorrect
illumination wavelength. First, when the wavelength change is such that the phase delay
of each phase element becomes the original phase delay (when illuminating with the
designed wavelength, A ) plus an integer multiples of 21, then the diffraction efficiency
of each diffraction order will become the same as the original diffraction efficiencies.

From Eq. (6-1) and Eq. (6-8), we can see that if

2n|:ﬂ(;,_q)][%o} = 27:[@] +2km (6-12)
1
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(k is some positive integer), then I (r,s, ?LI)=1(r, C ko). Equation (6-12) can be

simplified to

?"0
(?»_.J = kZ+1. (6-13)

Note that this phenomenon only occurs for (A,/A,) 21 and does not occur for
(Ay/A,) <1, since in that case, the phase delay of each phase element with the incorrect
illumination wavelength will be always smaller than the original phase delay and Eq. (6-
12) and Eq. (6-13) will not be satisfied.

From properties of Discrete Fourier Transform (DFT), if G(r,s) = DFT{h(p,q)},
then G*(-r,—s) = DFT{h*(p,q)} (* denotes complex conjugate). When the
wavelength change is such that the phase delay of each phase element becomes the
negative of the original phase delay (when illuminating with A) plus an integer multiple
of 2m, the reconstructed diffraction pattern will be spatially reversed from the original

diffraction pattern. From Eq. (6-1) and Eq. (6-8), we can see that if

=

2

{22

”J = -21{@] + 2k, (6-14)

then I(r,s,A\)=1(-r,—s,A,) . Eq.(6-14) can be simplified to

|

”J =kZ-1. (6-15)
1

>
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Note that this phenomenon only occurs for (A,/A,) 21 and does not occur for
(Ay/%,) <1, since in that case, the phase delay of each phase element with the incorrect
illumination wavelength will be always smaller than the original phase delay and Eq. (6-
14) and (6-15) will not be satisfied.

Lastly, when the wavelength change is such that the phase delay of each phase
element becomes an integer multiple of 27, all the light will go to the zeroth diffraction
order. In this case, the phase delay of every phase element is essentially the same and
there will be no diffraction pattern. From Eq. (6-8), we can see that this condition happens

when

A
QR[}M][TOJ = %% (6-16)

Eq. (6-16) can be satisfied if

kZ. (6-17)

——

__?—"’IO?"

b O
Il

A
Note that this phenomenon only occurs for [k_OJ 21 and does not occur for [XE J <l1.
[ 1
The effect of wavelength change on the DOE reconstruction has been simulated for

two groups of special purpose DOEs. The first group of DOEs are designed for a 3 x 3

spot array generator. The spot array generator has a target fan-out pattern of
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Sopt Array = |11 1] - (6-18)

The DOEs have 8 x 8 phase elements in one period and two, four, and eight phase levels.

The designed wavelength for all the DOEs is 850nm. We have simulated the effect of

wavelength changes on the DOE reconstruction from 800nm to 900nm. Table 6-2 lists

the non-uniformity (NU), minimum signal-to-noise ratio (MinSNR), and diffraction

efficiency (1) of the original designed DOEs with two, four, and eight phase levels. Those

performance indicators of DOEs are defined as

NU =

and

max (signal intensity) —min (signal intensity)

max (signal intensity) + min (signal intensity) % 100%, 012
MinSNR = min(sigflal ‘intens_ity) , (6-20)

max (noise intensity)
_ Light Energy in Signal Orders % 100% (6-21)

Total Light Energy

In Eq. (6-20), the maximum of noise intensity is the largest intensity among spurious

diffraction orders. Note that for non-uniformity, lower numbers are better, whereas for

minimum signal-to-noise ratio and diffraction efficiency, higher numbers are better. In
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each simulation, the diffraction efficiency, non-uniformity, minimum signal-to-noise ratio,
diffraction efficiency of each desired diffraction order, percentage error of each desired
diffraction order, and ratio of the diffraction efficiencies between each desired diffraction
order and the zeroth diffraction order are plotted as a function of the illumination

wavelength. Figure 6-2, 6-3, and 6-4 show the simulation results for these DOEs.

Table 6-2: DOE performance for the spot array generator. An 850nm wavelength was assumed for design,
etch, and reconstruction.

1 |z NO“’“(“%O”“‘W MinSNR Diffraction Efficiency (%)
& | 2 43 6.4 585

36 7.8 70.9
g8 | 8 27 21.1 81.3

The second group of DOEs are designed for a 3 X 3 triangular connection pattern.

The triangular connection pattern has a target fan-out pattern of

0.25 0.5 0.25
Triangular = |05 1 0.5]|- (6-22)

0.25 0.5 0.25

The DOE has 16 X 16 phase elements in one period. Table 6-3 lists the non-uniformity,
minimum signal-to-noise ratio, and diffraction efficiency of the original designed DOEs
with two, four, and eight phase levels. In each simulation, the diffraction efficiency, non-
uniformity, minimum signal-to-noise ratio, diffraction efficiency of each desired diffraction

order, percentage error of each desired diffraction order, and ratio of the diffraction
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Figure 6-2: The effect of wavelength changes on DOE reconstruction for the two-phase-level DOE
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Table 6-3: Performance of the DOEs designed for the triangular pattern. An 850nm wavelength was
assumed for design, etch, and reconstruction.

J | Z | Non-uniformity (%) MinSNR Diffraction Efficiency (%)
16 | 2 1.7 9.1 62.6
16 | 4 29 17.4 69.4
16 | 8 1.7 27.4 76.3

efficiencies between each desired diffraction order and the zeroth diffraction order are
plotted as a function of the illumination wavelength. Figure 6-5, 6-6, and 6-7 show the
results of the simulation for the triangular pattern.

From Figure 6-2 to Figure 6-7, we can see that, for the DOEs considered here, the
DOE performance (the non-uniformity, minimum signal-to-noise ratio, and diffraction
efficiency) usually degrades if the illumination wavelength is different from the designed
wavelength. From the percentage error plots in the figures for four or eight-phase-level
DOE:s, we can see that the percentage deviation from the original diffraction intensity for
each diffraction order is dependent on the DOE phase distribution, and this percentage
deviation also varies from one diffraction order to another. This phenomenon is consistent
with the results we obtained from Eq. (6-10) and (6-11) for multiple-phase-level DOEs.
On the other hand, from percentage error plots in the figures for two-phase-level DOEs,
we can see that the percentage deviation from the original diffraction intensity for each
off-axis diffraction order seems the same for all the off-axis diffraction orders.
Furthermore, the minimum signal-to-noise ratio plot in Figure 6-5 stays unchanged when
the wavelength changes. The minimum signal-to-noise ratio plot in Figure 6-2 also stays
unchanged when the zeroth diffraction order is the not smallest signal order. Even further,

the two-phase-level DOEs still generate symmetric diffraction patterns when the
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illumination wavelength changes as can be seen from Figure 6-2 and Figure 6-5.
Therefore, it seems that two-phase-level DOEs have special properties different from four
and eight-phase-level DOEs when illumination wavelength changes. These phenomena
are not obvious from the results we obtained in Eq. (6-10) and (6-11). In the next section,

we will further investigate these special properties for two-phase-level DOEs.
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6.2 Special Properties for Binary DOEs When Wavelength

Changes

Let’s first investigate the phenomenon that two-phase-level DOEs always generate
symmetric intensity patterns regardless of the illuminating wavelength. Assuming that we
illuminate a two-phase-level DOE with the designed wavelength A, the intensities of the

(r,s) ‘thand (-r,—s) ‘th diffraction orders can be calculated from Eq. (6-6) as

I(r,s,h)= |S® DFT {exp [jn- PI(p, )] }|°, (6-23)
and
I(-r,~s, Ay)
(J=1) (4=1) _jan=tP =54 5
=|Se z z exp [y - Pl(p,q)] ¢
p=0 ¢=0
J-1) (J=1) jorP*sa 2
=|Se > X explin-Pl(p, @] e
p:{] q:(}
-1 -1 _J_.gnrp+sq #| 2
=||Se Z 2 exp [-jm - PI(p,q)] e e 4 ]
p=0 g=0
(J-1) (J-1) "jz_’rrp+sq 2
=|se T 3 expljn-Plip,g)l ee
P=0 q=0 ] (6’24)
where
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sinc(f] ° sinc(f)
s - (6-25)
7

I

Since the DOE is binary phase level, the phase level index can only be 0 or 1. Therefore
exp [—jm - PI(p,q)] and exp[jn-Pl(p,q)] are essentially the same and the
reconstructed intensity will be symmetric upon spatial inversion about the origin
(I(=r,=s,Ay) = I(r,s,\) ). Basically, this result comes directly from the property that
the Fourier transform of a real sequence is always hermitian symmetric since the
transmittance of a binary-phase-level DOE is real.

When the illumination wavelength changes to A, the intensities of (r,s) ‘th and

(-r, —s) ‘th diffraction orders can be calculated from Eq. (6-10) as

A 2
I(r,s,\))= S-DFT{exp[jn-[l—OJ-PI(p,q):H , (6-26)
1
and
I(-r,-s,\))
(J-1) (J-1) (?"0\ N Yoms kL |
= |Se Z Z exp{:jrc- 1—1 “Pl(p,q) | ee
p=0 q:() -
-1 (-1 (2 1 jetsel?
4 0
=|Se Z z exp{jn- \?"_1 -Pl(p,q) | o e
p=0 g=0 - .
J=-1) (J-1) . Xo _j%rﬂ}sq >
=||Se z Z cxp[—ﬂ'c- X-]--Pl(p,q)]-e
p=0 g=0
(J-1) (J=-1) 10 _jznrp+.s‘q 2
=|Se Z z exp[*jn- (X-;]-Pl(p,q)}-e
p=0 .4=0 (6-27)
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Although the DOE under consideration is binary, exp [jm- (A,/A,)- PI(p,q)] and

exp [<jm- (Ay/A,)- Pl(p, q)] arenotidentical if (A,/A,)# integer. Therefore, we can

not use the property of Fourier transform as above to prove symmetry of the reconstructed

intensity pattern. We can rewrite Eq. (6-26) to be

I(r,s, )

(J-1) (J=-1) ptsq

Z Zexp[ [l}%q] S &

=0 ¢g=0

2

U= =D e (- U-D (%@
s i I PN D R 2
p=0 qg=0 p=0 g=0

P.’(p, q) =0 Pl(p,q) =1

Define

J-1 (J=1 2n’.”+59

0= 3 T
p=0 g=10
PI(p,q) =0

and we can further simplify Eq. (6-28) to

I(r,s,A)

A
J-1 @-1  jr (19) ~jax2t3q

=Se |0+ Z 2 e Ve e d

g=20
L P!(p,q)—l

_ A |
jn | = (J=1) (J=1) _jppp"P*sq
=[se|Q+e w) { > 38 ° —Q}

j p=0 g=0

2

[

2P+ 54

J

. (6-28)

(6-29)

(6-30)
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Using the identity

(J-1) (J=1) _jpglPtsq
2T 7

Y Je =0 () #(0,0), (6-31)

p=0 ¢g=0

Eq. (6-30) can be expressed as

I(r,s, M)

(N 2
I | 57
=|Se|Q+e e {0-0}

2]

By the same procedure, Eq. (6-26) can be expressed as

ol

Because 1 —exp [-jm (A,/A,)] and 1—exp[jr- (A,/A) are vectors with different

(r,s) # (0,0)

2
= 5"e|Ql e

(6-32)

2

I(=r,—s,A)= S" o]0’ e (r,s) # (0,0).  (6-33)

directions but the same magnitudes (as shown in Figure 6-8), the reconstructed intensity
pattern will be symmetric regardless the wavelength of illumination. The simulations in

Figure 6-2 and Figure 6-5 are consistent with these theoretical results.
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Figure 6-8: The diagram for proving that a two-phase-level DOE always generates a symmetric pattern
even when the illumination wavelength changes.

Let’s now find the relation between the intensity of each diffraction order with the
correct wavelength and the same diffraction order with incorrect wavelength. By using

the following identity

(J-1) (J-1) _jgnﬂL}fﬁ 0 (r,s) # (0,0)
AR e
p=0 420 J (r,s) =(0,0)

We can find the diffraction intensity of any diffraction order from Eq. (6-30) and Eq. (6-32)

as
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I(r,s,\))

[ =iy =1 jn[;—") _jpnl2*sq
|

=Se |0+ z 2 e °¢ d

i : [)"" rp+s 2
i (3E) [U=h =D jon2tsa
=|Se|O+e e E e -0

p:[] q:[}

A ’
1-exp ;n’l—]

o H 2 [ ko}
Qe| 1- — ||+ e —
{ CXPE]JT.}L] exp ‘m?xl

Let M represent the number of zero-phase-level-index phase elements in one period of the

ste|0) e (r,s) # (0, 0)

5 2
ST e

(r,s) = (0,0) . (6-35)

DOE and let M, represent the number of one-phase-level-index phase elements in one
period of the DOE. The expression of Q for the zeroth diffraction order ( (r, s) = (0,0))

can be simplified as

-1 (-1 _jgnif’jﬂ -1y  ({@-1

o= Y e Y D 1=M,. (6-36)

P=0 ({:0 p:O q‘:{]
Pl(p,q) =0 Pl(p,q) =0

Using the relation
2
J =M,+M,, (6-37)
Eq. (6-35) can be further simplified to
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2

s*e|0* e (r,s) # (0,0)

A
1 —exp ﬂcx-[-

Ay
My+M, eexp jn?"_l

I(r,s,A)=

2
.5'2 °

(r,8) = (0,0) | (6-38)

We can find 1(r, s, ;) by substituting A, = A, in Eq. (6-38) and simplifying it to

2 9 2
S e|Q| 02 (r,s) # (0,0)

5 5 (6-39)
S e |My-M,| (r,s) =(0,0)

I(r,s,\y)= {

Now, the ratio between I (r, s, Kl) and I(r,s, 7&.0) can be found from Eq. (6-38) and Eq.

(6-39) as
I(r,s,}\)
I(r,s, M)
2 ) 2
l—e)q:»[jﬂ:k—{J ]
— (r,) # (0,0)
= 3 7&0 2
My+ M, e exp jn:l—
' — () = (0,0) - (6-40)
[Mo - M|
\‘inz[(EJ[ﬁ]H (r,s) # (0,0)
2\ A ? ’
= 3 ; )LO N
Mg+ M, ®exp ‘ml_]
3 (r,s) = (0,0)
Mo~ M|

This result indicates that when the illuminating wavelength is different from the

designed wavelength, the diffraction efficiency of any off-axis order can be calculated by
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5 A
I(r,s,M) = I(ns, KO).Sin-[(g)[K_{)J] (r,s) # (0,0). (6-41)
1

This relation between the diffraction intensity at wavelength A, and the originally designed
diffraction intensity for a given off-axis order is independent of the phase distribution
pattern of the DOE and is dependent only on the ratio of the designed wavelength and the
actual illumination wavelength.  Furthermore, the ratio between 7(r,s,A,) and
I(r,s, ?LO) is the same for all the off-axis diffraction orders and this ratio is periodic over
the ratio of the wavelengths. It is also interesting to note from Eq. (6-41) that I (r, s, 7\,])
is always less than or equal to 7(r, s, Ay) . This means that if the illuminating wavelength
is deviating from the designed wavelength, then the diffraction efficiencies of all off-axis
diffraction orders will decrease by the same percentage. Therefore, the minimum signal-
to-noise ratio (the weakest signal intensity to the strongest noise intensity) will remain the
same for any illuminating wavelength if the zeroth diffraction order is not the weakest
signal diffraction order. This phenomenon also implies that we can design a DOE such that
the zeroth diffraction order is not part of the desired reconstruction pattern. Then, even if
the illumination wavelength changes due to laser conditions or other reasons, the
proportionality among the desired diffraction orders will remain unchanged. The
simulations in Figure 6-2 and Figure 6-5 are in good agreement with our theoretical results.
The intensity ratio for any off-axis diffraction order as a function of the wavelength ratio is

plotted in Figure 6-9.
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Figure 6-9: The intensity ratio of any off-axis diffraction order for a binary-phase-level DOE
designed for wavelength A and reconstructed at wavelength A, as a function of the
wavelength ratio.

Since the diffraction efficiencies of all the off-axis diffraction orders decrease when
illumination wavelength changes, the additional light energy must go to the zeroth order.
Therefore, the diffraction efficiency of the zeroth order always increases when there is a
wavelength change. This is also consistent with the result obtained in Figure 6-2 and
Figure 6-5. From Eq. (6-38) and (6-40), the new diffraction efficiency of the zeroth order

can be calculated by
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1(0,0,1,)

Ao )2
My+M, eexp jnx—
1(0,0,Ay)e — 1(0,0,2%)#0
= [Mo~ M|
i~ A )12
5 My + M, ® exp ﬂtl— 1(0,0,A,) = 0 (6-42)
L (My-M,) !

Note that, unlike for the off-axis diffraction orders, this relation is dependent on the phase
distribution pattern of the DOE. Figure 6-10 show the intensity profiles of the two-phase-
level DOE (designed for the triangular pattern and 850 nm wavelength) illuminated by the
correct (850 nm) and the incorrect (633 nm) wavelengths. It can be clearly seen that, with
the incorrect illumination wavelength, the intensity of the zeroth order is increased
substantially while the intensities of all the off-axis diffraction orders are decreased by the
same percentage.

The above analysis for binary-phase-level DOEs assumes that the designed relative
phase delay is either O or T. However, it is possible to have a relative phase delay other
than T (detailed in Chapter 8). In that case, the expressions we have derived above need to
be modified. Assuming that the relative phase delay for the DOE is either O or ¢, then by

replacing 7 in Eq. (6-35) with @, Eq. (6-38) becomes

2

2o |0 (r, ) # (0,0)

. A
1 —exp [J(P;T}
1

A
M,+ M, e exp |:;(pl—}
1

I(r,s,?L])= 2

55

2

(r,5) = (0,0) (6-43)
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Figure 6-10: The intensity profiles of the two-phase-level DOE reconstruction (designed for the
triangular pattern and 850 nm wavelength) illuminated with 850 nm (top) and 633 nm
(bottom) wavelengths.
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and Eq. (6-39) becomes

s> e|0I* o |1 - exp [jo]| - (r, 5) # (0,0)

I(r,s,\y)= { a 5
S'-|M0+M1-exp [j(p]|" (r,s) =(0,0)

(6-44)

Now, the ratio between I (r,s,A;) and I(r,s, A;) can be found from Eq. (6-43) and Eq.

(6-44) as

. l’0 2
o]
l

!(f',s,l])_ ) |1—eprq)]|2

I » 5, l - A
(rys 0) MO % Ml ® exp |:J(pl—0j|
1

(r,s) # (0,0)

2

(r,s) = (0,0) (6-45)

| M+ M, - exp [l |’

This result indicates that when the illuminating wavelength is different from the
designed wavelength, the new diffraction efficiency of any off-axis order can be calculated

by

Al
1 —exp |:J(P7L—:|
1

I(r,s,A)) = I(r,s,Ap)e® 2
|1 —exp [joll

(r,s) #(0,0), (6-46)

and the new diffraction efficiency of the zeroth order can be calculated by
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1(0,0,2,)

A 2
5 0
M,+ M, e exp I:jq:nk—]:l
1(0,0,A,)e ; 1(0,0,A,) =0
= Mo+, - exp Lo | :
N 2
2 "
J "o |My+ M, eexp [J‘Pk—} (0,0, = 0 (6-47)

1

The relation between the new diffraction intensity and the originally designed diffraction
intensity for a given off-axis order is still independent of the phase distribution pattern of
the DOE and is dependent only on the ratio of the designed wavelength to the actual
illumination wavelength, and the phase delay ¢. The ratio between I (r,s, ll) and
I(r,s, KU) is still the same for all the off-axis diffraction orders. This means that if the
illuminating wavelength is deviating from the designed wavelength, then the diffraction
efficiencies of all off-axis diffraction orders will be changed by the same percentage. It is
also interesting to note that, from Eq. (6-46) that I(r,s, A,) for this non-conventional
binary-phase-level DOE is not always less than or equal to 7 (r, s, ?LU) as is the case for the
conventional binary-phase-level DOE. From Eq. (6-46), for the case of ¢ < 1, we can also
find that the intensity of every off-axis diffraction order will increase if A, <, and will
decrease if A, >A,. On the other hand, for the case of @ > T, the intensity of every off-
axis diffraction order will increase if ?\.] > ?LO and will decrease if 7&1 < KO. Therefore, it is
possible that the intensity of the zeroth diffraction order will be decreased when there is a
wavelength shift. This is quite different from the case for the conventional binary-phase-

level DOE. The intensity ratio for any off-axis diffraction order as a function of the
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wavelength ratio for an unconventional binary-phase-level DOE with phase delays of 0 and

0.827 is plotted in Figure 6-11.

I(r, s, Ay) / I(1y s, Ag)

1 1 1 1 1 1 1 1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5

Ao/ M

Figure 6-11: The intensity ratio of any off-axis diffraction order as a function of the wavelength
ratio, for an unconventional binary-phase-level DOE with phase delays of 0 and
0.82m, designed for wavelength Aq and reconstructed at wavelength A;.
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Chapter 7

The Effect of Etch Depth Error on
Reconstruction of Diffractive Optical
Elements

To fabricate a multiple-phase-level diffractive optical element, a few etching (or
deposition) procedures that repeatedly etch into (or deposit onto) the DOE substrate are
needed. In this chapter, we will investigate the effect of etch depth error during fabrication
on the reconstruction of a diffractive optical element. We assumed the DOE is made by
etch for the analysis in this chapter. A similar analysis can be done for DOEs fabricated by
deposition. In Section 7.1, we will derive a general expression for DOE reconstruction
when etch depth error occurs for multiple-phase-level DOEs. We will apply the results
from Section 7.1 to the case of binary-phase-level DOEs in Section 7.2. We will verify that
a binary-phase-level DOE with etch depth error appears equivalent to a binary-phase-level
DOE with incorrect illumination wavelength and, therefore, has identical properties. The
effect on the reconstruction of a binary-phase-level DOE when there are wavelength
changes and etch depth error at the same time is also considered in Section 7.2. We have
also considered the effect of wavelength change and etch depth error on the reconstruction
for binary-phase-level DOEs with phase delays other than O and m. The effect of

wavelength change and etch depth error for the unconventional binary-phase-level DOEs
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is somewhat different from the effect of wavelength change and etch depth error for the
conventional binary-phase-level DOEs. Section 7.3 and 7.4 consider multiple-phase-level
DOEs (with Z possible phase levels) fabricated using binary-optics process (log, Z etch
steps). In Section 7.3, we will study the case in which there is a constant percentage error
in each etch step, and in Section 7.4 we will discuss the case that the etch depth errors in

the etch steps are independent of each other.

7.1 Reconstruction of Diffractive Optical Elements Under Etch

Depth Error

To generate the correct phase delay in each phase element, we have to etch into the physical
area of that phase element on the DOE substrate with a correct etch depth. As derived in
Chapter 6, for a Z-phase-level DOE, the correct depth, d(p, q), of phase element (p, q) ,

can be expressed as

A
0
= = -1) - 7-1
where PI(p, q) is the phase level index (p and g are the indices of the phase elements with
p,qge {0,1,...,J-1}), n is the index of refraction of the DOE substrate (we have
assumed the index of refraction is one outside the DOE), and A, is the designed
wavelength. From Eq. (7-1), we can see that the correct etch depth for any phase element

is just some integer multiple of Z(Toﬁ' This integer is determined by
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[(Z-1) =PI(p,q)] and is in the range of {0,1,2,..., (Z-1)}. Let’s express

[(Z-1) —PI(p, g)] by its binary representation as

log,Z .
[(Z-1)-PIp, )] = Y ep.q)-27".

pe=l

(7-2)

Using Eq. (7-2), the correct etch depth of phase element (p, ¢) in Eq. (7-1) can then be

expressed as

A log,Z
-
Ap,0) = Fo gy X eipr )2
- Y-~ RN
- oo i Zn-1)
log,Z
= Z e;‘(p’ Q)d, s (7_3)
in which
- A
_ A= ) 0 i
([;-=2 Z_(H — l) i (7 4)

From Eq. (7-3), we can see that, to fabricate a Z-phase-level DOE, we only need to perform
the etch at most log, Z times rather than Z times and the correct depth for i’th etch step, d;,
is defined in Eq. (7-4). In this binary-optics fabrication process [10], at the i’th etch step,
if the i’th bit of the binary representation of [ (Z- 1) — PI(p, ¢)] for any phase element is

one, then an etch of a depth of dl. is performed otherwise no etch is needed. In this sense,
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the maximum possible etch depth, D, is just the sum of all the etch depths from every etch

step and it can be easily shown to be

B2 A(Z-1)

D = Zdl-=m. (7'5)

i=1

Let’s now calculate the relative phase delay, PD(p, q), in terms of the etch depth.
The phase delay (relative to the phase element with a zero phase level index) introduced
by each phase element with phase level index PI(p, ¢) then can be calculated by summing
the phase delays due to both non-etched and etched steps then subtracting the phase delay

for the phase element with a zero phase level index as follows:

PD (p, q)

" log,Z Iogq
- {”‘[D ze(p,q)d] 7 2 Cipa )d——D
0

i=1 1—1

; - log,Z log,Z

. i=1 i=1

= log,Z
= r0- (n-1)D-(n-1) Z e; (p, ‘J')di:|

L i=1

log, Z
= (n—l)[D Ze(p,q)d}
(]

i=1
log, Z log,Z
- 2“(;;-1)[Zd- Zei(p,q)d‘}
i=1 i=1
log,Z
= (n—l) Y [1-¢;(p.g) 14,

i=1

(7-6)
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Due to fabrication error, the actual etch depth in i’th etch step will be different from d'..
Assuming the actual etch depth in i’th etch step can be expressed as [1 +r,;] d;, where r; is

the percentage fabrication error, then the actual phase delay in Eq. (7-6) can be expressed as

log, Z
PD(p,q) = i—:(f=~l) Y [l-e, ()] [1+7,1d,. (7-7)

i=1

Substituting the expression for d; given in Eq. (7-4), Eq. (7-7) becomes

PD (p, q)

on e i-1 )
=?L—O(n—l)zl[I—ef(p,q>1-[1+rf]-2 Sl

znlogzz i
=?Z [l_e;(p!Q)]'[l"'rj]'z . (7-8)

i=1

Note that in this chapter, we use the zero phase level as a reference for zero phase delay and
zero phase delay error. Therefore, the phase delay of a given phase element is associated
with the etch depth error of the etch steps for which the given phase element is not etched.
This is because the phase delay is calculated with respect to the zeroth phase level
(PI(p,q) = 0) and the phase elements with a zero phase level will be etched in all etch
steps. Therefore, the etch depth error of any given phase element will also appear in the

etch depth error of the zeroth phase level elements. The complex transmission function of
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cach phase element, /i (p, ¢) , which is the complex exponential function of the phase

delay, exp [j - PD (p, ¢) ] , now becomes

log,Z '
&(p’q) = exp[.f('z_z’j) z [l_e,'(p,q)] ) [l'l'!',-] '2Iqu|- (7'9)

The reconstructed diffraction intensity pattern under etch depth error, /7 (r, s) , can then be

calculated by

I (r,s)
. ‘ 2 (7-10)
= |J‘2 sinc( 3)sinc( 3)DFT{1; )}
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7.2 The Effect of Etch Depth Error on Reconstruction for

Binary-Phase-Level Diffractive Optical Elements

For binary phase level DOEs, there is only one etch step. Because the binary representation
for [ (Z-1) —=PI(p, q)] is just e, (p, q) in this case, the phase delay in Eq. (7-8) can be

directly simplified to

PD (p, q)
log,Z

2 U= - [1+r] 27

i=1

ml':‘“i’

. [l—el(ng)] : [1+!‘]]

n-PI(p,q)- [1+r,] . (7-11)

Comparing Eq. (7-11) with Eq. (6-8), it is clear that the effect of etch depth error for binary
phase level DOE:s is equivalent to the effect due to wavelength change. This is because
both cases are effectively changing the relative phase delay in the DOEs. The [—J term
in Eq. (6-8) is simply replaced by [1+r,] in Eq. (7-11). Therefore, the effect of etch
depth error on DOE reconstructions should be similar to the effect of wavelength change.
With similar derivation steps with the derivation steps in Section 6.2, the intensity of the
reconstructed diffraction order with etch depth error for binary phase level DOEs can be

shown to be
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2
{SZ°IQI2°|1—CXPUTE[1+r.])| (r,5) # (0,0)
Il (r,s)= ,

) i (7-12)
S"-|M0+Ml-exp(jrl:[l-!-r]])| (r,s) = (0,0)
with
sinc[f] ° sinc(fj
Sl = T (7-13)
J,
and

(J-1) (J=1) _jgnﬂi;;_iif

0= Y T o . (7-14)

p=0 g=0
PI(p,q) =0

In Eq. (7-12), M,y represents the number of zero-phase-level-index phase elements in one
period of the DOE and M| represents the number of one-phase-level-index phase elements
in one period of the DOE. The ratio of the reconstructed diffraction intensity for a given
diffraction order between the DOE with etch depth error, I7(r,s), and the DOE with

correct etch depth, I (r, s), can be similarly found as
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sz[[g)(url)] (r,s) # (0,0)
11 (r,s) _ 5
I(r,s)  ||My+M;eexpljn(l+r)]|"

My M|

(7-15)

(r,s) = (0,0)

Therefore, for binary phase level DOEs, the percentage error of diffraction intensity for any
off-axis diffraction order is dependent only on the etch depth error and not dependent on
the phase distribution of the DOE. For a given etch depth error, this percentage error is the
same for all the off-axis diffraction orders. On the other hand, unlike for the off-axis
diffraction orders, the percentage error of diffraction intensity for the zeroth diffraction
order is dependent on the phase distribution pattern of the DOE. When there is any etch
depth error, the intensities of all off-axis reconstructed diffraction orders always decrease
and the intensity of zeroth diffraction order always increases. The percentage error for all
orders increases as the etch depth error increases.

The effect of etch depth error on reconstruction for binary phase level DOEs has been
simulated for the DOEs designed for the 3 x3 spot array generator and the 3 X3
triangular connection pattern as mentioned in detail in Chapter 6. In each simulation, the
diffraction efficiency, non-uniformity, minimum signal-to-noise ratio, diffraction
efficiency of each desired diffraction order, percentage error of each desired diffraction
order, and ratio of the diffraction efficiencies between each desired diffraction order and
the zeroth diffraction order are plotted as a function of the percentage etch depth error. In
these simulations for binary phase level DOEs, a maximum etch depth error of 10% is

assumed. As expected, the diffraction efficiencies of all the orders (except for the zeroth
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order) decrease by the same proportion when the etch depth error occurs and the
additional light energy from all the non-zeroth orders goes to the zeroth diffraction order.
Figure 7-1 and Figure 7-2 show the simulation results for the binary phase level DOEs.
The results are the same as those of Figure 6-2 and 6-5, except the range and sense of the
abscissa is different. The percentage error for the reconstructed diffraction intensity plots
from those figures show consistent agreement with the theoretical results in Eq. (7-12) and
Eq. (7-15).

When both the wavelength and the etch depth are incorrect, the reconstruction of the

DOE will be affected by both factors. The phase delay can be shown to be

Ao
PD (p, q) =K‘PI(P,Q)‘[?L—J (1+r], (7-16)

and the intensity of the reconstructed diffraction order can be shown to be

2 2 l 2
ST e|0 e 1—cxp{jn[—gJ[l+r]]} (r,s) # (0,0)

I1(r, 5,0 = N 2 (7-17)
S* o |My+M, e expij (l—][lw (r,s) = (0,0)

The ratio of the reconstructed diffraction intensity for a given diffraction order between the
DOE with etch depth error and incorrect wavelength, I1(r, s, ?..1) , and the DOE with

correct etch depth and wavelength, 7 (r, s, ?LO) , can be similarly found as

130



=
(6]
(=2

o
=

[=a)
[=]

th
oo
L

wn

e |

T

M
(=]

Diffraction Efficiency (%)
(
Non-uniformity (%)

S o

w
=)
S~

-10 -5 0 5 10 -10 -5 0 5 10
Percentage Etch Depth Error (%) Percentage Etch Depth Error (%)

o
o0
20

¥ : Zeroth diffraction order
+ : Off-axis diffraction order

o
=

MinSNR
=
=
Intensities of the Diffraction Orders (%)
e |
o W g W g W g

N

5.8 s s : :
-10 -5 0 5 10 -5 0 5 10
Percentage Etch Depth Error (%) Percentage Eich Depth Error (%)

'
[}

ol
o

: Zeroth diffraction order

(]
o

: Off-axis diffraction order

o
o

=
e
= ]

o
-

Percentage Error of Diffraction Orders

(Diffraction Order Int.) / (Zeroth Order Int.)

or ¥ : Zeroth diffraction order
.10 5 0 5 10 -10 4—_50ff—ax1s dbfi'racuon ogdcr 10
Percentage Etch Depth Error (%) Percentage Etch Depth Error (%)

Figure 7-1: The effect of etch depth error on DOE reconstruction for the two-phase-level DOE
designed for the spot array target pattern.
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Figure 7-2: The effect of etch depth error on DOE reconstruction for the two-phase-level DOE

designed for the triangular target pattern.



A
sinz[(gjtk——oJ (1 +rl):| (r,s) # (0,0)
1
A 2 #
M0+Mioexp{j1c[l—()}[l+rl]} - F5p)
_ I

2
|My—M,|

I(r,s,%) |
ICrosila)

(F', S) = (01 0)

From Eq. (7-18), we can also see that the intensity ratio between any two off-axis
diffraction orders is a constant regardless the correctness of wavelength and etch depth. Let
(r,s) and (r,s") represent two different off-axis diffraction orders, then we will have the

following relation

ITr 850y I(r,s,\p)
I, s,h)  1(F, s\ Ay

(7-19)

Hence, the intensity ratio of any two off-axis diffraction orders is independent of the
illuminating wavelength and etch depth error for binary DOEs. This result for binary-
phase-level DOEs can be used to help characterize the DOE fabrication processes.

The above results can also be used to measure the etch depth error in fabrication
process. All we have to do is just use any convenient illumination wavelength to obtain a
reconstruction pattern. Then measure the intensity of any off-axis diffraction order and
calculate the etch depth error from Eq. (7-18). Furthermore, we can derive a way of
cancelling the effect of etch depth error on the reconstruction of DOEs by using an
appropriate illumination wavelength. Once the etch depth error has been measured, we

then can just intentionally use an appropriate incorrect illumination wavelength to cancel
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the effect of the etch depth error and retrieve the designed diffraction pattern. The

illumination wavelength, A , that can cancel the effect of the etch depth error must satisfy

A‘(}
2 Ler) = 1. (7-20)

The above analysis for binary-phase-level DOEs assumes that the designed relative
phase delay is either O or T. As mentioned in Chapter 6, it is possible to have a relative
phase delay other than T (as detailed in Chapter 8). In that case, the expressions we have
derived above need to be modified. Assuming that the relative phase delay for the DOE is

either O or ¢, then the phase delay, PD(p, q) , for the case of etch depth error and incorrect

}"0
M

i A'0
1 —expijo X [1+r]
I

M . ?\'0
otM, eexp)jo ?L_l [l+r|]

wavelength will be either O or [ ] (1+ r]) -¢. Eq. (7-17) becomes

2

st e|0]*e (r,s) # (0,0)

I(r,s,\)) = ,

$7e (r.5) = (0,0)  (7.21)

and Eq. (7-18) becomes

2

D }
l—exp[ﬂp = [1+r|]]
— (r,5) # (0,0)
Hr,s\) | |1 - exp Lol
ST 2
I1(r,s,\p) M0+Mlocxp[jcp{;fo][l+rl]]
o] (r,s) = (0,0)
|My+ M, - exp [jol| . (7-22)
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The relation between the new diffraction intensity and the originally designed diffraction
intensity for a given off-axis order is still independent of the phase distribution pattern of
the DOE and is independent of the phase distribution of the DOE and dependent only on
the wavelength change and etch depth error. The ratio between [II(r,s,A,) and
I(r,s, ko) is still the same for all the off-axis diffraction orders. This means that if the
illuminating wavelength is deviating from the designed wavelength and/or there is an etch
depth error, then the diffraction efficiencies of all off-axis diffraction orders will be changed
by the same percentage. It is also interesting to note that, from Eq. (7-22) that 11 (r, s, ?x.,)
for this non-conventional binary-phase-level DOE is not always less than or equal to
I(r,s, 7‘0) as is the case for the conventional binary-phase-level DOE. Therefore, it is
possible that the intensity of the zeroth diffraction order will be decreased when there is a
wavelength shift and/or etch depth error. This is quite different from the case for the
conventional binary-phase-level DOE.

The above results can also be used to measure the etch depth error due to the
fabrication process as well as to cancel the effect of etch depth error on the reconstruction
for unconventional binary-phase-level DOEs by using an appropriate illumination
wavelength. The illumination wavelength, A, , that can cancel the effect of the etch depth

error still needs satisfy Eq. (7-20).
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7.3 Constant Percentage Etch Depth Error in Etch Steps for

Multiple-Phase-Level Diffractive Optical Elements

For multiple phase level DOEs, more than one etch steps is needed. If the percentage etch

depth error is the same in every etch step, the phase delay in Eq. (7-8) can be simplified to

PD (p, q)
log,Z

=23 e, )] L1412

i=1

log,Z ) )

= %t (l +?'CP) : z [zi—l_zt_l 'e,'(p) Q)] » (7_23)
i=1

= "7" (1+r,) - {[Z-11-[(Z-1) -p(, ] }

= %’“ (L+r.) - Pl(p,q)

where r., represents the constant percentage etch depth error. The reconstructed

diffraction intensity pattern, I/ (r, s) , in Eq. (7-10) can then be simplified to

I (r,s)

2

)

J "sinc(

Dsinc( 3 )DFT {1 p, ) —

2

- ‘j‘zsinc(g)sinc(g]DFT’{ exp l:j(%ﬂ:] - (1+71,,) - PIp, q):l}
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Comparing the results obtained from Section 6.1 with Eq. (7-23) and Eq. (7-24), it can be
seen that the case of a constant percentage etch depth error in every etch step is essentially
equivalent to a wavelength change.

The effect of constant percentage etch depth error in every etch step for four and
eight-phase-level DOEs has been simulated for the DOEs designed for the 3 X3 spot
array generator and the 3 X3 triangular connection pattern as mentioned in detail in
Chapter 6. In each simulation, the diffraction efficiency, Non-uniformity, minimum
signal-to-noise ratio, diffraction efficiency of each desired diffraction order, percentage
error of each desired diffraction order, and ratio of the diffraction efficiencies between
each desired diffraction order and the zeroth diffraction order are plotted as a function of
percentage etch depth error. In these simulations, a maximum etch depth error of 10% is
assumed. Figure 7-3, 7-4, 7-5, and 7-6 show the simulation results. The results are the
same as those of Figure 6-3, 6-4, 6-6, and 6-7, shown as a function of illumination
wavelength, except here the range and sense of the abscissa is different.

From the simulations, we can see that the reconstructed intensity of each diffraction
order deviates from its designed value when there is etch depth error. This deviation
increases as the etch depth error increases. For a given diffraction order, the effects of the
etch depth error on the reconstruction for multiple-phase level DOEs are dependent on
both the phase distribution pattern of the DOE and the amount of the etch depth error. For
a given etch depth error, this percentage reconstruction error also varies for different
diffraction orders. The reconstructed intensity of the zeroth diffraction order could be

lower than the designed value. This is different from the case for binary phase level
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Figure 7-3: The effect of constant percentage etch depth error on DOE reconstruction for the four-
phase-level DOE designed for the spot array target pattern.
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Figure 7-4: The effect of constant percentage etch depth error on DOE reconstruction for the eight-
phase-level DOE designed for the spot array target pattern.
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DOEs, in which the reconstructed intensity of the zeroth diffraction order is always higher
than the designed value.
When both the wavelength and the etch depth are incorrect, the reconstruction of the

DOE will be affected by both factors. The phase delay can be shown to be

PDGya) = ZE-Pipg)- | 2} (14, ] (7-25)
pq) =7 4 A cpt ?
and the intensity of the reconstructed diffraction order can be shown to be

I1(r,s,A)
2

= |J_2sinc(§) sinc(E]DFT {h(p,q)}

J_zsinc(g)sinc(E)DFT{ exp [j( 27“) [%J (1+r,) - PIp, q)j|}
1

(7-26)
2

By using Eq. (7-26), we can measure the constant percentage etch depth error of the
fabrication process and cancel the effect of the etch depth error on the reconstruction of
the DOE by using an appropriate illumination wavelength as mentioned in detail in the
last section. The illumination wavelength, A, , that can cancel the effect of the etch depth

error must satisfy Eq. (7-20).

141



80T

Diffraction Efficiency (%)
]
Normalized Non-uniformity (%)

-10 -5 0 5 10 -10 -5 0 5 10
Percentage Etch Depth Error (%) Percentage Etch Depth Error (%)

¥ : Zeroth diffraction order
+ : Off-axis diffraction order
107 i

Intensities of the Diffraction Orders (%)

-10 -5 0 5 10
Percentage Etch Depth Error (%) Percentage Etch Depth Error (%)

ey

roth diffraction order i
5 > xis diffraction or

o
o0

¥ : Zeroth diffraction order
+ : Off-axis diffraction order

Percentage Error of Diffraction Orders (%)
o
(Diffraction Order Int.) / (Zeroth Order Int.)

- 0.6 4_
et
0.4 .
-10 & i
A . : ; V=== am sl . | ]
-10 -5 0 5 10 -10 -5 0 5 10
Percentage Etch Depth Error (%) Percentage Etch Depth Error (%)

Figure 7-6: The effect of constant percentage etch depth error on DOE reconstruction for the eight-
phase-level DOE designed for the triangular connection pattern.
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7.4 Reconstruction of Four-Phase-Level Diffractive Optical

Elements for Independent Etch Depth Error in Etch Steps

In the most general case, the etch depth error in each etch step is independent of the error
in each of the other etch steps. Using Eq. (7-9), each possible phase level for PI(p, q), the
values and binary representation for [ (Z- 1) — PI(p, q)] , and the corresponding phase

delay for four-phase level DOEs are listed in Table 7-1.

Table 7-1: Phase level index and phase delay calculation for four-phase level DOEs for independent etch
depth errors.

Pl(p,q)| [(Z-1) —PI(p, q)] | Binary representation Phase delay
0 3 11 0
T
1 2 10 5 (1+r)
3 1 01 %‘-2- (147,
3 0 00 5 [+r) +2: (1+ry)])

Note that when r; = -2r,, the etch depth errors for phase elements with phase level index
of 3 will cancel and the corresponding phase delay will be correct although the phase delays
for elements with phase level index of 1 or 2 are still incorrect.

The effect of independent etch depth error in the etch steps for four-phase-level DOEs
has been simulated for the DOEs designed for the 3 X3 spot array generator and the

3 x3 triangular connection pattern as mentioned in detail in Chapter 6. In each
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simulation, the diffraction efficiency, Non-uniformity, minimum signal-to-noise ratio,
diffraction efficiency of each desired diffraction order, percentage error of each desired
diffraction order, and ratio of the diffraction efficiencies between each desired diffraction
order and the zeroth diffraction order are plotted as a function of percentage etch depth
error. In these simulations, we assumed that the etch depth error in each etch step is
independent of each other, the etch depth error of the most significant bit of the etch masks
(ry) is -10%, -5%, 5%, 10%, and —|r2| SFS |r2|. Figure 7-7 to Figure 7-14 show the
simulation results. In those figures, r; refers to the LSB (least significant bit) and r, refers
to the MSB (most significant bit). Note that in Figure 7-7 to Figure 7-14, the points on the
plots that correspond to a zero LSB etch depth error are not etch-error-free cases. To find
the DOE reconstruction for the etch-depth-free cases, the reader should refer to Figure 6-3
and 6-6.

From the simulations above, we can see that, if the etch depth error in etch steps are
independent, then the effect of etch depth error is not equivalent to the effect due to
illumination wavelength changes. The percentage error of a given diffraction order is
dependent on the etch depth error in all steps and the phase distribution of the DOE. For a
given set of etch depth errors in the DOE, this percentage reconstruction error also varies
for different diffraction orders. The reconstructed intensity of the zeroth diffraction order
could be lower than the designed value. This is different from the case for binary phase
level DOEs, in which case the reconstructed intensity of the zeroth diffraction order is

always higher than the designed value.
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Figure 7-7: The effect of independent etch depth error in etch steps (-10% MSB) on DOE
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Figure 7-14: The effect of independent etch depth error in etch steps (10% MSB) on DOE
reconstruction for the four-phase-level DOE designed for the triangular pattern.
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Figure 7-15: The effect of independent etch depth error in etch steps (-10% MSB) on DOE
reconstruction for the four-phase-level DOE designed for the spot array pattern.
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When both the wavelength and the etch depth are incorrect, the reconstruction of the

DOE will be affected by both factors. The phase delay for this case can be shown to be

log, Z

2 .
PD(p,q) = (%) [l_(j Z [1-e;(pyq)] « [1+1] -2 I, (7-27)

i=1
and the intensity of the reconstructed diffraction order can be shown to be

I (r,s)= ’Jﬁzsinc(g)sinc[%‘)DFT{exp [j-PD(p,q)]} s (7-28)
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Chapter 8

New Design Approaches for Diffractive
Optical Elements

In the 3-D computation structure described in the previous chapters, the DOE has to
reconstruct an interconnection pattern that is as close as possible to the desired one. Hence,
in this chapter, we will compare the DOE performance of different design algorithms and
develop new design approaches that can increase the performance of DOEs. First, we
discuss a modified Gerchberg-Saxton algorithm with quantization scheduling and noise-
adjusting scheduling in Section 8.1. Using this modified approach, we designed the spot
array generator DOE and the triangular interconnection pattern DOE, then compared the
results with the ones designed using the original Gerchberg-Saxton algorithm. In Section
8.2, we discuss the simulated annealing algorithm, effects of cost functions in the
algorithm, and a dual-cost-function simulated annealing algorithm. We compare the
performance of the DOEs designed using this dual-cost-function simulated annealing
algorithm with the performance of the DOEs designed using the modified Gerchberg-
Saxton algorithm. In Section 8.3, we describe a new design approach that can further
increase the performance of DOEs by optimizing the phase values without increasing the

binary-optics fabrication complexity, and compare the performance of the DOEs designed
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using this new approach with the performance of the DOEs designed using the modified

Gerchberg-Saxton algorithm.

8.1 Original and Modified Gerchberg-Saxton Algorithms

The Gerchberg-Saxton algorithm [45] is an iterative Fourier transform phase-retrieval
procedure that tries to satisfy the required constraints on both the DOE plane and
reconstruction plane. These constraints are: specification of intensity transmittance in the
DOE plane (as unity) and specification of signal intensity pattern in the diffraction (or

reconstruction) plane (as the desired interconnection weights). Figure 8-1 shows the

DOE Plane —| Forward Transform Diffraction Plane

Apply diffracti : straint:
Apply DOE plaiie constrain pply diffraction plane constraint

; - Keep le: hase
- Set magnitudes to | S il phases

Ouniizs phaxes - Reset magnitudes of connection orders

- Set magnitudes of noise orders to zero

Starting point:

Inverse Transform izl LS
-—{ [Initial intensity distribution

+ Random phases

Figure 8-1: Schematic diagram of the original Gerchberg-Saxton algorithm.
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schematic flow diagram of the original Gerchberg-Saxton algorithm. Recall from Chapter

3 that the DOE plane and the diffraction plane are related by

A(r,s) = J‘Zsinc(:’;] sinc(;l;)DFT{f_: (P,q)} (8-1)
and
o =orr |y

where J is the number of phase elements in one period of the DOE in each dimension (it is
also the number of independent diffraction orders in each dimension), A (r, s) is the
complex amplitude of each diffraction order in the diffraction plane (r and s are the indices
of the diffraction orders with r, s € {vé, P, | TR % —1})and A (p, q) is the complex
amplitude transmittance distribution in one period of the DOE (p and ¢ are the indices of
the phase elements with p,ge {0,1,...,J—-1} ). The design process begins with the
desired intensity pattern and a set of random phases (one for each diffraction order) in the
reconstruction plane. It then uses Eq. (8-2) to compute the complex amplitude
transmittance of the DOE grating. Since a DOE is a phase-only element, the magnitude of
the obtained complex amplitude transmittance is set to one. Also, since the phase of a DOE
is discrete, the phase of the obtained complex amplitude transmittance is quantized to the
set of pre-defined discrete levels. Afterward, we then use Eq. (8-1) to compute the complex
amplitude of each diffraction order and the corresponding intensities. In the reconstruction

plane, the learned phases of each diffraction order from the iteration are kept, the

magnitudes of the desired connection orders are reset to the desired values, and the
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magnitudes of all other orders are reset to zero. This process then continues iterating until
a stable DOE phase pattern has been obtained. Usually, the Gerchberg-Saxton algorithm
can converge to a solution in few hundred iterations.

One common known problem of using this original Gerchberg-Saxton algorithm to
design DOE:s is the stagnation problem [46]. Because the original Gerchberg-Saxton
algorithm quantizes the continuous phase values into the set of discrete levels in each
iteration, a given phase element may not have a large enough phase value change to go
from one discrete level to another discrete level after quantization. Therefore, the
stagnation problem usually results into poor DOE performance. The stagnation problem
can be resolved by using an appropriate quantization scheduling that gradually quantizes
the phase of the DOE [46].

We have also incorporated another modification on the algorithm that can improve
the DOE performance slightly. In the original Gerchberg-Saxton algorithm, the
magnitudes of the noise diffraction orders are forced to be zero in each iteration. In
general, the magnitudes of the noise diffraction orders will never be zero. At the early
iterations of the algorithm, the noise diffraction orders usually have high magnitudes.
Rather than forcing the noise orders to be zero in magnitude, we can attenuate them with a
large attenuation factor. This attenuation factor is then gradually decreased as the
algorithm iterates. At the end of the iteration, the noise diffraction order should have
much lower magnitude than at the early stage of the iteration. Hence, we accept the noise

diffraction order without further attenuation.
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By using this noise-adjustment scheduling and the phase-quantization scheduling,
the algorithm should converge to better DOE solutions. Note that, because of the noise-
adjustment scheduling and the phase-quantization scheduling, this proposed algorithm
will take more iterations to converge. Figure 8-2 shows the schematic flow diagram of the
modified Gerchberg-Saxton algorithm with the noise-adjusting scheduling and the phase-

quantization scheduling.

DOE Plane —| Forward Transform Diffraction Plane

. Apply diffraction plane constraint:
Apply DOE plane constraint:
; - Keep learned phases
- Set magnitudes to 1
- Reset magnitudes of connection orders
- Phase-quantization scheduling g

- Noise-adjusting scheduling

Starting point:

Inverse Transform T S
~@— [Initial intensity distribution

+ Random phases

Figure 8-2: Schematic diagram of the modified Gerchberg-Saxton algorithm.

We have designed the 3 X 3 spot array generator DOE using both the original and
modified Gerchberg-Saxton algorithms and compared their performance. The spot array

generator has a target pattern of
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el
Sopt Array = | 1 1]- (8-3)
111

To measure the performance of DOEs, we have to define a set of appropriate performance
indicators. We will use non-uniformity (NU), minimum signal-to-noise ratio (MinSNR),
absolute diffraction efficiency (1), and relative diffraction efficiency (1,,), to measure the

performance of the DOEs. They are defined as

max (signal intensity) —min (signal intensity)

NU = : : : e ; —=x 100% , (8-4)
max (signal intensity) + min (signal intensity)
MinSNR = mm(51g1l1al .mtcns.ny) , (8-5)
max (noise intensity)

_ Light Energy in Signal Orders i

- Total Light Energy A, (50)
and

_ Light Energy in Signal Orders % 100% (8-7)

W~ Light Energy in J XJ Orders
Note that the denominator of Eq. (8-7) is the total light energy in the central J X J
diffraction orders. Because of the randomness of the starting phase distribution, the
algorithms will converge to different solutions for different runs. Therefore, we run the
algorithms fifty times and pick the DOE with good non-uniformity, minimum signal-to-
noise ratio, and absolute diffraction efficiency for each case. Table 8-1 lists the
performance of the DOE designed for the 3 X 3 spot array generator using both original

and modified Gerchberg-Saxton algorithms. Figure 8-3 shows the designed DOE
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Table 8-1: Performance of the DOE designed using the original and modified Gerchberg-Saxton
algorithms for 3 x 3 spot array. T is the number of phase element in one period of the DOE in
cach dimension and Z is the number of phase levels

J Z Algorithm NU (%) MinSNR n (%) Ny (%)
8 2 original 55.9 2.5 69.9 81.5
8 2 modified 24.0 2.6 60.1 74.0
8 4 original 18.6 7.8 T35 87.6
8 8 modified 1.5 11.1 72.2 86.4
8 8 original 8.7 383 85.8 95.0
8 8 modified 34 44.1 84.5 94.4
8 16 original 9.2 35.3 87.2 95.9
8 16 modified 1.5 46.1 87.0 95.5
16 2 original 57.2 3.2 72.4 78.4
16 2 modified 323 5.8 69.6 76.1
16 4 original 16.9 10.9 71.7 83.5
16 4 modified 1.7 1.1 76.5 82.5
16 8 original 6.1 279 88.2 92.5
16 8 modified 2.0 43.7 87.8 92.1
16 | 16 original 7.8 26.0 914 94.5
16 16 modified 0.7 40.2 91.2 94.2

performance using 8 X 8 phase elements in each period of the DOE with two, four, eight,
and sixteen phase levels. Figure 8-4 shows the designed DOE performance using 16 X 16
phase elements in each period of the DOE with two, four, eight, and sixteen phase levels.
From Figure 8-3 and 8-4, we can see that the modified Gerchberg-Saxton algorithm with
the noise-adjusting scheduling and the phase-quantization scheduling can effectively
converge to DOEs with lower non-uniformity and higher signal-to-noise ratio than the
original Gerchberg-Saxton algorithm for this spot array target pattern although it takes

longer to converge. Figure 8-5 shows the DOE performance as functions of phase levels
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Figure 8-3: DOE performance as a function of phase levels for the 3 x 3 spot array generator using the

original and modified Gerchberg-Saxton algorithms with 8 x 8 phase elements in each
period of the DOEs.

and number of phase elements in each period of the DOE using the modified Gerchberg-
Saxton algorithm. From Figure 8-5, it is clear that the DOE will perform better if more

phase elements in each period of the DOE and/or phase levels are used.
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Figure 8-5: DOE performance as a function of phase levels for the 3 x 3 spot array using the
modified Gerchberg-Saxton algorithms with 8 x 8 or 16 x 16 phase elements in each
period of the DOEs.
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We have also designed DOEs using 8 X 8 or 16 X 16 phase elements in each period
of the DOE with two, four, eight, and sixteen phase levels for the 3 X 3 triangular pattern
using the original and modified algorithms. The triangular connection pattern has a target

pattern of

0.25 0.5 0.25
Triangular = |05 1 05]- (8-8)

0.25 0.5 0.25

Note that because the desired connection weights in this pattern are not constant as in the
case of the spot array generator, the non-uniformity of the DOE is calculated after the
reconstructed signal diffraction orders are normalized by their corresponding desired

connection weights. Therefore, the non-uniformity (NU) is redefined as

[signal intensity} ; [signal intensity]
ax . —min .
target weight target weight
ax [51gnal mte.nsuy] +min I:Slg nal 1nt§n51ty:|
target weight target weight

NU = x 100% . (8-9)

Table 8-2 lists the performance of the DOE designed for the 3 X 3 triangular pattern

using both the original and modified Gerchberg-Saxton algorithms. The results are plotted
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Table 8-2: Performance of the DOE designed using the original and modified Gerchberg-Saxton algorithm
for 3 x 3 triangular pattern

J Z Algorithm NU (%) MinSNR M (%) Nw (%)
8 ) original 20. 3.6 82.0 90.7
8 2 modified 28.5 34 80.0 89.8
8 4 original 15.8 6.5 78.3 88.6
8 4 modified 8.3 6.4 73.6 85.7
8 8 original 28.6 5.1 84.8 92.8
8 8 modified 3.2 79 83.9 92.2
8 16 original 20.7 17.0 87.6 952
8 16 modified 1.9 119 86.8 94.3
16 2 original 229 9.2 82.7 87.4
16 2 modified 19.6 53 82.0 86.7
16 4 original 18.1 8.0 823 87.0
16 4 modified 52 11.5 80.2 85.5
16 8 original 28.0 11.3 874 914
16 8 modified 1.9 12.9 86.4 90.1
16 16 original 19.8 4.0 87.1 90.1
16 16 modified 1.1 17.8 90.3 92.7

in Figure 8-6 and Figure 8-7. From Figure 8-6 and 8-7, we can see that the modified
Gerchberg-Saxton algorithm with the noise-adjusting scheduling and the phase-
quantization scheduling can effectively converge to DOEs with much lower non-
uniformity and higher signal-to-noise ratio than the original Gerchberg-Saxton algorithm
for this triangular connection pattern. We have also plotted in Figure 8-8 the DOE
performance as functions of phase levels and number of phase elements in each period of
the DOE using the modified algorithm for the triangular pattern. Figure 8-8 still shows

that the DOE will perform better if more phase elements in each period of the DOE and/or
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Figure 8-6: DOE performance as a function of phase levels for the 3 X 3 triangular pattern using the
original and modified Gerchberg-Saxton algorithms with 8 X 8 phase elements in each
period of the DOEs.

phase levels are used. Note that both the original and modified Gerchberg-Saxton
algorithms give rather poor DOE solutions when the phase level is two (binary-phase-
level DOEs). In the next section, we will discuss the use of simulated annealing algorithm
that will be proven useful in these cases. In the rest of the chapter, we will develope other
design approaches and compare their performance against the performance of this

modified Gerchberg-Saxton.
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Figure 8-7: DOE performance as a function of phase levels for the 3 x 3 triangular pattern using the
original and modified Gerchberg-Saxton algorithms with 16 X 16 phase elements in each

period of the DOEs.

168



BOi
%25 \ Dashed line: J=8
> Solid line: J=16
=20
=
< 15}
5
= 101
Z o _
0 A i A _* 0 i A i
5 10 15 5 10 15
Phase Levels Phase Levels
95
S| S
7 =
2 85| g
2 2
= E90%
ol P m
=) \ =
2 751 / =
£°) g
70 2 : : 85 : - -
5 10 15 5 10 15
Phase Levels Phase Levels

Figure 8-8: DOE performance as a function of phase levels for the 3 x 3 triangular pattern using the
modified Gerchberg-Saxton algorithms with 8 x 8 or 16 x 16 phase elements in each
period of the DOEs.
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8.2 Dual-Cost-Function Simulated Annealing Algorithm

Simulated annealing is a time-consuming process that can theoretically obtain an optimum
solution by using a statistical searching procedure with an appropriate annealing schedule
and unlimited computation time [42]. Figure 8-9 shows the basic conceptual flow diagram
of the simulated annealing algorithm. The algorithm begins with a randomly selected
phase distribution and an initial annealing temperature. The corresponding diffraction
pattern is then calculated from Eq. (8-1) and the cost function of the DOE is calculated. The
cost function is the figure of merit of the DOE, and a commonly used cost function is the

root-mean-squared-error (RMSE) [42, 50, 52] that is defined by

|
T (W(rs)-n(r,]7]2

RMSE= | £ . : (8-10)
J

where W (r, s) is the desired connection weight and 1 (r, s) is the intensity of the
diffraction order. The algorithm then randomly selects a phase element from one
period of the DOE and randomly changes its phase to one of the Z pre-defined phase
levels. The corresponding diffraction pattern and cost are then calculated for this trial
DOE phase distribution. If the cost of the trial is less than the original cost, the
change is unconditionally accepted. Otherwise, the change is accepted only if the
probability of accept, which is usually some function of the annealing temperature
and the difference between the trial cost and the original cost, is greater than some

randomly selected minimum probability (a uniformly distributed random number
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- initialize phase distribution randomly
- calculate diffraction pattern and RMSH
- initialize annealing temperature

| |

- randomly select a phase element and
- randomly change its phase to one of the Z levels
- calculate trial diffraction pattern and trial RMSE

(trial RMSE) < RMSE No

or (prob. of accept > min. prob.)

Yes l

- accept the change by updating
- phase distribution, diffraction pattern, and RMSE

decrease annealing temperature after some time

l

No

converged?

l Yes

Figure 8-9: Schematic diagram of the simulated annealing algorithm
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between 0 and 1). In this thesis, we use the following form of the probability of

accepting a bad change [50] as

1
(RMSE of the trial) — RMSE
annealing temperature

Probability of accepting a bad change = .(8-11)

1+ expl:

This mechanism of accepting a bad change is very important because it is used to move the
algorithm out of a local minimum. After some time, the annealing temperature is decreased
to reduce the probability of accepting a bad change. In this thesis, we decrease the
annealing temperature by a factor of 0.9 ~0.95 when the number of accepted changes
reaches a pre-defined threshold. This process is then repeated until it converges to the final
solution. In each iteration, the simulated annealing algorithm operates on only one of the
.12 phase elements rather than on the entire J : phase elements simultaneously as in the case
of the Gerchberg-Saxton algorithm. Therefore, the simulated annealing algorithm will, in
general, take on the order of J* times more iterations to converge than the Gerchberg-
Saxton algorithm. Further, the total number of iterations will also increase as the number
of phase levels increases. It is important to use an appropriate initial value and annealing
scheduling for the annealing temperature to ensure that the algorithm can move away from
the local minimum. If the initial annealing temperature is too high or if the annealing
temperature is decreased at a very low rate in the iterations, then it will take the annealing
algorithm a very long time to converge. On the other hand, if the initial annealing
temperature is too low or if the annealing temperature is decreased too fast in the iterations,
then the annealing algorithm will be more likely to get trapped at one of the local minima.

It is also important to choose a suitable cost function in order to get good performance from
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the DOE. In this section, we will introduce a new cost function other than the root-mean-
squared-error and compare their effect on the results of the simulated annealing algorithm.
We can form a weight vector, W, from the desired connection weights and a

diffraction vector, 1}, from the diffraction order intensities

W=[W(rs)], (8-12)

and

A=l , (8-13)

where r,s€e {—%, el ...,(%—1]}. Note that both the weight vector and the
diffraction vector have J° components and only 102 components in each of the two
vectors are the desired ones. In this way, we can view the set of desired connection
weights and the set of diffraction order intensities as vectors in the J ? _dimensional hyper-
space. The absolute diffraction efficiency is then proportional to the sum of the desired

components of the diffraction vector. The root-mean-squared-error can be expressed in

terms of the length of the difference of the weight and diffraction vectors as

2 —
3l —

_w-al g

| TS
RMSE = 7

2
Y3 W (rs) -n(r9] ] {IW—ﬁIT

2

J 2

J

Therefore, the simulated annealing algorithm will try to find the DOE with the shortest
distance between the diffraction vector and the weight vector. This sometimes can lead to
a DOE with high diffraction efficiency but poor non-uniformity. In most applications, it is

important to maintain the relative strength among the diffraction orders while looking for
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high diffraction efficiency, but less important for the overall diffraction efficiency to be the
same as the original target value. One way to emphasize the relative strength among
desired connection orders and undesired noise orders in the weight vector is to normalize
the vectors before measuring the distance between them. Let’s now define a new cost

function, normalized-root-mean-squared-error (NRMSE), as

2
NRMSE = £ . (8-15)

J2

s _-d
J

This cost function will force the annealing algorithm to look for a DOE to best match the

relative strength in the weight vector. This concept is demonstrated in Figure 8-10. In

Figure 8-10: Conceptual diagram for the effect of the cost function on simulated annealing
algorithm

Figure 8-10, the original simulated annealing algorithm will choose TT: over 1T; because

— ) 2 —
the distance between 1, and W is smaller than the distance between n, and W. However,
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ﬁ: can offer a better non-uniformity among the desired connection orders for the case. If
we normalize the vectors and use the new cost function (NRMSE), then the algorithm will
now select TT; instead of TT; . On the other hand, from our design experience, the simulated
annealing algorithm with NRMSE as the cost function usually converges to DOE solutions
with good uniformities but low diffraction efficiencies. This is because the NRMSE cost
function forces the simulated annealing algorithm to look for a solution that best matches
the relative strength of desired connection orders and undesired noise orders in the weight
vector. What we really want is DOEs with good uniformities and high diffraction
efficiencies. The normalized-root-mean-squared-error alone can not achieve the goal.
Therefore, we introduce a second companion cost function, total noise energy (7N), as the
total noise energy in the mainlobe and all the sidelobes. Basically, we want to have DOEs
with good uniformities and low noise energy. By forcing the simulated annealing algorithm
look for a DOE solution with low normalized-root-mean-squared-error and low total noise
energy, we should have a better solution than the RMSE-annealing approach.

In order to incorporate the two cost functions, NRMSE and TN, we have developed a
dual-cost-function simulated annealing algorithm (DCFSA) as shown in Figure 8-11. This
new algorithm accepts the change if one of the four conditions is true: the trial costs for
NRMSE and TN are both decreased, or the trial cost for NRMSE is decreased and the
probability of accepting a bad change for TN is greater than some randomly selected
probability, or the probability of accepting a bad change for NRMSE is greater than some
randomly selected probability and the trial cost for TN is decreased, or the probability of

accepting a bad change for NRMSE is greater than some randomly selected probability
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- initialize phase distribution randomly
- calculate diffraction pattern, costNRMSE, and costTN
- initialize annealing temperature

v
- randomly select a phase element and

randomly change its phase to one of the Z level
- calculate trial diffraction pattern, trial costNRMSE, and costTN

trial costNRMSE < costNRMSE) and (trial costTN < cost
or (trial costNRMSE < costNRMSE) and (prob. of acceptTN > min. probTN
or (prob. of acceptNRMSE > min. probNRMSE) and (trial costTN < costTN)

or (prob. of acceptNRMSE > min. probNRMSE) and (prob. of acceptTN > min. probT

- accept the change by updating
phase distribution, diffraction pattern, costNRMSE, and costTN

[ decrease annealing temperature after some

No

converged?

l Yes

Figure 8-11: Schematic diagram of the dual-cost-function simulated annealing algorithm
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and the probability of accepting a bad change for TN is greater than some randomly
selected probability. It is also possible to incorporate an additional weight factor to
control the relative importance of the two cost functions to further tune the algorithm.
Using this new dual-cost-function simulated annealing algorithm, we have
redesigned the 3 X 3 spot array and the 3 X 3 triangular connection pattern using 8 x 8
phase elements in each period of the DOE with two, four, and eight phase levels. For
comparison, we have also designed DOEs using the original simulated annealing
algorithm with the cost function of the sum-of-squared-error. Because of randomness in
the simulated annealing algorithm, we have run the design algorithms 30~50 times for
each case and picked the one with best NRMSE. Table 8-3 lists the performance of the
DOEs designed using the original and dual-cost-function simulated annealing algorithms
(RMSESA and DCFSA, respectively) in terms of non-uniformity, minimum signal-to-noise
ratio (MinSNR), absolute diffraction efficiency (1), and normalized-root-mean-squared-
error (NRMSE) for the target pattern of the 3 X 3 spot array generator. For comparison,
we also list the data of the DOEs designed in the previous section using the modified
Gerchberg-Saxton (MGS) algorithm. Table 8-4 lists the performance of the DOE in terms
of normalized non-uniformity, minimum signal-to-noise ratio (MinSNR), absolute
diffraction efficiency, and normalized-root-mean-squared-error (NRMSE) for the 3 x 3
triangular weighted connection pattern. From Table 8-3 and 8-4, it is clear that dual-cost-
function simulated annealing algorithm performs better than the original simulated

annealing algorithm in almost all the figure of merits.
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Table 8-3: Performance of the DOE designed using modified Gerchberg-Saxton (MGS), original simulated
annealing (RMSESA), and dual-cost-function simulated annealing (DCFSA) algorithms for 3 X
3 spot array generator. NRMSE is the normalized-root-mean-squared-error.

J | Z | Algorithm NU (%) MinSNR N (%) NRMSE
- R MGS 24.0 2.6 60.1 3.6495
8 2 | RMSESA 18.2 31 65.1 2.6643
8 2 DCFSA 4.3 6.4 58.5 1.9104
8 | 4 MGS 1.5 11.1 72.2 1.1328
8 | 4 | RMSESA 10.0 7.4 75.1 1.4328
8 | 4 DCFSA 3.8 15.0 722 1.0028
8 | 8 MGS 34 44.1 84.5 0.5529
8 8 | RMSESA 4.5 31.9 85.4 0.5593
8 8 DCFSA 3.4 44.1 84.5 0.5529

Table 8-4: Performance of the DOE designed using modified Gerchberg-Saxton (MGS), original simulated
annealing (RMSESA), and dual-cost-function simulated annealing (DCFSA) algorithms for 3 x
3 triangular pattern. NRMSE is the normalized-root-mean-squared-error.

J | Z | Algorithm NU (%) MinSNR M (%) NRMSE
8 2! MGS 20.7 3.6 82.0 1.9381
8 | 2 | RMSESA 20.7 3.6 82.0 1.9381
8 | 2 DCFSA 12.2 5.9 732 1.1364
8 | 4 MGS 8.3 6.4 73.6 1.1024
8 | 4 | RMSESA 20.7 3.6 82.0 1.9381
8 | 4 DCESA 9.2 7.4 73.9 0.9914
8 8 MGS 3.2 i 83.9 0.6129
8 8 | RMSESA 9.4 10.8 85.6 0.7692
8 | 8 DCFSA 32 8.1 84.4 0.5963

Let’s now compare the DOE performance of the dual-cost-function simulated

annealing algorithm with the DOE performance of the modified Gerchberg-Saxton
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algorithm developed in the previous section. Figure 8-12 shows the non-uniformity,
minimum signal-to-noise ratio (MinSNR), absolute diffraction efficiency, and normalized-
root-mean-squared-error (NRMSE) of the DOEs designed for the 3 X3 spot array
generator using the modified Gerchberg-Saxton algorithm developed in the previous

section and the dual-cost-function simulated annealing algorithm. Figure 8-13 shows the
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Figure 8-12: DOE performance comparison as a function of phase levels for the 3 X 3 spot array
generator between the modified Gerchberg-Saxton and dual-cost-function simulated
annealing algorithms with 8 x 8 phase elements in each period of the DOEs.
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normalized non-uniformity, minimum signal-to-noise ratio (MinSNR), absolute diffraction

efficiency, and normalized-root-mean-squared-error (NRMSE) of the DOEs designed for

the 3 X 3 triangular connection pattern using the modified Gerchberg-Saxton algorithm

developed in the previous section and the dual-cost-function simulated annealing

algorithm. For the case of two-phase-level DOE, as can be seen from Table 8-4 and

(=]
wn
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Absolute Efficiency (%)
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2

Phase Levels

MinSNR
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Figure 8-13: DOE performance comparison as a function of phase levels for the 3 X 3 triangular
connection pattern between the modified Gerchberg-Saxton and dual-cost-function
simulated annealing algorithms with 8 x 8 phase elements in each period of the DOEs.

Figure 8-13, although the modified Gerchberg-Saxton algorithm provides higher

diffraction efficiency, the normalized non-uniformity, minimum signal-to-noise ratio,
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absolute diffraction efficiency, and normalized-root-mean-squared-error are all much
worse than the dual-cost-function simulated annealing algorithm for the triangular
connection pattern. From Figure 8-12 and 8-13, it is also clear that the dual-cost-function
simulated annealing algorithm can provide a substantial amount of performance
improvement over the already modified Gerchberg-Saxton algorithm. This performance
improvement is most sig-niﬁcant for the case of binary-phase-level DOEs and generally

decreases as the number of the phase levels in the DOEs increases.
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8.3 Using Unequally Spaced Phase Levels in DOE Design

Each phase element of a DOE can only have one of the pre-defined phase level indices.
Each of the phase level indices is assigned a phase delay relative to the zero-phase-level-
index. Usually, those phase delays are equally distributed between 0 and 27. In this
section, we will point out that the use of equally spaced phase levels is really unnecessary
and can be relieved to increase the design freedom of the optimization algorithm. For a Z-
phase-level DOE, the phase level index, PI(p, q), of a phase element can have any index
value from O to (Z-1). Each phase level index corresponds to one of the Z possible phase
delays. To fabricate this Z-phase-level DOE, log,Z etch steps are usually used as
suggested by Veldkamp [10]. Note that it is also possible to use deposition steps (adding
material onto the DOE substrate) instead of etch steps in DOE fabrication. By changing
the sign of the phase levels, the work in this section will still be applicable for the case of
deposition steps. In this thesis, DOEs are assumed to be fabricated by etching.

In each etch step, the relative phase delay, @,, (relative to PI(p, q) = 0) created by

the etch is usually

0, = (27“)-2""', (8-16)
where i = 1,2, ..., log,Z. In this thesis, we refer to these log,Z phase delays as

the independent phase delays and the remaining Z-log,Z phase delays as the
dependent phase delays since each of the dependent phase delays is just a linear
combination of the independent phase delays. If we express the phase level index,

PI(p, q), by its binary representation as
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log,Z .
PIp,q) = ¥ u;-2"7", (8-17)

|
where u; is the i’th bit of the binary representation of PI(p, g¢) and it can take on either one

or zero. Then the relative phase delay, PD(p, q), can be expressed as

log,Z
PD(p, q) = Z ;" @;. (8-18)

i=1
At the i’th etch step, if the i’th binary bit of the phase level index, PI(p, q), of a phase
element is one, then a phase delay of @; is needed and this phase delay is generated by
performing an etch into the DOE substrate for the phase elements with a zero in their i’th
bit. Otherwise, there is no etch and no phase delay generated. The correct etch depth, d,.,

for generating a phase delay of ¢, can be shown to be

(P,";\'
d = ———.
t2r- (n—-1)

(8-19)
where n is the index of refraction and A is the optical wavelength in the air. Note that, in
Eq. (8-19), we have assumed an air interface for the DOE. For a more general case, the one
in Eq. (8-19) should be replaced by the refraction index of the surrounding material. The
total phase delay of a phase element is the sum of the phase delay generated from all the

etch steps. Combining Eq. (8-16), (8-17), and (8-18), we can immediately see that the

phase delay, PD(p, q), of a phase element can be simply expressed as

log,Z log,Z

PD(p,q) = Y, ul.-(%“)-z“' = 27“ 3 w2 = %E-Pf(p,q). (8-20)

i=1 i=1
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The phase delays are therefore equally spaced with a spacing of 2n/Z.

w because we restrict

ourselves to etch to create a phase delay of (2%) ¢2' 7! at the i'th etch step. This

The phase delays are equally spaced between 0 and

restriction is really unnecessary and can be relieved. We can use these independent phase
delays as additional free parameters in DOE design. Therefore, we will have an additional
set of log,Z free parameters for optimizing the DOE. Each of the independent phase
delays can have any value between 0 and 2rt. Table 8-5 lists the phase delay distributions
of the conventional equal-spaced independent phase delay scheme and the optimized
independent phase delay scheme for two, four, and eight phase levels. From Table 8-5, we
can see that the conventional equal-spaced independent phase delay scheme is just a
special case of the more general optimized independent phase delay scheme. With this
optimized independent phase delay scheme, the maximum phase delay is just the sum of
all the independent phase delays and this maximum phase delay can be greater than 27.
In the conventional equal-spaced independent phase delay scheme, the maximum phase

delay is always less than 2.
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Table 8-5: Equally spaced phase delays and optimized phase delays for two, four, and eight phase levels

Phase Independent :
Z ¢
Delay Type | Phase Delays All Possible Phase Delays
Equally
) s
- Spaced P =T 0.%
2 | Optimized 0, 0, ¢,
¢, = /2
o 0,7/2, T, 31/2
paced ¢, =™
4 | Optimized D Py 0, O Py @) + 0,
¢, = n/4
g | Eaually |\ o —ns2 0,m/4,1/2,31/4, 7, 5n/4, 31/2, Tn/4
Spaced
Qg =l
b 0,9, 9y @ + 9y, 93, 9, + @3
8 | Optimized P> Dy @5
Pr+ @3 P+ P+

Note that the fabrication complexity remains the same for this proposed new scheme
since we are not trying to optimize the phase delays of all the Z phase levels. We are only

optimizing the log,Z independent phase delays and each of the other phase delays is still
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the linear combination of the independent phase delays. We only need to change the etch
depth in each etch step according to the optimized values for the independent phase delays
from the design algorithm. In general, the resultant DOE will not have equally spaced
phase delays between 0 and 27t. On the other hand, this proposed concept does increase
the complexity of the design algorithm. Although this new concept should be applicable
using other design algorithms, we will implement this idea using the dual-cost-function
simulated annealing algorithm developed in the previous section.

Figure 8-14 shows the conceptual flow diagram for the dual-cost-function simulated
annealing algorithm with phase delay optimization. The algorithm begins with a
randomly selected phase distribution, an initial annealing temperature, and a randomly
selected set of independent phase delays (each between 0 and 2x). The corresponding
diffraction pattern is then calculated from Eq. (8-1) and the two cost functions of the DOE
are calculated. The algorithm then randomly selects a phase element from one period of
the DOE and randomly selects a new phase index for it. At the same time, a set of phase
delay changes, {A¢,i=1,...,log,Z}, is randomly selected and the trial set of
independent phase delays is formed by (pi.”.m' = @, +A¢@;. The maximum allowable
value for the phase delay changes is limited to a fraction of m radian and this maximum
allowable value is decreased with the annealing temperature. The corresponding
diffraction pattern and costs are then calculated for this trial DOE phase distribution and
independent phase delays. This new algorithm will accept the change on the phase index
and the independent phase delays only if one of the four following conditions is true: the

trial costs for NRMSE and TN are both decreased, or the trial cost for NRMSE is decreased
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- mitialize phase distribution randomly
- calculate diffraction pattern, costNRMSE, and costTN
- initialize annealing temperature, and independent phase delays

Y
- randomly select a phase element and randomly change its phase index
- randomly select{ A@,} and form trial set of independent phase delays
- calculate trial diffraction pattern, trial costNRMSE, and costTN

(trial costNRMSE < costNRMSE) and (trial costTN < costTN)
or (trial costNRMSE < costNRMSE) and (prob. of acceptTN > min. probTN)
or (prob. of acceptNRMSE > min. probNRMSE) and (trial costTN < costTN)
or (prob. of acceptNRMSE > min. probNRMSE) and (prob. of acceptTN > min. probTN

No

accept the change by updating phase distribution, diffraction pattern,
costNRMSE, costTN, and independent phase delays

v
decrease annealing temperature atter some time

No

converged?

l Yes

Figure 8-14: Schematic diagram of the dual-cost-function simulated annealing algorithm with phase
delay optimization.
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and the probability of accepting a bad change for TN is greater than some randomly
selected probability, or the probability of accepting a bad change for NRMSE is greater
than some randomly selected probability and the trial cost for TN is decreased, or the
probability of accepting a bad change for NRMSE is greater than some randomly selected
probability and the probability of accepting a bad change for TN is greater than some
randomly selected probability. After some time, the annealing temperature is decreased to
reduce the probability of accepting a set of bad changes. This process is then repeated
until it converges to the final solution with a phase index distribution and set of
independent phase delays.

Using this new dual-cost-function simulated annealing algorithm with phase delay
optimization, we have redesigned the 3 X3 spot array with 8 X8 or 16x 16 phase
elements in each period of the DOE and two, four, and eight phase levels. Because of
randomness in the simulated annealing algorithm, we have run the design algorithms
30~50 times for each case and picked the one with best NRMSE. Table 8-6 lists the
performance of the DOE designed using the dual-cost-function simulated annealing
algorithm without phase delay optimization (referred as DCFSA) and with phase delay
optimization (referred as DCFSAOP) in terms of non-uniformity, minimum signal-to-
noise ratio (MinSNR), absolute diffraction efficiency, and normalized-root-mean-squared-
error (NRMSE). Table 8-6 also lists the optimized independent phase delays at the end of
each row. For comparison purposes, the performance of the DOEs designed using
modified Gerchberg-Saxton algorithm (referred as MGS) is also listed in Table 8-6. By

comparing the data for dual-cost-function simulated annealing approaches in Table 8-6,
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Table 8-6: Performance of the DOE designed using the modified Gerchberg-Saxton (MGS) algorithm and
dual-cost-function simulated annealing algorithm with and without phase delay optimization
(DCFSA and DCFSAOP, respectively) for 3 x 3 spot array generator.

. NU _ n Independent

J | Z | Algorithm (%) MinSNR (%) NRMSE Phase
Delays

8 |2 MGS 240 2.6 60.1 3.6495 T
8 |2 DCFSA 4.3 6.4 58.5 1.9104 T
8 | 2| DCFSAOP | 44 7.1 67.7 1.5195 1.16m
8 | 4 MGS 1.5 11.1 722 1.1328 /2, T
8 | 4 DCFSA 3.8 15.0 72.2 1.0028 n/2, T
8 | 4 | DCFSAOP | 24 219 79.0 0.7119 0.38m, 0.761
8 |8 MGS 34 44.1 84.5 0.5529 n/4,n/2, T
8 |8 DCFSA 34 44.1 84.5 0.5529 /4, /2, T
8 | 8 | DCFSAOP | 0.7 35.6 84.5 0.3909 | 0.25m, 0.697, 1.27
16 | 2 MGS 323 5.8 69.6 1.8229 n
16 | 2 DCFSA 11.1 7.9 63.7 0.8835 T
16 | 2 | DCFSAOP | 0.9 7.1 724 0.7195 0.821
16 | 4 MGS L7 11.1 76.5 0.5109 n/2, .
16 | 4 DCFSA 1.9 16.3 76.8 0.4710 n/2, T
16 | 4 | DCFSAOP | 0.9 19.8 81.8 0.3404 0.34m, 0.807
16 | 8 MGS 2.0 43.7 87.8 0.1933 n/4,n/2, T
16 | 8 DCFSA 0.7 30.5 88.0 0.1874 n/4, /2, T
16 | 8 | DCFSAOP | 14 40.0 88.1 0.1861 | 0.24m, 0.48x, 1.067

we can see that the phase delay optimization approach generally provides better non-
uniformity, better (or comparable) minimum signal-to-noise ratio, higher absolute
diffraction efficiency, and lower normalized-root-mean-squared-error than the non-

optimized approach.
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Let’s now compare the DOE performance between the modified Gerchberg-Saxton
algorithm and the dual-cost-function simulated annealing algorithm with phase delay

optimization. In Figure 8-15, we have plotted non-uniformity, minimum signal-to-noise
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Figure 8-15: DOE performance comparison as a function of phase levels for the 3 X 3 spot array
generator with 8 x 8 phase elements in each period of the DOEs using the modified
Gerchberg-Saxton algorithm and the dual-cost-function simulated annealing algorithms
with phase optimization,

ratio (MinSNR), absolute diffraction efficiency, and normalized-root-mean-squared-error
(NRMSE) as a function of phase levels for the case of 8 X 8 phase elements in each period
of the DOE for the modified Gerchberg-Saxton algorithm and dual-cost-function

simulated annealing algorithm with phase delay optimization. Figure 8-16 shows non-
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uniformity, minimum signal-to-noise ratio (MinSNR), absolute diffraction efficiency, and
normalized-root-mean-squared-error (NRMSE) as a function of phase levels for the case
of 16 x 16 phase elements in each period of the DOE for the modified Gerchberg-Saxton
algorithm and the dual-cost-function simulated annealing algorithm with phase delay
optimization. From Figure 8-15 and Figure 8-16, we can see that the dual-cost-function
simulated annealing algorithm with phase delay optimization can provide substantial

performance improvement over the modified Gerchberg-Saxton algorithm. For a given
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Figure 8-16: DOE performance comparison as a function of phase levels for the 3 x 3 spot array

generator with 16 X 16 phase elements in each period of the DOEs using the modified

Gerchberg-Saxton algorithm and the dual-cost-function simulated annealing algorithms
with phase optimization.
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space-bandwidth-product of the DOE, the improvement on NRMSE is most significant for
the two-phase-level case and least significant for the eight-phase-level case. In the cases
that the substantial improvement are seen, the optimized independent phase delays for the
DOE:s are quite different from the non-optimized independent phase delays (e. g., the third
or sixth row in Table 8-6). On the other hand, when the optimized independent phase
delays for the DOEs are very close to the non-optimized independent phase delays, the
performance improvement becomes marginal (e. g., the last row in Table 8-6). Note that,
as can be seen from the sixth and thirteen rows of Table 8-6, the four-phase-level DOE
with a space-bandwidth-product of 64 (8 X 8 phase elements in each period of the DOE)
designed using the dual-cost-function simulated annealing algorithm with phase delay
optimization has much higher minimum signal-to-noise ratio, and higher diffraction
efficiency (2.5% more) than the four-phase-level DOE with a space-bandwidth-product of
256 (16 x 16 phase elements in each period of the DOE) designed using the modified
Gerchberg-Saxton algorithm. Therefore, for this particular case, we can use less space-
bandwidth-product in each period of the DOE and still obtain the DOE with better
minimum signal-to-noise ratio and diffraction efficiency.

In Figure 8-17, we plot the optimized phase delays for the DOEs listed in Table 8-6.
Note that the maximum phase delay for the DOE in the fourth and tenth rows of Table 8-6
are much less than the maximum phase delay of the non-optimized approach (which is
3n/2). Furthermore, the optimized phase delays for DOE in the sixth row of Table 8-6
are approximately equally distributed between 0 and 1.141 with a phase delay step of

roughly 0.38w. This can also be seen clearly in Figure 8-17. In this case, we have
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Figure 8-17: Phase delays for the DOEs in Table 8-6. On the left-hand-side are the optimized phase
delays for the case of 8 x 8 phase elements in each period of the DOEs and the
optimized phase delays for the case of 16 x 16 phase elements in each period of the
DOE:s are on the right-hand-side.
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basically found a solution with the same fixed number of phase levels but finer phase steps
that can better approximate the ideal DOE phase profile and improve the DOE
performance. On the other hand, the maximum phase delay for the DOE in the ninth row
of Table 8-6 has a value of 2.147 and is substantially larger than the maximum phase
delay of the non-optimized approach (which is 7t/4). This is quite different from the
case of conventional DOEs, in which the maximum phase delay is always less than 2.
Recall that the maximum phase delay is just the sum of all the independent phase delays,
and because the optimization algorithm optimizes each of the independent phase delays in
the range between 0 and 271, a maximum phase delay value greater than 271 is possible
although the effective phase delay is the same as the remainder of that phase delay divided
by 2m.

We have also redesigned DOEs for the 3 X3 triangular connection pattern with
8 x 8 or 16 X 16 phase elements in each period of the DOE and two, four, and eight phase
levels. Table 8-7 lists the performance of the DOE designed using the modified
Gerchberg-Saxton (MGS) algorithm and the dual-cost-function simulated annealing
algorithm without phase delay optimization (DCFSA) and with phase delay optimization
(DCFSAOP) in terms of normalized non-uniformity, minimum signal-to-noise ratio
(MinSNR), absolute diffraction efficiency, and normalized-root-mean-squared-error
(NRMSE). The optimized independent phase delays are listed at the end of each row of
Table 8-7. By comparing the data for dual-cost-function simulated annealing approaches
in Table 8-7, we can see that the phase delay optimization approach generally performs

better than the non-optimized approach for this target pattern. Figure 8-18 shows
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Table 8-7: Performance of the DOE designed using the modified Gerchberg-Saxton (MGS) algorithm and
the dual-cost-function simulated annealing algorithm with and without phase delay optimization
(DCFSA and DCFSAQRP, respectively) for 3 x 3 triangular pattern

. NU . n Independent

J | Z | Algorithm (%) MinSNR %) NRMSE Phase
Delays

8 |2 MGS 20.7 3.6 82.0 1.9381 T
8 | 2 DCFSA 12.2 2.9 73.2 1.1364 T
8 | 2 | DCFSAOP | 3.0 7.2 69.6 1.0369 0.73m
8 | 4 MGS 8.3 6.4 73.6 1.1024 n/2,
8 | 4 DCFSA 9.2 7.4 739 | 09914 n/2, .
8 | 4 | DCFSAOP | 49 9.0 83.6 | 0.5508 0.61m, 1.667
8 |8 MGS 32 1.9 83.9 | 0.6129 n/4, /2,
8 |8 DCFSA 3.2 8.1 84.4 | 0.5963 n/4, /2,
8 | 8 | DCFSAOP | 3.7 18.3 87.0 | 04106 | 0.18m, 0.41m, 1.5%
16 | 2 MGS 19.6 3.3 82.0 | 0.7157 T
16 | 2 DCFSA 9.1 5.8 77.3 | 0.4999 T
16 | 2 | DCFSAOP | 2.3 6.5 73.7 | 0.4788 0.71n
16 | 4 MGS 52 11.5 80.2 | 0.3583 /2,1
16 | 4 DCFSA 3.2 11.8 80.5 | 0.3752 n/2, T
16 | 4 | DCFSAOP 1.2 13.3 85.5 | 0.2357 0.69m, 1.7
16 | 8 MGS 1.9 12.9 86.4 | 0.2516 n/4, /2,
16 | 8 DCFSA 1.9 12.1 86.8 | 0.2444 n/4, /2,
16 | 8 | DCEFSAOP 1.6 20.0 89.9 0.2117 | 0.33m, 0.61m, 1.841

normalized non-uniformity, minimum signal-to-noise ratio (MinSNR), absolute diffraction
efficiency, and normalized-root-mean-squared-error (NRMSE) as a function of phase
levels for the case of 8 x 8 phase elements in each period of the DOE for the modified

Gerchberg-Saxton algorithm and dual-cost-function simulated annealing algorithm with
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phase delay optimization. It is obvious that, for a given number of phase levels, the dual-
cost-function simulated annealing algorithm with phase delay optimization generally
performs better than the already modified Gerchberg-Saxton algorithm for DOEs with
8 x 8 phase elements in each period of the DOE. As can be seen from the sixth and fourth
rows of Table 8-7, the optimized-phase-delay DOE can even provide 10% improvement
on the diffraction efficiency with better non-uniformity, minimum signal-to-noise ratio,
and normalized-root-mean-squared-error than the modified Gerchberg-Saxton algorithm.
Furthermore, as can be seen from Table 8-7, the four-phase-level DOE with 8 X 8 phase
elements in each period of the DOE designed using the dual-cost-function simulated
annealing algorithm with phase delay optimization has only slightly higher non-
uniformity, higher minimum signal-to-noise ratio, equivalent diffraction efficiency, and
lower normalized-root-mean-squared-error than the eight-phase-level DOE with 8 X 8
phase elements in each period of the DOE designed using the modified Gerchberg-Saxton
algorithm. This means that we can reduce the fabrication complexity (use four rather than
eight phase levels) while still producing comparable DOE performance.

Figure 8-19 shows normalized non-uniformity, minimum signal-to-noise ratio
(MinSNR), absolute diffraction efficiency, and normalized-root-mean-squared-error
(NRMSE) as a function of phase levels for the case of 16 x 16 phase elements in each
period of the DOE for the modified Gerchberg-Saxton algorithm and dual-cost-function
simulated annealing algorithm with phase delay optimization. From Figure 8-18 and
Figure 8-19, we can see that the dual-cost-function simulated annealing algorithm with

phase delay optimization still provides substantial performance improvement over the
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Figure 8-18: DOE performance comparison as a function of phase levels for the 3 X 3 triangular
pattern with 8 x 8 phase elements in each period of the DOEs using the modified
Gerchberg-Saxton algorithm and the dual-cost-function simulated annealing algorithms
with phase optimization.

modified Gerchberg-Saxton algorithm for the case of the 3 X3 triangular connection
pattern. Note that, for the two-phase-level case, the dual-cost-function simulated
annealing algorithm with phase delay optimization found the DOE with much lower
normalized non-uniformity, higher minimum-signal-to-noise-ratio, and lower normalized-
root-mean-squared-error but lower absolute diffraction efficiency than the DOE that the

modified Gerchberg-Saxton obtained. For the cases of four and eight phase levels, the

dual-cost-function simulated annealing algorithm with phase delay optimization always
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Figure 8-19: DOE performance comparison as a function of phase levels for the 3 X 3 triangular
pattern with 16 x 16 phase elements in each period of the DOEs using the modified
Gerchberg-Saxton algorithm and the dual-cost-function simulated annealing algorithms
with phase optimization.

found the DOE with better non-uniformity, minimum signal-to-noise ratio, and
normalized-root-mean-squared-error, and absolute diffraction efficiency than the DOE
that the modified Gerchberg-Saxton obtained. Note that, as can be seen from Table 8-7,
the four-phase-level DOE with a space-bandwidth-product of 64 (8 x 8 phase elements in
each period of the DOE) designed using the dual-cost-function simulated annealing
algorithm with phase delay optimization has lower non-uniformity, comparable minimum
signal-to-noise ratio, higher diffraction efficiency (3.4% more), and slightly worse

normalized-root-mean-squared-error than the four-phase-level DOE with a space-
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bandwidth-product of 256 (16 X 16 phase elements in each period of the DOE) designed
using the modified Gerchberg-Saxton algorithm. Therefore, we can use one fourth of the
space-bandwidth-product and still get comparable results by using the dual-cost-function
simulated annealing algorithm with phase delay optimization.

In Figure 8-20, we plot the optimized phase delays for the DOEs listed in Table 8-7.
Note that, for this 3 X 3 triangular connection pattern, the maximum phase delays for the
binary-phase-level DOEs (either 8 X8 or 16 X 16 phase elements in each period of the
DOE) are smaller than the maximum phase delays of the non-optimized approach. On the
other hand, the maximum phase delays for the four (or eight)-phase-level DOEs (either
8 X 8 or 16 X 16 phase elements in each period of the DOE) are larger than the maximum
phase delays of the non-optimized approach.

In this thesis, we define dynamic range of a target pattern as the ratio of the
maximum weight value over the minimum weight value in the target pattern. Using this
definition, the triangular connection pattern has a dynamic range of four. It is common to
see dynamic range of ten or more for connection patterns in neural networks. Next, we
designed DOEs for target patterns with a high dynamic range using the dual-cost-function
simulated annealing algorithm with phase delay optimization. For this purpose, we have

formed a target pattern with a dynamic range of 10 (referred to as triangular2) as

0.1 0.5 0.1
Triangular2 = |05 1 0.5]- (8-21)

0.1 0.5 0.1
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Figure 8-20: Phase delays for the DOEs in Table 8-7. On the left-hand-side are the optimized phase
delays for the case of 8 x 8 phase elements in each period of the DOEs and the
optimized phase delays for the case of 16 x 16 phase elements in each period of the
DOEs are on the right-hand-side.
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We have designed the DOEs for this high dynamic range weight pattern with 8 x 8 (or
16 % 16) phase elements in each period of the DOEs and two, four, and eight phase levels
using the modified Gerchberg-Saxton algorithm and the dual-cost-function simulated

annealing algorithm with phase delay optimization. Table 8-8 lists the performance of the

Table 8-8: Performance of the DOE designed using the modified Gerchberg-Saxton algorithm and the dual-
cost-function simulated annealing algorithm with phase delay optimization for 3 X 3 triangular2

pattern
. NU _ - Independent
J | Z| Algorithm (%) MinSNR (%) NRMSE ];’hiase\
elays
8 |2 MGS 17.1 23 76.7 1.8359 T
8 | 2 | DCFSAOP 5.l 5.2 80.8 | 0.6484 0.76m
8 | 4 MGS 4.4 3.8 76.6 | 0.9394 n/2, .
8 | 4| DCFSAOP 2.0 6.8 84.5 | 0.4975 0.18m, 1.267
8 |8 MGS 54 6.4 86.9 | 0.7059 n/4, /2,
8 | 8 | DCFSAOP 5.9 7.4 87.9 | 0.4435 | 0.15m, 0.42w, 1.587
16 | 2 MGS 19.9 3.6 80.3 | 0.5761 T
16 | 2 | DCFSAOP 7.6 7.0 81.7 | 0.3358 1.24xw
16 | 4 MGS 18.7 55 79.7 | 0.4792 /2,
16 | 4 | DCFSAOP 1.9 6.8 86.9 | 0.2591 0.31m, 0.6m
16 | 8 MGS 6.0 4.9 879 | 0.2753 /4, /2,
16 | 8 | DCFSAOP 2.8 4.9 88.7 | 0.2419 | 0.13m, 0.32w, 0.527

DOEs designed using the modified Gerchberg-Saxton algorithm and dual-cost-function
simulated annealing algorithms with phase delay optimization in terms of normalized non-

uniformity, minimum signal-to-noise ratio (MinSNR), absolute diffraction efficiency, and
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normalized-root-mean-squared-error (NRMSE). Table 8-8 also lists the optimized
independent phase delays at the end of each row. In Figure 8-21, we have plotted the
normalized non-uniformity, minimum signal-to-noise ratio (MinSNR), absolute diffraction
efficiency, and normalized-root-mean-squared-error (NRMSE) as a function of phase levels
for the case of 8 X 8 phase elements in each period of the DOE for the modified Gerchberg-
Saxton algorithm and the dual-cost-function simulated annealing algorithm with phase
delay optimization for this 3 X 3 high dynamic range target pattern. From Table 8-8 and
Figure 8-21, it is apparent that, for a given number of phase levels, the dual-cost-function
simulated annealing algorithm with phase delay optimization generally performs much
better than the already modified Gerchberg-Saxton algorithm for DOEs with 8 X 8 phase
elements in each period of the DOE. Furthermore, in this particular case, the two-phase-
level DOE designed using the dual-cost-function simulated annealing algorithm with phase
delay optimization has only slightly higher non-uniformity, higher minimum signal-to-
noise ratio, higher diffraction efficiency (4.2% more), and lower normalized-root-mean-
squared-error than the four-phase-level DOE designed using the modified Gerchberg-
Saxton algorithm. This means that we can reduce the fabrication complexity (use two
rather than four phase levels) while still generally outperforming the MGS-designed DOE
with higher fabrication complexity.

Figure 8-22 shows the normalized non-uniformity, minimum signal-to-noise ratio
(MinSNR), absolute diffraction efficiency, and normalized-root-mean-squared-error
(NRMSE) as a function of phase levels for the case of 16 X 16 phase elements in each

period of the DOE for the modified Gerchberg-Saxton algorithm and the dual-cost-
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Figure 8-21: DOE performance comparison as a function of phase levels for the 3 x 3 triangular2
connection pattern (dynamic range of 10) with 8 x 8 phase elements in each period of the
DOEs using the modified Gerchberg-Saxton algorithm and the dual-cost-function
simulated annealing algorithms with phase delay optimization.
function simulated annealing algorithm with phase delay optimization. From Table 8-8,
Figure 8-21, and Figure 8-22, it is apparent that the dual-cost-function simulated
annealing algorithm with phase delay optimization performs much better overall than the
already modified Gerchberg-Saxton algorithm for a given value of space-bandwidth-

product and number of phase levels. Furthermore, for a fixed space-bandwidth-product in

each period of the DOE, the DOE designed using the dual-cost-function simulated
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Figure 8-22: DOE performance comparison as a function of phase levels for the 3 X 3 triangular2
connection pattern (dynamic range of 10) with 16 x 16 phase elements in each period
of the DOEs using the modified Gerchberg-Saxton algorithm and the dual-cost-
function simulated annealing algorithms with phase delay optimization.

annealing algorithm with phase delay optimization generally performs either comparable
with or better than the DOE designed using the modified Gerchberg-Saxton algorithm and
twice as many phase levels. For example, the two-phase-level DOE designed using the
dual-cost-function simulated annealing algorithm with phase delay optimization has lower

non-uniformity, higher minimum signal-to-noise ratio, higher diffraction efficiency (2%
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more), and lower normalized-root-mean-squared-error than the four-phase-level DOE
designed using the modified Gerchberg-Saxton algorithm for the case of 16 X 16 phase
elements in each period of the DOE. Also, for a fixed number of phase levels, the DOE
designed using the dual-cost-function simulated annealing algorithm with phase delay
optimization generally performs either comparable with or better than the DOE designed
using the modified Gerchberg-Saxton algorithm and four times as many space-bandwidth-
product in each period of the DOE. For example, the four-phase-level DOE with a space-
bandwidth-product of 64 (8 X8 phase elements in each period of the DOE) designed
using the dual-cost-function simulated annealing algorithm with phase delay optimization
has much lower non-uniformity, higher minimum signal-to-noise ratio, higher diffraction
efficiency (4.8% more), and comparable normalized-root-mean-squared-error than the
four-phase-level DOE with a space-bandwidth-product of 256 (16 x 16 phase elements in
each period of the DOE) designed using the modified Gerchberg-Saxton algorithm.
Therefore, by using the dual-cost-function simulated annealing algorithm with phase
delay optimization, we can either use fewer phase levels (reducing fabrication complexity)
or fewer phase elements in each period of the DOE (reducing space-bandwidth-product)
while producing DOEs with comparable or even better performance.

In Figure 8-23, we plot the optimized phase delays for the DOEs listed in Table 8-8.
Note that most of the maximum phase delays for the DOE in Figure 8-23 are much less
than the maximum phase delay of the non-optimized approach. On the other hand, for this
particular pattern, only two of the maximum phase delay in Figure 8-23 are substantially

larger than the maximum phase delay of the non-optimized approach. Also note that the
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Figure 8-23: Phase delays for the DOEs in Table 8-8. On the left-hand-side are the optimized phase
delays for the case of 8 x 8 phase elements in each period of the DOEs and the
optimized phase delays for the case of 16 x 16 phase elements in each period of the
DOEs are on the right-hand-side.
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optimized phase delays for DOE in the tenth row of Table 8-8 are approximately equally
distributed between 0 and 0.917 with a phase delay step of roughly 0.30m. This can also
be seen clearly in Figure 8-23. In this case, we have found a solution with the same fixed
number of phase levels but finer phase steps that can better approximate the ideal DOE
phase profile and improve the DOE performance.

Although the approach of optimizing the independent phase delays has been proven
useful in improving the performance of the DOEs, there are cases that the conventional
equally spaced phase delays are the optimum design approach. For example, let’s
consider the following deflector target pattern:

000
Deflector = [0 0 1] - (8-22)

000

Basically, this pattern will deflect the input light beam into the +1 diffraction order in the
horizontal direction. It can be shown that the optimum phase delays for this target pattern

2n - (Z-

are just the phase delays equally spaced between 0 and 7 D . Also, it can be shown

that the optimum diffraction efficiency, |, for this deflector can be expressed as

opt?
.21
Nppy = SiNC (E)- 100% . (8-23)

The minimum signal-to-noise ratio for the optimum DOE will be infinite since all the noise
diffraction orders have zero energy and all the light energy goes to the desired diffraction

order and its signal sidelobes. Detailed derivation for this stepped, quantized blazed grating
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can be found in several reference entries from Taghizadeh and Turunen’s DOE review
paper [40].

To test whether the phase-delay-optimization algorithm can find the theoretical
optimum phase delays, we have designed four-(and eight)-phase-level DOEs for this
deflector target pattern using the dual-cost-function simulated annealing algorithm with
phase delay optimization. Table 8-9 shows the minimum signal-to-noise ratio, absolute
diffraction efficiency, and independent phase delays for DOEs designed using the dual-
cost-function simulated annealing algorithm with phase delay optimization and the
theoretically calculated values (uniformity and NRMSE are not listed since there is only

one non-zero weight value in the target pattern). It can be seen from Table 8-9 that the

Table 8-9: DOE performance comparison between the theoretical optimum and the dual-cost-function
simulated annealing algorithm with phase delay optimization for the deflector pattern

I | Z | Algorithm | MinSNR n (%) Independent Phase Delays
4 | 4 Optimum oo 81.07 /2, T

4 | 4 | DCFSAOP 4558 81.03 0.514mw, 1.012xn

8 | 8| Optimum oo 94.96 n/4, /2,

8 | 8 | DCFSAOP 5626 94.93 0.257m, 0.496m, 1.0017

dual-cost-function simulated annealing algorithm with phase delay optimization does find
DOEs with phase delays that are very close to the optimum ones. Since each of the
independent phase delays is allowed to be any value between 0 and 27 in each iteration of
the annealing algorithm, therefore, it is unlikely that the algorithm will find the exact

optimum phase delays.
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In conclusion, the dual-cost-function simulated annealing algorithm with phase
delay optimization almost always performed better than the dual-cost-function simulated
annealing algorithm without phase delay optimization and modified Gerchberg-Saxton
algorithms for a given value of space-bandwidth-product and number of phase levels.
However, The improvement on DOE performance does vary for different target patterns,
phase levels used, and number of phase elements in one period of the DOE. In some
cases, for a fixed space-bandwidth-product in each period of the DOE, the DOE designed
using the dual-cost-function simulated annealing algorithm with phase delay optimization
performed better than the DOE designed using the other algorithms and twice as many
phase levels. In some cases, the DOE with a fixed number of phase levels designed using
the dual-cost-function simulated annealing algorithm with phase delay optimization even
performed better than the DOE designed using the other algorithms and four times the
space-bandwidth-product in each period of the DOE. Therefore, If we keep the space-
bandwidth-product in each period of the DOE and number of phase levels unchanged,
then we can use the dual-cost-function simulated annealing algorithm with phase delay
optimization to obtain DOEs with better performance. On the other hand, we can either
use fewer phase levels (reducing fabrication complexity) or fewer phase elements in each
period of the DOE (reducing space-bandwidth-product) and use the dual-cost-function
simulated annealing algorithm with phase delay optimization to obtain DOEs with
generally comparable or, in some cases, even better performance. These conclusions are
necessarily based on simulations of specific examples of DOE target patterns. And while

it is unknown to what degree the results generalize, the target patterns were chosen to
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represent a variety of possibilities. Since similar results were obtained for all target
patterns that we tried, we would expect the results to generalize to other target pattern of

similar nature.
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Chapter 9

Conclusions and Future Research

Directions

9.1 Conclusions

This dissertation has discussed DOE-based space-variant interconnections for multilayer
feed-forward three-dimensional computation structures. Two DOE-based space-variant
interconnection architectures, fully connected and limited-fanout, were investigated and
compared. Since the reconstruction of a diffractive optical element is sensitive to
illumination wavelength and to etch depth error due to fabrication, the effects of incorrect
wavelength and etch depth on DOE reconstruction were studied in this dissertation.
Because the performance of diffractive optical elements is critical for the interconnection
systems, this dissertation has investigated two design algorithms, Gerchberg-Saxton and
simulated annealing, and, based on these two algorithms, developed new design

approaches that are substantially better than the original algorithms.

We studied the properties of DOEs and established a reconstruction model of DOEs
in Chapter 3. The relations between a diffractive optical element and its reconstruction
were derived. We have also categorized the reconstructed diffraction orders as signal
orders, signal sidelobes, and spurious diffraction orders then derived the relations between

signal orders and signal sidelobes. Based on this categorization, we have established a
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reconstruction model, and have incorporated into this model a course approximation to the
non-ideal behavior of the DOE-system reconstruction lens. From this reconstruction
model, we identified and classified possible crosstalk components for the interconnection

crosstalk analysis in the following chapters.

The DOE-based fully connected space-variant interconnection architecture was
studied in Chapter 4. The expressions for propagation length, system lateral dimension,
system aspect ratio, f-number of the reconstruction optics, system volume, interconnection
density, and space-bandwidth product requirement were derived for a cascadable fully
connected space-variant interconnection system by choosing an appropriate set of
independent parameters. We then analyzed and simulated the interconnection crosstalk
for a layer of fully connected space-variant interconnections with 100 x 100 input nodes
and 100 x 100 output nodes. The simulation showed that the interconnection crosstalk

level in such a system is likely tolerable for many applications.

The DOE-based limited-fanout space-variant interconnection architecture was
studied in Chapter 5. The expressions for propagation length, system lateral dimension,
system aspect ratio, f~-number of the reconstruction optics, system volume, interconnection
density, and space-bandwidth product requirement were derived for a cascadable limited-
fanout space-variant interconnection system by choosing an appropriate set of
independent parameters. By comparing the system characteristics of the two
architectures, we concluded that the limited-fanout architecture can provide a more
compact system size for large scale interconnection systems than the fully connected

architecture. However, from the simulation for a layer of limited-fanout space-variant
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interconnections with 128 x 128 input nodes, 128 x 128 output nodes, and 5 X 5 nearest
neighbor weighted interconnections from each input node to the array of output nodes, we
conclude that the interconnection crosstalk for the DOE-based limited-fanout architecture
is likely too high for use in many applications because of noise from the reconstructions
of the surrounding diffractive optical elements. Therefore, we have developed a crosstalk
reduction technique based on a modified design for diffractive optical elements, which
rearranges the reconstruction pattern such that less noise lands on each detector region.
Simulations showed that the technique can substantially reduce the crosstalk for the
limited-fanout system. It was found that the crosstalk reduction technique can also be

used to reduce crosstalk level and system propagation length at the same time.

The reconstruction of a diffractive optical element will change when the illumination
wavelength changes. In Chapter 6, we have studied the effect of an incorrect illumination
wavelength on the reconstruction of multiple-phase-level DOEs. The expressions for
DOE reconstruction under an incorrect illumination wavelength were derived and the
effect was simulated on DOEs (with two, four, and eight phase levels) designed fora 3 x 3
spot array generator and a 3 X 3 triangular connection pattern. From the simulation, we
concluded that the effect of an incorrect illumination wavelength on the reconstruction of
DOEs with more than two phase levels is generally dependent on the phase distributions
of the DOEs. This effect also varies for different diffraction orders from a given DOE.
On the other hand, for any off-axis diffraction order, the effect of an incorrect illumination
wavelength on the reconstruction of {0, ®} -binary-phase-level DOEs is not dependent

on the phase distributions of the DOEs and this effect is the same for all the off-axis
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diffraction orders. The effect of an incorrect illumination wavelength on the
reconstruction for any off-axis diffraction order depends on the ratio of the designed
wavelength and actual illumination wavelength. The effect for the zeroth diffraction order
is DOE-dependent and the diffraction intensity will always increase if the wavelength is
incorrect. The above special properties for {0, w} -binary-phase-level DOEs were
simulated and theoretically proved. We have also analyzed the effect of an incorrect
illumination wavelength on the reconstruction for binary-phase-level DOEs with phase
delays other than O and 7. The effect for these unconventional {0, ¢} -binary-phase-
level DOEs is somewhat different from the effect for the conventional binary-phase-level

DOEs.

The reconstruction of a diffractive optical element will change when the etch depth
in fabrication is incorrect. In Chapter 7, we have studied the effect of etch depth error on
the reconstruction of multiple-phase-level DOEs, under the assumption that the (possible
incorrect) depth of each etch step is uniform across the DOE. The expressions for DOE
reconstruction under etch depth error was derived. For the case of {0, t} -binary-phase-
level DOEs, the effect of etch depth error on DOE reconstruction is essentially identical to
the effect of an incorrect illumination wavelength on DOE reconstruction. We have also
derived the expression for the combined effects of an incorrect illumination wavelength
and etch depth error on the reconstruction of binary-phase-level DOEs, then demonstrated
a way to adjust the illumination wavelength to cancel the effect of etch depth error for
DOE reconstruction. A similar analysis for unconventional {0, ¢} -binary-phase-level

DOE:s has also been conducted. For the case of DOEs with more than two phase levels,
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we have shown that the effect of a constant percentage depth error in all etch steps is
essentially the same as the effect of a wavelength change. The expression for the
combined effect of an incorrect illumination wavelength and a constant percentage depth
error in all etch steps was also derived and the way to cancel the etch-depth error by
adjusting the illumination wavelength was similarly described. Finally, we have studied
and simulated the effect on the reconstruction of four-phase-level DOEs for the case of

etch depth error that varies in percentage from etch step to etch step.

In Chapter 8, we first investigated the Gerchberg-Saxton algorithm for DOE design,
then developed a modified Gerchberg-Saxton algorithm based on noise-adjustment
scheduling and phase-quantization scheduling for better DOE performance. The
performance of the modified algorithm was verified by designing DOEs with two, four,
eight, and sixteen phase levels for the 3 X 3 spot array generator and 3 X 3 triangular
connection pattern. Because both the original and modified Gerchberg-Saxton algorithms
performed poorly for designing binary-phase-level DOEs, we have also studied another
algorithm, simulated annealing. The effect of cost functions in simulated annealing
algorithm was studied and a dual-cost-function simulated annealing algorithm was
developed for improving the design performance. Finally, we have developed a new
design approach that relieves unnecessary constraints and increases design freedom by
allowing an unequally spaced quantization of phase delays in DOEs. This new
approaches does increase the complexity of DOE design but generally does not increase
the complexity of DOE fabrication. The principles of this new design approach were

derived and a modified dual-cost-function simulated annealing algorithm was developed
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to implement this new design approach. From the performance of the DOEs designed
using the phase-optimizing dual-cost-function simulated annealing algorithm, it is clear
that the new design approach yields DOE designs with substantially better performance

than the conventionally designed DOEs.

9.2 Future Research Directions

In order to provide the weighted interconnections needed for implementation of artificial
neural networks based on arrays of these sub-DOEs in the limited-fanout interconnection
system, an array of Fourier transform microlenses are used for the DOE reconstruction
optics. Because a Fourier transform microlens is also a phase-only element, it is possible
to integrate the reconstruction optics with the sub-DOE array to form a hybrid diffractive
element array. Each of these hybrid diffractive elements will have both the weighted fanout
function and the lens function in it. This integration can provide the advantages of reducing
the number of elements and easing the alignment requirements in a multilayer system.
Figure 9-1 shows a conceptual optoelectronic implementation of a multilayer feed-forward
neural network with the sub-DOE array and reconstruction optics being integrated together
into the hybrid optical element array. On the other hand, integrating the reconstruction
optics with the diffractive optical elements to form hybrid optical elements will put
additional design constraints on the sub-DOE array. Therefore, the design algorithm needs
to be modified to incorporate these additional constraints for these hybrid optical elements.

This is an interesting direction for future research.
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Figure 9-1: Schematic diagram for optoelectronic implementation of multilayer feed-forward
neural networks. The sub-DOE array and reconstruction optics have been integrated
together to the hybrid optical element array. Note that the light emitter array (or
modulator array and readout-illumination optics) on the back side of each
optoelectronic chip is not shown. Note that the figure is not to scale.

We have investigated space-variant fully connected and limited-fanout systems. The
fully connected interconnection system has the advantage of global interconnection ability
but requires a large space-bandwidth product for the sub-DOE array. The limited-fanout
interconnection system has the advantage of shorter propagation length and higher
connection density than the fully connected system, but only has local interconnection
ability. There are other possible interconnection architectures such as space-invariant,
hybrid  space-variant/space-invariant, or hybrid fully-connected/limited-fanout

architectures. A hybrid fully-connected/limited-fanout system organizes the neuron units
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into sub-group, is fully connected within each sub-group, and is limited-fanout connected
between adjacent sub-groups. This hybrid system is a compromise that provides higher
connectivity than the limited-fanout system and shorter propagation lengths than the fully
connected system. Figure 9-2 shows one possible realization of a hybrid fully-connected/

limited-fanout interconnection system.

When all the connection patterns of input nodes are essentially the same except that
the connection patterns are shifted relative to each other, the interconnection system is
space-invariant (as opposed to space-variant, as described above and in previous
chapters). Because all the connection patterns are the same, we can use only one
diffractive optical element for all the input nodes and greatly reduce the space-bandwidth
product requirement in the system. Some appropriate reconstruction optics can then be
used to shift the connection patterns. Figure 9-3 shows one possible realization of a
space-invariant interconnection system. Usually, a space-invariant interconnection
system can implement larger scale neural networks than a space-variant interconnection
system. It is also possible to form a hybrid space-variant/space-invariant interconnection

system. Such a system can combine the advantages of both variant and invariant systems.

Although the phase-optimizing dual-cost-function simulated annealing algorithm
does perform substantially better than other algorithms, the algorithm requires many more
computations and therefore is slow. By further analyzing the algorithm, it might be
possible to speed up the algorithm by either removing unnecessary computations or other

methods.
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Figure 9-2: One possible realization of a hybrid fully-connected/limited-fanout interconnection
system. It is fully connected within each neuron-unit sub-group and has limited
fanout between adjacent sub-groups.

Usually the Gerchberg-Saxton algorithm can converge fast to a good DOE phase
distribution when there is no phase quantization in the iteration (i. e., infinite number of
phase levels). The phase-optimizing dual-cost-function simulated annealing algorithm is

trying to find the best phase distribution and the optimum independent phase delays at the
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Figure 9-3: One possible realization of a space-invariant interconnection system. The lens array
(with focal length fy) is used for focusing the light coming from neuron units. The
reconstruction optics is a bulk lens (with focal length f) for shifting the reconstruction
patterns,

same time. It might be possible to use the result of the no-phase-quantization Gerchberg-
Saxton algorithm, then apply the phase-delay-optimization concept on the resulting
continuous-phase DOE, and obtain a good discrete-phase DOE. This proposed design
approach could be much faster than the current phase-optimizing dual-cost-function

simulated annealing algorithm.
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