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Abstract

A type-2 fuzzy set is characterized by a fuzzy membership function, i.e., the mem-
bership grade of each element of this set is itself a fuzzy set in [0,1]. Such sets can
be used in situations where there is uncertainty about the membership grades of
a fuzzy set. Operations on type-2 fuzzy sets are defined by using Zadeh’s Exten-
sion Principle. In this report, we give some examples of type-2 fuzzy sets; discuss
set theoretic operations on type-2 sets and algebraic operations on the membership
grades of type-2 sets in great detail; and, introduce the concept of the centroid
of a type-2 fuzzy set. We provide easily implementable algorithms for performing
these set theoretic and algebraic operations on type-2 sets; and, also provide prac-
tical approximations for the cases where actual results are difficult to generalize or

implement.
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Chapter 1

Introduction

The concept of a type-2 fuzzy set was introduced by Zadeh [9] as an extension of
the concept of an ordinary fuzzy set (henceforth called a type-1 fuzzy set). A type-
2 fuzzy set is characterized by a fuzzy membership function, i.e., the membership
value (or membership grade) for each element of this set is a fuzzy set in [0,1],
unlike a type-1 set where the membership grade is a crisp number in [0, 1]. Such sets
can be used in situations where there is uncertainty about the membership grades
themselves, e.g., an uncertainty in the shape of the membership function or in some
of its parameters. Consider the transition from ordinary sets to fuzzy sets. When
we cannot determine the membership of an element in a set as 0 or 1, we use fuzzy
sets of type-1. Similarly, when the circumstances are so fuzzy that we have trouble
determining the membership grade even as a crisp number in [0, 1], we use fuzzy sets
of type-2.

This does not mean that we need to have extraordinarily fuzzy circumstances to
use type-2 sets. We can look at the situation from a different perspective. When
something is uncertain (e.g., a measurement), we have trouble determining its exact
value, and in this case, using type-1 sets, of course, makes more sense than using
crisp sets. But then, even in the type-1 sets, we specify the membership functions
exactly, which seems counter-intuitive. If we can not determine the exact value of
an uncertain quantity, how can we determine its exact membership grade in a fuzzy
set 7 Of course, this criticism applies to type-2 sets as well, because even though the
membership grade is fuzzy, we specify the membership function of the membership

grade exactly, which again seems counter-intuitive. If we continue thinking along



these lines, we can say that no finite-type fuzzy set can represent uncertainty “com-
pletely”. So, ideally, we need to use a type-oco fuzzy set to “completely” represent
uncertainty ! Of course, we can not do this in practice, so we have to use some
finite-type sets. So, type-1 fuzzy sets can be thought of as a first-order approzima-
tion to the uncertainty in real life. Our work with type-2 fuzzy sets tries to get at
a second-order approzimation. One may look at higher types too; but, as we go on
to higher types, the complexity of the system increases rapidly. So, in this work we
deal just with type-2 sets.

Our aim, in writing this report, is to discuss in detail operations on type-2
fuzzy sets. The operations of interest to us are : (1) set theoretic operations like
union, intersection or complement of type-2 sets, and (2) some algebraic operations,
which include centroid calculation of a type-2 set, and addition, multiplication and
weighted averaging of membership grades of type-2 sets (which themselves are type-
1 fuzzy sets). In this chapter, we explain the concept of a type-2 set, and introduce
our notation and pictorial representation; and, in Chapter 2, we discuss in detail the

aforementioned operations on type-2 sets.

1.1 Examples of Type-2 Fuzzy Sets

Example 1.1 Consider the case of a fuzzy set characterized by a Gaussian member-
ship function with mean m and a standard deviation that can take values in [o7, o),
ie.,

l(x—m

- )2; o € [o1,0] (1.1)

Corresponding to each value of o, we will get a different membership curve (see
Fig. 1.1). So, the membership grade of any particular & (except for z = m) can
take any of a number of possible values depending upon the value of o, i.e., the
membership grade is nol a crisp number, it is a fuzzy set. Figure 1.1 shows the
domain of the fuzzy set associated with = = 0.65; however, the membership function
associated with this fuzzy set is not shown in the figure. We return to this point in

Section 1.3. O



Example 1.2 Consider the case of a fuzzy set with a Gaussian membership func-
tion having a fixed standard deviation o, but an uncertain mean, taking values in
[my, my], ie.,

w(z) = e 25 moe [my, my) (1.2)

Again, p(z) is a fuzzy set. Figure 1.2 shows an example of such a set. As in
Fig. 1.1, it is not possible to deduce the membership function associated with the
fuzzy membership of any z from Fig. 1.2. O

In Examples 1.1 and 1.2, we considered fuzzy sets with Gaussian membership
functions which had their standard deviations or means uncertain. Such sets can
be used in situations where we want to use Gaussian fuzzy sets, but are not certain
about their center or spread locations. If the situation is such, however, that we are
uncertain even about the shape of the membership function (Gaussian / triangular
/ any other arbitrary shape), we can use a Gaussian type-2 fuzzy set defined as in

Example 1.3.

Example 1.3 Consider a type-1 fuzzy set characterized by a Gaussian membership
function (mean M and standard deviation o), which gives one crisp membership

m(z) for each input z € X, where
m(z) = e 1EG) (1.3)

This is depicted in Fig. 1.3. Now, imagine that this membership of z is a fuzzy set.
Let us call the domain-elements of this set primary memberships of x (denoted by
1) and membership grades of these primary memberships secondary memberships of
z [denoted by pa(z, 1)]. So, for a fixed z, we get a type-1 fuzzy set whose domain-
elements are primary memberships of  and whose corresponding membership grades
are secondary memberships of . If we assume that the secondary memberships
follow a Gaussian with mean m(z) and standard deviation o,,, as in Fig. 1.3, we can

describe the secondary membership function for each = as

1, uy—miz)
pa(z, ) = e 25 )’ (1.4)



where py € [0,1] and m is as in (1.3). Equations (1.3) and (1.4) can be combined as

= HEET

Loy 2
pa(z, 1) = €72 om " (1.5)

where u; € [0,1]. Equation (1.5) stresses the fact that the secondary membership
function can be viewed as a real function of two variables,  and g;. The membership
grade for each =, u(z), which represents all the primary memberships and their

corresponding secondary memberships taken together, can be written as

p)= [ alem)/m; @€ X (L.6)
m €[0,1]

where po(z, ) is as in (1.5).

Observe that Example 1.3 is different than Examples 1.1 and 1.2 in that in
Example 1.3 we are explicitly stating the secondary membership function. Actual
values of the secondary membership grades were not defined in Examples 1.1 and
1.2. We return to Example 1.3 in Section 1.3. O

Now, let’s see a situation in real life which needs to be described using type-2

fuzzy sets.

Example 1.4 Consider classes of people with below average, average and above
average earnings. These sets, of course, are fuzzy. Now, if we ask someone what
memberships s/he would have in these three fuzzy sets, most likely we are going
to get an answer of the form “a high membership in above average earnings and
low in others”, rather than crisp numbers as memberships. This means that the
membership grade is a fuzzy set or in other words, the aforementioned three fuzzy
sets are of type-2 ! Observe that in this example, the person who is asked the
question, knows her/his own income exactly, but the uncertainty in the membership
grade arises due to the fact that s/he doesn’t know the exact parameters of the
membership functions for these 3 sets. (If Gaussian membership functions are used,
this is analogous to ambiguity in mean and/or variance.)

In this example, “a high membership in above average” cannot be rephrased as
“highly above average”. In “highly above average”, “highly” is a hedge on “above

average”, but after the application of this hedge, all we get is another type-1 fuzzy



set, “highly above average”. Now, if the same person were asked what would be
her/his membership in the set “highly above average”, s/he would probably say
medium, which means the membership is again fuzzy and the set is still best de-
scribed as a type-2 fuzzy set. If the person could not give a crisp membership for
the “above average” set, the person would definitely not be able to give a crisp mem-
bership for the “highly above average” set [this new set is just a (possibly) non-linear
transformation of the original one]. O

From now on, we will use the membership terminology introduced in Exam-
ple 1.3. Membership grade is a synonym for “degree of membership”, which is a
crisp number for type-1 sets, a type-1 set for type-2 sets, and in general, a type-k set
for type-(k+1) sets. In the case of type-2 sets, primary memberships are the domain-
elements of a membership grade and secondary memberships are membership grades
of primary memberships. For example, in (1.5) and (1.6), p; indicates the primary
memberships; j2(z, 11 ) indicates the secondary memberships; and p(z), which rep-
resents all the primary and secondary memberships taken together, indicates the
membership grade of € X. Thus, for a type-1 set, u(z) is short for p;(z) and
p2(z, 1) = 1; and, for a type-2 set, u(z) indicates the type-1 set [, pa(,p1)/p1-

A type-2 fuzzy set can also be thought of as a fuzzy valued function, which
assigns to every € X, a type-1 fuzzy membership grade. In this sense, we will call

X the domain of the type-2 fuzzy set.

1.2 Some Useful Type-2 Sets

Here we formally define three kinds of type-2 sets that we will talk about often in
this dissertation :

1. A Gaussian type-2 set is one in which the membership grade of every domain
point is a Gaussian type-1 set contained in [0, 1].

Example 1.3 shows an example of a Gaussian type-2 set. Note that it is not
necessary for the principal membership function of a Gaussian type-2 set to also
be a Gaussian, as is the case in Example 1.3. Figure 1.9 shows an example of a
Gaussian type-2 set having a triangular principal membership function, using the

2-D pictorial representation described in Section 1.3.



2. An interval type-2 set is one in which the membership grade of every domain
point is a crisp set whose domain is some interval conatined in [0, 1].

In Example 1.1, if we attach equal degree of uncertainty to every value of ¢ in
(01, 03], i.e., if we let the standard deviation o be a crisp set with domain [0y, 73],
we can set all the secondary memberships of the resulting type-2 set equal to 1. The
membership grade corresponding to every z in this type-2 set, now, becomes a crisp
set, and the type-2 set becomes an interval type-2 set (see Section 1.3).

Note that, although every membership grade of an interval type-2 set is a crisp
set, the set itself is type-2, because the memberships are sets rather than crisp
numbers. Interval type-2 sets are the simplest kind of type-2 sets to deal with, since
all the secondary memberships are unity; and, we will often discuss them, though
the main focus of our work is Gaussian type-2 sets. We will refer to the membership
grades of an interval type-2 set as “interval type-1 sets”.

3. A triangular type-2 set is one in which the membership grade of every domain
point is a triangular type-1 set contained in [0, 1].
Unless otherwise specified, a “triangle” will always mean a “symmetrical triangle”

in our work. The results for triangular type-2 sets are collected in Appendix E.

1.3 Pictorial Representation

Now, let’s try to represent a type-2 membership function pictorially. Observe that
our earlier pictorial representations using 2-D plots (Figs. 1.1 and 1.2) did not in-
dicate the numerical values of secondary memberships. All that one can see from
those diagrams is just the set of primary memberships corresponding to each z.
So, these representations do not contain all the information that we have. Recall
the example of the Gaussian fuzzy set with uncertain mean. The 2-D diagram in
Fig. 1.2 does not depend on the actual shape of the membership function for the
fuzzy mean. It will remain the same as long as the support of the fuzzy set for
the mean is [my, my], which shows that these diagrams are not unique, i.e., we can
get the same diagrammatic representation for two or more distinct situations. For

example, Fig. 1.2 would remain unchanged if the fuzzy set for the mean followed a



Gaussian membership curve or a triangular membership curve as long as the sup-
port is [my,ma]. This indicates that the earlier pictorial representations are not
“complete”.

A type-2 membership function can be viewed as a function of two variables. For
each input z and a primary membership p,, we get a secondary membership, which
is a crisp number. Let’s call this secondary membership ps. So, the membership

function of a type-2 set can be represented as
,U;g(.’L‘,jJ[) ¢ X X [0, 1] = [0, 1] (].7)

where X is the space of all inputs x. Pictorially, we can display this function as
a 3-D diagram with @ and p; as independent variables and u, as the dependent
variable.

Recall Example 1.1 . Suppose that the degree of uncertainty that we attach to
each value of o in the range [0}, 03] is the same; in other words, let the standard de-
viation o be a crisp set with domain [0}, 03]. Since, each value of standard deviation
is equally uncertain, we set all the secondary memberships of the resulting type-2
set equal to 1, i.e., the membership grade corresponding to each x is an interval in
[0,1] (the resulting type-2 set is an interval type-2 set). Figure 1.4 (a) shows a 3-D
representation of this type-2 set, assuming oy = 0.1 and o, = 0.2, and Fig. 1.4 (b)
shows the membership grade for # = 0.65; the domain of this membership grade is
indicated in Fig. 1.1. Figure 1.5 (a) shows the 3-D diagram for Example 1.2, drawn
by assuming that the mean m is a crisp set with domain [mq,ms] = [0.4,0.6]. Fig-
ure 1.5 (b) shows the membership grade corresponding to z = 0.65 in this interval
type-2 set. See Appendix A for examples which let the standard deviation of the
Gaussian in Example 1.1 and the mean of the Gaussian in Example 1.2 be Gaussian
type-1 sets.

Figure 1.6 (a) depicts a 3-D representation of (1.5) and Fig. 1.6 (b) depicts the
fuzzy type-1 set p(z) for an arbitrary value of z (obtained by taking a cross-section
of Fig. 1.6 parallel to the u; — p2 axes). p(zx) is a Gaussian, because we constructed
it that way. Observe the similarity with a type-1 pictorial representation, where we
display the membership function of a type-1 set as a 2-D picture (function of one

variable, ).



Although the 3-D representation of a type-2 set conveys all the information that
we have about the set, it is not very helpful to use these 3-D diagrams when we
have to show more than one set on the same axes. Additionally, they can be quite
complicated to construct. So, in spite of the aforementioned “incompleteness” of
2-D representations, we continue to use them in our analyses of type-2 sets. If there
is a need to show the secondary membership functions explicitly, we will use a 3-D
representation.

Figure 1.7 shows a 2-D representation of the Gaussian type-2 set depicted in
Fig. 1.6 (a). We call the set of primary memberships that have secondary member-
ship grades equal to 1, the principal membership function of the type-2 set (shown
with a bold line in Fig. 1.7). From (1.4), we can see that m(z) in (1.3) is the principal
membership function. Since we are using Gaussian secondary membership functions
for each input, only one primary membership has a secondary membership equal to
1. This seems reasonable, because the secondary membership function indicates the
uncertainty in determining the membership grade for a particular input. We will
generally use secondary membership functions like Gaussians or triangles, which as-
sign unity membership to only one point in their domain. Observe that this is not
true for the crisp secondary membership functions shown in Figs. 1.4 and 1.5.

The concept of a principal membership function also illustrates the fact that
a type-1 fuzzy set can be thought of as a special case of a type-2 fuzzy set. We
can think of a type-1 fuzzy set as a type-2 fuzzy set whose membership grades
are type-1 fuzzy singletons, having secondary membership equal to unity for only
one primary membership and zero for all others, i.e., we can think of the principal
membership function of a type-2 set as an embedded type-1 set. Our fundamental
design requirement in this work is that our type-2 system resulls reduce to type-1
results when we replace all the type-2 sets by their principal membership functions.

Figure 1.8 (a) shows a 3-D representation of a Gaussian type-2 set having a
triangular principal membership function, and Fig. 1.8 (b) shows the membership
grade for # = 6.5. The 2-D representation of this set is depicted in Fig. 1.9. The
difference between the two Gaussian type-2 sets, in Figs. 1.6 (a) and 1.8 (a), is seen
more clearly in the 2-D representation.

The secondary membership functions for the Gaussian type-2 sets depicted in

Iigs. 1.6 and 1.8 have constant standard deviations, implying that the uncertainty



in the membership grades remains constant for all x. Intuitively, however, it seems
more appropriate that membership values near zero should have less uncertainty
associated with them than membership values near 1. In other words, it seems
more appropriate that the uncertainty in a membership value be expressible as
some percentage of it. Such a type-2 set (Gaussian type-2 with Gaussian principal
membership function) is depicted in Fig. 1.10. The secondary membership functions
of this set have decreasing standard deviations, implying that the uncertainty in
the membership grades decreases as & moves away from the mean of the principal

membership function.
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Figure 1.1: A type-2 fuzzy set representing a type-1 fuzzy set with uncertain standard
deviation. The standard deviation is uncertain in the interval [0.1,0.2]. The figure

also shows the domain of the type-1 fuzzy set corresponding to x = 0.65; however,
the membership grades in this type-1 fuzzy set are not shown.
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Figure 1.2: A type-2 fuzzy set representing a type-1 fuzzy set with uncertain mean.
The mean is uncertain in the interval [0.4,0.6]. The figure also shows the domain of

the type-1 fuzzy set corresponding to x = 0.65; however, the membership grades in
this type-1 fuzzy set are not shown.
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Figure 1.3: Figure for Example 1.3. The Gaussian m(z) and membership grade

corresponding to = z; are shown. The membership grade is a Gaussian type-1
fuzzy set contained in [0, 1] with mean m(z,).
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Figure 1.4: (a) Three dimensional representation of the type-2 set in Example 1.1,
assuming that the standard deviation is a crisp set with domain [0y, 03] = [0.1,0.2].
The membership grade for each « is a crisp set. (b) The membership grade corre-
sponding to x = 0.65.
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Figure 1.5: (a) Three dimensional representation of the type-2 set in Example 1.2,
assuming that the mean is a crisp set with domain [my,m,] = [0.4,0.6]. The mem-
bership grade for each x is a crisp set. (b) The membership grade corresponding to

x = 0.65.
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Figure 1.6: (a) Three dimensional representation of a Gaussian type-2 fuzzy set,
having a Gaussian principal membership function. The membership grade for each

2 is Gaussian by construction. All these Gaussians have the same standard deviation.
(b) The membership grade corresponding to z = 6.5.
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Figure 1.7: Two-dimensional representation of the Gaussian type-2 set depicted in
Fig. 1.6 (a). The standard deviations of the secondary Gaussians are constant.
The principal membership function, i.e., the set of primary memberships having
secondary membership equal to 1, is indicated with a thick line. This principal
membership function is a Gaussian because of the way the set is constructed. Inten-
sity of the shading is approximately proportional to secondary membership grades.
Darker areas indicate higher secondary memberships. The flat portion near the cen-
ter and near the two ends, appears because primary memberships cannot be less
than 0 or greater than 1 and so the Gaussians have to be “clipped”.
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(b) The membership grade corresponding to & = 6.5.
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Figure 1.9: Two-dimensional representation of the Gaussian type-2 set depicted
in Fig. 1.8 (a). The principal membership function is triangular. The standard
deviations of the secondary Gaussians are constant.
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Chapter 2

Operations on Type-2 Sets

In this chapter, we examine set theoretic operations on type-2 sets. We use the
following notatlon A type-1 fuzzy set P is denoted as P. A type-2 fuzzy set A is
d(,noted as A. Consequently, if 2o is an element of A the membership grade of zg in
A is denoted as ;LA(:BO). Recall that pﬁ(mo) is itself a type-1 fuzzy set whose elements
and their memberships are, respectively, the primary and secondary memberships of

Ig.

2.1 Set Theoretic Operations

To begin, we recall some facts about type-1 sets. A fuzzy subset A of a set X is

represented as follows :

A = pi(zr)/z+pa(e2)/o2 + o+ pi(en)/2n
== Zp;\(.r;)/.’l,'{, iC{E;Y (21)

where the sum represents union. If the support of A is a continuum, we write

A= /X,u;k(;r:)/;t (2.2)

Suppose, we have 2 type-1 fuzzy sets ', and F, characterized by membership

functions 6; and 65, as follows :

Z 01(yi)/yi (2.3)
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> 02(y:) [yi (2.4)

Using maz t-conorm and min t-norm, the membership functions of the union, inter-

section and complement of these sets are given as [6] :

i of,(yi) = max{0i(yi),0:(y:)} Vi (2.5)
i e, (i) = min{0y(y:), 02(yi)} Vi (2.6)
F) = 1-0(y) Vi @7

pe () = 1=0:(y) Vi (2.8)

Since I, and I, are fuzzy sets of type-1, their membership grades 6, (y;) and 05(y;)
are crisp numbers and therefore, for each y;, we can perform all the operations on
the RHSs of Eqs. (2. ) (2. 8) in one step.

Now, suppose that I'; and 1“. are type-2 fuzzy sets, so that the membership grades
0,(y;) and 0,(y;) are type-1 fuzzy sets. In order to compute the union, intersection
and complement of ]?'1 and I:*’Q, we need to extend the binary operations of min and
maz, and the unary operation of negation to fuzzy sets. We use Zadeh’s Extension
Principle for this purpose, which we state here for reference purposes.

The Extension Principle [2, 9] : Let X be a Cartesian product of universes,
X = X; x Xy x+++x Xy, and Ay, As,....A, be fuzzy sets in X1, X, ..., X, respectively.
Let f be a mapping from X to a universe Y such that y = f(zy,...,z,) €Y. Zadeh’s
Extension Principle allows us to induce from the r fuzzy sets A;, a fuzzy set B on

Y, through f, such that

pely) = sup min {uz, (€1); - 3, (20)} (2.9)

Tpyeeny®r :y=f(-7:l ----- Tr)

psly) = 0if f7i(y)=10

where f~!(y) is the inverse image of y under f. m]
Equation (2.9) makes use of the maz t-conorm. If for any primary membership
in the union, we get more than one choice of secondary memberships, the effective

secondary membership is taken to be the maximum of all these choices.
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Equation (2.9) assumes that zi,...,, are non-interactive or that there is no
joint constraint on xy,...,x,. For more discussion about this, see Appendix B.

Zadeh defined the Extension Principle using min {-norm and maz t-conorm. The
use of these operations is implicit in (2.10) and (2.9). There have been attempts to
use other ¢-norms and {-conorms in place of min and maz, respectively, e.g. [8], [2].
We will work mostly with min or product t-norm and maz t-conorm.

The Extension Principle can be viewed as a composition of fuzzy relations [2].
Let R be the Cartesian product A; x -+ x A, defined as [2]

K, s s ok, :/ min {u3, (1), s 1z, (@)} (@15 00y ;) (2.10)

4\'1 XXXy

and let S be the ordinary relation defined by ps(zy, ...,z y) = 1iffy = f(z1,...,2,).
Then, we have B = f(Al, ..,A;) = Ro S, i.e., the Extension Principle appears as a
particular case of the composition of fuzzy relations.

Finally, when we replace min in (2.9) by another {-norm, we are replacing the
sup-min composition by the more general sup-+ composition. O

Consider two fuzzy sets of type-2, A € X and B € X. Let i;(z) and fiz(x) be
two fuzzy grades (fuzzy sets in J C [0,1]) of these two sets, represented, for each

z € X, as

ﬁj(r) = folw)/u + fa(wa)/uz + ...+ fo(um)/tm

= fo(ug)/u;, 7 ui€J (2.11)
ﬁé(m) = gz(w1)/wy + ge(w2)/wy + ... + gz(wn)/wn
= Y ga(wj)/wj, 3 wi€J (2.12)

Observe that in (2.11) and (2.12), w; and w; are just dummy variables used to dif-
ferentiate between the different primary memberships of « in !:X and ]§, respectively.

Using the Extension Principle, the membership grades for union, intersection
and negation of type-2 fuzzy sets A and B can be defined as follows (8] :

Union

AUB & iz s(z) = jz(2)Ujig) ; z€X
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= (X felw)fui) U (3 galy) ;)
= 2 (fels) A ga(w;)) /(ui V 5) (2.13)

Intersection
AnB e iz s(e) = Az@)Nigle) 5 e€X
= (zf (ui)/1 )n(zgx(wj)/wj)
- ZJ:( A gs wj))/(u,v/\wj) (2.14)
Complement
fx@;i(x) = -jz(z) ; z€X

= 2 fe(w) /(1 —w) (2.15)

where V and A represent maz and min respectively. As in (8], in the sequel, we
refer to the operations LI, M and — as join, meet and negation, respectively. In the
continuous case, we use a notation similar to that in (2.2) and get expressions similar
to those in (2.13), (2.14) and (2.15).

In order to compute the union (or intersection) ofA and B we perform the join

(or meet) operation between the membership grades of A and B at every domain
point z € X; and, in order to compute the comp!ement of 4 (or B), we perform the
negation operation on the membership grade of A (or B) at every x € X.

It can be easily shown that these extended operations reduce to the original ones
when we deal with type-1 sets. In case of type-1 sets, fu(u;) [gz(w;)] will have a value
equal to 1 for only one of the indices, say i; (J1); the rest of fi(u;)s and g.(w;)s will
all be zero (since the membership grades are not fuzzy). Consider the join operation.
When we find the minima between all the f.(u;)s and g.(wj;)s, the only pair that
will give a non-zero answer is {fz(ui,), g=(wj,)}, and their minimum value will be
equal to 1. All other minima will be 0. So, the union of the two sets will consist of
only one element u;, V w;, or max{u;,,w; }, which is what we would expect. The

same applies to the meet operation. The negation is even easier to see. If u; has
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a membership of 1 in ,&i(a:) (the rest of the memberships being zero), 1 — u;, will

have a membership of 1 in *&X(‘T)'

Example 2.1 Consider two type-2 sets A and B, and, for a particular element z,

let the membership grades in these two sets be given as

fiz(x) = 0.5/0+0.7/0.1
fiz(z) = 0.3/0.440.9/0.8

Then, from (2.13), we have

iz 5(0) = az(x)Upg(e)

— (0.5/0 +0.7/0.1) Ui (0.3/0.4 + 0.9/0.8)
05A03 05A09 07A03 0.7A0.9

0vo04 T0vos T01vod T01vos
= 0.3/0.4 +0.5/0.8 +0.3/0.4 +0.7/0.8

= max{0.3,0.3}/0.4 + max{0.5,0.7}/0.8
= 0.3/0.4+0.7/0.8

Additionally, from (2.14), we have

Faed(®) = A3(@)N ()

= (0.5/0 +0.7/0.1) 1 (0.3/0.4 + 0.9/0.8)
_ 05A03  05A09 07A03  0.7A09

0A04 T TOA0S T01A04 TOIADS
= 0.3/0 +0.5/0 +0.3/0.1 4 0.7/0.1

= max{0.3,0.5}/0 + max{0.3,0.7}/0.1
— 0.5/0 +0.7/0.1

Finally, from (2.15), we have

fps(@) = -pz(e)
= 0.5/(1 =0)+0.7/(1 = 0.1)
= 0.5/1+0.7/0.9



Algebraic product is another popular {-norm operation, especially in engineering
applications [7]. The union and intersection of type-2 fuzzy sets under product i-

norm and mazx {-conorm can be defined as follows :

Union
AUB & i 5(2) = fi3(e)Ufg(a)
= (gfx(u;)/u,-) U (ggr(w,-)/wj)
= g_(fr(uf)gr(wj))/(u,-ij) (2.16)
Intersection
ANB e iy ) = (@) Njig(a)

fiz(z)n
- (Zf(ul)/u) (ngz(w.i)/wj)

i

- Z( 0)9:(w;)) /(wiw;) (2.17)

Observe that, we use the same symbols for join and meet operations, as we used
in case of the min t-norm. The definition of complement does not change.
Next, we take a closer look at the operations of join, meet and negation, under

both min and product t-norms.

2.2 A Closer Look at Type-2 Set Theoretic
Operations

From Section 2.1, we see that the membership grade of any point in the union or
intersection of two type-2 fuzzy sets is obtained by the join or meet of the membership
grades of that point, respectively. Now, we look more closely at these two operations.
Most of the discussion below concerns the join or meet of two sets at a time; however,
we also state generalized versions of our results when more than two sets are involved

in the join or meet operations.
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We will generally deal with real fuzzy sets, i.e., fuzzy subsets of the real line, which
are conver and normal. Such sets are also known as fuzzy numbers (2, 5]; therefore,

sometimes we will use the terms fuzzy sets and fuzzy numbers interchangeably.

2.2.1 Join and Meet under Minimum {-norm

As Theorem 2.1 below illustrates, join and meet operations with min t-norm give
particularly simple results, if the participating type-1 sets are convex and normal.
In part (a) of Theorem 2.1, we talk about type-1 fuzzy sets I and G having
membership functions f and g. To connect this with our earlier discussion, we can
think of two type-2 fuzzy sets A and ]:3 as in (2.11) and (2.12). Then, for an arbitrary
input o, if we rename ji; (o) as F and fiz(xo) as G, and also drop the subscript
2o on the membership functions f;, and g;,, we can apply Theorem 2.1 to compute
fiz g(wo) and fiz_=(zo). Part (b) of Theorem 2.1 generalizes the results in part (a)

to the join/meet of more than two sets.

Theorem 2.1 (a) Suppose that we have two convex, normal, type-1 real fuzzy sets
F and G characterized by membership functions f and g, respectively. Let v € R
and vy € R be such that vo < vy and f(vo) = g(vi) = 1. Then the membership
functions of the join and meet of F and G, using maz t-conorm and min t-norm,

can be expressed as

fO) Ag(0) 5 0 <wo
#iuc(0) = g(0) 3 w<O< o (2.18)
fO)Vvg0) 5 0>
and
fO)vgb) ; 0<wo
pinG(0) = f0) 5 w<0<w (2.19)
fO)Ag(0) ; 0>
(b) Suppose that we have n convex, normal, type-1 real fuzzy sets F,...,F, char-

acterized by membership functions fi,..., fa, respectively. Let vy, va,...,v, be real
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numbers such that vi < vy < -+ < v, and fi(vy) = fo(vz) = -+ = fa(v,) = 1.

Then, using maz t-conorm and min t-norm,

= fi(0) ;5 O<u
e | F, (0) = g Ji(0) 5 e <0<y ;3 1<k<n—-1 (2.20)
i fi(0) 5 0>,

and
Vie, fi(0) 5 0 <v
pon 7(0) =9 N fi0) 5 e <O0<vyy 5 1<k<n—1 (2.21)
Ly fi0) 5 0>,
O

See Appendix C.1 for the proof of Theorem 2.1.
NOTE : Dubois and Prade present the same result given in part (a) of Theorem 2.1
in a different context and a different manner in [1]. They present it in the context
of fuzzification of max and min operations. Though their method of proof is very
similar to ours, they prove the result for a special case, where f and g have at most
three points of intersection and one needs to keep track of the points of intersection
of f and g to use their theorem. We reprove this theorem in a general setting in
Appendix C.1. We believe that our statements of up &(0) and ppqa(0) are more
amenable to computer implementations than those of Dubois and Prade. General-
ization to more than two sets [part (b) of Theorem 2.1] is also difficult in case of
Dubois and Prade’s result.

Figures 2.1 and 2.2 show examples of application of Theorem 2.1. As a conse-

quence of Theorem 2.1, we have the following important result :

Corollary 2.1 (a) If f(0) is the membership function of a convex, normal type-1
real fuzzy set F, and if G is another type-1 set with membership function f(0 — k),
where k is a positive constant, then, FuUG=Gand FNG=F.

(b) If we have n convex, normal, type-1 fuzzy sets ;V'l,..., Fn characterized by mem-

bership functions fi,..., fa, respectively, such that fi(0) = f1(0 — ki), and 0 =k, <
by < kn;then U F.=F, and M, F;=F. 0O

T
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See Appendix C.3 for the proof of this corollary. Figures 2.3 and 2.4 illustrate
Corollary 2.1.

It can be observed, by applying Theorem 2.1, that, if two type-1 fuzzy sets are
such that their membership functions do not touch, then Corollary 2.1 also holds
true, ie, FUG =G and FNG = . In the case of membership functions which
extend infinitely (e.g., Gaussians), if the two membership functions (their centers)
are far away from each other, then Corollary 2.1 approximately holds true, i.e.,
FUG ~ G and FNG ~ F. Examples of this can be observed while working out
the union and intersection of the Gaussian type-2 sets depicted in Figs. 2.7 (a), as
explained later in this section.

Kaufmann and Gupta [5] give a result that is a bit more general than Corol-
lary 2.1. They give this result in terms of a-cuts as follows : Consider two fuzzy

numbers A and B, such that

Ay = [agﬂ’,a,ﬁ,‘*‘] and

Ba = [0y”,05"]
where a-cuts, A, and B, are crisp sets

A = {IIPZA(T) 2 Of}, a € [01 1]
Bo = {z|ug(x) = o}, a € [0,1]

If Va € [0,1], a$® < b and < b(za), then A < B.

In our work, we frequently deal with normalized Gaussian membership functions.
Corollary 2.1 takes a particularly simple form when the sets involved are Gaussians.
For two Gaussians having the same standard deviation, the result of the join op-
eration between them is the Gaussian with the larger mean, and the result of the
meet operation is the Gaussian with the smaller mean. Gaussians having different
standard deviations cannot be expressed as shifted versions of each other and hence
Corollary 2.1 does not apply to them. Theorem 2.1 can, of course, be used in this
case. Figures 2.2 and 2.6 show examples of the join and meet operations between

Gaussians having different standard deviations, under the min ¢-norm.



Similar results hold for triangular, trapezoidal, or, for that matter, any other
convex membership function.

From the definition of the negation operation, it follows that :

Theorem 2.2 If a type-1 fuzzy set F has a membership function f(8) (0 € R), - F
has a membership function f(1 —0) (0 € R). O

See Appendix C.4 for the proof. Figure 2.5 shows an example of the negation oper-
ation.

So, we perform join, meet and negation operations on membership grades of type-
2 sets while finding unions, intersections and complements of type-2 sets. Having
seen how the results of these individual operations look, let’s see how the overall
type-2 set looks as a result of these operations. Figures 2.7 and 2.8 show examples
of union, intersection and complement of Gaussian fuzzy sets using the 2-D represen-
tation introduced in Section 1.3 (see Fig. 1.10). In Fig. 2.7 (a), if we draw a vertical
line at any z, we get the membership grades of z in the two participating Gaussian
type-2 sets. These membership grades are, of course, themselves Gaussian fuzzy sets
confined to the interval [0,1]. To these two type-1 sets, we apply Theorem 2.1 and
get the results for union and intersection depicted in Figs. (b) and (c) respectively.
Of course, while applying the theorem, we should be careful to see that I and G do
satisfy all its requirements. Similarly, in Fig. 2.8 (a), we project upwards from z to
obtain it’s membership grade and then apply Theorem 2.2 to it.

Observe that, in Figs. 2.7 and 2.8, if we look just at the principal membership
functions, we can see that the principal membership function of the result of an
operation (union, intersection or complement) can be obtained by performing that
operation on the principal membership funclions of the participating type-2 sets. So,
if we replace all the type-2 sets by type-1 sets, which have the principal membership
functions of the type-2 sets as their type-1 membership functions, all our results
remain valid. This demonstrates the fact that all our type-2 operations collapse to
the correct type-1 operations.

Theorem 2.1 considers the join and meet operations under min t-norm. Now, we
examine these operations under the product t-norm, the t-conorm being maz. This

case was not considered by Dubois and Prade in [1].



2.2.2 Join under Product ¢t-norm

The join operation with product t-norm gives a result very similar to that in Theo-
rem 2.1. Consider the two convex normal type-1 fuzzy sets F and G used in Theo-
rem 2.1. The membership function of the join of F and G using the maz t-conorm

and product t-norm, can be expressed as

f(0)g(0) 5 0<w
oG (0) = g(0) ; <0<y (2.
f(O)Vg(0) ; 0>

[S]
[Sv]
[S]
S

Figure 2.9 (b) shows an example of this operation. Comparing Figs. 2.9 (b) and
2.1 (b), we see that results of the two join operations (with min as well as product
t-norm are exactly the same. This can be explained as follows. From (2.18) and
(2.22), we see that the two results can differ only for § < vo. In this range, the min
t-norm gives f(60) A g(0) and product t-norm gives f(0)g(#). In the example we have
chosen, f(0) = 1 for 0 < vo; therefore, for our example, these two results turn out
the same. Generalization to more than two sets is also very similar to that in (2.20).

It can be obtained by replacing the minima in (2.20) with products as follows :

iz fi(0) 5 0<w
pun 75.(0) = § Mg fi(0) 5 <0< vy 5 1<k<Sn—1 (2.23)
Vi i) 3 0>

where we take ], f:(0) to mean f,. See Appendix C.5 for the proofs of (2.22) and
(2.23).

Observe that (2.22) is very similar to (2.18). In fact, the information in both
these pairs of equations can be conveyed as follows : For two type-1 sets I and G

described in part (a) of Theorem 2.1,

f(0)%g(0) 5 0 <wo
tiuc(0) = g9(9) ; vo<0< (2.24)
fO)Vvg(l) ; 0>uv
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where % denotes the t-norm operation, which corresponds to min in (2.18) and
product in (2.22).

Similarly comparing (2.20) and (2.23), for n type-1 sets F,,...,F, described in
part (b) of Theorem 2.1,

TLfi(0) 5 O0<wn
#UL:F;(O) =9 T2 fi(0) 5 <0< vy ;3 1<k<n-1 (2.25)
i1 fi(0) 5 0>,

where T indicates the t-norm used, min or product.

We state this result formally as :

Theorem 2.3 (a) Suppose that we have two convex, normal, type-1 real fuzzy sets
F and G characterized by membership functions f and g, respectively. Let vo € R
and vy € R be such that vo < vy and f(vg) = g(v1) = 1. Then the membership

functions of the join of I and G, using maz t-conorm, can be expressed as

F(0)xg(0) ; 0<wo
tiua(0) = 9(0) s vp <0< (2.26)
fFO)Vg(0) 5 0>

where = denotes the t-norm operation used, min or product.

(b) Suppose that we have n convex, normal, type-1 real fuzzy sets Fy,...,F, char-
acterized by membership functions fi,..., [, respectively. Let vy, vy, ..., v, be real
numbers such that vy < vy < -+ < v, and fi(vy) = fa(ve) = -+ = falva) = 1.

Then, the membership function of U, F; using maz t-conorm, can be expressed as

T2 fi(0) 5 0 <u
pup 7,(0) = TZenfi(0) 5 <0< 5 1Sk<n-1 (2.27)
i fi(0) 5 0>,

where T indicates the t-norm used, min or product. O

Figures 2.10, 2.12 (b) and 2.13 (b) show results of join operations on Gaussians

under product t-norm. Note that Corollary 2.1 is not valid under product t-norm.
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2.2.3 Meet under Product {-norm

The meet operation between I and G (convex, normal, type-1 fuzzy sets used in

Theorem 2.1), under the product t-norm can be represented as

PnG=[ [ @)/ (w) (2:28)

Observe that this equation involves the product of primary memberships v and w
rather than a min or maz operation between them; hence, the analysis of the meet
operation under product t-norm is quite different than that of join or meet operations
previously discussed.

Equation (2.28) simplifies considerably when I and G are interval type-1 sets,
as we show with an example next. (Recall, from Chapter 1, that interval type-1 sets

are crisp sets whose domains are intervals on the real line.)

Example 2.2 Let F' and G be two interval type-1 sets with domains [l, 7] and
L5, 7], respectively. (We drop the tilde, since the sets are crisp.) Using (2.28), the

meet between F' and G, under product {-norm, can be obtained as

FNG= erF/meGu x 1)/(vw) (2.29)

Observe, from (2.29), that

e cach term in MG is equal to the product vw for some v € F' and w € G, the

smallest term being [l, and the largest r;ry; and,

e since both F and G have continuous domains, F' M G also has a continuous

domain;

consequently, ' 11 G is an interval type-1 set with domain [[fly,77,], i.e.,

FOG= 1/v (2.30)

vEllylg,ryrg]
In a similar manner, the meet, N, F;, of n interval type-1 sets [, ..., I, having do-
mains [l;,7],.. ., [ln, 7n], respectively, is an interval set with domain [[Ti2, &, [T, 7.

[5] gives a similar result while discussing multiplication of fuzzy numbers (see

Section 2.4 for algebraic operations on fuzzy sets). O
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If the sets involved in the meet operation are not interval type-1 sets, generally a
direct application of (2.29) does not give such a nice result. We, then, analyze this
operation as follows. If 0 is an element of ' 11 G, then the membership grade of 0
can be found by finding all the pairs {v,w} such that v € F, w € G and vw = 6;
multiplying the membership grades of v and w in each pair; and then finding the
maximum of these products of membership grades. The possible admissible {v, w}
pairs whose product is @ are {v,0/v} (v € R, v # 0) for 0 # 0 and {v,0} or {0, w},
where v,w € R for # = 0. We find the products of membership grades of v and w
from each such pair and take the maximum of all these products as the membership

grade of 0, i.e.,

0

pina(0) = sup f(v)g(;) c0ER, 0#0

1ina(0) = [sup f(v)g(0)] V [sup f(0)g(w)] (2.31)
vER weR

Observe that

sup f(v)g(0) = ¢(0)sup f(v)

veER veER
= g(0) x 1
= g(0) (2.32)
and similarly,
sup f(0)g(w) = f(0); (2.33)

therefore, summarizing the above discussion, we have that for two convex, normal,
type-1 fuzzy sets I and G (satisfying conditions of Theorem 2.1), the membership

function of the meet under product t-norm can be expressed as

0
pin(0) = vesagll;;of(v)g(;) ; 0F#0
tina(0) = f(0)V g(0) (2.34)
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If we substitute 0 /v = w in (2.34), we get a similar expression in terms of f(0/w)g(w).
Since the meet operation is commutative [4], we get the same result whether we sub-
stitute 6/w = v or §/v = w.

As is apparent from (2.34), the result is very much dependent on functions f and
g and does not easily generalize like the join and meel operations considered earlier,
and generally, it is very difficult to obtain a closed form expression for the result
of the meet operation [which is why we have not stated (2.34) as a theorem]. Even
if both the fuzzy sets involved have Gaussian membership functions, it is difficult
to obtain a nice closed form expression for the result of the meet operation. See
Appendix C.6 for more discussion about meet between Gaussians under product
t-norm.

Figure 2.9 (c) shows an example of this operation. To determine the membership
of a particular point # in F N G, we find all the pairs {v,w} such that v € R, w € R
and vw = #; and multiply the memberships of each pair. The membership grade of
0 is given by the supremum of the set of all these products. For example, if § = 20,
all the pairs {v,w} that give 20 as their product are v and 2 (v € R,v # 0). So,
the membership grade of 20 is given by the supremum of the set of all the products
f(©)g(®2) (v € R,v # 0). Figure 2.11 shows how f(v)g(%) looks for F and G
depicted in Fig. 2.9 (a). Clearly, it is no easy matter to represent (2.34) visually.

One situation when the result of the meet operation in (2.34) simplifies consid-
erably is when either one of F or G is a fuzzy singleton. For example, assume that
F is a fuzzy singleton, such that f(ve) = 1 and f(v) = 0 for v # vo. Now, f(v)g(%)
is non-zero only at v = vg, implying that ppna(0) = g(%) Similarly, if G is a fuzzy
singleton, such that g(v;) = 1 and g(w) = 0 for w # vy, f(v)g(%) is non-zero only
at % = vy, l.e., only when v = %, implying that pzqa(0) = f(%)

Because the meet under product t-norm will be heavily used by us in the sequel

(see [4]), we seek approximations to it that will make it practical.
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2.3 Approximations for Meet under Product t-

norm

In this section, we discuss some approximations to the meet under product ¢-norm
that will help us make the meet calculations more efficient. Subsection 2.3.1 dis-
cusses an ad hoc approximation that can be used with any normal membership
functions. Subsection 2.3.2 discusses a Gaussian approximation for Gaussian mem-
bership functions, and Appendix E.1 discusses a triangular approximation for sym-
metrical triangular membership functions. Both, the Gaussian and the triangular
approximations have the following two very desirable properties : 1) they can be
computed very easily from the membership functions of the type-1 sets involved in
the meet operation; and 2) they are easily generalizable to the meet of more than

two fuzzy sets.

2.3.1 First Approximation

As explained earlier, if one of the two fuzzy sets is a fuzzy singleton, the meet
operation simplifies a lot, e.g., if I is a singleton, having membership equal to 1 at
vo and zero at all other points, as explained at the end of Section 2.2.3, the result

of the meet operation is (assuming vo # 0)
0 -
tinc(0) = 9(%) ;0eR (2.35)
If vo = 0, F = 1/0. Then, from (2.28), we have

FnG = [ [f(0gw)/0
= fw 5 300)/0

= [shl;pg(w)]/(]
= 1/0 (2.36)

where we have made use of the facts that the integrals in (2.28) denote union, the

t-conorm used is maximum, and G is normal.
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Similarly, if G is a singleton, having membership equal to 1 at v, and zero at all

other points, the result of the meet operation is (assuming vy # 0)

penc0) = F(5) 5 0 € (237)

vy

This motivates the following ad hoc approximation for meet under product t-
norm,

bine®) % F() V() s 0eR (2.38)

Uy Vo

This expression does not take into account the possibility that I or G may have more
than one point with membership grade equal to 1 in their support (an example of

such a fuzzy set is F in Fig. 2.1). To account for this case, we generalize (2.38) as

pina(9) %/Uevf(g) Vfwewg(%) (2.39)

where V is the crisp (non-fuzzy) set of all points having a membership grade equal

follows :

to 1 in I' and W is the crisp set of all points having a membership grade equal
to 1 in G. Figure 2.9 (c) shows the above approximation along with the actual
result. We do not claim that this approximation is optimal in any sense; however,
it looks intuitively reasonable and is much easier to compute than the actual result
[particularly because, as mentioned earlier, we will mostly deal with type-1 fuzzy sets
(membership grades of type-2 sets) that have only one point at which the secondary
membership reaches 1, so that we can use Eq. (2.38)]. Additionally, as we show
next, it collapses to the correct type-1 result if fuzzy memberships are replaced by
appropriate crisp memberships, i.e., if we replace the type-2 sets by appropriate
type-1 sets, the results remain valid. (Given a type-2 set, an “appropriate” type-
1 set is one which has a membership function equal to the principal membership
function of the type-2 set.)
Recall, that

fi; 5(z0) = fiz (o) M fiz(x0) (2.40)

In our analysis, we denote fi3(xo) and fiz(o) by F and G, respectively. We have
assumed that the membership functions of F and G, namely f and g, are such that

f(vo) = g(v1) = 1. If all the type-2 sets are replaced by the appropriate type-1 sets,
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F and G reduce to singletons 1/vo and 1/v,, respectively; so that FMG = 1/(vovy) =
Voly.

Now let’s see how the approximation in (2.38) reduces to this result.

o) = {1 Py

0 ; otherwise
:>f(£) = {[I] 091'.11:;:;:(3 o
and
9(0) = {; : otiu:\:ilse
ﬁg(%) = {{1) oi;:::e o

From (2.38), (2.41) and (2.42), we can see that when both ' and G are singletons,
the result of the first approximation is equal to vovy, which is the true result of the
meel.

In Theorem 2.1 and our discussion about the product t-norm, we have considered
join and meet operations between general fuzzy sets, which have the real line as their
support; however, when dealing with type-2 sets, we use these operations between
fuzzy membership grades, which are type-1 fuzzy sets supported in [0,1]; hence,
results of all the join and meet operations, for both min as well as product t-norms
are again type-1 fuzzy sets supported in [0,1]. Additionally we will be interested

primarily in Gaussian membership functions.

Example 2.3 Let’s see how the above approximation for meet looks in the case
of Gaussian fuzzy sets. Since Gaussians reach unity height at only a single point,
we can use (2.38). If f and g are Gaussians with means my and m,, and standard
deviations o and o, respectively, then from (2.38), we have

0 SRS - FnL-"‘g 2
ting(0) = 6_%(m“’ ) Ve_%( = ; 0€0,1]
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2
_‘L(B—m[rng) _
8 Ve

2

S
= ¢ mgy 2\ myog ; 0 €[0,1] (2.43)
On the RHS of (2.43), we are comparing two Gaussians with equal means. Obviously,
their maximum will equal the Gaussian with the larger value of myo; or mjyoy;

therefore,

1 f—=mgmg 2
tina(0) ~ e'i(m) ; 0 €[0,1] (2.44)

So, the approzimation of meet between two Gaussians is a Gaussian, whose mean
is equal to the product of the means of the two participating Gaussians. Figure 2.12
(c) depicts an example of meet (approximation with the actual result) of Gaussians
under product t-norm and maz t-conorm. Figure 2.13 (c) depicts a similar result for
Gaussians with equal standard deviations.

Let’s see how this generalizes to more than two Gaussians at a time. Consider
the meet between three Gaussians F‘l, Fz, Fg with means m,, m,, m3 and standard
deviations o1, 04, 3. Since the meet operation is associative under product t-norm
and maz t-conorm [4], we can first find the meet between ', and F, and then find the
meet of the resulting function with Fz. Using (2.44), we see that the approximation
of [, M isa (Gaussian, say '\, with mean m, = m;ms and standard deviation
012 = max{m,oy,myo1}. Using (2.44) again, we see that the approximation of
F‘lg M Fg, is again a Gaussian, say f"lgg with mean myy3 = mams = mymgms and

standard deviation
0193 = max{mlgag, ??130'12} = max{m1m203,mlmao'z,mzmso'l} (2-45)

The generalization of this result is straightforward. If there are n Gaussian fuzzy
sets Iy, Fg, SEN ', with means mi, M, - - - ,m, and standard deviations ,,09,---, 0,
respectively, then repeated application of (2.38) yields

2
1| 6=mymy-mn
e

pf?;r'lf-‘gn--ﬂf“,,(g) xe (2.46)
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where

5=max{01 [T mi,o2 T miy---y05 I] ma,---,0m 11 m?;}; i=1,2,---,n

i5i#1 502 HET] iiFEn
(2.47)

Figure 2.14 shows an example of meet of more than two Gaussians and compares
the actual result with the approximation.

Note that the Gaussians are contained in [0, 1] and may, therefore, be clipped (see
Appendix C.8.2). In this example, we did not consider effects of clipping; however,
we consider them in Appendix C.8.3 while calculating a lower bound for the Gaussian
approximation derived in Section 2.3.2. The process of finding a lower bound on the
Gaussian approximation is very similar to computing our first approximation to the

meet between Gaussians. O

2.3.2 A Gaussian Approximation

The approximation in (2.44) was motivated by a general membership function, not
necessarily Gaussian [see (2.38) and (2.39)]. If we focus on Gaussian fuzzy sets,
we can come up with a better approximation for meet under the product ¢-norm.
Observe that the meet operation is performed between membership grades of type-2
sets; therefore in the following, we require that the secondary membership functions
of the type-2 sets involved be Gaussians. Their principal membership functions,
however, can have any shape (e.g., triangular, Gaussian, trapezoidal).

Consider the case when f(v) and g(w) are Gaussians with support [0,1] with

means my, m, and standard deviations oy, oy, respectively. Then,

(222}’ ’

A 55 : = f el MR,

FI‘IG://e2 = s )/(vw) (2.48)
Recall that the integral in the above equation denotes union in the continuum. If 6

is an element of FM G, then the membership grade of # can be found by : finding all
the pairs {v,w} such that v € F,we G and vw = 6; multiplying the membership
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grades of v and w in each pair; and then finding the maximum of these products of
membership grades. That is,

v=1n g —m 2
_L(_L) e_%(ngi) cvw=0;v € F;we G} (2.49)
Given any v (assuming v # 0), the constraint vw = 0 gives us w = 0/v. Further,
since w € [0,1], it follows that 6/v < 1 or v > 0. So, given any 0 € (0,1], the
acceptable {v,w} pairs that can give 0 as the result of the product operation are

{(v, %J;U < 0 < v < 1}; therefore, from (2.49), we have

— “—mg #
tinG(0) = sup e"%[(q"’i) +(552) ] ,0#0
vG[U,l]
v—m 2 —um ?
. ) (=) £0 (2.50)
vE[ﬂ,l]

When 0 = 0, either v = 0 and w is any number in [0,1], or w = 0 and v is any

number in [0, 1]; therefore, from (2.49), we have

tinc(0) = sup 3_%(%)26_%(‘»:: )2 V sup e_%(u:!n )26—%(%)2
wel0,1] vE[0,1]
2 2
- e*%(;}f") Ve‘%(?ﬁ‘) (2.51)

Solving the optimization problem in (2.50), in general, is quite complicated and does
not lead to a closed-form expression (see Appendix C.6). Also, since the final result
is non-Gaussian, it can not be easily generalized to the case of the meet of more than
two Gaussians at a time; therefore, we now try to find a Gaussian approximation to
this result.

The supremum in (2.50) can be obtained by minimizing the exponent on the

RHS of (2.50). Let us call the exponent J(v). So, we want to minimize

v— mf)z " (9 — myv

)", 040 (2.52)
oy

J(v) = (

Ogv

with the constraint v € [0, 1]. Since the second term on the RHS of (2.52) has v in

its denominator, J is non-convex and is difficult to minimize. The actual function
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resulting from the minimization of J is non-Gaussian. In order to find a Gaussian
approximation for G, we simplify the problem a bit.

Equation (2.48) can be interpreted as follows. Fach element v of set ' multiplies
every element w of set G, and, at the same time, the membership grade of v in F
multiplies the membership grade of w in G. So, given a particular element v; of F,
what we get as a result of these multiplications is a scaled version of the membership
function of G (scaled along both the axes : along the independent axis by v, and
along the dependent axis by st yl“: ) ). This process is repeated for every element
of I and finally, the meet of F and G is given by the envelope of all the above scaled
Gaussians. The expression for the membership of an element § in NG is given by
(2.50) and (2.51).

In order to simplify the problem, we replace the v in the denominator of the
second term on the RHS of (2.52) by a constant k. By solving this simplified opti-

mization problem, we get an approximation to I G. Let’s call it E, so that

_1(21,)2 _I_("-_mg’)z
e 2

pip(0) = sup e *\ 7Y ko9
ve(d,1]
R 2 e 2
— s () () ] (2.53)
veld,1]

Observe that the only difference between (2.53) and (2.50) is that the standard
deviation of the second Gaussian in (2.53) is a constant (ko,), whereas that in
(2.50) is proportional to v (voy).

To see the dependence of uz(0) on k, let

(v —my\2 d—mgvy2 5
Hv, k)= ( = ) + (—-—k% )" 5 ke(0] (2.54)
Obviously,

H(v,e) >  Hk >  H@1) 5 0<e<k<l
= infuepy H(v,e) > infugp H(v,k) > infyegpH(v,1) 5 0<e<k<1
= om0 _ < 15(0) < w(0)|,_, 5 0<e<k<l

(2.55)
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Observe that as € — 0, H(v,¢) = oo and pi(0) — 0. Since k in (2.53) replaces v
in the actual problem (which varies between 0 and 1), it is apparent from (2.55), that
limy—o pt5(0) gives a lower bound on png(0) and “E(H)lkﬂ gives an upper bound
on ping(0)-

Recall that our earlier approximation in (2.44), which was a Gaussian with stan-
dard deviation equal to max{mo,,m4os} , was motivated by considering the case
where one of the Gaussians was a singleton, i.e., one of the Gaussians has a zero
standard deviation, which is analogous to assuming that £ = 0 in (2.53). There-
fore, from the discussion above, it is clear that this earlier approximation acts as a
lower bound on ppng(0). [Figure 2.15 (f) depicts a result that seems to contradict
this statement; however, it is obtained because only half of one of the participating
Gaussians is contained in [0, 1]. See the discussion at the end of this Section.]

From this discussion, it seems conceivable that choosing some () between the
upper and the lower bounds, i.e., substituting some value of k£ € (0,1) into (2.53),
should enable us to obtain a good approximation to ppng(€). Our criterion for
choosing k is that the approximation should be commutative (i.e., if we switch F
and G, we should still get the same result), because the true result is commutative.
Considering both these factors, we choose k = m;. Refer to Appendix C.6 for details
of the solution of (2.53) and the choice of k. We state the result here.

If F and G are two Gaussian type-1 fuzzy sets in [0, 1] having means m; and m,
and standard deviations o; and o,, then the membership function for the meet of F

and G can be approximated as

( ﬂ’-'lll[rﬂg: )2
ppna(0) me VT (2.56)

LSl

Generalization to the case of more than two Gaussians is straightforward. As-
sume that L is a Gaussian fuzzy set with mean m; and standard deviation o;. Using
the associative property, we have FNnGnL = (FnG)nL; hence, using (2.56), we
have

(2.57)
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where my, = mym, and oy, = /m2o} + mjo?. Using (2.56) again, we have

L( e—mmm; )2
2 me ol +m2 al

F}?nénﬁ(o) ~ e Vem el

2
__l.( B—m!mgm!
2 . JoR, JER P8 T 2.2
\/rni mgcr!+m mfo'g-}-mfmgar

(2.58)

If there are n Gaussian fuzzy sets Iy, Fy,---,F, with means my,mg,- -, m, and
standard deviations oy, o3, - -, 0, respectively, then repeated application of (2.56)

yields
#F‘mf«‘gn---nF‘n(a) ~ e

where

= |[ot Hm+02Hm+ —1—02Hm?+---+aﬁnm?;i=l,‘2,---,n
1;i#£l 1;1#£2 (HE S ;i#En
(2.60)

Comparing (2.59) with (2.46), we see that the two approximations have the same
mean. Only the standard deviations are different. All the results and approximations
that we have developed will finally be used for operations between membership
grades of type-2 sets.

Recall that we require that all our results remain valid if we replace all the type-2
sets by corresponding type-1 sets (i.e., type-1 sets having the principal membership
functions of the type-2 sets as their membership functions). In case of Gaussian type-
2 sets, replacing type-2 sets by corresponding type-1 sets is analogous to reducing
the standard deviations of all the secondary membership functions to zero. [Observe
that a Gaussian with a zero standard deviation is like an impulse function. As we
reduce the standard deviation of a Gaussian, keeping its mean constant, it grows
narrower and narrower. The height of the Gaussian at the mean remains unchanged
though. In the limit, as the standard deviation reduces to zero, only the mean of
the Gaussian has a non-zero membership, which is equal to 1. Mathematically, if
we have a Gaussian with mean m and standard deviation o, hma_,g( =) — oo if
0 # m and lim,o(E=2) = 0if § = m. So, in the limit exp{—g(-a—) } is equal to

1 if 0 = m and is equal to 0 otherwise.] All that remains of a membership grade
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after doing this is a crisp number in [0,1] equal to the center of the Gaussian in
the type-2 case; and the meet operation reduces to the product of all these crisp
numbers. The actual type-2 result for the meet between Gaussians (Appendix C.6)
as well as both our approximations [(2.59) and (2.46)] obey the same result. If we
reduce the standard deviations of all the Gaussians involved to zero, the result of
the meet operation is equal to that in the type-1 case.

Figures 2.15 (a) - (f) show some examples of this approximation. In general, if
the Gaussians have 42 (or more) standard deviations contained within [0, 1], the
results look quite good. In Fig. 2.15 (f), one of the Gaussians is centered at 1, so
only half of this Gaussian (the part lying to the left of the mean) is contained in
[0,1]. Consequently, the result of the meet is much more “non-Gaussian” than earlier
cases, i.e., the difference between our Gaussian approximation and the actual curve
is larger than that in the other examples. Also, observe that the first approximation
in (2.46) does not act as a lower bound on the result of the meet in this case.

Appendix C.6 derives bounds on the error between the Gaussian approximation
and the result of the actual meet operation, by finding upper and lower bounds which

contain both the approximation as well as the actual function.

2.3.3 A Triangular Approximation

Triangular membership funtions are widely used; therefore, we develop a triangular
meet approximation similar to the Gaussian approximation derived in Section 2.3.2.

See Appendix E.1 for details.

2.4 Algebraic Operations on Fuzzy Numbers

As already mentioned, convex and normal type-1 fuzzy subsets of the real line are also
known as fuzzy numbers [2, 5]. Algebraic operations like addition and multiplication
between fuzzy numbers can be defined using the Extension Principle, just as we
defined the ¢-norm and ¢-conorm (i.e., meet and join) operations (see, for example, [2,

5]). The two operations of most interest to us are multiplication and addition.
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2.4.1 Multiplication of Type-1 Fuzzy Numbers

The product of two fuzzy numbers F' = [ f(v)/v and G = [ g(w)/w is defined as

Fx@= lL[f(v)*g(w)]/[v X ] (2.61)

where % indicates the {-norm used.

Observe, from (2.28) and (2.61), that under product ¢-norm, the product of I and
G is the same as the meet of I and G, i.e., F x G = FNG; so, all our earlier discussion
about meet under product t-norm applies to multiplication of fuzzy numbers under
product t-norm. We do not discuss multiplication under minimum ¢-norm, rather

we focus on the addition of fuzzy numbers.

2.4.2 Addition of Type-1 Fuzzy Numbers

The addition of two fuzzy numbers F = [ f(v)/v and G = [ g(w)/w is defined as
F+G= ]{;/ul[f(v)*g(w)]/[v + w] (2.62)

When F andG are interval type-1 sets, (2.62) simplifies considerably, as we show

next.

2.4.2.1 Addition of Interval Type-1 Numbers

Let F' and G be two interval type-1 sets with domains [I;, /] and [{,, r,], respectively.
Using (2.62), the algebraic sum of F' and (, can be obtained as

F+G=[veFfweG(l*l)/(v+w) (2.63)

Observe, from (2.63), that

e cach term in F' + G is equal to the sum (v + w) for some v € I and w € G,

the smallest term being ({; + ;) and the largest (ry + r,); and,

e since both F' and G have continuous domains, I’ + G also has a continuous
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consequently, I + G is an interval type-1 set with domain [l; + [y, 7; + 1], 1.e.,

F+G= f 1/ 2.64
vE[lp g, ptrg) / ( )

Similarly, the algebraic sum of n interval type-1 numbers Fy, ..., I, having domains
[li,71], - - . [ln, n], respectively, is an interval type-1 set with domain [, &, Y, 7).
See [5] for a similar result.

See Theorem D.1 for an expression for an affine combination of interval type-1
sets.
NOTE : Observe, from (2.63) that while performing algebraic operations on interval
type-1 sets, the choice of t-norm does not matter, since all the memberships involved

are unity.

2.4.2.2 Addition of Gaussian Type-1 Numbers

Theorem 2.4 Given n type-1 Gaussian fuzzy numbers Fy, ..., F,, with means
my, ma, ..., m, and standard deviations oy, o3, ..., o,, their affine combination

toaiF 4 B, where o (1 =1,...,n) and f are crisp constants, is also a Gaussian

fuzzy number with mean 3", a;m; + 3, and standard deviation X', where

VIr, a?o? if product t-norm is used
E’:{ =1 Qo7 if product t-norm is use (2.65)

Y aioil , if minimum t-norm is used

See Appendix C.9 for the proof of Theorem 2.4.

2.4.2.3 Addition of Triangular Type-1 Numbers

For comparable results about triangular fuzzy numbers, see Appendix E.2.
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2.5 Centroid of a Type-2 Set

In this section, we extend the concept of the centroid of a fuzzy set from type-1 to
type-2. The centroid of a type-1 set A whose domain is discrete with N points or is

discretized into N points, is given as

- Z;[Y:.l ipt (@)
R = T aed) (2:60)

Similarly, the centroid of a type-2 set f\, whose domain is discretized into N points
(see Chapter 1 for the definition of the domain of a type-2 set), can be defined using
the Extension Principle [see Appendix B, especially (B.13)] as follows. If we let
D; = fiz (@), then

= {\L .','91'
Cx =f91 .../glv[ﬂ.ﬁl(el)*...*%N(GN)]/%?:%T (2.67)

where 0; € f),-.

Equation (2.67) can be described in words as follows. Each point x; of A has
a type-1 fuzzy membership grade, D, = fiz (i), associated with it. To find the
centroid, we consider every possible combination {0;,...,0x} such that 6; € D,.
For every such combination, we perform the type-1 centroid calculation in (2.66)
by using 0;’s in place of fiz(wi)’s; and, to each point in the centroid, we assign a
membership grade equal to the t-norm of the membership grades of the ;s in the
D;s. If more than one combination of 6;’s gives us the same point in the centroid, we
keep the one with the largest membership grade. If we let Ei\;l :1:3'95/ Zf‘;l 8; ==,

then (2.67) can also be written as

; :/x{glsup [p, (00) %%y _(0n)] /2 (2.68)

----- On}

where {0;,...,0x} are such that i .1:;9,-/21-\;1 0; = x. We will illustrate the
calculation of éfx below, in Example 2.4. First, however, we provide some general

insights into (2.67).
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A type-2 set A can be thought of as a collection of type-1 sets, which we call
type-1 sets embedded in fﬁ
Definition : A type-1 set A embedded in a type-2 set Aisa type-1 set for which :
()zeA ozel, and (2) pi(e) € iz () Vo € A,

In the 2-D representation of a type-2 set, an embedded type-1 set is one whose
membership function lies inside the shaded region. Figure 2.16 shows an example
of a type-1 set embedded in a type-2 set. For the type-2 set A in (2.67), every
combination {fy,...,0x} such that 0; € 1:),-, corresponds to the membership function
of an embedded type-1 set. The centroid of fﬁ, éi can be thought of as a type-1
set whose elements are the centroids of all the embedded type-1 sets in A. The
membership grade of an embedded set centroid in C 5 is calculated as the {-norm
of all the secondary memberships corresponding to {0y,...,0x} that make up that
embedded set. When A collapses to an embedded type-1 set A, which corresponds
to the combination {#},...,0%}, each D; reduces to a fuzzy singleton, such that
,u]j‘_(f?;f) =1 and g (6;) = 0 if 0; # 0}; therefore, we get 7;2'1;5[-)‘_(92) =1, and for all
other {6y,...,0x} ::ombina,tions 7}2’1;,:5‘,(9,-) = 0. Consequently, éf\ reduces to the
crisp number Cj, the centroid of A.

Observe that if the domain of A and/or fiz(z) (x € ;\) is continuous, the domain
of Cm':\ is also continuous. The number of all the embedded type-1 sets in .f\, in
this case, is uncountable; therefore, the domains of A and each fiz(z) (z € ;gn)
have to be discretized for the calculation of C;. Observe, from (2.67), that if the
domain of each D, is discretized into M points, the number of possible {0y,...,0x}
combinations is M”~, which can be very large even for small M and N. If, however,
the membership functions of D,’s have a regular structure (e.g., Gaussian, triangular,
interval), we can approximate the centroid without having to do all the calculations.
See Example 2.4 and Sections 2.5.2.1, 2.5.2.3, 2.5.2.2 for more details. In the case
of an interval type-2 set, even the actual centroid can be obtained relatively easily

by using the computational procedure described in Appendix D.

Example 2.4 In this example, we show the centroid calculation for a type-2 set that
results from a type-1 set with only location uncertainty, e.g., see Example 1.2. We
focus on the special case of Gaussian membership functions with uncertain means,

such that every value of the mean is equally uncertain. In this case, we set all
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the secondary memberships equal to 1, to indicate that the level of uncertainty
associated with every primary membership is the same, so that the resulting set is
an interval type-2 set.

Figure 2.17 (a) shows a type-2 set A resulting from a Gaussian type-1 set with
mean uniformly uncertain in the interval [my, ms]. In the figure, m; = 0.45, my =
0.55 and the standard deviation, ¢ = 0.2. All the secondary memberships are equal
to 1.

Observe, from (2.67), that :

1. all the secondary memberships are equal to 1, so the membership of each point
in the centroid is also equal to 1, i.e., ,uﬁl({)l)* e *p:[-)N(GN) = 1; hence, the

centroid is a crisp set;

2. the mean varies on a continuous domain [y, m,], so the crisp set corresponding

to the centroid will also have a continuous domain; and,

3. each Gaussian centered at m € [m;,ms] is an embedded set in A, so the
centroid of each such Gaussian ( i.e., each m € [m,,mz]) will be an element

of the centroid.

From these three observations, we see that the centroid of A is some interval, [¢, ¢ ],
which contains [m;, m,]. Now, we have to find the end-points of this interval. To do
this, we show how to compute the left end-point, ¢;. Since the set is symmetrical,
the calculation of ¢, will be similar.

It is easy to verify that the left end-point ¢ is the centroid of the embedded type-1
set which assigns the highest possible memberships to all the points to the left of its
centroid and lowest possible memberships to all the points to the right of its centroid
(see the computational procedure in Appendix D.1 for more discussion). Any change
in this membership function will always cause its centroid to move towards the right,
implying that the centroid of this embedded type-1 set is equal to ¢;. An example
of such an embedded type-1 set is shown by the thick dashed line in Fig. 2.17 (b).

Though we do not know the exact value of ¢;, we can make an estimate by
considering the embedded type-1 set shown in Fig. 2.17 (c). This type-1 set is
formed by assigning the highest possible memberships to the points to the left of

m; and the lowest possible memberships to the points to the right of m,;. The
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membership function of this set looks like a Gaussian with a small portion missing,
and its centroid (which was calculated numerically) is equal to ¢; = 0.44992, which
is a little bit to the left of m;. The fact that ¢, is just slightly less than m; shows
that the area to the left of m; in the type-1 set in Fig. 2.17 (c) is just slightly more
than the area to its right; therefore, ¢; will also be just slightly less than m;.

Similarly, the embedded type-1 set constructed by assigning highest possible
memberships to all the points to the right of m, and lowest possible memberships
to the points to the left of m,, has a centroid ¢, = 0.55008, which is slightly larger
than m,; hence, we conclude that ¢, will be just a little bit larger than m,. We can,
therefore, say that ¢; & ¢; and ¢, & c;. Figure 2.17 (d) shows A with its centroid ,
which is a crisp set with domain [¢;, ¢,] = [c1, 2] & [my, m2).

It can be shown that, if (my — m,) is small compared to the standard deviation
(o) of A, then [e, ¢,] & [my,ms] (see Appendix C.10 for the proof).

If we increase (my — my), keeping o the same, the difference between the ap-
proximation and the true centroid (computed using the computational procedure
in Appendix D.1) increases, e.g., for o = 0.2, if {m;,m2} = {0.4,0.5}, {c1,¢c2} =
{0.39855,0.60145}, and, if {m1,ma} = {0.3.0.7}, {e1,c2} = {0.28146,0.71854}. We,
therefore, recommend using the computational procedure described in Appendix D.1
to obtain the centroid, if (my — m,) is not small compared to o. 0O

See Appendix D.1 for a computational procedure to compute the centroid of
a general interval type-2 set. We next describe a problem that arises when one
attempts to compute the centroid of a type-2 set having a continuous domain using

product ¢-norm.

2.5.1 Centroid Calculation Using the Product ¢-norm

Calculation of the centroid, using product ¢-norm, of a type-2 set which has a con-
tinuous domain and not all of whose secondary memberships are unity, gives us an
unexpected result. In this section, we concentrate on type-2 sets having a continu-
ous domain whose secondary membership functions are such that, for any domain
point, only one primary membership has a secondary membership equal to one, e.g.,
Gaussian or triangular type-2 sets. We first describe the problem and then discuss

its cause and remedy.
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Problem

In the discussion associated with (2.67), we assumed that the domain of A is dis-
cretized into N points. The true centroid of A (assuming A has a continuous do-
main) is the limit of C‘R in (2.67) as N — oco. When we use the product ¢-norm
limp o0 T2 =1HD, (6:) = limy o0 T, #1‘3‘.(95)-

Let B be an embedded type-1 set in A. The centroid of B is computed as

T wipg ()
Cr === "5V 2.69
Zéil ﬂfa(l'i) ( )

and the membership of Cjy in éfx [denoted as pg(Cg)] is

#e(Cp) = [T 1o, (6:) (2.70)

where {01, ...,0n} are the primary memberships that make up the type-1 set B.
Let A denote the principal membership function of A. Obviously, ua(C;) =1
Consider the case where the secondary membership functions are like Gaussians

or triangles (having only one point with unity membership). We make two observa-

tions :

1. limy_ye pte(Cg) 1s non-zero only if B differs from A in at most a finite number
of points. For all other embedded sets B, the product of an infinite number of

quantities less than one will cause ua(Cp) to go to zero as N — oo.

2. For any embedded set B, whose membership function differs from that of A
in only a finite number of points (i.e., when pg(x) # pz(z), for only a finite

number of points z), Cg = C;. This can be explained as follows :

The (true) centroid of B is defined as

o L epg(z)de
8= p(e)da ah

where z € B. Since A and B share the same domain (both are embedded

sets in A), z € A & & € B; and since p;(z) and pg(z) differ only in a finite
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number of points, [, zug(z)dz = [, zpz(z)dz and [, pg(z)dz = [, pi(z)de;
therefore, Cg = Cj.

From these two observations, we can see that the only point having non-zero
membership in éi is equal to Cj; and its membership grade is equal to the supremum
of the membership grades of all the embedded type-1 sets which have the same
centroid, which is e(}ual to 1 [since pug(Cyx) = 1]. In other words, éfx =1/Cx =Cy,
i.e., the centroid of A will be equal to a crisp number ..... the centroid of its principal

membership function !

Cause

The above problem occurs because, under the product {-norm, limy_;~ TN g (0;) =
limy o0 [T 5 (0:) = 0, unless only a finite number of py5 (6;)’s are less than 1.

The minimum ¢-norm does not cause such a problem.

Remedy

One obvious way to deal with the problem explained above is to not use product
t-norm for centroid calculation. From now on, we will always use the minimum

t-norm to calculate the centroid of a type-2 set having a continuous domain.

2.5.2 Approximations to Centroids of Certain Type-2 Sets

In this section we develop approximations to the Centroids of Gaussian and trian-

gular type-2 sets.

2.5.2.1 Centroid of a Gaussian Type-2 Set

We first prove a general result and then use it to find the centroid of a Gaussian

type-2 set.

Weighted Average of Gaussian Type-1 Sets : Consider the weighted average
_ Z‘?il Wiz

y(zla---szﬁffawla"'ﬁiuﬂ’f)_m (272)



where z; € R and w; € [0,1] for [ = 1,..., M. If each z is replaced by a type-1
fuzzy set Z, C R and each wy is replaced by a type-1 fuzzy set W, C [0, 1], then the

extension of (2.72) gives

Y@y, ooy Zags Wiy W) = le ---/:M /wfw 'T{f;pi‘(z;)*ﬂiﬂpwt(w;)/

M wiz
B (2.73)

=1 Wi

where 7" and * both indicate the t-norm used . .. product or minimum, w; € W, and
neZforl=1,...,M.

Theorem 2.5 If each Z is a Gaussian type-1 set, with mean m; and standard de-
viation oy, and if each I;VI is also a Gaussian type-1 set with mean h; and standard
deviation A, then Y is approzimately a Gaussian type-1 set, with mean M and

standard deviation ¥, where

M
ok
M= @79
1=1
and
M [ ha)24m —M]2A2
\/Z‘=‘ [[ ¥ ‘LH = I] ,  if product t-norm is used
E = . =1 hy (2.75)
E:-J”‘EEIT‘_MM‘] , if minimum t-norm is used
1=1 "
provided that -
kY= A
=1

where k is the number of standard deviations of a Gaussian considered significant
(generally, k = 2 or 3). The Gaussian approximation improves as k(Zf;"l A;/ ] h;)
grows smaller, and the result is exact when YM A = 0, i.e., when A = 0 for
l=1,...,M. O

See Appendix C.11 for the proof. A sufficient condition that satisfies (2.76) is that
the Gaussian W,’s are narrow, i.e., kA;/hy € 1 for l =1,..., M. Observe, however,
that there is no condition on the standard deviations of the Z;’s; consequently, when
all the W,’s are crisp numbers, the theorem gives an exact result. See the comments

at the end of Appendix C.11 for bounds on the domain of Y.



Recall that we will use only minimum ¢-norm for the centroid calculation of a
type-2 set with a continuous domain. (If the domain is discrete, however, product
t-norm may be used.) From Theorem 2.5, we get the following result for the centroid

of a Gaussian type-2 set.

Corollary 2.2 The centroid of a Gaussian type-2 set ;1 is approximately a Gaussian
type-1 set with mean J\A(C‘R) [Eq. (2.77)] and standard deviation E(CA) [Eq. (2.78)],
if the standard deviations of the secondary memberships are small compared to their
means, i.e., if (2.79) is satisfied.

Proof : Observe that the z;’s in (2.67), which are crisp numbers, correspond to the
z’s in (2.73), the D,’s in (2.67) D, = ﬁi(:z:,-)] correspond to the W,’s in (2.73), and
the sum in (2.67) goes from 1 to N instead of from 1 to M. If we denote the mean
and the standard deviation of iz () as m(z;) and o(z;), respectively, then using
Theorem 2.5, C'; is approximately a Gaussian type-1 set with mean M(C3) and
standard deviation (C'; ), where

M(Gy) = 2 5 (2.77)
e Xl = M(Cplo(z)
~ i=1 T — aglx =
£(C;) = e (2.78)
provided that
Z Timol) (2.79)
N m(z;)

where k has the same meaning as in Theorem 2.5. Equation (2.79) is satisfied if
standard deviations of the secondary membership functions are small compared to
their means. m]

Comment 1 : See Fig. 1.10 for an example of a type-2 set, which can be made to
satisfy condition (2.79) easily. In this set the standard deviation of every membership
grade is proportional to its mean. If we set the constant of proportionality to a small
value, (2.79) can be satisfied. See Example 2.7 for an expression for the centroid of
such a type-2 set.

Comment 2 : Because the membership grade of each = € }:\ is a Gaussian type-

1 set, the primary membership which has a secondary membership equal to unity
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is m(z); and, since the principal membership function is the set of those primary
memberships for which the secondary memberships are equal to 1, m(z) for z € Ais
the same as the principal membership function of A. Observe, therefore, from (2.77),

that the mean of the approximate centroid, M(C’; ), corresponds to the centroid of

the principal membership function of A.

Example 2.5 Consider the centroid calculation of a type-2 set [see (2.67)]. If the
type-2 set is discretized into N points (z1,...,2y) and if the membership grade
of every z; is discretized into M points, the total number of possible {6y,...,0n}
combinations is M. This number can be very large even for modest values of M and
N, e.g., if N =10 and M = 5, the number of possible combinations is 9,765, 625,
i.e., about 10 million ! And for each of these combinations, we have to compute
the weighted average N | :z:,-ﬂ,-/ i1 0;. On the other hand, if (2.79) is satisfied, all
we have to do to compute the centroid is compute two weighted averages, one for
the mean of the centroid [(2.77)] and one for its standard deviation [(2.78)]. This

example demonstrates the significance of our Gaussian approximation results. O

Example 2.6 Now, we demonstrate the use of Corollary 2.2 with an example.
Consider a Gaussian type-2 set with a discrete domain consisting of only 3 points,
21 =1, x5 = 3 and x3 = 5 [see Fig. 2.18 (a)]. Suppose that m(z,) = 0.1, m(z3) = 0.8

and m(x3) = 0.6. We consider three cases :

1. If o(x;) = 0.05m(z;) for i = 1,2, 3, the membership grades of 1, 23 and x3 are
shown in Fig. 2.18 (b), (¢) and (d), respectively; and, the true centroid and
the approximation in Corollary 2.2 are as shown in Fig. 2.19 (a). In this case,

when k = 2, k[z,- 0'(:1:,-)]/[2,- m(.’r,—)] =0.1.

2. Ifo(x;) = 0.3m(x;), o(z2) = 0.1m(z2) and o(z3) = 0.2m(z3), the membership
grades of x;, x5 and z3 are shown in Fig. 2.18 (e), (f) and (g), respectively;
and, the true centroid and the approximation in Corollary 2.2 are as shown in

Fig. 2.19 (b). In this case, when k = 2, k[, ()] /[ £im(x:)] = 0.3066.

3. If o(z;) = 0.5m(x;) for i = 1,2,3, the membership grades of z, z2 and 3

are shown in Fig. 2.18 (h), (i) and (j), respectively; and, the true centroid and
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the approximation in Corollary 2.2 are as shown in Fig. 2.19 (c). In this case,

when k = 2, k[zia(m;]]/[z,-m(x.-)] =T,

When computing the true centroids, only primary membership values between m(z;)=+
20(x;) were considered. Observe that though the domain of the type-2 set is dis-

crete, that of its centroid is continuous, because the membership grades of z;, 3

and x5 have continuous domains.

Observe that the approximation in the first two cases is much closer to the
true centroid than that in the third case; however, though a smaller value for
[Z‘-O'(.'L'g)]/[z,' m(a:,-)} will generally give a better approximation, it is not at all
easy to predict how close the actual centroid of a given Gaussian type-2 set will be
to its approximation. The same can be said about the approximation in Theorem 2.5,

which allows the domain points @;’s to be replaced by fuzzy sets. O

Example 2.7 Consider a Gaussian type-2 set A C X. Let the principal membership
function of A be a Gaussian type-1 set with mean M and standard deviation X;
and, let the standard deviation of each secondary membership function of A be
proportional to the mean of that secondary membership function. Figure 1.10 shows
an example of such a Gaussian type-2 set. In this example, we obtain an expression
for the centroid of fﬁ, using Corollary 2.2.

Recall, from comment 2 at the end of Corollary 2.2, that m(z) for z € X is the
same as the principal membership function of :4 The membership grade of every

2 € X in A can, therefore, be described as

fiz(x) = G(m(z),0(x)) ; z€X (2.80)
where i
m(z) = e~2(*%%) (2.81)
and
a(z) = em(z) (2.82)

where G(m, o) indicates a Gaussian with mean m and standard deviation ¢; and, ¢

is a constant, which is generally in (0,1).
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Let us now find an expression for éi‘ the centroid of ;Z\, in terms of M, ¥ and c.
From Corollary 2.2, we know that C'g\ is approximately a Gaussian type-1 set with

mean .M(CH) and standard deviation E(é;\), where

= Imm( i)
M(C;) = ZH———+ 2.83
’ ( A) Zi:l (:) ( )
e S, Jai — M(C)lo(a:)
N iy |Ti = M(C3)|o(z; :
%(C3) 5T lz) (2.84)
provided that
k—djl—g—(ﬂ <1 (2.85)
S, m(;) '

where k is the number of standard deviations considered significant, 2 or 3, and the
domain of j:\ is assumed to be discretized into N points.

Since m(z) for z € X is the principal membership function of A we see, from
(2.83), that M(C’ ) is the same as the centroid of the principal membership function,

which is equal to M, i.e.,

M(C;)=M (2.86)

To find E(Ch'i), let us assume that X is not discretized (i.e., it is continous), so
that (2.84) can be rewritten as (using the fact that M(éA) = M)

o Feglo= Mio(a)ds
B )= — Ty 12:57)

The fuzzy sets we deal with are generally subsets of the real line, so that X = R.
Observe, from (2.81) and (2.87), that the denominator of (2.87) is the area under a
Gaussian with mean M and standard deviation ¥. Recall from probability theory

that the area under a probability density function is unity; therefore,

/ m(z)dz = V272 (2.88)
reR

Let the numerator of (2.87) be equal to /. It can be computed as follows.
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where

L = / (M = 2)o(@)ie (2.90)

and
= / (&= M)o(x)de (2.91)

Substituting (2.81), (2.82) and 3[(z — M)/Z]* = ¢ into (2.90) and (2.91), it is
easy to see that
R f etdt = cx? (2.92)

0

Using (2.88), (2.89) and (2.92) in (2.87), we find that

& 2
£(C;) = = —\/gcs (2.93)

omy

From (2.86) and (2.93), we see that Ci is approximately a Gaussian type-1 set
with mean M and standard deviation \/'ZFCE. The condition (2.85) requires that
c € 1/k [since o(x) = cm(z)).

Observe that, if we set ¢ =0, o(x) = 0 for all z € X, implying that A collapses
to its principal membership. Now, from (2.93) , we get E(éi) = 0, which means
that the centroid of A collapses to a single point, equal to M. This is consistent with

the fact that M is the centroid of the principal membership function of A. a

2.5.2.2 Centroid of an Interval Type-2 Set

Appendix D.1 describes a computational procedure to compute the exact result of
a weighted average of interval type-1 sets. This procedure can be used to compute
the centroid of an interval type-2 set. Appendix D.2 also gives a result similar to

Theorem 2.5.

2.5.2.3 Centroid of a Triangular Type-2 Set

For a result similar to Theorem 2.5 for triangular type-2 sets, see Appendix E.2.2.3.
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Figure 2.1: An example of two general membership functions, f and g, that satisfy
the requirements of Theorem 2.1, part (a). Observe that for set I, any of the points
at which f attains its maximum value of unity may be chosen as vy. We arbitrarily
chose vy = 1.8. (a) The three possibilities : 6; < vg, vo < 03 < vy, 03 > vy. (b)
Result of the join operation. (c) Result of the meet operation. The {-norm used is
min.
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Figure 2.2: An illustration of Theorem 2.1, part (b), for Gaussians. (a) Participating
Gaussians; (b) join; and (c) meet.
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Figure 2.3: An illustration of Corollary 2.1. (a) Convex type-1 sets I and C:} The
membership functions of I and G are shifted versions of each other. (b) FUG = G.
(c) FNG=F.
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Figure 2.4: An illustration of Corollary 2.1 for the Gaussian case. (a) Participating
Gaussians; (b) join is the Gaussian with larger mean; and (c) meet is the Gaussian
with smaller mean.
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Figure 2.5: An illustration of the negation operation. (a) Type-1 fuzzy set G, (b)
-G.
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Figure 2.6: Join and meet operations between Gaussians under min t-norm. (a)
Participating Gaussians; (b) join; and (c) meet.
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Figure 2.7: Union and Intersection of Gaussian type-2 fuzzy sets using the 2-D
pictorial representation introduced in Fig. 1.10. (a) Participating sets; (b) union ;
and (c) intersection.
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Figure 2.8: Complement of a Gaussian type-2 fuzzy set using the 2-D pictorial
representation introduced in Fig. 1.10. (a) Gaussian type-2 set; (b)complement.
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Figure 2.9: Join and meet operations under product t-norm. (a) Participating type-1
fuzzy sets; (b) join ; (¢) meet : the actual result is shown with the thin solid line
and the approximation in (2.39) with the thick dashed line.
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Figure 2.10: An illustration of (2.23) for the Gaussian case. (a) Participating Gaus-
sians; (b) join under product ¢-norm.
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Figure 2.11: An example showing how f(v)g(%2) looks for the curves we considered
in the proof of Theorem 2.1. (a) The membership functions f and g of type-1 sets
I and G, respectively. (b) f(v), which is the same as that in Fig. (a) and g(2). (c)
The product f(v)g(22).
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Figure 2.12: Join and meet operations between Gaussians under product t-norm.
(a) Participating Gaussians; (b) join; and (c) meet : the thin solid line depicts the
actual result and the thick dashed line shows the approximation in (2.44). Compare
these results with those in Iig. 2.6 obtained using the min t-norm.
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Figure 2.13: Join and meet operations between Gaussians, having the same standard
deviation, under product t-norm. (a) Participating Gaussians; (b) join; and (c) meet :
the thin solid line depicts the actual result and the thick dashed line shows the
approximation in (2.44).
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means =[ 0.3, 0.4, 0.7 ]
05 std devs =[ 0.1, 0.12, 0.05 ] =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

means =[ 0.3, 0.5, 0.6, 0.8 ]
std devs =[ 0.1, 0.15, 0.11, 0.04 ] 5

means =[ 0.2, 0.4, 0.6, 0.8, 0.9 ]
std devs =[ 0.08, 0.11, 0.11, 0.06, 0.083 ] .

- . 1 L | 1 A

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.14: Examples of meet of more than two Gaussians at a time for product
t-norm. The approximation in (2.46) is shown with the thick dashed line. The thin
solid line shows the actual result, which was calculated numerically.
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Figure 2.15: Actual and approximate results of the meet operation between Gaus-
sians under product #-norm. The thin solid line shows the actual result computed
numerically. The thin dash-dotted line shows the first approximation in (2.46). The
approximation in (2.59) is shown by the thick dashed line. Means and standard
deviations of the Gaussians are as indicated in the figure. In Figs. (d) and (e), the
two Gaussians are coincident (the same curve). The first approximation does very
poorly in this case. In Fig. (f), observe the difference between the approximation
and the actual curve on the RHS of the mean. This is due to the fact that one of
the Gaussians is centered at 1, i.e., only half of it lies in [0,1]. This clipping effect
is discussed in Appendix C.8.2.
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Figure 2.16: Example of a type-1 set, shown with the thick dashed line, embedded

in a type-2 set.
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Figure 2.17: Figures for Example 2.4. (a) An interval type-2 set A resulting from
a Gaussian type-1 set with standard deviation equal to 0.2 and mean uniformly
uncertain in the interval [m;, my] = [0.45,0.55]. The thick line shows an embedded
Gaussian type-1 set. (b) The embedded type-1 set whose centroid equals ¢; is shown
with a thick dashed line. (¢) The type-1 set formed by assigning highest possible
memberships to the points to the left of m; and lowest possible memberships to the
points to the right of m,. The centroid of this set is ¢; = 0.44992 ~ ¢;. (d) The

centroid of A is the interval [¢, ¢,] = [c1, ¢2] & [my, my).
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(a)
1 1 1
0.5 0.5 0.5
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(b) (©) (d)
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(h) (i) 0)

Figure 2.18: Figures for Example 2.6. The domain of the discrete Gaussian type-2
set having 3 points, ; = 1, , = 3 and 3 = 5, is depicted in (a). The membership
grades of z;, x, and x3 for case 1 are depicted in (b), (c¢) and (d), respectively ;
the membership grades for case 2 are depicted in (e), (f) and (g); and, those for
case 3 are depicted in (h), (i) and (j). Each of the figures (b) to (j) show plots of
primary versus secondary memberships. In each case, m(z,) = 0.1, m(z;) = 0.8
and m(z3) = 0.6. For case 1, o(z;) = 0.05m(z;) for i = 1,2,3; for case 2, o(z;) =
0.3m(z1), o(z2) = 0.1m(z;) and o(z3) = 0.2m(z3); and, for case 3, o(z;) = 0.5m(z;)
toF § = 13258
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Figure 2.19: Figures for Example 2.6. Centroids of the Gaussian type-2 set depicted
in Fig. 2.18 for the three choices of o(z;) (: = 1,2,3). (a) o(z;) = 0.05m(z;) for
i =1,2,3. (b) o(z1) = 0.3m(z1), o(z2) = 0.lm(z2) and o(z3) = 0.2m(z3). (c)
o(z;) = 0.5m(a;) for i = 1,2,3. When computing the true centroids only primary
membership values between m(z;) £ 20(x;) are considered.
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Appendix A

Examples for Chapter 1

In this Appendix, we provide 3-D representations for Examples 1.1 and 1.2, assuming
that the standard deviation of the Gaussian in Example 1.1 and the mean of the
Gaussian in Example 1.2 are Gaussian type-1 sets. We shall see that obtaining the
3-D representations in this case is fairly more complicated than obtaining the ones
in Figs. 1.4 and 1.5, where the uncertain standard deviation and mean were assumed

to be crisp sets.

Example A.1 Consider Example 1.1. Suppose that the standard deviation of this
Gaussian is a type-1 fuzzy set with domain [0, 03] that is characterized by a Gaussian
membership function with mean M, = 24?2 and standard deviation ¥, = #7%.
These values for M, and ¥, were chosen for illustration purposes only. The mem-
bership grade for each x still has the same domain as it had when all the values of
the standard deviation were equally uncertain, but now, we assign secondary mem-

berships as follows. For any = (e.g., z = 0.65 in Fig. 1.1), if a primary membership

Ir—m
al

2
w1 € [0,1] is such that py = exp{—-%( ) } for some ¢’ € [01,02] (01 = 0.1 and
oy = 0.2 in Fig. 1.1), then we set the secondary membership corresponding to this

x and py, po(z, 1), equal to the membership of o’ in the fuzzy set o, i.e., we set

LU 4 r—m 4
po(, ) = e_%(%{l) where p; = e_%(_"’_) (A.1)

In Fig. 1.1, for 2 = 0.65, this occurs for py € [0.3247,0.7548]. If a primary member-

2
ship py € [0,1] is such that no o’ € [o1,0,] satisfies y; = exp{—%(Z2) }, we set
P12

o’

pa(z, 1) = 0. In Fig. 1.1, for z = 0.65, this occurs for p; ¢ [0.3247,0.7548]. Note
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that the above choice of jp(x, pt1) was quite arbitrary. One may choose jiy(x, 1) to
be any suitable function of o’.

Note that pu; = exp{ - -;—(5—;%)2} = o' = |z — m|/\/—2In(y;), where we have
made use of the fact that ¢/, being the standard deviation of a Gaussian, is positive.

Consequently, we can rewrite (A.1) explicitly in terms of & and p; as follows : When

T #m,

lz=m -Mea 2 ;
CXP{ - %( —21“22) ) } 7 M1 € [eXp{ —_ %(I;:n) },

#‘2(3:1#1) = r—m 2
exp{ - 3(2) }]
0 . otherwise
(A.2)
2
When & = m (m = 0.5 in Fig. 1.1), every ¢’ € [0y, 0] gives p; = exp{—%(r;,’“) }=

1. In this case, we set ¢’ equal to that value of o which maximizes pa(z, ft1)|(m,1)s
i.e., we set o' = M,; consequently, pa(m, 1) = 1 and py(m, pq) = 0 for puy # 1.

The membership grade in (A.2) is depicted in Fig. A.1 (b). Figure A.1 (a) shows
a 3-D representation of this type-2 set. Observe, from (A.2), that the membership
grade corresponding to any z (i.e., g1 — p2 plot for a fixed z) is generally non-
Gaussian. Each of the slices in the 3-D plot was constructed by evaluating (A.2) for

different values of z. 0O

Example A.2 Consider Example 1.2. Suppose that the mean of this Gaussian
is a type-1 fuzzy set with domain [mj,my] that is characterized by a Gaussian
membership function with mean M,, = ﬂ*;—ml and standard deviation X, = #2772
Figure A.2 (a) shows 3-D diagrams for Example 1.2, when m; = 0.4 and my = 0.6.
The secondary memberships are computed as follows.

For any z (e.g., = 0.65 in Fig. 1.2), if a primary membership p, € [0,1] is
such that p; = exp{—;—,(i‘?’“—')z} for some m’ € [my,ms] (m; = 0.4 and my = 0.6
in Fig. 1.2), then the corresponding secondary membership p(z, 1) is set equal to

the membership of m' in the type-1 fuzzy set m, i.e., we set

2 1\ 2
po(x, ) = e—%(m%:m) where y; = e_%(:v“m ) (A.3)
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In Fig. 1.2, for z = 0.65, this occurs for py € [0.4578,0.9692]. If y; is such that no
I‘:")Z}, we set po(x,pq) = 0. In Fig. 1.2, for
& = 0.65, this occurs for y; ¢ [0.4578,0.9692]. Observe also, from Fig. 1.2, that in

the interval [m;, m,], there may be more than one value of m’ which satisfies (A.3).

m € [mlst] satisfies Hr = ex!){_%(

In this case, we choose that value for m’ which maximizes po(, y¢1). In Fig. 1.2, this
occurs for x € [0.4,0.6].
Note that gy = exp{ — %(”_”‘

a

4oy -2In(p1) ; z<my
m' ={ z+0y/-2In(yy) ; m < <m (A.4)
z—oy/-2In(py) ; =>my

Consequently, using (A.4), (A.3) can be rewritten as follows (see Fig. 1.2) : For

]

)2} implies that

T < my,
_L(m\/m-mm)* ),
pa(@, py) = ¢ © ’ o b € [ugs ] (A.5)
0 : otherwise
For my < & < (m; + m2)/2,
_L(I+0@L1_J_Mlm)2 2
e 2 o ;i € [u, ]
. - 1 z+d\/m—l“m < _q z—ay/=2In{p1)=Mm .
Ha(@, 1) max{e ’( ol ) + & 9( o ) } i € [pg,1]
0 : otherwise
(A.6)

For (my +m3)/2 < & < my,

(:-a\/m-zwm)z
Em

=
2

e : b €]
bl i) = _1 (zoy/ZANG) =Mm )T 3 (2=o/=2Tnla )= Mm
"{'2( "u]‘) ma,x{e 2( Lm ) e 2( Em ) } M1 € [:u'f? 1]
0 ; otherwise
(A.7)
For > ma,
pa(e ) =4 € o € [, ] (A.8)
0 ; otherwise
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where

fit = e_%(%%)2 (A.9)
and ,
ui = e—%(:_-"ﬂz) (A.10)

Figure A.2 (b) shows the membership grade corresponding to z = 0.65. Observe,
from (A.5) - (A.8), that the membership grade corresponding to any x is generally
non-Gaussian. Each of the slices in the 3-D plot was constructed by evaluating (A.5)
- (A.8) for different values of z. O
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Figure A.1: (a) Three dimensional representation of the type-2 set in Example A.1,
assuming that the standard deviation is a Gaussian type-1 set with mean 2422 =
0.15 and standard deviation 257 = 0.025, contained in [7y, 5] = [0.1,0.2]. (b) The
membership grade corresponding to x = 0.65.
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Figure A.2: (a) Three dimensional representation of the type-2 set in Example A.2,
assuming that the mean is a Gaussian type-1 set with mean -“11-'531 = 0.5 and stan-
dard deviation 225™% = (.05, contained in [m;,ms] = [0.4,0.6]. (b) The membership

grade corresponding to = = 0.65.
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Appendix B

A Note on the Extension Principle

The Extension Principle [9] allows the domain of definition of a mapping or a relation
to be extended from points in U to fuzzy subsets of U. If f is a mapping from U to

V and A is a fuzzy subset of U, such that

A=Y nifus, (B.1)
then )
f(A) = > il f(w) (B.2)

If f is a mapping from a Cartesian product U; x Uy x - -+ x Uy, to V and if Aisa
fuzzy set (relation) in Uy x U X -+ x Uy, characterized by the membership function

pi(uLy ..., un), where u; € U;, then

f(A) = j;/;,ti(ul,...,'un)/f(-t.f,],...,un) (B.3)

Many times, we don’t know A, but instead only know projections of A, ‘Exl, 15;2, SU—
on Uy,U,,...,U,, respectively. If A= ;\1 X e X An, we can use the following

expression for pj(u1,...,u,) [Zadeh uses only the minimum ¢-norm]

(s ) = iy (w0) % i (ua) %% pig, () (B.4)
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Let us consider the case n = 2, for which * is a binary operation defined on
U x V with values in W, i.e,ifu € U and v € V, then w = u*v € W. Now, if
A=3y", pi/u; and B = it vi/v; are fuzzy sets in U and V, respectively, then
m

(gp;/u;) * (Z :/J-/vj)

j=1

AxB

m

n
= Z Z(,u,‘ * vj)/(u; * V) (B.5)

i=1j=1
The validity of (B.5) depends on the assumption that u; and v; are “non-interactive”,
or that there is no constraint on (u;,v;) [we can think of u; and v; as being “inde-
pendent” in some sense|. If there is a constraint on (u,v), which is expressed as a
relation R with a membership function K@, then the expression for A % B should be

written as

m

(Eniu)+ (Suio)

=1

o=
*
el
I

n m

S 3 (i w v (i 03)] / (i % v;) (B.6)

i=1 j=1

If R is a crisp relation [i.e., if the constraint on (u;,v;) is expressible as a crisp
relation R], then the right-hand side of (B.6) will contain only those terms which

satisfy the constraint.

Example B.1 Let U =1+ -+ + 10 and let A be a fuzzy subset of U defined as
A=1/140.6/4+04/5 (B.7)
A? can be found in two ways. If we take f as the operation of squaring, then using
(B.2),
A’ =1/1+0.6/16 +0.4/25 (B.8)
If we write A” as A x A, (B.5) gives us (assuming minimum ¢-norm)

AxA (1/1 +0.6/4 4+ 0.4/5) x (1/1 +0.6/4 + 0.4/5)

(1/1) x (1/1 + 0.6/4 + 0.4/5) + (0.6/4) x (1/1 + 0.6/4 + 0.4/5)

85



+(0.4/5) x (1/1 +0.6/4 +0.4/5)
= 1/1+0.6/4+0.4/5+0.6/4 + 0.6/16
4+0.4/20 + 0.4/5 + 0.4/20 + 0.4/25
= 1/140.6/4 4+ 0.4/5 + 0.6/16 + 0.4/20 + 0.4/25 (B.9)

From (B.8) and (B.9), we see that using (B.5), A’ #+ Ax A ! This happened, because
we did not use the right form of the Iixtension Principle. In order to get A= Ax A,
we have to use the restricted form of the Extension Principle [i.e., (B.6)] to evaluate
A x A. The restriction is crisp in this case and can be expressed as
1 ) u; = vy

(B.10)

0 ; otherwise

pr(ui, vj) = {

Using (B.6

S

with (B.10), we get

=41
X
=1
Il

(1/1 +0.6/4 + 0.4/5) x (1/1 +0.6/4 +0.4/5) N R

= [(1/1) x (1/1 4 0.6/4 + 0.4/5) + (0.6/4) x (1/1 4+ 0.6/4 + 0.4/5)
+(0.4/5) x (1/140.6/4 +0.4/5)]N R

= [TA1ApR(,1)]/(1 x1)+[1A0.6A ur(1,4)]/(1 x 4)
+[1A04 A pr(L,5)]/(1 x5)+[0.6 A1Apr(4,1)]/(4 x 1)
+[0.6 A0.6 A r(4,4)]/(4 x 4) +[0.6 A 0.4 A ug(4,5)]/(4 x 5)
+[0.4A 1A pr(5,1)]/(5 x 1) +[0.4A 0.6 A ur(5,4)]/(5 x 4)
+[0.4 A 0.4 A pgr(5,5)]/(5 % 5)

= 1/1+0/440/5+0/4+0.6/16 +0/20 + 0/5 + 0/20 + 0.4/25

= 1/1+0.6/16 + 0.4/25

~2

= A (B.11)

Observe that using the restricted form of the Extension Principle can complicate
computations quite a lot. There are also a few problems/difficulties associated with

using the restricted form of the Extension Principle.
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1.

(8

If we have to perfom an operation between two given fuzzy sets A and B, it
may not always be easy to define a restriction between the two. For example,
if we have to find A UB, where A =1/1 +0.6/4 4+ 0.4/5 and B = 1/1 +0.7/3,
without any other information about A and B, there is no fixed way of defining
a relation between A and B; in fact, it may not even be possible to tell if A

and B are related at all.

When performing operations like ANBUA, if we are given a restriction on A
and B, it may be easy to use the restricted from of the Extension Principle;
however, if we are given A M B and A, it may not be easy (or it may not even
be possible) to define a restriction on the elements of ANB and A so as to use

the restricted form.

When we use the product {-norm, even using the restricted form of the Ex-
tension Principle may not give us equalities in cases like the one considered in

Example B.1, as demonstrated in the following example :

Example B.2 Consider the same type-1 set A C U considered in Example B.1.
Computing A’ by considering squaring as an operation on A gives us the same
v 2 " = = : .

A" as in (B.8); however, computing A x A using the product ¢-norm, gives us

[where we use the same restriction R as in (B.10)]

AxA = (1/140.6/4+0.4/5) x (1/1+0.6/4 +0.4/5) N R

= [(1/1) x (1/1 +0.6/4 4+ 0.4/5) 4 (0.6/4) x (1/1 +0.6/4 + 0.4/5)
+(0.4/5) x (1/1 +0.6/4+0.4/5)] N R

= [Ix1xpa(l,D]/(1x1)+][1x0.6 x ur(1,4)]/(1 x 4)
+[1 x 0.4 x pr(1,5)]/(1 x 5) +[0.6 x 1 x ugr(4,1)]/(4 x 1)
+[0.6 x 0.6 x pr(4,4)]/(4 x 4) + [0.6 x 0.4 x pgr(4,5)]/(4 x 5)
+[0.4 x 1 x (5, 1)]/(5 x 1) +[0.4 x 0.6 x up(5,4)]/(5 x 4)
+[0.4 x 0.4 x pur(5,5)]/(5 x 5)

= 1/1+0/4+0/5+0/4+0.36/16 +0/20 + 0/5 + 0/20 + 0.16/25

= 1/1+0.36/16 + 0.16/25

<2

# A (B.12)
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Though, as shown in Example B.2, product t-norm does not give intuitive results
with the restricted form of the Extension Principle, in view of the desirable properties
of the product t-norm, we continue to use it in our work. In order to avoid the above
mentioned difficulties with the restricted form of the Extension Principle, we adopt
the following approach.

When we need to extend an operation of the form f(6,,...,0,) to an opera-
tion f(f%l, ..., A), we will not extend the individual operations, like multiplication,

addition, etc. involved in f; rather, we will use the following definition :

Ries )= [ [ @)% xpz (0 [ £0r,.o00)  (B13)

where 6; € A, for i = 1,...,n. For example, if f(01,0) = [0:02] /[61 + 02], we write
the extension of f to type-1 sets A, and A, as

A It 9192
f(ALA,) = /ﬂl ﬂz ,”,11(91) *ﬁ;\z(o‘z)/m (B.14)
where 0; € A, for i = 1,2; and not as
< g A, x A,
ALAy) =212 B.15
J(ALA,) R d (B.15)

When discussing properties of membership grades in [4], however, we use the

unrestricted form of the Extension Principle, just like Mizumoto and Tanaka do
in [8].
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Appendix C

Proofs in Chapter 2

C.1 Proof of Theorem 2.1

In the proof of Theorem 2.1, given next, we represent fuzzy sets " and G as follows :

]

R RCE (C.1)

¢ =/ g/ (C.2)

Il

As is apparent from (C.1) and (C.2), fuzzy sets F and G can, in general, have the
real line as their domain. If a real number wy is not in F (or G), f(wo) [or g(wo)]
will be zero. With this understanding, we will sometimes use the notation v € ®
and v € F or w € R and w € G interchangeably.

Proof :

(a-I) The join operation between [ and G can be expressed, as

FUG= / " /w L) Ag)l/(ovw) (C.3)

Let’s see what operations are involved here. For every pair of points {v,w}, such
that v € F and w € G, we find the maximum of v and w and the minimum of their
memberships, so that vVw is an element of FUG and f(v)Ag(w) is the corresponding
membership grade. If more than one {v, w} pair gives the same maximum (i.e., the
same element in F U G), we use the maximum of all the corresponding membership
grades as the membership of this element. So, every element of the resulting set

is obtained as a result of the max operation on one or more {v,w} pairs, and it’s
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membership is the maximum of all the results of the min operation on memberships
of v and w.

We analyze the join operation by picking a point in F UG and finding it’s mem-
bership grade. Figures 2.1 (a) and (b) depict an example of the join operation. Let
0 € FUG. As noted in the preceding paragraph, 0 must be the result of the maz
operation on one or more {v,w} pairs; hence, the possible admissible pairs can only
be {v,0} where v € (—00,0] and {0, w} where w € (—o0,8]. To find the membership
of §, we have to perform the min operation between the memberships of all these
possible pairs {v,w} and then take the maximum of them. For example, to find the
membership grade of the point # = 3 in the union of F and G, first we compare
g(3) with each f(v) for v € (—00,3] or v < 3, find the minimum in each of these
comparisons and finally find the maximum of all these answers; then we compare
f(3) with all g(w) for w € (—00,3] or w < 3 and do a similar minimax operation,
and finally find the maximum of the results of these two minimax operations.

We break this process into three steps : (1) find the minima between the mem-
berships of all the pairs {v, 0} such that v € (—oo, 0] and then find their supremum;
(2) do the same with all the pairs {#,w} such that w € (—o0,0]; and, (3) find the

maximum of the two suprema, i.e.,

Hiuc)(0) = 61(0) V 2(0) (C.4)
where,
¢:1(0) = sup {f(v) Ag(0)} (C.5)
vE(—00,0]
and
¢2(0) = sup {f(0) A g(w)} (C.6)
we(—00,0]

In (C.5), g(0) is a constant with respect to v, and in (C.6), f(0) is a constant with

respect to w; therefore,

¢ (0) = Q(H)Ave?ilgg]f(v) (C.7)
$2(0) = f(O)A sup g(w) (C.8)
we(—o00,0]
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We break # into the following three ranges : 6 < vg, vo < 0 < vy and ¢ > v,
(see Fig. 2.1). Recall that f(vo) = 1 and g(v;) = 1 and that F and G are both
convex. Also, observe that convezity Ofp is equivalent to the condition that f
is monotonic non-decreasing in (—oo,vg] and monotonic non-increasing in [vg, o)
(see Appendix C.1). Similarly, convexily of G is equivalent to the condition that g
is monotonic non-decreasing in (—oo,v1] and monotonic non-increasing for vy, 00).

0 =0, <vp: See Fig. 2.1 (a). Since f and g both are monotonic non-decreasing in

("‘OO,UD],
sup f(v) = f(0), (C.9)
vE(—co,f]
and
sup g(w) = g(0); (C.10)
we(—o0,0]

therefore, from (C.7) and (C.8), we have
$1(0) = ¢2(0) = g(0) A £(0) (C.11)

Using (C.11) in (C.4), we get
tiuc)(0) = g(0) A f(0) 5 0 < o (C.12)

vp < 0 =0, <w; : See Fig. 2.1 (a). Recall that f(vg) = 1 and that g is monotonic

non-decreasing in (—oco,vy]; therefore, sup,¢(_q. g f(v) = 1 and sup,g(—og 9(w) =

g(0). Using these facts in (C.7) and (C.8), we have that in this range
& (0)=g(0) A1 =g(0) (C.13)

and

$2(0) = f(0) A g(9) (C.14)

Using (C.13) and (C.14) in (C.4), we have

o) (0) = 9(0) V [£(0) A g(0) (C.15)
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Observe that, if f(0) < g(0), the RHS of (C.15) simplifies to g(0) V [f(8)] = ¢(0)
and if f(0) > g(@), the RHS gives g(8) V [g(0)] = g(8). So, in either case

rucy(0) = g(0) 5 vo < 0 < w (C.16)

§ = 03 > v; : For 0 in this range [see Fig. 2.1 (a)], both f and g have already attained

their maximum values; therefore,

sup f(v) = 1 (C.17)
UE[-—OO,G]
sup g(w) = 1 (C.18)
wE[—oo,&]
Consequently,
$1(0) = g(0) (C.19)
$2(0) = [(0); (C.20)
therefore, from (C.4),
) (0) = F(0) V g(0) 5 0 > vy (C.21)

From (C.12), (C.16) and (C.21), we get (2.18).

(a-II) The meet operation between I and G can be expressed, as

FnG=[_ [ ) Agw)iwAw) (C.22)

This equation looks very similar to (C.3). The operations involved here are the same
as for the join operation, except for the fact that every element of FnG is obtained
as a result of the min operation on one or more {v, w} pairs, where v € F and w € G.
Consider # € F1 G. The possible pairs {v,w} that can give us f as a result of the
min operation are {v,0} where v € [0,00) and {0, w} where w € [f,00). To find
the membership grade of 0, we find the minimum of the memberships for each of
these {v,w} pairs and then take the maximum of all these results. Again, we break
this process into three steps : first we find the minima of the membership grades

of all the pairs {v,0} such that v € [#,00) and then find their supremum; then we
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do the same with all the pairs {f#,w} such that w € [f, c0); and, finally, we find the

maximum of the two suprema, 1.e.,

HeEnc)(0) = ¢3(0) V ¢4(0) (C.23)
where,
¢3(0) = sup {f(v) Ag(6)} (C.24)
vE[f,00)
¢a(0) = sup {f(0)Ag(w)} (C.25)
we[f,00)

Again using similar reasoning as in part (a-I) of this proof, we have

$3(0) = g(0) A .:Egp)f(v) (C.26)
¢4(0) = [f(O)A sup g(w) (C.27)
we[f,00)

We consider three ranges for 0 : 8 > vy, vo < 0 < vy and 0 < vy.
0 =0;>v; : See Fig. 2.1 (a). [ and g, both, are monotonic non-increasing in

(v1,00); therefore,

:[l;p)f(v) = f(0) (C.28)
sup g(w) = g(0) (C.29)
we[f,c0)

Using (C.28) and (C.29) in (C.26) and (C.27), we get
$3(0) = 64(0) = f(0) A g(0) (C.30)
Therefore, from (C.23), we have

tinG)(0) = f(0) A g(0) (C.31)
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vo <0 =0, <vy @ See Fig. 2.1 (a). Recall that f is monotonic non-increasing in

[vo, o0) and that g(vy) = 1. This gives us

sup f(v) = f(0) (C.32)
v€[9|00)
sup g(w) = 1 (C.33)

Using (C.32) and (C.33) in (C.26) and (C.27), we have

¢3(0) = g(0) A f(0) (C.34)
¢a(0) = f(0) (C.35)

Using (C.34) and (C.35) in (C.23), we have

ing)(0) = [9(0) A F(O)] V £(0) (C.36)
Reasoning as in part (a-I) [see Egs. (C.15) and (C.16)], we get

1Enc)(0) = f(0); vo <0 < v (C.37)

0 =0, <wvp: See Fig. 2.1 (a). We have that f(vg) = 1 and g(v;) = 1; therefore,

sup f(v) = 1 (C.38)
vE[E,oo}
sup g(w) = 1 (C.39)
we[f,00)

Using (C.38) and (C.39) in (C.26) and (C.27), we have

¢3(0) = g(0) (C.40)
¢a(0) = f(0); (C.41)

therefore, from (C.23), we have
1Enc)(0) = £(0) V g(0) 5 0 < vo (C.42)

From (C.31), (C.37) and (C.42), we get (2.19).
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(b-I) In [8], Mizumoto and Tanaka show that results of join or meet operations, using
maz t-conorm and min t-norm, on convex and normal type-1 sets are also convex
and normal. Using this fact, we generalize the result in part (a) of Theorem 2.1 to
more than two sets.

Consider n convex, normal, type-1 fuzzy sets F‘l, i ,f‘n characterized by mem-
bership functions fi,..., f,, respectively. Let vj,vs,...,v, be real numbers such
that vy <wvy <+ <, and fi(vy) = fa(ve) = -+ = fu(vn) = L.

Using (2.18), we have

fn—l(g) A fn(g) 3 9 < Vp-1
UF‘,,(B) = fn(o) i Un-1 S 0 S Un (043)

fac1(8) V £o(0) 5 0> v,

His

n=1

Using the associative property, we have (we are interested mainly in dealing with
type-1 sets which are membership grades of type-2 sets; for more discussion on

properties of type-1 fuzzy membership grades, see [4])
F,,ufF,_uF,=F,_,u(F,,UF,) (C.44)

Let fi—1)n = pi _UR, Since F,_, UF,, is also a convex, normal, type-1 fuzzy set
[fa(va) = 1, and from (C.43) we see that fr_1)n(va) = fa(vn)], another application
of (2.18) gives us

f{‘n—l)n(g) A fﬂ—2(0) 3 0 < Vn—2
uf, (0) = fin-1)n(0) i U2 <0< vy (C.45)

#F‘n-2UFrI—I n
f{n-l)n(g) \ f‘n‘—'Z(G) 3 !()' > Un

Since vp_g2 < vp-1, (C.43) and (C.45) can be rewritten as follows :

fa1(O) A fa(0) 5 0 <va-g
. ) fama(O) A Fa(0) 5 vne2 €0 <vny
i, _ i, (0) = 1.00) s bl s, (C.46)

fa-10) V £u(0) 5 0>9,
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f(n—l]n(g) A fn—Q(g) ; 0 < v,

f(n—l]n(o) ! Vg S § < Wius

. = = () = C.47
#rn‘z’UF“_lUFn( ) f[n—l}n(g) v Un—1 S 0 S Un ( )

f{n—l]ﬂ(g) V fn—2(9) ; g > Un

Substituting for f(,—1), into (C.47) from (C.46), we obtain
fa—2(0) A fac1(0) A fo(0) 5 0 <vnsp
Sa-1(0) A fa(0) i Un—2 S0 S v,
pe ok i (0) = : ( ; L (c48)
n—2 n=1 n fn(o) ; vn—l g 0 S Un

fn—‘z({)) \ fn-*l(a) Vv f“(G) i 0> v,

Again, F’n_z u FH_I UF, is also a convex and normal type-1 set, therefore (2.18) can
be applied again. Continuing in this fashion, we get (2.20).

(b-II) The proof is very much similar to that of part (b) - I. Starting with F,NF,
and using (2.19) repeatedly, we get (2.21).

C.2 Proof of Assertion in the Proof of
Theorem 2.1

The convexity of F = [ f(#)/0 is equivalent to the condition [8]

f(v2) = min{f(v1), f(va)} (C.49)

if v, is between v; and vs, i.e., if v; < vy < vz or vz < vy < vy. (See Figs. 2.1 and
2.3 for examples of arbitrarily shaped convex membership functions.) We first prove
that convexity of f implies the monotonicity conditions on f, and then prove that
the monotonicity conditions on f imply its convexity.

(I) Since f is a membership function for a normalized type-1 fuzzy set (see Theo-
rem 2.1), we know that f(v) <1 for all v. Also, we know that f(vo) = 1; therefore,

letting v; = vg in (C.49), we get

f(ve) > min{l, f(vs)}; vo vy L vz or vg3 < v < (C.50)
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f(v2) > f(vs); vo<wve<ws or vg< vy <y (C.51)

In other words, f is monotonic non-decreasing in (—oo,vp] and monotonic non-
increasing in [vg, 00).
(II) Now, assume that f is monotonic non-decreasing in (—oo,vo] and monotonic
non-increasing in [vg,00), with f(vo) = 1. Consider two points v; and vs, such that
v; < v3. We will show that any point v, between v; and v, satisifes (C.49). There
are three possibilities for v; and vj :

1. v; < ws < g : Since f is monotonic non-decreasing in this range, for any point

vy between vy and vs, f(v2) > f(v1); therefore, (C.49) is satisfied.

2. vy <wg < ws: Since f is monotonic non-decreasing in (—oo, vg), if v1 < vy <
vo, f(v2) > f(v1). Also, since f is monotonic non-increasing in [vo, 00), if
vo < vy < vs, f(ve) > f(v3). In either case, (C.49) is satisfied.

3. vo < vy < wz: In this range, f is monotonic non-increasing; therefore, for any

vy between vy and vs, f(ve) > f(v3), which implies that (C.49) is satisfied.

Since (C.49) is satisfied in all the three cases, we conclude that f is convex. O

C.3 Proof of Corollary 2.1
(a) Let f(vo) = 1. Using Theorem 2.1, we have

fOYNFO—FK) 5 0<wo
Hiualv) = f(0—k) s v <O<uv+k (C.52)
fOVfO—-k) ; 0>v9+k

We have made use of the fact that the membership function of G is a shifted version
of f. The point v; in Theorem 2.1, now becomes (vo+k). As shown in Appendix C.1,
the convexity of I implies that f is monotonic non-decreasing in (—oo, vo] and mono-
tonic non-increasing in [vg, o0), which implies that f(0) > f(0 — k) for 6 < vy and
f(0) < f(6 —k) for 6 > vy + k. Using these facts in (C.52), we have

piug(0) = f(0— k) = p(0); Vo e R



=FuG=G (C.53)

A very similar proof can be used for the meet operation.

(b) A repeated application of part (a) yields part(b). O

C.4 Proof of Theorem 2.2

From (2.15), we have

= - / £(0)/(1 = 0) (C.54)

Let y = (1 — 0), then 6 = (1 — y) and 6 € R = y € R; therefore,
~F = [ Ta-uly (C.55)
_ /a L a=0/0 (C.56)

C.5 Join under Product t-norm

(a) Consider the two convex normal type-1 fuzzy sets, F and G used in Theorem 2.1.
The join operation between I and G, using the product t-norm can be represented

as

FuG=[ [ [f@gwl/ovw) (C.57)

where V denotes the maximum. Equation (C.57) is the same as (C.3) with the min
replaced by a product.

The following analysis is very similar to that in Theorem 2.1. If # is an element
of FUG, then the membership grade of 0 can be determined by finding all the pairs
{v,w} such that v € ', w € G and vVw = 0; multiplying the membership grades of v
and w in each pair; and then finding the maximum of these products of membership
grades. The possible admissible {v,w} pairs that can give us € as the result of the
maz operation are {v,0} where v € (—o0,0] and {0,w} where w € (—o0,0]. We
find the products of membership grades of v and w from each such pair and take

the maximum of all these products as the membership grade of 8. We break this
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process into three steps : (1) find the product of the memberships of all the pairs
{v,0} where v € (—00,0] and then find their supremum; (2) do the same with all

the pairs {0,w} where w € (—o0, 0]; and (3) find the maximum of the two suprema,

le.,

trucy(0) = ¥1(0) V ¥2(0) (C.58)
where

() = Jup gl{f(’v)g(f’)} (C.59)

Since g(#) is a constant for a given 6,

P1(0) = g(0) sup f(v) (C.60)
vE(—o0,6]
Similarly,
Pa(0) = ., 9]{f(f»‘)y('u»*)} (C.61)
= J(0) swp gw) (C.62)
we(—00,0]

We break 0 into the following three ranges : 0 < vg, vo < 0 < vy and 8 > v;.
=0, <vy: See Fig. 2.1 (a). Since, f(v) and g(w) both are monotonic non-

decreasing in (—o0, vg),

e f(v) = f(0), (C.63)
and
sup g(w) = g(0) (C.64)
we(—co,d]

Consequently, from (C.60) and (C.62), we get
1(0) = ¥2(0) = f(0)g() (C.65)
which implies that [see (C.58)]

1oy (0) = f(0)g(0) 5 0 < vo (C.66)
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vo < 0 =0 <v;: See Fig. 2.1 (a). Recall that f(vg) = 1 and that g is monotonic

non-decreasing in (—oo, v,]; therefore,

sip Fv)=1,
v€E(—o0,0]

and

sup  g(w) = g(0)
we(—0c0,0]

From (C.60) and (C.62), we get

i(0) = ¢(0)
a(0) = J(0)g(f)

Since f(0) <1, ¥(0) > 12(0). Consequently, from (C.58)

ey (0) = 9(0); vo < 0 < vy

(C.67)

(C.68)

(C.71)

0 = 03 > vy : See Fig. 2.1 (a). For @ in this range, both f and g have already attained

their maximum values, i.e.,

sup f(v) =1,
v€E(—00,0]

and

sup g(w) =1;
we(—00,d]

therefore, from (C.60) and (C.62), we get

hi(0) = g(0)
ha(0) = J(0)

Consequently, from (C.58),
HiEuc(0) = F(0)V g(0) ; 0 > vy

Combining (C.66), (C.71) and (C.76), we get (2.22).

(C.72)

(C.73)

(C.74)
(C.75)

(C.76)
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(b) The proof of (2.23) is very similar to the proof of (2.20) in Appendix C.1. The
only thing that we have to show is that using maa ¢-conorm and product t-norm, the
meel of two convex, normal type-1 fuzzy sets is also a convex, normal fuzzy type-1
set. Consider the convex, normal type-1 sets I and G described in part (a) of this
proof. We must show that U G is also convex and normal under maz t-conorm
and product t-norm. To show convexity, we use the equivalent condition proved in
Appendix C.1.

Since I and G, both, are convex and normal, f and g both are monotonic
non-decreasing in (—oo,vg] (recall that vy < w;), which implies that fg is also
monotonic non-decreasing in (—oo,vgl. Also, g(vg) > f(vo)g(ve) and g is mono-
tonic non-decreasing in [vg, v1]. Consequently, uy (@) is monotonic non-decreasing
in (—oo,v;]. Since, f(@) and g(#) are both monotonic non-increasing for ¢ > v,
f(0) v g(0) is also monotonic non-increasing for 6 > vy, which implies that pz ()
is monotonic non-increasing for § > v;. Additionally, g a(vi) = g(v1) V f(v1) = 1;

hence, F U G is also convex and normal.

Suppose that we have n convex, normal, type-1 fuzzy sets F,,...,F, charac-
terized by membership functions fi,..., fa, respectively. Let vy, va,...,v, be real
numbers such that v; < vy < -+ < v, and fi(vy) = fa(v2) = -+ = falvn) = 1,

then proceeding exactly as in the case of the proof of part (b-I) in Theorem 2.1
(see Appendix C.1), by using the associative property of the join operation and by

repeated application of (2.22), we get (2.23). 0

C.6 Meet of Gaussians under Product t-norm

Consider the case when f(v) and g(w) (as in Theorem 2.1) are Gaussians with

support [0, 1] with means my, m, and standard deviations oy, o, respectively. Then,
Z = (L2 g w—mg a2
FﬂG:f/e TR )/(vw) (C.77)
v wr
Recall that the integral in the above equation denotes union in the continuum. If ¢

is an element of MG, then the membership grade of # can be found by : finding all

the pairs {v,w} such that v € F, w € G and vw = 6; multiplying the membership
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grades of v and w in each pair; and then finding the maximum of these products of

membership grades, i.e.,

_l U—!nE 2 _-‘1- w_m! o -
pina(0) = sup{e *° 71 Ve (= )z;vw =0;v € Fw e G} (C.78)

Given any v (assuming v # 0), the constraint vw = 6§ gives us w = 0/v. Further,
since w € [0,1], it follows that 0/v < 1 or v > 0. So, given any 6 € [0,1], the
acceptable {v,w} pairs that can give # as the result of the product operation are
{(v, %); 0 < 0 < v < 1}; therefore, from (C.78), we have

_L[(t=me 2 (Emme e
2( 0'! }+[ ag )} (C.Tg)

Observe that, when § = m;m,, v = m; maximizes the above quantity, making

the exponent 0. This implies that
ping(mymy) =1, (C.80)

which shows that our result is consistent with the type-1 case result, msx my, =
mym,, obtained by reducing type-1 sets F and G to singletons, having unity mem-
bership at m; and m, respectively and zero membership at all other points. The
result of the meet operation is then a singleton also, with unity membership at m ym,
and zero membership at all other points.

For 6 # mysm,, the only thing that is easily observable is that the exponent
in (C.79) does not reduce to zero, implying any 6 other than mym, will have a
membership grade less than unity. Now, let’s see if we can determine an expression
for 0 in terms of v.

Let us call the quantity in the square bracket on the RHS of (C.79) J(v). The
v that achieves the supremum in (C.79), minimizes J(v). In order to find ppa(0),

we have to find an expression for v that minimizes

9 _m
)%+ (X )2 (C.81)

af Og

v—my

J(v) = (




subject to the constraint v € [0, 1]. Differentiating J(v) and equating the derivative
to 0, we see that the v. that achieves the minimum satisfies (with the constraint

v. € [0,1])

Jw)=0 & 2 —) 4+ 2(2 )~ =
(v (B + A=Y ) =0
v. My 0* my0
= o2 o2 on? cr?v?_U
f f g= 9=
3 f‘ 20?'
4 ;
& v,—m;v_+ﬂ§mgv,—0 §=0 (C.82)
g g

Let us call the polynomial on the LHS of (C.82) D(v). Observe that

o o
D(my) = fj— /n_f+90—£mgmff—92—’;
g Jg
Ji
= Oa—g(mfmg—ﬁ) (C.83)
0 0 0 o} 0 o}
D(—) = (—)'=mp(—) +0-L p,— —0*L
mg) (my) 9 27 fng a;
0 5 0
= ('T;;) (m—g—?ﬂf)
03
— m—;(ﬂ—m_fmg) (C.84)

From (C.83) and (C.84), we observe that D(my) and D(8/m,) are of opposite signs
[since 0, m and m, are all in [0, 1], the quantity (0 —mm,) decides the sign]. This
implies that D(v) always has a root between m; and 6/m,. As long as 6/m, < 1,
v, always satisifes the constraint that v. € [0, 1], because m; < 1; however, after a
critical value, say 6 = 0., v. > 1, and then v = 1 minimizes J(v) while satisfying the
constraint. The critical value 0, can be found from (C.82) by expressing § in terms

of v. Rearranging (C.82) and solving for 0, we get

20-42" ? 4
0(ZL) = 0(Zmgv.) + (mv? = v?) = 0
g g

2
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We are interested in finding those values of 6 for which v. > 1. Obviously, this
implies that v. > my, because my < 1 and therefore the second term in the bracket
on the RHS of (C.85) is greater than or equal to m,; hence, keeping the positive

root of the above equation (recall that # > 0), we get

v, o?
0= —[m, + \J m2 + 4—=Zv,(v. — my)] (C.86)
2 0%

The critical value of 0 can be found by substituting v, = 1 in (C.86) and is

1 2
0. = §[mg + Jmﬁ + 42—%(1 —my)] (C.87)

So, for # < 0, v. can be obtained by solving Eq. (C.82) without using the constraint
and then picking the root that satisfies the constraint and minimizes J(v). If there
is more than one root that satisfies the constraints, we check the value of J(v) at
each of the roots and pick the root at which J(v) is minimum. For 6 > 6., v =1
minimizes J(v).

In what follows, we attempt to solve Eq. (C.82). We rewrite (C.82) as (for

notational simplicity, we drop the subscript “*”)

vi—a*+bv—c=0 (C.88)

where

il (C.89)

In the following, we use a standard procedure for solving quartic (4th order) equa-

tions [3]. Substituting y = v — a/4 (i.e., v = y + a/4) into (C.88), we get

v+ —aly+ 7 +bly+7) —e=0 (C.90)
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which, upon simplification, gives

a® ab 3
g)y Fil ==

1_ =
1 255 ¢) =10 (C.91)

3
v~ (Sa)? + (b

This equation has the following resolvent equation [i.e., if the roots of the following

equation are found, the roots of (C.91) can be calculated from them)]

3 2\.2 3 4 a®, q
2% )z —l—(Iga +4c—ab)z—(b——=)*=0 (C.92)

22—

In order to find roots of (C.92), we simplify it further by substituting 2z = ¢ + a*/4

(i.e., t = z — a?/4). Upon simplification, we get
t* + (dc — ab)t + (a’c = b*) = 0 (C.93)
Let a = (4¢c — ab), B = (a’c — b*) and D = (3/2)* + (a/3)?; additionally, let
A = (—g + VD)7
B = —(g + D)3 (C.94)

Then, the three roots of (C.93) are

t, = A+ B
n = -2 v
§ = =(Er gt T (C.95)

Fa &

If D > 0, one of these three roots is real and the other two are complex conjugates
(which are discarded); if D = 0, all the three roots are real and at least two of them
are equal; and if D < 0, all three roots are real and unequal.

The three roots of the resolvent equation (C.92) can be obtained by adding a*/4

to each of ¢y, {5 and i3, as
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2 = —(—5—)+il—; )\/§+*4*
A+ B ., A—B a’
zz = —( B ) — i 5 )\/5+I

From these, we can obtain the roots of (C.91) as

Vatyzmt/z

B = 9

_ VA-Va-VE
Y2 = 5)

_ VALVES VA
Yz = 5
b = VAT VEHE
= = 2

Finally, these four roots of Eq. (C.91) give us the roots of (C.88), as

Ji1 etz a
"M = P +Z
Z1 — /22 — /2 a
T 1 92 3_|_Z
—/z1 + S22 — /23 a
vy = 5 Z
—\/Z1 =22+ 23 @
= 5 1

Summarizing, we have four choices for v, :

VZLt\/Z2t+ /23 a
M = 5 -{-Z
2L AR — /23 a
% = 2 i
—\.K'Z]_“l‘"\/ZQ'_"\/ZS a
S 2 1
—\/Z1 — 22+ /23
Vg = + -
2 4
where
2
2 = A+B+%

(C.96)

(C.97)

(C.98)

(C.99)
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2 4
A+ B L A—-B @
5 = () —i(=5 )\/§+""I (C.100)
and
2 _ 2 2 _ p2 .
4 = {b ac+\/(a . b)2+(4c ab)3]1},3 (C.101)
2 2 3
2 2 2 _ 12 o
B — [b Oa,c_\/(a zb)2+(403ab)3]u3 (C.102)

with a, b, ¢ as in (C.89).

Of these four choices for v., we choose the one that is real, satisfies the constraint
v. € [0,1], and minimizes J(v). [This can be checked by examining J(0), J(1) and
the value of the second drivative of J at the root.] As mentioned earlier, if there is
more than one root satisfying the constraints, we pick the one at which J(v) attains
the minimum value.

Summarizing, we have

va—1m ;t-m
-3 (‘,—f‘f‘)z'l'(“’?y)?]

ting(0) =€ (C.103)
where v, is obtained by solving (C.82) if § < 0, and v, = 1 if § > 0., where 0. is
given in (C.87). Observe that computations begin by choosing a value for ¢ € [0, 1]
and must be repeated for every 0 € [0,1], so that § must, in practice, be discretized.

Figures 2.12 - 2.15 show some examples of Gaussian curves and the result of
the meet operation between them. The meet curve in all the figures was obtained
numerically. The order of the curves (i.e., the order {my,my} or {o,0,}) is not
important, which means that the meet operation is commutative, as we would expect

it to be.
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C.7 Solving for the Gaussian Meet

Approximation

The problem of maximizing the RHS of (2.53) reduces to the problem of mini-

mizing the objective function

v —my 0 — mgv

HE) = (S 4 (T (C.104)
This minimization also needs to be performed with the constraint v € [0, 1]; how-
ever, for simplicity, first we minimize H unconstrained and then handle the con-
straint. Observe that my, m,, oy, 0, are all positive (in addition, we will always have
my,m, € [0,1]). It can be easily seen that H is convex (H" = 2/0% +2(my/ko,)* >
0); therefore, equating the first derivative of H to zero (and assuming that the

infimum is obtained at v = v™), we get

*® P a.
v —my 1 0 — mgv*  —my

2 — —
(o)) + AT = o
v mg my m g
] 2 L2o2
v* L i i n;’; 25 (C.106)
oy + Tg
Substituting (C.106) into (C.104), we get
. 0—mm, ., .
inf Hiv)= ( ) (C.107)

‘/ m2o% + kg2

Now, let us handle the constraint. Since H is convex in v, H is monotonic
increasing for v > v* and monotonic decreasing for v < v*; therefore, if v* < 0, the
minimum in the constraint set is fixed at v = 6, and, if v* > 1, the constrained
minimum is fixed at v = 1. Otherwise, v* is as in (C.106).

Observe that the condition v* € [0, 1] translates into conditions on @ and also
depends on the parameters my, oy, m,, o, and k, since all of them appear on the

RHS of (C.106). Next, we analyse these conditions.
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From (C.106), we can see that v™ is affine in . Let

2
B myoy
¢ mio} + k?o? (G.108)
_ m;kzog
= ot § Ko7 (C.109)
Then,
v* =al + b, (C.110)

i.e., if we plot v* versus 0, we get a straight line. Figures C.1 (a) - (d) show some
examples.

Observe that @ > 0 and 0 < b < 1 always. For any b, if a is such that the portion
of the line in [0, 1] is contained completely in the area above the line v* = # and
below the line v* = 1 [Fig. C.1 (a)], then the constrained minimum is always equal
to the unconstrained minimum. Let’s call the critical value of a that achieves this
a.. To find a., we use the condition that a.0 + b = 1 when § = 1 (this condition is
required for the portion of the line in [0, 1] to be contained above v* = # and below
v* = 1). This gives us

ac=1-b% (G.111)

If a < a., after some critical value of 0, 0.1, in [0,1] [Fig. C.1 (b)], v™ < 0. 0 is the
point of intersection of the lines v* = af + b and v* = 0; therefore, 0., can be found

das

aby+b = 0,4
01 = (C.112)

where a and b are as in (C.108) and (C.109).
Similarly, we can see from Fig. C.1 (c) that when a > a., after some other critical
value of 0, 0., v* > 1. 0., is the point of intersection of the lines v* = af + b and

v™ = 1; therefore,

(19..—,-2-!'5 = 1
1-b
.2 =

a

(C.113)
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where @ and b are as in (C.108) and (C.109).
The above discussion can be summarized in terms of three cases, as follows : Let

6. and 0., be as in (C.112) and (C.113), respectively; then,

l. a < a.

Grngcrf +myk?o?
v* = m2 crJr + ko )'

0

Substituting (C.114) into (C.104), we get

g_mfmg 2

inf HE)={ \/mz“’f*‘l‘z‘;'2
—m m
(T2 + HE(T—%-‘*)? ;0> 0,

vEld,1]

ay

Substituting (C.115) into (2.53), we obtain

1{ f—mymg }2
e 2 :;m%a?{-kzai

IU’E(H) = _L(Q—-rﬂt]2 _-02(1__,,,
2 kcy

. Bmgaf.' -+ m;kz B
v* = :

m a'f-i-kz 4

1

1

]2

0SHCI
6)951

3 9S651

; 939c1
3 9>9c1

6 € [0,1]

Substituting (C.117) into (C.104), we get (C.107), i.e

6 —
inf H(v)= il

(
v 2 .
€[6,1] ymio} 4 k*a?

Substituting (C.118) into (2.53), we obtain

3. a> a.

_L( f—mymg }2
w(0) =< VI

2 2.2
Om,o; +mpk o,
. o 05 WERT T
p* = myo; + ko,

1

? 5 0€(0,1)

t

?

6 € [0,1]

QSGC'Z

9)932

(C.114)

(C.115)

(C.116)

(C.117)

(C.118)

(C.119)

(C.120)
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Substituting (C.120) into (C.104), we get

i P
il}?fl Hin)= 1 \/mgo-f+§ 99 (C.121)
e (D + (o2 5 0> 8a
f Tg
Substituting (C.121) into (2.53), we obtain
ol B—mymg 2
SV <o,
pi(0) = Ampy | eemge (C.122)
e 7w e TS L g5,

Now, we come back to the question of choosing an expression for pug,g. Re-
call, that we solved this modified optimization problem because we wanted to find a
simple expression for fizna, and it was for this reason that we simplified the actual
optimization problem. Although (C.116), (C.119) and (C.122) give the exact solu-
tion to the simplified problem, the expressions are still too complicated. Even if we
were to accept (C.116), (C.119) and (C.122) as they are, we are still going to have
an approximate solution to the actual problem; therefore, it seems very reasonable
to choose the simplest of the three possible expressions for pz(0) and just use that
as our approximation of iz (#). So, we choose the expression for the case a = a. as
the required approximation (in effect, this is equivalent to simplifying the problem

even further by disregarding the constraints v* > ¢ and v* < 1); therefore,

_l{ fB-=m Enlg )2

pinc(0) me - VTR (C.123)

As explained in Section 2.3.2, this expression is also consistent with the type-1 case.

Now, we have to choose some value for k. As explained in Section 2.3.2, we
need some value in [0,1]. Since the meet operation is commutative, we want our
approximation to also be commutative. This will make generalization to the case of

more than two Gaussians easy. By observing (C.123), it is apparent that if we choose
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: = my, the approximation becomes commutative (if we interchange {my,o,} and

{my, 0,}, we still get the same result); so,

- (\—/ﬁ%"*”; ek
ppng(0) e VT (C.124)

B

C.8 Error Bounds for the Gaussian Meet

Approximation

To obtain bounds on the Gaussian approximation error, we first find bounds on
the result of the actual meet operation between two Gaussians. As explained in
Section 2.3.2, just after (2.55), using k =1 (k = 0) in (2.53) is equivalent to finding
an upper (lower) bound on the result of the actual meet operation. Let’s find an

upper bound first.

C.8.1 Upper Bound on the Meet between Gaussians

If we just substitute & = 1 in the expressions for pp(#), the resulting curves, gen-
erally, will not be Gaussian [see (C.116), (C.119) and (C.122)]. Here, we try to
find a Gaussian upper bound for the meet operation, to facilitate generalization of
this operation to more than two Gaussians. For this purpose, we consider H(v) in
(C.104), the objective function for the Gaussian approximation.

For any k, the unconstrained infimum of H(v) should always be less than or

equal to its constrained infimum; hence,

inf H(v) < Uér[};f:l] H(v)
s e-—%[in&. H(v)] & = infygpe,1) H(v)]
= by
=>e meTrt > e (0) (C.125)
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where, we have made use of (C.107) and (2.53). A suitable upper bound on the

result of the meet between two Gaussians can therefore be obtained by substituting

k=1in (C.125), i.e.,
_l{ f]—:l mg }.2
U (@) =e VD (C.126)

FEnG
Observe that (C.126) is not symmetrical in {my, o} and {my,0,}, i.e., if we inter-
change the fuzzy sets I' and G, we get a different expression for the upper bound,

_L(m)z

Hoep(0) = VI (C.127)

m

Both (C.126) and (C.127) give an upper bound for the meet between I and G;
therefore, to ensure that the upper bound is independent of the order of the two
Gaussians, we choose the minimum of these two functions as the upper bound [be-
cause both (C.126) and (C.127) are upper bounds, the minimum of the two is also

an upper bound], i.e.,

<k
Ena(0) = €72 (C.128)
where
Ou2 = min 4[\/1%*13(:52r “+ Jg, \/mf,ag + 0?} (C.129)

Let’s see how this result generalizes to the meet of more than two Gaussians.
Suppose that we have to find the meet between three type-1 Gaussian fuzzy sets By,
F, and F,, having means m;, m, and ms, respectively, and standard deviations oy,
o, and o3, respectively. If we perform the meet between F, and F, first, (C.128)

gives us the following upper bound

_ Ll 8=mymy 2
HE g, (0) = 72 o) (C.130)
where
Oy12 = min {\/mfag + o, \/m%of 4 a%} (C.131)
which can also be rewritten as
Ou1z = ymin{m?ic? + o, miot + o2 C.132
1
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Now, an upper bound on the meet of F;, F, and F, can be found by finding the

upper bound on the meet of F4 and the Gaussian in (C.130), i.e.,

1 ¢B—mymoma 2
‘s _— Tu123 C.133
“FIannFa( ) ( )
where
_ : 2. 9. 9 2 2.2 2
Oulzz = \/mln{mlmsza + 012, mioty, + 03}

_ : 2.2 13 TR W X
= [mm {m1m203 + min{m{o; + o}, m3o; + 03},

1
P 3.2 g 2 21| ?
mj min{mjo; + o}, mio; + o5} + 03}]
. H 2.2 B 2. L2 2 2.2 2 22
= [mm{mm{af + mjo; + mimios, o3 + myo; + mimsos},

1
2
: 2 2.2 - )
m1n{o§ * mgo‘% #$ mgmgof, o3 +m30;] + mlm3o2}}]
: ' 2 2 v R 2 2 2.2 .2
= [mln {af + myoy + Mimy03, 05 + My0y + Mym,0o3,

2
2 2 & 2 2 2 2 2.2 12
02 + miol + mimiol, o5 + mio; + m1m302}] (C.134)

This expression is also not symmetricin I, ', and F, i.e.,

1 ( f—mymoma ]g

U Tt ] E
Pﬁg”ﬁanpz(g) =€ Tyu231 (C.l30)
where
. 2 2 2.2 2 2 2 2 2.2 2
Ouzsl = [mm{orf +mios + mim3o3, o + mijo; + mimz0y,
2 2 2 2.2 2 2 2 2 2.2 2|2
05 + my03 + myma0y, 03 + M30; + Maym30; }] , (C.136)
and,
_E G—1mymamg 2
U _ (A2
Pe e, (0) =3 um (C.137)
where
. 2 2 2 2 2.2 2 2 2 2.2 2
Oyl32 = [mm {0‘2 -1 my0 -+ mimy0a, 05 + my03 + Mo a0y,
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2 2 2 I e 2 2 9.2 o1 |2
o + mios + mimz0o;, 03 + maoy + mym3o; }] (C.138)

Observe that we have considered all the possible orderings of I i I, and Fa that
would give us distinct results for ¢ (0), e.g., since the expression for the upper bound
i ra : U I
for the meet of two Gaussians is commutative, “(FIHF?)HFS = #(anFl}nFa'
We choose the minimum of the three Gaussians in (C.133), (C.135) and (C.137)
as the final upper bound, i.e.,

1 ﬂ—rnlmzm-‘ 2
= 8_5{ )

#gl nE,nF, (C.139)

where (some terms are common t0 0y123, Oy231 and oy132)

Ous = min{oui23, Tuza1, T132}
: 2.2 2
— [mln {af + mjo; + mlmgag, 0'12 + mfag + mfmga;f,

2 2.2 2..2.9 _2 2 2 202
o, + myoy + mimyos, 05 + myo3 + mymaoy,

[

2 2 .2 g n 3 22 B8 Y |*
o5 +mio{ + mim3ios, o5 + mios + mimio; }] (C.140)

Continuing in this fashion, the upper bound on the meet between n Gaussians
F,,...,F, having means m,...,m, and standard deviations oy,...,0,, respec-

tively, is given as

1.60—T11%,m;..
U —— - i=1 142
2 5, = expf—5( L LEL iy (C.141)
where
Oy = mil’l{gl,Zg,...,Eﬂ!} (0142)
where
Xy= \/ngx"'?l +ctol+ -+ +ctol ;5 j=1,...,n (C.143)
where {i1,...,1,} indicates a permutation of {1,2,...,n}, and the¢;s (k =1,...,n)
are calculated as follows :
¢, = 1,
Ci, = Mig_,\Cig_y Tor k=2,...,n. (C.144)



In order to illustrate the use and validity of (C.143) and (C.144), we consider

the following example.

Example C.1 For n = 3, &, can be calculated, as follows. There are 3! = 6 possible
permutations of {1,2,3}. For each one of these permutations, we use (C.144) to

calcuate the c;;’s, and (C.143) to calculate the X;’s :

{i1,12,13} = {1,2,3} : e =1; cg=mc; =my; c3=macy = mmy
o= \/crf + mios + mimio3

{i1,12,13} = {1,3,2} : a1 =1; c3=me; =my; c3 = mgacz3 = mymg
%y = \/o} + mio} + mim3o?

{i1,22,13} = {2,1,3} : c2=1; c1=maco =my; c3 =mycr =mmy
Y3 = \/ag + mio} + mimio? (C.145)

{i1,12,i3} = {2,3,1} : co=1; c3=mac; =my; €1 = macs = mams '
Sy = \/0F + m3o} + mim3o?

{t1,42,i3} = {3,1,2} : ec3=1; ¢ =macs =mg; ¢z =mic; = myms
Mg \/ag + mio? + mimio?

{i1,12,03} = {3,2,1} : c3=1; co=1mgecs =my; ¢1 = Macy = MaM3

56 = /0 + m3o} + mi3m3o?

Using £4,..., 56 from (C.145) in (C.142), we can verify that the &, we obtain, is
the same as in (C.140). O

As is apparent from (C.142), the calculation of o, is computationally intensive.
To find an upper bound on the meet between 4 Gaussians, we need to find the
minimum of 4! = 24 terms; when 5 Gaussians are involved, the number of terms
rises to 120, and so on. Observe, though, that the minimum in (C.142) gives the
tightest of all bounds (i.e., tightest of the bounds that we have derived). If one just
wants to find any upper bound, the minimization in (C.142) is not necessary. Each
of the £;s (j =1,2,...,n!) in (C.142) is the standard deviation of one of the upper
bounds of the meet; so, we can just choose one of the n! terms and use it in (C.141)

to get an upper bound on the meet.
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C.8.2 Effect of Clipping

So far, in our derivations, we have assumed that we have perfect Gaussians, i.e.,
we have neglected the fact that the actual curves are Gaussians contained in [0, 1]
and may, therefore, be clipped (i.e., any portion of the Gaussians lying outside the
interval [0, 1] is cut-off); however, this clipping does not change the upper bounds
in (C.128) and (C.141). The reason can be explained as follows. Let F, and G,
be clipped type-1 fuzzy sets having Gaussian membership functions contained in
[0,1]. Though the membership functions of I, and G, are defined only on [0,1], in
numerical calculations the membership functions are treated as if they are 0 before
0 and after 1. Therefore, pp < pp and pg_ < pg, where F and G are type-1 sets
whose membership functions are perfect (unclipped) Gaussians. (Figure C.2 shows
an example of clipped and unclipped Gaussians.) Consequently, pp qg < ppng and
therefore the upper bound derived above also holds in the case of clipped Gaussians.
We will have to consider the explicit effects of clipping when deriving the lower
bound for the meet in Section C.8.3.

C.8.3 Lower Bound on the Meet between Gaussians

As we have seen earlier, substituting £ = 0 into (2.53) is analogous to finding a
lower bound on the meet between two Gaussians. Now, however, we also have to
include the clipping effects mentioned in Section C.8.2, because a lower bound that
assumes perfect (unclipped) Gaussians may not work for clipped Gaussians, since,
as mentioned in Section C.8.2, pp ng. < Hjng, Where F.and G, are clipped versions
of Gaussian type-1 sets I and G. So, instead of just substituting £ = 0 into (2.53),
we go back to the beginning of the derivation for the Gaussian meet approximation.

Recall that using k = 0 is equivalent to assuming that one of the Gaussians has
zero standard deviation (Section 2.3.2), i.e., it is equivalent to assuming that type-1
fuzzy set ¥ (or G) has a membership equal to 1 at m; (or my) and equal to 0 at all

other points. Let’s see what happens if this is really the case.
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Assume that pp(my) = 1 and pg(0) = 0 for 6 # my, and pg(0) is a Gaussian

contained in [0, 1], i.e.,

e“‘zl‘(e;a-‘:i}? i ge [0 l]
pe(0) = ’ ’ (C.146)

0 : otherwise

The result of the meet of I and G is just a scaled version of G, i.e.,

tina(0) = ng(0/my)

iy —mg
_ ' e : nf_, € [0,1]
0 ;  otherwise
—H( ey
_ et 5 0eomy] (C.147)
0 ;  otherwise

Equation (C.147) follows from the definition of the meet operation under product ¢-
norm [see Eq. (2.34) and also Section 2.3.1]. In Section 2.3.1, we ignored the clipping
effects mentioned in Section C.8.2; but, here, we have to take them into account to
make sure that the lower bound holds in all possible cases. Since the Gaussian pg(0)
is contained in [0, 1], the resulting function in (C.147) is nonzero only in [0,m].
Now, if we assume that G is the singleton, i.e., if pg(m,) = 0 and pg(0) = 0 for
0 # my, and pp(0) is a Gaussian contained in [0, 1], then we get
B sl
€ me%y i 0 €[0,my]

:  otherwise

Hina(0) = { (C.148)

The actual lower bound can be taken as the maximum (since each of them is a
lower bound) of the results in (C.147) and (C.148). If we assume that m; < my,

then the lower bound is

1 G—mEmQ . .

eXP{ - é(max{mfo'g,mg,a!})z} ) 0 € [0, mf]

HEnc(0) = exp{ - %(9__1‘;;0’:9)2} ;0 € [my,my) (C.149)
0 ;  otherwise
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If we assume that m, < my, the lower bound is

1 f—mgmg ;
exp{ - ;(mnx{mlmg,mggf} )2} d g [01 m'g]
, f—mysmg 1
Hina(0) = exp{ = H(GELE2)) 5 0 € [my,my] (C.150)
0 :  otherwise

To simplify (C.149) and (C.150) a little bit, we ignore the part of the curve lying
outside [0, min{m,m,}]. Doing this will make the lower bound a little bit loose,
but will let us generalize to the meet of more than two sets easily. Hence, without

any assumptions on my and my,

L 2\max{mjog,mgoy}
HEnG

1 f—mm . . i
L (9] = { exp{— 1 —_.[4'_)2} ;0 € [0,min{my,m,}] (C.151)

0 : otherwise

A generalization of (C.151) to the case of more than two Gaussians is a bit

tedious; therefore, we take a different approach as illustrated by the following :

Example C.2 Consider the meet between three Gaussians f:’l, f‘z, I, in [0,1], with
means m;, ms, ma and standard deviations oy, o2, 03. We consider three cases to
find a lower bound for the meet. First, we assume that ', and F, are singletons at
mq and mg, respectively (zero standard deviations), and I, is a Gaussian contained
in [0,1] with mean m; and standard deviation oy. This is equivalent to finding the
meet between 15‘1 and a singleton at maymg, because meet under product {-norm is
multiplication under product ¢-norm. Let the result of the meet be Fl,. Proceeding
as in the derivation of (C.147) and (C.148), the membership function of F}, can be
obtained as

M2MMacd]

(C.152)

exp { — J(fzmmma)2} o g € [0,mymy]
0 ;  otherwise
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Then, we find the meet between F,, I', and F; by assuming that F, and F, are
singletons at m; and mg, respectively, and I, is not a singleton. Let us call the

result of this meet operation F%,. Its membership function is

2 mymaos

(C.153)

ey = { cxp{ - l(‘9;”'1’~1“~2E~°L)2} ;0 € [0, myms3]
Fly —

0 : otherwise

Finally, we find the meet between I,, F, and F, by assuming that F, and F,
are singletons at m, and m,, respectively, and F, is not a singleton. Let us call the

result of this meet operation F%,. Its membership function is

(C.154)

i = Sl { o %(%igﬂ&)z} i 0 € [0,myma]
" 0 ; otherwise

Since pgy , Bz, and 12 each give a lower bound on the meet between F,, F,and

1
F,, we choose the maximum of them [again, as in (C.151), we keep only that part
of the maximum function which lies in [0, min{m;ms, mama, myms}], for simplicity].

This gives us

. 1(8—mympma\2 .
BE v, (0) = exp{ ~ j(E=mppEm)T) 5 0 €04 (C.155)
FyME,NF 0 ; otherwise
where
73 = max{m;ms03, mm302, Mam301 } , (C.156)
and
l3 = min{mma, myms, myms} (C.157)
O
Now, suppose that we have n Gaussian fuzzy sets, F,,F,,...,F,,in [0,1] having
means my,ms,...,m, and standard deviations oy,03,...,0,. A lower bound on

their meet is obtained by generalizing (C.155) to the case of n Gaussians, i.e.,

Hen 7 (0) = £ (C.158)

0 ; otherwise

{ exp { - 1(lLaamipl e 0,1
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where (1 =1,2,--+,n)

o= ma,x{ol H mi, oy H Miy -+, 0;j H Miy* ", On H m;} (C.159)

il ii#2 §i] Bign

and

by =2 min{ H ms, H mi, -, H My, -, H m,-} (C.160)

GiEl g2 iji#] isign
Figure C.3 shows some examples of the just-derived upper and lower bounds.
Both, the upper and the lower bounds, that we have derived are quite conservative.
[t may be possible to derive tighter bounds; however, we will not pursue this issue

any further.

C.8.4 Bounds on the Gaussian Approximation Error

Before proceeding to find bounds on the error for the meet between Gaussians and
the Gaussian approximation of the meet, we shall show that, just as the upper and
lower bounds derived in this section enclose the actual meet curve between them,
they also enclose the Gaussian approximation for the meet, i.e., we shall show that

ph, 2 (0) < e 1 (0) <pl 2 (0) 5 0€[0,1] (C.161)

=1t =171 i=1" 4

Recall that to find the Gaussian approximation for the meet between two Gaus-
sian fuzzy sets, I' and G, we solved an optimization problem and arrived at the

following expression for the Gaussian’s standard deviation [see Eq. (C.123)] ,

o(k) = \/m2o} +k*2 , k€[0,1] (C.162)

Obviously, (0) < o(k) < o(1) for any k € [0,1]. In particular, 0(0) < o(my) <

o(l), i.e.,

mgoy < y/mio} 4+ miol < \/mgaf + ol (C.163)

These results are also true when we change the order of F and G; hence,

myo, < ,,fmga} -+ mf,agz < \/mf;crg + o} (C.164)
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Combining (C.163) and (C.164), we get

max{mso, , myos} < \/mjo? +mlo} < min{\/mio} + o7, \/mgcr§ + 02}

(C.165)

Consequently,

2 2
B—mgmg 2 _L(_L_E!mg_) %( G—m‘;mg )
e_%(m?r) S 5 2 /m§03+m§a?f < mm{\/fm2 2+42 g7+a }
(C.166)
Also, from (C.151), it follows that

f8—m Mg 2
< ot (C.167)

#Fno

If we denote the Gaussian approximation in (C.124) by figna, it follows from (C.128),
(C.129), (C.166), and (C.167) that

iEa(0) < figna(9) < p¥s(0) 5 0€[0,1] (C.168)

This is in general true for the meet of any number of Gaussians, as can be verified

from (2.59), (C.141), and (C.158) in a similar manner; hence,

#ﬁ'ﬁ F(g) < fign F(g) < ;‘Lg; F. 0) ; 0e¢ [071}

i=1"3 =11 =171

Suppose that we have n Gaussian fuzzy sets, F,, F,,...,F,, in [0, 1] having means

mq, Ma,...,m, and standard deviations oy, 0,...,0,; then, we have shown earlier

(in Sections C.8.1 and C.8.3) that

pE, 2 (0) < pem 5 (0) <pl, 5 (0) 5 0€(0,1] (C.169)

=101 i=1"1 i=1"1

From (C.161) and (C.169), we can see that (dropping the subscript “Mi_,F;” for
notational convenience) if (0) < u(8),

u(0) — () < u¥ (0) — (0) (C.170)
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Similarly, if 2(0) > p(0),
(0) - 1(0) < (0) — #(0) (c.171)

From (C.170) and (C.171), we can bound the approximation error as

i 7. (0) = 5. (0)] < max{[u5 7 (0) = iy, 5, (0)]
L #,(0) = ih 5. (0)]}5 0 € [0,1]C.172)

where [in ];-_(0) is given in (2.59), uo, - (0) is given in (C.141) and pl, = (0) s
=174 i=1"¢

=1

given in (C.158).
Equation (C.172) gives an upper bound on the approximation error at any point

0 € [0,1]. To use (C.172), one needs to compute the upper and lower bounds
[,(IU (0) and ‘”n{;

n i
E-||=!F='

(19)] along with the Gaussian approximation [fzn,_,_lp_(ﬂ)]. The

:-1=1§"-
approximation error at @ is less than or equal to the larger of [p{n’r,, 5 (0) = fin :F-(g)]
i=15 =174
iy L

and [fiey 7, (0) = 1fy, 5, (0)]-

Observe, from Fig. C.3, that the approximation error is less in the high member-
ship regions than in the low membership regions, and is equal to zero at the point
having unity membership (this point is equal to the product of the centers of all the

participating Gaussians).

C.9 Proof of Theorem 2.4

We prove the theorem in two parts : (a) we prove that o:gf*’i- + B is a Gaussian fuzzy
number with mean o;m; + 8 and standard deviation |;o;|; and (b) we prove that

»  F, is a Gaussian fuzzy number with mean 3%, m; and standard deviation X",
where

i=1"%

(C.173)

" { A if product Z-norm is used
Y=

" ,o0; , if minimum #-norm is used
(a) Consider
. _I_(mi)2
Bo= [ (C.174)
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Multiplying F; by a constant o;(= 1/e;) yields [see Section 2.4.1]
ol = / [eu%("_T:“t) * 1}/(&3))
2
= /G‘E(T.-‘) /(aww) (C.175)

Now, adding a crisp constant 8(=1/8) to a;F;, we get [see Section 2.4.2]

v=Tn;

aF, +8 = /;[e_;_(_""_t) *1]/(0:,-1;-’(-5)

v-ml-

- /Ue_%( ) (e + B) (C.176)

Let ojv + 3 = v'; this gives v = (v' — )/a;, which when substituted into (C.176),

leads to

vl‘

ol +8 = /v,e}(p{_é[((;?—:mr}/v’

- fom{-{Eem ) e

which shows that a,-f?‘- + 3 is a Gaussian fuzzy number with mean a;m; + # and

standard deviation |a;0;|. Note that this result does not depend on the kind of
t-norm used, since a; and 3 are crisp numbers.

(b) Consider F, and F,, with means m; and m; and standard deviations oy and
o, respectively. The sum of these two fuzzy numbers can be expressed as [see
Section 2.4.2]

2

F +F =f X f . eu%(%) *e_%(%z)z/[v—kw] (C.178)
. 27 JueF, JueF,

where  indicates the chosen t-norm.

(1) Product {-norm : In this case, (C.178) reduces to

~ 1

Py +F, =fep /eF ) () /v +w] (C.179)
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If § is an element of I, + F,, the membership grade of 8 in F, + F, can be obtained
by considering all the {v,w} pairs such that v € F, and w € F, and v + w = 6,
multiplying the memberships of v and w in every pair, and, choosing the maximum

of all these membership products. In other words,

¥ 2
i+, (0) = Supe_%(%) e*%[‘“";z""]
el o

Let us call the expression in the square bracket in the exponent of (C.180) J(v), i.e.,

v —my\2 0 —v)—mgq2
oyt (Bt

J(v) = ( (C.181)

P
The value of v that maximizes the exponent on the RHS of (C.180) can be obtained
by minimizing J(v). Note that J is convex (J" = ;1]7 + ;1; > 0), so equating the first

derivative of J to zero (assuming the minimum is reached at v*), we get

o Al = = 0

g (o8] (o)) 09
v —=my v — (0 —my) 0
o} o2 -
1 2
_(1 " 1) my 0 —mo
vi=4+—=) = —
2 2 2 2
g 03 of 03
2 2
o myo; + (0 — m2)0”C 182)
= (e,

af + o3

Substituting (C.182) into (C.181), we get

el m”r (C.183)

igf.f(v] = l m

Substituting (C.183) into (C.180), we get

2
6=(m, +m2]]

_%|: ‘/62 o2 1
i, 45, (0) = € LHe (C.184)
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This result generalizes easily to the case of more than two Gaussians. Let m;; =
my + my and 012 = \/o} + 03, so that F‘l + }*:‘2 is a Gaussian with mean m;, and
standard deviation o13. Now, if a third Gaussian fuzzy set ]_53, with mean ms and
standard deviation o3, adds to this sum, the mean and standard deviation of the

resulting Gaussian are

Mgz = M2 + M3 =my + mg + mgy (C.185)

0’123=\/0¥2+U§=\/012+6§+0'§ (C.186)

Generalizing the result to the case of n Gaussians, we see that 3", f:‘:- is a

Gaussian fuzzy number with mean ., m; and standard deviation L, )
Y =1 1=1

i

(i1) Minimum ¢-norm : In this case, (C.178) reduces to
2 ; 2
g, . _1(=m _1(w=my
F1+Fz:/1‘~/ P82(°’ ) petl ”)/[U+w] (C.187)
vel', Jwel',

If 0 is an element of I, + F,, the membership grade of 0 in F, + F, can be obtained
by considering all the {v,w} pairs such that v € F, and w € F,and v+ w = 0,
finding the minimum of the memberships of v and w in every pair, and, choosing
the maximum of all these minimums. In other words,

v—m])2 __1_[(0—\:)—:1:2]2
ANe ? o2 }

fp 45, (0) = sup [6_5( 71 (C.188)

We make use of the fact that the supremum of the minimum of two Gaussians is
reached at their point of intersection lying between their means. To solve for the

point of intersection, we equate the equations of the two Gaussians.

2
1 (E—v.}wmz
e 2 ag

_ (v. ;1m1)2 _ [(6' - U;Z - 1‘:12]2
N (v* ;Iml)z _ [(9~?22)—v*]2
e O (i (C.189)
ay a9



The positive square-root on the RHS of (C.189) gives us the point of intersection

lying between the means [m; and (6§ — m3)]. Solving further, we find

ookl = Bg T

a1 [ep) ay [25))
= g = PR (C.190)
oy + o2

Since v, is the point of intersection of the two Gaussians, it has the same membership

in ', and F,; therefore, membership grade of § in F, + F, is
1 (v, —myy2
ne4)0) = exp{-5(——)}

o1
= exp{ =

[ myop+(6-—ma)or m ] 2}
This result generalizes easily to the case of more than two Gaussians. Let m; =

ay+ag
T

L = po]— B

—

0 — (m + mg))z}

o+ 02

(C.191)

I
¢]
"
o

——
|

my + my and o5 = 0y + 09, so that F; + I, is a Gaussian with mean m;, and
standard deviation o3. Now, if a third Gaussian fuzzy set F5, with mean ms and
standard deviation o3, adds to this sum, the mean and standard deviation of the

resulting Gaussian are

Myg3 = My2 + M3 = My + My +m3 (C.192)

O123 =012+ 03 =01+ 02+ 03 (C.193)

Generalizing to the case of n Gaussians, we see that Y., I; is a Gaussian fuzzy
number with mean Y%, m; and standard deviation }_I_, o;.

Combining parts (a) and (b), we get the desired result. O

C.10 Proof of the Claim in Example 2.4

Consider an interval type-2 set resulting from a Gaussian type-1 set, whose mean is
uncertain in the interval [m;, m,], and whose standard deviation is . We show that,
if (mg —m,) is small compared to o, the centroid of this type-2 set is approximately

an interval type-1 set with domain [mq, m2].



Figure C.4 (a) depicts an example of such a set, f:% The type-1 Gaussians with
centers m; and m» and standard deviation o are also shown. From the discussion
in Example 2.4, we know that : (1) the centroid of :\ is some interval, [¢, ¢], which
contains [m;,ms], and (2) ¢ is the centroid of an embedded type-1 set, A, [see
Fig. C.4 (b)] whose membership function assigns the highest possible memberships
to all the points to the left of ¢;, and the lowest possible memberships to all the
points to the right of ¢;. We now focus on the left end-point, ¢, of this interval. The
discussion about ¢, is similar.

We show that ¢; > m; — A, where

A= u (C.194)

Consider the embedded type-1 set, A,, shown in Fig. C.4 (c). The membership
function of this embedded set assigns the highest possible memberships to the points
less than (m; — A), and the lowest possible membership to the points greater than
(my — A). It is easy to verify that the area under this curve, to the left of (m; — A),
is the same as the area under it to the right of (m; + A) [see Fig. C.4 (c)]; therefore,
the centroid of this curve, ¢, lies between (m; — A) and (m; + A). Now consider
any other embedded set, A,, which assigns the highest possible memberships to all
the points to the left of some point m' and the lowest possible memberships to all
the points to the right of m’, where m’ < m; — A. It is easy to see that the centroid
of f\Q will lie to the right of ¢/. We, therefore, conclude that ¢; > m; —A. Using this

result with the fact that [c;, ¢,] includes [my,my], we get
my— A < <my (C.195)

Obviously, as A — 0 [i.e., as (mz —my) — 0], ¢ = my. We will make use of (C.195)
in the sequel, to show the dependence of ¢; on o.

To show the effect of & on ¢, we write the expression for the centroid of A, [see
Fig. C.4 (b)]. Let G(z;m,0) = exp{—3(¥2)?}; then

1

Ay 2 G(zymy,o)de + f::”'m G(z;my,0)dx + [ o G(z;my, 0)da

6. — [e 2G(zymy,o)de + M2 2Gayma, 0)de + [0 5 2G(z;my, 0)da
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122, 2G(x;my, 0)da — [T 2[G(x;my, 0) — Ga;ma, 0)]da
f_m G(a;my, 0)de — [7+3[G(x;m1, 0) — G(2;my, 0))da
\/ﬂom; = )(1

= T e = 1
2n0 — I (C.196)
where
ml-}-A
Iy = / z[G(z;my,0) — G(a;my, 0)]dz, (C.197)
Iml+d
I = f [G(z;my,0) — G(x;my, 0)]dx (C.198)

]

and, we have made use of the facts that : (1) the area under a Gaussian having
standard deviation o is V27o, and (2) since the centroid of a Gaussian is equal to

its mean,

/Oo tG(x;my,o)de = my /m G(z;my,0)de = V2rom, (C.199)

From (C.195) and (C.196), we have

f] = Tnlfz

_ C.200
Vore—1L, \E:200)

0<m —¢g=
Observe, from (C.197) and (C.198), that
I < / (my + A)[G(x;my, 0) — G(x;my, 0)]de = (my + A) I (C.201)

Using (C.201) with (C.200), we get

Al
\/Q_TTO' - 12

Now, observe, from (C.198), (C.195) and the fact that G(z;my,0) > G(z;ma,0)
for < m; + A, that

0<m —¢g< (C.202)

my+A
1'2<f " G(a;m1,0) — Glayma, 0))da (C.203)

ny—
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Observe also that, for x € [m; — A, my + 4],

0

A
8
L
&
)
|
Q
,.H
3
2

S5 - (5

= G(z;my,0) :1 — exp{ = %%?—(nu +A - 27)}]

|

o

¥

=]
Py

|

|

= frliniy 1

INA

G(z;my,0) :1 - exp{ — (%) 2}] (C.204)

In the last step of (C.204), we have made use of the fact that > m; — A.
Using (C.204) with (C.203), we have

I, < [1—exp - (2—3-)2} E:l_:ﬁ G(xz;my,0)de
< [i-en{ - 2N [ Glasm0)de
= [t-ew{-(2))]varo (C.205)

Observe that

2170[1 —exp{ — (%)2}] = ‘27.-0[1 - (1 + i(—l)*i(%)%)]

It is clear, from (C.205) and (C.206), that, as 2A /o = (mag—my) /o = 0, [, = 0;
hence, from (C.202), ¢, — m;.
In a similar manner, it can be shown that my; < ¢, < my + A, and as (my —

m;)/o = 0, ¢, = my [see Fig. C.4 (d)]. O
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C.11 Proof of Theorem 2.5

2
Let G(z;m, o) = exp{ - %(I;m) } Equation (2.73) can now be rewritten as

: =/ f f f T2 Gz mu, 00) % T2 Gl (wis by A) Lic Iw,-::; (C.207)
41 EN YU WS E‘I IT.U[

where ? é ?(21, cany ZM, Wl) Vosay \:VM).
Ifweletyy =2z —myand & =w —hforl=1,..., M, (C.207) becomes

Sy (ha + &) (mu + )
[Yl '[F\! \[51 / 71_1 7“ 0 UI) * 7}._1 (Sh 0 AI / Z: 1 hl + 5!)
(C.208)

Theoretically, each §; can take any value in the interval [0, 1]; however, only those

values which lie within 2 or 3 standard deviations of h; contribute significantly to
the union in (C.208); therefore, we assume that each & takes values between kA,
where k = 2 or 3. Similarly, we assume that each v; takes values between +koy.

The term to the right of the slash in (C.208) can be rewritten as

Siwz S+ &)(mi+ )
2w B Zf(hl + 5!)
S humy + X iy + X dmu + 6
Y hi+ 6

(C.209)

where the limits on each sum are from 1 to M.

In what follows, we express the term on the RHS of (C.209) as an affine combi-
nation of Gaussian v;’s and §;’s so that we can make use of Theorem 2.4 to find an
(approximate) expression for Y in (C.207). We expand the denominator of (C.209)

by first rewriting it as

1 1 1
= (C.210)
hi+308 ik ( §:5,)
Tihi+ 34 1 1+ &4
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If |3 61] < X1k (since & varies between —kA; and kA, this is equivalent to as-
suming that k3, A; < 3 ), we can express the parenthetical term on the RHS of
(C.210), as

1 2idi 2a0\2 1 30161\3
. S + e [N i i c.211
I—I—%'% (Zlhl) (Z:hl) (Z.'hl) ( )
M
where we have made use of the identity
1 2 .3 . 1
1+$—1—:c+:c 4 i |z < 1 (C.212)
If 5 A
il R C.213
il ( )
which means that 56
19
—— &1, C.214
il ( )

we can ignore powers of 3, 5;/ 51 hy greater than 1 in (C.211). This gives us

1 )
~1— C.215
L+ ) e

Substituting (C.215) into (C.210), we get

1 1 2101
= 1— C.216
STESTS AT S
Using (C.216) in (C.209), we get
Siwiz S hemu + X ko + X dmu + ¥ 0 (1- 2 5{) (C.217)

2w 2 hi P! hy

Ignoring all the terms containing powers of 35,8/ 3°; by higher than 1, we get

Yiwiz o humy oy o ihim PR Suhmu o i
A 1— + 1-— + -+
2w W, hy ( 2 hl) 2 hi ( %) hl) 2 h 21 hy
Cihmy X di (Z; h;m;) i S hiw
Sihe iy Tl il




i (Ezhm) 21 dmy +Zf5f'ff (C.218)

_21 hi\ 3 2 il
Let > b
M ==L C.219
b ()
then (C.218) can be rewritten as
2 Wiz 10 Z; oy Yl b Xihewy | b
~M-M + - + C.220
2w 2 hl Sihi 2 Z;h:( it ) Y ( )
Next we focus on the last two terms in (C.220). Observe that
i 2161
S | < [ S5 (a2)
Since 7; takes values between +koy, (C.221) is equivalent to
210
< .222
ihi |_ |th:| \0228)
Similarly, ;
|MJ < kmaxo; (C.223)
h I
Consequently,
) / ) ) I J, )
|_ 2 :(Z: lm) 2 ml |Z: I(ZI lm)|+ 2 m| - 01|21 I|
Tl N il Sl TN Tl ik 2l
(C.224)

Observe, from (C.220) and (C.224), that if condition (C.214) is satisfied, we can
ignore the last two terms on the RHS of (C.220) in comparison with 3, hm/ Sorha,

which, according to (C.223), takes values in +kmax; 0;. Doing this gives us

¥ wizy b iy X hum
~ M-M
21wy . ’ Z:ht+ S L S
M h,l ?R;—M o
= 2[7‘(_2; ) a5+ M (C.225)
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Using (C.225), (C.208) can be rewritten as

¥~ f /[J / Thg fn,oJ;)*fn_IG(é;,oA:)/

M h _—
E[’“(ﬂ)*&( :gh, )] +M (C.226)

Recall that v = z; — m; and §; = w; — h;. Let
Z,=%,—-my for l=1,....M (G220

and

W, =W, -k for I=1,...,M; (C.228)

so that each Z; is a type-1 Gaussian fuzzy number with zero mean and standard
deviation equal to o7, and each W, is also a type-1 Gaussian fuzzy number with
Zero mean md standard deviation A;. Observe that the RHS of (C.226) is equal to

ZE [Z ( + W (-"%:T—M)] + M (see Section 2.4.2), i

- N h; ~ m:—M

Va2 [l R) + W)+ M e

The result in Theorem 2.5 follows by applying Theorem 2.4 to (C.229), using the
fact that all Z;’s and W,’s have zero means. O
Comment 1: When all A; = 0, there is only one source of fuzziness in 3_; wyz;/ 3, wi,

namely, the Z,’s. In this case, (2.73) reduces to

M

. . v b

Y Fos s B R hod) / / TM G213, 01) Z'+;:I (C.230)
=1

Again, letting vy = zy —my for { = 1,..., M, we have
i = J\i /
Yy Zagshrsesba) = [ o] ﬂiia(m;o,m)/z‘-‘ i+ )
! Yar

Zglhf
- L [m'r*‘ G(y;0, m)/
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Z: lh_:m; hy ]
[ Z}Ml hy Z’YI(Z{"’I:’L;)

_ [ﬂ__,[m ﬂgg(m;o,al)/[M+Zw( ;&‘} )]

=1

= ‘L‘(ZMI h}) + M (C.231)

where W, is as defined in (C.228) and M is as in (C.219). Applying Theorem 2.4
o (C.231), it follows that ?(Zl,...,ZM,hl,. ..,vhar) is a Gaussian type-1 set with

mean M and standard deviation X, where

M
M (o) , ,
@ , if product ¢-norm is used N
Y= Zg -k (C.232)
a0 if minimum ¢-norm is used

1=1

Observe that this result is exact and it can also be obtained by substituting A; =0
(Il=1,...,M)in (2.75).
Comment 2 : It is not very easy to find an expression for the error between the
approximation in Theorem 2.5 and the true set Y; however, we can find bounds on
the domain of Y easily.

Recall Eq. (C.208). If each §; varies between +kA; and each 7 varies between
+koy, the term to the right of the slash can be bounded as

Si(he = kA (mu —kor) - Ealh + 8)(mu+y) o Za(hu + kA)(mu + ko)
Yol + EA) - (ki + &) - (b — kA))

(C.233)
Let k; = maxi[A;/h] for by # 0 and let k; = max[oy/my], assuming my > 0
(l=1,...,M). From (C.233), we have

i — kkyh)(mu — ko) 54 (ha + 80)(mu + )
(bt + kkiha) - Cilhi+ &) -
Soi(hi 4 kkyh)(my + kkymy)
5~ (ht — ki)
(1-— LL 1 - JU»;; ] Z! h,- + 51)(?’1?; -+ ‘)q)
(1 + Uul - Su(hi+ &)

=:>VI[



(1 + kk)(1 +kk2)}

M| (1— kky)

(C.234)
where M = Zih;m;/ Sy ;. Since the term to the right of the slash in (C.208)
indicates a general point in Y, it is clear that the entire domain of Y lies between
the bounds in (C.234).

Though the bounds in (C.234) are generally very conservative, they illustrate
how \7(21, S 'ZM, \7\"1 ..... ‘WM] collapses to y(z1,...,zar,wi. ..., n) [see (2.72)

and (2.73)], when all the type-2 uncertainties collapse to type-1 uncertainties. When
all the type-2 uncertainties disappear, k; = k; = 0 and the upper and lower bounds
on Y both equal M, implying that the type-1 set Y collapses to a crisp point equal
to M, i.e., 1/ M (since pg(M) =1).
Similar bounds can be obtained when all or some of the m; < 0.

Comment 3 : Since the bounds in (C.234) enclose the entire domain of the type-
reduced set between them, M, the unity membership point in Y and Cy, the centroid
of Y, also lie between these two bounds. The difference between M and Y can,

therefore, be loosely bounded as (assuming m; > 0 for [ = 1,..., M).

(L4 kky) (1 + kks) (1 = kky)(1 — kks)
- (-] < L
IM-Cel s M™% i) )
_ (1 + kky)2(1 + kky) — (1 — kky)2(1 — kky)
= M-Cy| < M| e ]
) Akky + 2kky (1 + k2k3)
= M-Cyl < M| =) ] (C.235)
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1 — 1
_/'/‘/ a<de
v=af+b_ -~ )
: P v=0
Vv . = V:e \V e —
" __ = ~V=ab+b
: - |
|
= |
00 0 — 1 00 Ie; 1
(a) (b)
— 1
1—~——————-—f—:,7|'—
/./. aqac,b=0
v=a0 +b- :
V. /'/‘ . | Vv V.=8
./I/' V—-S | V'=aB+’b,
Nt | _ R
[ s
| P
00 a:)ac = 1 00, - 0 1
(c) (d)

Figure C.1: Plots of v* = af + b versus 0 and different possibilities that can arise
depending on the value of a and b. The critical value of @ is a. = 1 = b. (a) a = a..
In this case, the constrained minimum is always equal to the true minimum. (b)
a < ae. (c) a > a. (d) The special case, when b = 0 and a > a.. In this case, the
constrained minimum is equal to the true minimum only at ¢ = 0.
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Figure C.2: A Gaussian contained in [0, 1] may be clipped as shown in (a). Figure (b)
shows the unclipped version of the same Gaussian.
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means = | 0.3,07,08,0.9] means = [ 03.0.7]

stddevs=[ 005 008,01,01] stddeva=[01,0.1]

)
-

07F means=[08,1] ]

mid deovs = [ 0.05,013 | i
05F i

oa- !

-

03r '

. ol

o2t

o i

ol
©

i " - " M
o8 0.8 1 o at 02 03 o4 05 [:3:3 o7 0.

Figure C.3: Some examples of upper and lower bounds given in (C.141) and (C.158).
In each figure, the solid line shows the actual result of the meet (computed numeri-
cally), the thick dashed line shows the Gaussian approximation and the dash-dotted
lines show upper and lower bounds. The Gaussians in (c) are coincident (same means
and standard deviations). The Gaussians in (d) are the same as in Fig. 2.15 (f).
Since one of the Gaussians is centered at 1 (half of it is clipped), the approximation
does not work as well as in the other cases; however, the upper and lower bounds
still hold. In this case, the upper bound coincides with the approximation.
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m1—A m, m1+A rn1—A C, C, m2+A

Figure C.4: Figures for Appendix C.10. (a) An interval type-2 set A resulting from
a Gaussian type-1 set with standard deviation equal to ¢ and mean uniformly uncer-
tain in the interval [m;, m2]. The Gaussian type-1 sets having standard deviations o
and means m; (thick dashed line) and m, (thick solid line) are also shown. (b) The
embedded type-1 set, 17\,, whose centroid equals ¢; is shown with a thick solid line.
(¢) The embedded type-1 set, A, whose membership function assigns the highest
possible memberships to the points to the left of m; — A and the lowest possible
memberships to the points to the right of m; — A, where A = (mz —my)/2, is shown
with a thick solid line. The Gaussian with center m; is shown with a thin dashed
line. (d) The centroid of A is a crisp set with domain [c;, ¢,], where m; —A < ¢; < my
and mg < ¢ < Mg + A.
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Appendix D

Weighted Average of Interval Type-1 Sets

Here, we develop a computational procedure for computing the exact result of a
weighted average of interval type-1 sets. This procedure can be used to compute the
centroid of an interval type-2 set (Section 2.5).

Since every point in the domain of an interval type-1 set has a unity membership,
we can describe an interval type-1 set just by its domain, e.g., an interval type-1 set
with domain [[,7] can be indicated as just [[,7]. If we let m = ({+r)/2 (mean) and

s = (r —1)/2 (spread), we can also indicate an interval type-1 set as [m —s,m + s].

D.1 Exact Result : Computational Procedure

Consider the weighted average of type-1 fuzzy sets [see (2.73)], which we reproduce

here for convenience

?(Zl,...,ZM,WI,...,WM) = // / f 11#2( )*ﬂ—iﬁw(wf)/
4] ZN YU WHS

Tiey Wiz
M o (D.1)
Zf:l wy

If each Zl and W; (I =1,...,M) is an interval type-1 set, then, using the fact

that ,uil(z;) = P‘\‘v,(wf) =1, (D.1) can be rewritten as

= = Z:'U1w|' [
Y(Zy,.... Zogs Wh, ..., Wat) f f / [ D.2
( 1 M 1 w g Juy - Z;”l w; ( )
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where we have omitted the tilde, since all the sets involved are crisp. We present
an iterative procedure to compute the actual weighted average Y, when each Z; in
(D.2) is an interval type-1 set, having center ¢; and spread s; (s; > 0), and when
each W, is also an interval type-1 set with center h; and spread A; (A; > 0) [we
assume that by > Ay, so that w; > 0 for [ =1,..., M].

We make the following observations :

1. Since each set in the weighted average on the RHS of (D.2) is an interval type-1
set, Y(Zy,...,Zym, Wi,...,Wy) will also be an interval type-1 set, i.e., it will
be a crisp set having an interval on the real line as its domain. So, to find
Y(Zi,..., 2y, Wh,...,War), we need to compute just the two end-points of

this interval.

2. Since w; > 0 for all [, the parital derivative Y /0z = wi/ X;w > 0;
therefore, Y always increases with increasing zj; and, for any combination
of {wy,...,wy} chosen so that wy € Wi, Y(Z1,..., Zy, Wh, ..., W) is max-
imized when z; = ¢+ s for [ = 1,...,M;and Y(Z1,...,Zn, Wh,...,War) is
minimized when z; = ¢;—s;. The right end-point of the domain of Y(Z,. .., Z,
Wi, ..., W) is, therefore, obtained by maximizing [Z; wy(er + s;)]/[zj w;]
subject to the constraints w; € W, for [ = 1,..., M; and, the left end-
point of the domain of Y(Z,,..., Zax, Wi,..., W) is obtained by minimizing
[ZI wi(er — s;)]/[zf w;] subject to the constraints w; € W, for [ =1,..., M.

From these two observations, it is clear that in order to compute Y (Zy,..., Zu,
Wi,..., W), we only need to consider the problem of optimizing (maximizing /

minimizing) the weighted average

521 zuy

S(wy,y...,wy) = =——— D.3
( : W) Z?ilwl ( )

subject to the constraints w; € [hy — Ay, by + Af] for [ = 1,..., M, where, by > A,
so that w; > 0, for { = 1,..., M. As explained in observation (2) above, we set
z=c+s (Il =1,...,M), when maximizing S, and 2y = g—s ({ = 1,..., M),

when minimizing S.



Differentiating S(wj,...,wy) w.r.t. wy gives us

0 d [Zﬁl 21?1)1]

—S(wy,y...,wy) = o | 7w
¢ =1

dwy.
d [zkwk + Zl#k z;w;]
Owg | w + Yz wi

- [
T wk + i wr ZA

-1
+(zkw;¢ + § z;wt) (wk 5 w{)z
_ Zk _ Z,{‘__{l Ziun
ier w1 ( ) w;)2

- 78 l f\it zlwfl 1
— 7 = A% ¢

M w Tiiw ] T w
_ zr — S(wyy. .., war) (D.4)

2y Wi

Since S0, w; > 0, it is easy to see from (D.4) that

d
Tm-g(wl,---,wm]

AV
AV

0 if z= S(wy,...,wm) (D.5)

As shown below, equating 8.5 /0w to zero does not give us any information about

the value of w; when S is maximized or minimized.

M
1=1 21

M Zk
Zl =1 tU{
M

M
= Z i =z Z wy
=1 =1

M M
=  zZpwi + Z Zjwy 2wy + 2 Z wy
i I=
t;ei :;e}:
Sk 21WY
= ST 2k (D.6)
Doizk Wi

Observe that wy no longer appears in (D.6). Equation (D.5), however, gives us the

direction in which wy should be changed to increase or decrease S. Observe, from
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(D.5), that if z; > S, S increases as wy increases; and, if z; < 5, S increases as wy
decreases.

Recall that the maximum value that wy can attain is hr + Ax and the minimum
value that it can attain is hy — Ag. The discussion in the previous paragraph,
therefore, implies that S(wy,...,wy) attains its maximum value if : (1) wg = hr+Ay
for those values of k for which z;, > S, and, (2) wr = hr — Ay for those values
of k for which zx < S. Similarly, S(wi,...,wy) attains its minimum value, if :
(1) wy, = hy, — Ay, for those values of k for which z; > S, and, (2) wy = hx + Ay for
those values of k for which z; < S.

The maximum of S can be obtained by following the iterative procedure given
next. We set z; = ¢;+s; ({ = 1,..., M); and, without loss of generality, assume that

the z;’s are arranged in ascending order, i.e., z; <z, < ... < 2y

1. Set w; = h; for l =1,..., M, and compute S’ = S(hy,...,har) using (D.3).

b

Find £ (1 <k < M — 1) such that z, < 5" < zp4g.

3. Set wy = hy — A for | < kand w; = hy + A for | > k + 1, and compute
S" = S(hy — Ay, ... kg — Agy hieyr + Agtry .- - har + Apg) using (D.3).
[Since the z’s are arranged in ascending order, observe, from (D.5) - see also
the sentences after Eq. (D.6) - and the fact that z; < S" < 234, that, because
we are decreasing the w;’s for [ < k and increasing the w;’s for [ > k + 1,

g S Sr]

4. Check if S” = S’. If yes, stop. S” is the maximum value of S(wy,...,war). If

no, go to step 5.

5. Set 5" equal to S”. Go to step 2.

It can easily be shown that this iterative procedure converges in at most M itera-
tions, where one iteration consists of one pass through steps 1 to 5. At any iteration,
let &' be such that zx < 8" < zpyq. Since S” > §', k' > k. If k' is the same as k,
the algorithm converges at the end of the next iteration. (Note that it is possible to
have S” # S’ even when k' = k. This happens when both S” and S” are in [zk, zg41];
however, if this happens, at the end of the next iteration, S = 5’.) Since k& can

take at most M — 1 values, the algorithm converges in at most M iterations.
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The minimum of S(w;,...,wy) can be obtained by using a procedure similar
to the one described above. Only two changes need to be made : (1) we must set
z1=c¢—s forl =1,...,M; and, (2) in Step 3, we must set w; = hy + A for
| < kand wy = hy — Ay for | > k + 1, to compute the weighted average S” =
S(hy+ Ay ..o b+ Agy g1 — Bggry - b — Dpyp).

D.1.1 Centroid of an Interval Type-2 Set

Observe, from (2.67), that the centroid of an interval type-2 set A, whose domain is

discretized into N points, is given as

- YL, wl
B f o [ 1 =T D.7
i 8, -[9.»- 2;\;1 0, (D.7)

where 0; belongs to some interval in [0, 1]. Equation (D.7) has the same form as (D.2),
except for the fact that z;’s in (D.7) are crisp numbers unlike Z;’s in (D.2); therefore,
the same computational procedure described above can be used to compute Ch‘i, with
the z;’s and 6)’s in (D.7) corresponding to z;’s and w;’s in (D.3), respectively. Note
that in this case, s; = 0 for all [, because the x;’s are crisp. If N is very large, in

Step (4), we can check if |S” — S| < € instead of S” = 5’, for some predecided .

D.2 Approximate Result

In this section, we give a result similar to Theorems 2.5 and E.4 for interval type-2
sets. Before giving the approximate result, we obtain a result similar to Theorem 2.4

for interval type-1 sets.

Theorem D.1 Given n interval type-1 numbers Iy, ..., F,, with means my,ma,...,my
and spreads sy, s,...,5,, their affine combination Y, o; F; + 3, where o; (i =
1,...,n) and B are crisp constants, is also an interval type-1 number with mean

Y aim; + B, and spread Y, |ai]s;. DO



Proof : Consider F; = [m; — s;,m; + s;]. Multiplying F; by a crisp constant a;
(= 1/a;) yields (see 2.61)

o; F; = /ﬂl/(agv) v € [my — s, mi + 84 (D.8)
Adding a crisp constant 3 (= 1/3) to a; F; yields [see (2.63)]
a; F; + 8 = /ﬂ]/(ag‘v—{vﬁ) v € [m;— s, m; + 84 (D.9)
Substituting w = a;v + 3, (D.9) gives us
o F+ 8= Ll/w i w € [aimi + B — |aglsi, aimi + B+ |eulsi] (D.10)

Recall that F; can be represented as [l;, r;], where [; = m; — s; and r; = m; + s;.

Observe, therefore, from (2.64) [see, also, the discussion after (2.64)], that

ZE:[ng—Zs;,img+is; (D.ll)
=1 i=1 i=1 i=1 e ¢

Using (D.10) and (D.11), we get the result in Theorem D.1. O

We now give an approximation to the weighted average of interval type-1 sets.

Theorem D.2 If each Z; in (D.2) is an interval type-1 set, having center ¢; and
spread s;, and if each W is also an interval type-1 set with center h; and spread Ay,

then Y is approzimately an interval type-1 set, with center C and spread S, where

¢ = Zhs h}f! (D.12)
=114
and M
8. Tl [(h:;)?:: LC: —ClA] (D.13)
provided that S A
ZIEI h,: <1. (D.14)

The approximation improves as (Z}‘il A;/ > h,-) grows smaller. The result is
exact when Zf‘i; Ar=0, ie., when Ay =0 forl=1,...,M. O
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Proof : The proof proceeds exactly like the proof of Theorem 2.5 in Appendix C.11,
the only difference being that now the condition required for a good approximation is
[SM A)/ISM, ) < 1instead of k[ XM, A)J/[ M, ki) < 1 [see (2.76)]. The factor
of k appeared in the Gaussian case, because the membership of a point in a Gaussian
type-1 set is never exactly equal to 0; we just neglected the memberships outside
+kA,, since they were too small. In the interval case, however, the memberships of
points outside +4; are equal to 0; and therefore, the factor of k disappears.
We get a result similar to (C.229) :

Y ~ ﬂi 2 (’*—‘) +W (ﬂ)] i (D.15)
ST ) TN '

where Z,’s are zero-mean interval type-1 sets with spreads s;’s, W,’s are zero-
mean interval type-1 sets with spreads A;’s, and all the summations and “4”
signs denote algebraic sum. The result in Theorem D.2 follows by applying Theo-
rem D.1 to (D.15). When applying Theorem D.1, we set n = 2M; F; = Z;, and
o = h,-/[ZjZl b)) fori =1,...,M; and, F; = W;, and o; = (c; — C)/[Z;‘i[ hy] for
i =M lnen2M; B

Comment 1 : In this case, the true weighted average [i.e., the LHS of (D.2)], Y,
will also be an interval type-1 set (since all the sets involved are interval type-1 sets);
however, the approximation is useful because the actual end-points of the domain
of Y can only be obtained computationally.

Comment 2 : Comments 2 and 3 at the end of Appendix C.11 apply in this case
as well.

Comment 3 : Though Theorem D.2 is very much similar to Theorems 2.5 and
E.4, there is one difference. In case of Gaussians and triangular sets, the secondary
membership functions may be clipped because they have to be contained in [0, 1];
and therefore, may not remain true Gaussians or triangles. We ignored these clip-
ping effects for simplicity; therefore, the results in Theorems 2.5 and E.4 contained
a “clipping effect” approximation, in addition to the approximations introduced
subject to conditions (2.76) and (I5.184), respectively. In the case of interval sets,
however, no clipping effects need to be considered, because any clipped version of
an interval is again an interval; so, the only approximation that is introduced in the

result in Theorem D.2 is the one subject to condition (D.14).
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Appendix E

Triangular Membership Functions

Most of the results we have developed so far are quite generally applicable to any
convex normal membership functions, with the exception of two important results :
(a) the Gaussian meet approximation (Section 2.3.2) and (b) the weighted average
of Gaussian fuzzy numbers (Theorem 2.5). Here, we develop results similar to (a)
and (b) for triangular membership functions, so that one can use a type-2 FLS with
triangular type-2 sets. By a triangular type-2 set, we mean a type-2 set which assigns
a triangular type-1 membership grade to every point in its domain.

For simplicity, we deal only with symmetrical triangles (i.e., triangles with left
spread equal to right spread). Such triangles can be described by two parameters :
the center ¢ and the spread s, so that the domain of the triangular fuzzy set is the
interval [c — s,c + s]. In the sequel, a “triangle” will always mean a “symmetrical
triangle” unless explicitly stated otherwise.

In Section E.1, we first derive the actual result of the meet of two triangular fuzzy
sets. The result, however, is not triangular and therefore does not easily generalize
to the meet of more than two sets; therefore, we find a triangular approximation
to the actual meet and also find upper and lower bounds on the approximation.
In Section E.1.2, we provide MATLAB files for verification of the results stated in
Theorem E.1. In Section E.2, we develop results for the algebraic sum of triangular
type-1 fuzzy numbers (similar to the result for the sum of Gaussian type-1 fuzzy
numbers in Section 2.4.2.2). This result is used in Section E.2.2.3, where we develop

a result similar to Theorem 2.5 for triangular fuzzy numbers.
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E.1 Meet Approximation under Product t-Norm

The derivation of the actual meet of two triangular fuzzy sets gives a closed form
solution, unlike the Gaussian case (see Appendix C.6 for derivation of the actual
meet between two Gaussians). So, we first derive the actual result and then see if
an approximation is needed.

In type-2 applications, the triangular sets involved in the meet operation will be
membership grades of type-2 sets; therefore, we restrict our attention to triangles

contained in [0, 1].

E.1.1 Meet of Triangles under Product {-norm

Theorem E.1 Suppose that we have two triangular type-1 sets F and G, character-

ized by membership functions f and g, such that

1- U—:—ﬂ- : UE[C;—S;,C;-I—-SI}
f)= t e (E.1)
0 : otherwise
and
1 - =2 ; welg —8,6+3]
g(w) = * welg=s e (E.2)
0 : otherwise

where z = max{x,0}, T = min{z, 1}, ¢s,¢, € [0,1] and ss,s, > 0.
The meet of ' and G under product t-norm is characterized by the following
membership function :
For 0 < ¢c,
Ifcy > sy and ¢y > sy,

ting(0) = { oz [\/5_ Vier = s5)(es - Sg)r p (ep —sp)(eg —8g) SO <esy

1—|—"}_—;@ ;s <0< epey
(E.3)
If ¢y < sy and/or ¢, < sy,
0 — cseq .
pina(d) =1+ (T) 3 0<0< ¢ (E.4)
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For 8 > ¢jc,
Ifep+sp<landc;+s,<1,

(0) = lmg—cﬁ ; cpcg < 0 < csy
rina(9) = — [\/(j_ \/ cr + ss)eg + SE)J ;82 <0 < (e + sp)(cg + 5g)
(E.5)
Ifeg+sp 21 andfor ¢y + 54 2 1,
i 1-0—cﬂ : creg <0 < cesy
3139[\/— \/C_,r-I-s; Cg+sg)J ; csy < 0 < es3
ting(0) = < max{[l— ( )][1_( - )]1
| [1‘( % )”l—(‘;;")}} ; cs3 <0< (e +55)(cg F5)
(E.6)
where
cs = max{csSy,Cy8;} (E.7)
cs; = min {cf. (s_j:_ij) i cﬁ(: ::)} (E.8)
cs; = max {c?(%) (2 : ) (E9)
_ . [CftSf ¢+
csy = mm{cgr P cj T Sj} (E.10)
Proof :

Equation (2.28) describes the meet operation between two type-1 sets under product

t-norm. We reproduce it here for convenience :

FNG= -/eF /‘wEG w)]/(vw) (E.11)

where the integrals denote logical union. Equation (E.11) can be interpreted as
follows. Each element v of set F multiplies every element w of set G, and, at the
same time, the membership grade of v in I multiplies the membership grade of
w in G. So, given a particular element v, of ', what we get as a result of these

multiplications is a scaled version of the membership function of G [scaled along
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both the axes : along the independent axis by v; and along the dependent axis by
f(v1)]. This process is repeated for every element of [ and finally, the meet of F
and G is given by the envelope of all the above scaled triangles. Figure E.1 shows
this interpretation pictorially. Observe that if we interchange [ and G, the above
interpretaion still holds. [Recall that we used the same interpretation of the meet
operation while deriving the Gaussian meet approximation (Section 2.3.2).]

To find the membership function of I G, we start by considering that FnG
is made up of a collection of scaled sets G, one scaled set corresponding to each
element of F. One obvious thing that can be observed from (E.11) is that only one
point in the domain of F'1 G will have a membership grade equal to unity, and this
point is equal to csc,. Observe, from Fig. E.1 (b), that to the right of the unity
membership point csc,, ppng is a curve that touches the right side of each scaled
triangle. Similarly, to the left of ¢jc;, ppng touches the left side of each scaled
triangle. From this, we infer that to the left of cfc,, the left half of G (i.e, v <)
contributes to pipna, and, to the right of cycy, the right half of G (ie, v > ¢)
contributes to pipna. Also, from (I.1) and (E.2), it is clear that the domain of FnG
is [(cs — s7)(cg — 85), (e F57)(c; F 59)]-

To begin with, we assume that the triangles are completely contained in [0, 1],

ie,cr—s;>0,¢,—8,>0,¢c;4+s; <1land ¢, +s, <1 (they may or may not
overlap). Later on, we consider the other possibilities. Observe that, as argued in
the preceding paragraph, to the left of ¢sc,, only the left half of G contributes and
to the right of csc,, only the right half of G contributes; therefore, the conditions
cs —ss >0 and ¢, — s, > 0 matter only for the part of the meet to the left of cycy;
and the conditions ¢; + sy < 1 and ¢, + s, < 1 matter only for the part of the meet
to the right of cyc,.

Triangles completely contained in [0,1] :

We can write the membership function of MG as follows : For (c; —sy)(c, — s,) <

0 < cyey,
]
v

pong0) = sup [1 4 (222)] 1+ (2=-2) (©.12

veV; Sg Sf
where the interval V; is found as follows. Since v € F, v > (¢y — sy) and here, we
are considering points to the left of ¢; [see (E.1) and discussion in the preceding

paragraph]. This gives us v € [c; — sy,¢7]. Similarly, since ¢ € G and we are
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St I _ 0 8
considering points to the left of ¢,, we have ¢ € [c; — 54,¢], i-e., v € [Cg, Cg_sg]

Combining these two constraints, we have

0 0 ]

6y €8y

= [es—spedn [, (E.13)

Observe that (¢; — sf)(c; — s4) < (cf—sy) and 8 < cpcy = % < ¢j;

therefore, V; is a non-empty interval.
Similarly, for ¢jc, < 0 < (ef + s5)(cg + 84),

pera (@) = sup [1 = (=20)][1 - ()] (5.14)

veVr Sg '}

where, arguing as in case of (E.12), we find that

0 0
Vi = [er 654 57] N P E.15
[erscr+ 54 [Cy ey cg] (E.15)
It is easy to see that V, is also non-empty for cye, <0 < (¢f + s5)(cy + 84).
Combining (E.12) and (E.14), we have
sup,ev; [1+ (S2)][1+ (52)] 5 (e —s)(e = 30) S0 < egey
tinc(0) = o it
SUP,ev. [1 - ( )] [ ( . )] creg S0 < (e +55)(cy + 59)
(E.16)

where V; and V, are as in (E.13) and (E.15), respectively.

For (cf — s7)(¢g — s4) < 0 < csey, the objective function to be maximized is

Dl(v) = [1+(ﬁ_s_;c£)][l+(v—c;)]

- [0-2)+ 2He- D+ 2
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DI"w) = (1-ZL)=5 (E.19)

Since ¢; > sy, D1” < 0, which implies that D1 is concave. To find its supremum,

we equate D1’ to zero. If the supremum is achieved at v = v*, we have

o | ey 01
=300 =
= v = 6(*—-—-——-6}-_8'{) (EQU)

Cg — 8y

Let us see if v* satisfies the constraint v* € V;. For v* to belong to V}, it has to

satisfy the following four conditions [see Eq. (E.13)] : v* > ¢y — sy, v* < ¢, ™ 2> %

and v* < ﬁ. Since 0 > (cf — sf)(cg — 8g), (cf — 85) S v* < ﬁ. To satisfy the
other two conditions,
c;— 8
ve < & §< {12
/] s
- e 0<E(L=Y)
Cy Cg — Sg
cy — 8 y/Cp— 8
= v eV & 9<mincz—g—-g—,c‘!—f—-———{ E.21
! <minfef (2—1), (0 —5)) (B2

Substituting (E.20) into (E.17), we get

tina(0) = S%[\/f_?— \/(q —sy)(e; — .f,'g)]2 s (er—sf)(cg—sy) <0< esy (E.22)

where
€$; = min {c:‘:-(g-j—:z—j) . cﬁ(ﬁ)} (E.23)

If & > csy, the supremum of D1 is reached at a point v* which is either greater
than ¢; or less than ;f; [(E.21)]. If esy = c}(f‘f—:fi-), 0 > cs; & v* > ¢j. Since, D1 is
concave, the supremum in V] is attained at v = ¢y; therefore, substituting v = ¢; in

(E.17), we get

ting(0) =1+ (glfcg) i G(I=2)<b<em (B0

CfSq CJr —S_f
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If es; = cﬁ (—-’lf-’-), 0>cs) &v< %. Since, D1 is concave, the supremum in V] is

c
cg—5g

attained at v = £; therefore, substituting v = & in (E.17), we get
cg €g

0 —cyc ct—$
pena(0) =14+ (—L2) 3 (=) <0<esq (E.25)
g f Cg — Sy
Note that
Cqg— S ‘ C_f - Sf
CrSy 2 CoSf =4 C? (ﬁ) § C;(—Cy_—sg) (E.?G)

Combining (E.24), (E.25) and (E.26), we get

§ —cyc -
,upnc(g) =14 (Tg) y 51 < 0 < CrCy (Egl)

where
cs = max{cysy, ¢ySs} (E.28)

For cre, < 0 < (cf + sp)(cy + 84), the objective function to be maximized is
(E.16)]

o) = [1- (52~ ()]
- [0+~ 202 -2)
= (+ D)0+ D) -+ BT 1+ §)£§+ stg (E.29)
The first and second derivatives of D2 are
DY(v) = - 1+c—j);1; +(1+ %)%5 (E.30)
D2'(v) = —(1+ z—’;)%% (E.31)

From (E.31), we can see that D2" is always negative (for v € [0, 1]), implying that
g g

D2 is concave. If the supremum of D2 is reached at v., equating D2’ to zero, we get

g\ 1 01
—(1+&)_+(1+‘:—;‘)8—g—@ = 0
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= wo=Jo(E5) (E.32)
Cg + S
Let us see if v™ satisfies the constraint v € V.. For v* to belong to V;, it has
to satisfy the following four conditions [see Eq. (E.15)] : v* > ¢f, v* < cf + sy,
r & Cgf_s and v* < L. Since 0 < (¢; + s7)(¢g + 5g), cg+s; < v* < (ef+s5). To

satisfy the other two con(lltlons,

v

vt > ¢y = 0263.(—69_}-39)
Cr+ 8¢
v'<£ <":> GZCQ(W_—SI)
=g ey + 34
v eV, & 02 max{c?(c‘g s Sg) , € (M)} (E.33)

¢+ Sy 9 cg+ 34

Substituting (E.32) into (E.29), we get

1 2
Hing(0) = 2 [\/5_ \/(Cf +s¢)(cg + SQ)J ;o es2 <0 < (eptsp)(eg+sy) (E.34)
g
where
_ 2(Cqg T Sq 2(Cf+ Sy .
€Sy = max {cf(m) » Gy (m)} (E.30)

If < csq, the supromum of D2 is reached at a point v* which is either less than
cf+3!) 0 < cs; & v* < ¢4. Since, D2 is
concave, the supremum in V, is attained at v = ¢;; therefore, substituting v = ¢ in

(E.29), we get

¢; or greater than Z o [(E33)]. Ifesy = c_,(

CJJ’—S’”) (E.36)

O—CICQ
ea@)=1—(———) 3 ¢, <<
Hing(0) ( ) »  CfCg Cf(c;-i—sf

CfSg

If s, = cﬁ(%f—i'—:i), 0 <csy & v > E‘?-. Since, D2 is concave, the supremum in V; is
g g g

attained at v = Ei'; therefore, substituting v = % in (E.29), we get

— CfCy

,uﬁn@(a)=1—(0 = ) 5 e <l<c (Cf+_3f) (E.37)

Cy + Sq



Observe that

2(Cy+ s cf+ sy -
CiSy 2 Cgsp & cf(——cj+sj )Ze (—c 7o ) (E.38)
g T °p

Combining (E.36), (E.37), and (E.38), we get

0 —cyey

ppnc(0) =1 - ( ) i e <B<es (E.39)

cs

where ¢s is as in (E.7).
From (E.22), (E.27), (E.34) and (E.39), if ¢ —s5 >0, ¢y — 54 >0, ¢y + 55 < 1
and ¢, + s4 < 1, then

s13g [\/ﬁ— \/(cf —ss)(cg = Sg)J i (ep—sg)(cg—sy) <0<Lcs
Haealf) = ¢ Lt 15y : cs1 < 0 < ¢qey
FnG i ft— ctc_; ; ¢1s g 0 S ey
g s;sg[\/_ \/c;+bf) cg+s_,,.)J ;oes2 <0< (ef+sp)(cy+sq)

(E.40)
where cs, ¢s; and ¢s, are as in (E.7), (E.8) and (E.9), respectively.

Now, let’s consider the case when the triangles are not fully contained in [0, 1],
i.e., when the triangles may be clipped by the lines 6 = 0 and/or § = 1. As explained
earlier, the conditions ¢; — s; > 0 and ¢, — s, > 0 matter only for § < ¢sc, and the
conditions ¢ + sy < 1 and ¢, + s, < 1 matter only for § > cjc,.

Triangles clipped on the left

Consider ¢; < sy and ¢, < s,. Now, ¢y —sy = ¢, —s, = 0. We can write the

membership function of F M G for 0 < 0 < ¢ye, as follows :

v—Cy
Pina(0) = seutp [1 + ( )] [1 ( )] (E.41)
where the interval Vj; is found as follows Since v € F, and is to the left of 843
v € [c; — s; = 0,¢4]. Similarly, since £ € G and we are considering points to the left
of ¢;, we have % € [e; — s, = 0,¢,), i.e., v > 2 o Combining these two constraints,

we have

0
Vih = [a,cf] (E.42)
Observe that 6 > cjc, & Ea; < ¢y; therefore, V}; is a non-empty interval.
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Now D1” [see (E.19)] is positive, which implies that D1 is convex; therefore, the

supremum of D1 is reached at one of the end-points of V}y, i.e.,

pina(0) = Dl(E)Vﬂl(Cf)

Cg

= 14 (%) 0<i<e

where ¢s is as in (E.7).

Consider ¢; < 57 and ¢; > s,. Now, ¢f—s; =0and ¢, —8, =¢, —s

write the membership function of FNnGfor0<6< crey as follows :

eni0) = sup [14+ (=2 [1+ (A=)

vEV)2 Sg St

where the interval Vj; can be found as

Vi = 0,70 [, ——]

Cg Cg — 3y

Since 0 < % < ¢y, the expression for Vi, simplifies to

Vi = [ min {es,

Cqg — Sy

(E.43)

4- We can

(E.44)

(E.45)

(E.46)

Again D1 is convex. But, now D1’ < 0, which implies that D1 is monotonic de-

creasing for v € [0, 1]; therefore, the supremum is reached at v = %, ie.,

upna(0) = D1(—)

(E.47)

If we consider ¢; > s; and ¢; < sy, ¢f — sy = ¢y — 85 and ¢, — s, = 0. The

membership function of FrGfor 0 <@ <wepe,.is

upn®) = sup [1+ (=) L+ (L=L)]

veVys Sg Sf

(E.48)
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where the interval Vi3 can be found as follows : since v belongs to the left half of
f,v € [ef — sp,¢s] and since % belongs to the left half of g, g— € [0,¢), ie., v > %
Combining these two conditions, we get
Vis = [max{c;—s;,i},c_;] (E.49)
Cq
In this case D1” < 0, which implies that D1 is concave. Observe, however, that now

D1’ > 0, implying that D1 is monotonic increasing for v € [0,1]. Therefore, the

supremum is reached at v = ¢y, l.e.,

J—gye
tina(0) =1+ (-——c’fi) ; 050 < cqe (E.50)

CsSy
Combining (E.47) and (E.50), we see that if ¢; < sy or ¢; < sy, then

—CfGy

0
pina(d) =1+ ( ) i 050 <cse (E.51)

cs

From (E.43) and (E.51), we see that if ¢; < sy and/or ¢, < s,, the membership
function of F M G for 0 < ¢y, is

8 —cycy

bina(®) =1+ (_) ¢y 0£80<% e (E.52)

cS

Triangles Clipped on the Right
Let ¢y 4+ s; > 1 and ¢, + s4 > 1, so that ¢ +s7 = ¢, +5, = 1. The membership
function of FM G for creg < 0 <1 is as follows :

[
fina(0) = sup [1 - (; — Cg)} [1 - (v — Cf)] (E.53)
vEVyy Sy
where the interval V., is found as follows. Since v € F, and is to the right of ¢y,
v € [ef, ¢f + 57 = 1]. Similarly, since % € G and we are considering points to the
right of ¢,, we have % € [cg,¢F 5y =1], e, v € [0, %] Combining these two
constraints, we have

Via = [er, 1] 0 [o,cf} (E.54)

g

Observe that 0 > cjc, & ¢y < % and obviously 8 < 1; therefore, V,, is non-empty.
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From (E.31), we see that D2 is concave; therefore, equating D2’ to zero, we find

the point at which the supremum is achieved, as [see(E.32)]

cr + s
o= fo(SLE50) (E.55)
cg 1+ 34
Let’s see under what conditions v* satisfies the constraint v* € V;;. For v™ to belong
to V.1, it has to satisfy the following four conditions [see Eq. (E.54)] : v* > ¢y,
v*<1,v* >0 and v* < ci From (E.33), ¢y < v* < % & p* > csy, where cs; is as
9

in (E.9). To satisfy the remaining two conditions,

>0 & <9TY (E.56)
€yt Sy
<l & < ST (E.57)
cf+ 8¢
From (E.33), (E.56), and (E.57), we have
v EV & cs2<0<cs;3 (E.58)
where
cs3 = min{CJr e ST } (E.59)

¢+ 8y cr+ sy

For 0 < cs3, the expressions for g, (0) are similar to those in (E.40). If (¢f +s5) <
(c; + s4), we have cs3 = %ﬁ—}:ﬁ In this case, @ > cs3 & v* < 0; therefore, the
supremum of D2 is reached at v = 0, i.e.,

tina(0) = D2(0)
- -3k - (52 (B.60)

&f

If (¢g + s4) < (cf + sy), we have cs3 = E—J‘f{fﬁ- In this case, 8 > cs3 & v* > 1;

therefore, the supremum of D2 is reached at v =1, i.e.,

uin(0) = D2(1)

—9)|[1- (59)] (B61)

o

I
—
—
I
F
iS=1
w
[~
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Also observe that

crtsy 2 ctsy © {1_(9_65)}[1_(1_(:})]

Sg Sf

AV

- (520~ (52)

Sy
(E.62)

From (E.60), (E.61) and (E.62), we have that

pena(0) = max{[l—( _Cﬂ)][l (1"“—’!)]
- (5 )Hl"(g_cf)]} sy SO S L(EG)

Now, we consider the case where only one of the triangles is clipped by the line
6=1. Let ¢y +s;>1and ¢, + 5, < 1. Now, ¢y + sy =1 and ¢; + 55 = ¢5 + 5;

consequently, (¢; F57)(¢; + 5,) = ¢, + 5,- The membership function for F 1 G for
cpeg S0 < (¢g+sg) is

1ing(8) = sup [1- (—2)][1- (% ;Cf)] (E.64)

where the interval V,, is found as follows. Since v € I, and is to the right of ¢,

v € [¢s, ¢ +s; = 1]. Similarly, since % € G and we are considering points to the

right of c,, we have £ € [¢,, ¢; + 5], i.e., v € [c isg i ] Combining these two
constraints, we have P

Via =[ep, 1N — E.65

2= [eg, 1] [%m% (E.65)

Observe that 6 > cse; & ¢ < % and 0 < (¢, + 54) & +s < 1; therefore, V}, is
non-empty. The supremum of D2 is attained at v™ which is as in (E.55).

For v* to belong to V,,, it has to satisfy the following four conditions [see
Eq. (E.54)] : v™ > ¢, . From (E.33), ¢ <v* < ig &

v* > csq, where csy is as in (E.9). Also, 0 & (cy-!-sg] = (cf+sf)(cg+.sy) & vr>

i Eg_-lj;’
and
<l & o<t (E.66)
¢+ ¢
Hence,
v eV & esp<f< It (E.67)

cr+ sy
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For § < es3, ppna(0) is as in (E.40). If 6 > fﬁi— (observe that ¢, + s, < ¢ + sy
since we have assumed that ¢; + sy > 1 and ¢, + s, < 1), v* > 1. In this case, the

supremum within V., is achieved at v =1, 1.e.,

ting(0) = D2(1)

_ 0 =q (=g eyt ”
= [1-( N (Sf )] r7_|_3f<.9<1 (E.68)

If we interchange the order of F and G, i.e., if we assume that ¢; +s; < 1 and

¢y + 54 2> 1, we get

pnc(0) = D2A(0)
- (- (- (5] ¢ HE o @

Sy Cq + Sg

For ¢fe, <0 < g’%ﬁ-, the membership function is as in (1£.40).

Observe that (E.51) and (E.68), both consider the situation when only one of the
triangles is clipped by the line # = 1. Since, the result should be independent of the
order of F and G, the actual membership function in this case is the maximum of
(E.51) and (E.68); therefore, combining (E.68) and (E.69), we find that if ¢; 45, > 1

and/or ¢,+s, > 1, the membership function of FNG for ¢jc, < 0 < (7 F57)(¢y + 55)

l—ﬁ—cﬁ ;cpey <0 < esy
s,s [\/_ \/Cf+3f cy+59)J ; cs2 <0 <csg
AR
1ars = max{[1 - (521 - (52)],
- (=)= (50)]} 5 <0< @FNEFS)

(E.70)
where cs, cs; and ¢s, are as in (E.7), (E.8), and (E.9), respectively.

From (E.40), (E.52), and (E.70), we get the results stated in Theorem E.1. Ob-
serve that the result of the meet of two triangles under product ¢-norm does not
remain triangular. Figure E.1 (b) shows the meet of the two triangular fuzzy sets
shown in Fig. E.1 (a).
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From the length and complexity of the proof of Theorem E.1, it is apparent that
the easiest way to verify its correctness is to compare Theorem E.1 with numerically
computed results. In Section E.1.2, we provide the MATLAB programs used for the

verification of Theorem E.1.

E.1.2 M-Files! for Verification of Theorem E.1

% Function ‘‘trimeet.m’’ : Computes theoretical and numerical
results for the meet operation under product t-norm between two
triangular type-1 sets.

% Inputs : Centers (cl,c2) and spreads (s1,s2) of the two
triangular type-1 sets. The centers should be in [0,1] and the
spreads should be positive. ‘‘step’’ is an optional stepsize
parameter. A smaller value should be used for higher resolution.
If not specified, the default is 0.01.

% Outputs : ‘‘x’’ is the x-axis (in [0,1]); ‘‘ynum’’ is the
numerically calculates result of the meet operation; and ‘‘y_thm’’
is the result stated in Theorem E.1.

%, Uses functions ‘‘triangle.m’’ and ‘‘extend.m’’.

function[x,ynum,y_thm] = trimeet(cl,sl,c2,s2,step)

if nargin == 4,

step = 0.01 ;
end % if
x = [step : step : 1]’ ;
1x = length(x) ;

% Numerically computed result

yl = triangle(cl,si,step) ;
y2 = triangle(c2,s2,step) ;

tol = step/2 ;
y.num = extend(x,yl,y2,tol) ;

Y Theoretical result : Theorem E.1
cc = cl*c2 ;
csml = cl-s1 ;

1For use with MATLAB version 4.2c or higher
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cs.m2 c2-s2 ;
cs_pl = cl+sl ;
cs_p2 = c2+s2 ;
cs = max(cl*s2,c2%s1) ;
bcsmi = max(csmi,0) ;

bcsm2 = max(csm2,0) ;
bes.pl = min(cspi,1) ;
bcs_p2 = min(ecsp2,1) ;

left_end = bcs.ml*bcsm2 ;

[min1,in1] = min(abs(x - left_end)) ;
[min2,in2] = min(abs(x - cc)) ;

x left = [x(in1l) : step : x(in2)] ;
1x1 = length(xleft) ;

if (csmil > 0) & (csm2 > 0),
csl = min(c1"2*csm2/csml, c2"2*csml/csm2) ;
[minlx,inix] = min(abs(xleft - csl)) ;
x11 = xleft(1:inlx) ;
x 12 = x left(inix+1:1x1) ;
y.11 = 1/(s1*s2)*(sqrt(x11) - sqrt(csmi*csm2))."2 ;

y12 = 1 + ((x12 - cc)./cs) ;
y-left = [y11,y12] ;
else
yleft = 1 + ((xleft - cc)./cs) ;
end % if

right_end = bcs_pl*bcsp2 ;

[min3,in3] = min(abs(x - right_end)) ;
xright = [x(in2) : step : x(in3)] ;
1xr = length(xright) ;

cs2 = max(cl~2*cs p2/cs_pl, c2°2*cspl/csp2) ;

[min2x,in2x] = min(abs(x.right-cs2)) ;
xrl = xright(1:in2x) ;
¥yt = 1 = ((xxl = cc) fes) ;

if (espl < 1)&(csp2 < 1),

xr2 = xright(in2x+1:1xr) ;

yr2 = 1/(s1*s2)*(sqrt(xx2) - sqrt(cspl*csp2))."2 ;
else

cs3 = min(cs_pl/csp2 , csp2/cspl) ;

[min3x,in3x] = min(abs(xright-cs3)) ;
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xr21 = xright(in2x+1:in3x) ;
yr21 = 1/(s1*s2)*(sqrt(xr21) - sqrt(cs_pl*cs.p2))."2 ;
xx22 = xright(in3x+1:1x1) ;
yt221 = 1/(s1*s2) * ((cspl - xxr22)*(csp2 - 1)) ;
yt222 = 1/(s1*s2) * ((cspl - 1)*(csp2 - x1r22)) ;
y.r22 = max(yt221,yt222) ;
xr2 = [xr21 xr22] ;
yr2 = [yr21 yr22] ;

end % if

yright = [yr1l yr2] ;

I

if int > 1,

z1l = zeros(1,inl-1) ;
else

z1 =[] ;
end % if

1f 163 & 1%,

z2 = zeros(1,1x-in3) ;
else

z2 =[] ;
end % if

y_thm = [z1 y_left yright(2:1xr) z2]’ ;

return ;

% Function ‘‘triangle.m’’ : Computes the ordinates for a
symmetrical triangle.

% Inputs : Center(‘‘c’’) and spread (‘‘s’’) of the triangle;

and optional stepsize parameter : '"step". Smaller value for

‘‘step’’ gives higher resolution. The domain of the triangle

is always assumed to be [0,1]. The center ‘‘c’’ should always
be in [0,1] and spread ‘‘s’’ should be positive.

4

% Outputs : The ordinates ‘‘y’’ and abscissae ‘‘x’’ of the
triangle. If c+s>1 and/or c-s<0, the triangle appears clipped,
i.e., only the part of the triangle contained in [0,1] is produced.

function [y,x] = triangle(c,s,step)
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if nargin == 2,
step = 0.01 ;
end % if

x = [step : step : 1]’ ;
1nx = length(x) ;

lx = c - s ;

IX = c + 8 ;

minx = min(x) ;

maxx = max(x) ;

mx1 = x(max(1,round(c/step))) ;

if 1x < minx ,
if rx > maxx,

x1 = [minx : step : mxi]’ ;
x2 = [mxi+step : step : maxx]’ ;
yl = max(1 + (x1-¢)/s,0) ;
y2 = max(1 - (x2-c¢)/s,0) ;
y = [y1’ y2°]1°
else
inrxl = (min(lnx,round(rx/step))) ;
if inrxl == 0,
inrxl = 1;
end
rxl = x(inrxl) ;
x1 = [minx : step : mx1]’ ;
x2 = [mxl+step : step : rxi]’ ;
x3 = [rxi+step : step : maxx]’ ;
y1 = max(1 + (x1-¢)/s,0) ;
y2 = max(1 - (x2-c)/s,0) ;
y3 = zeros(size(x3)) ;

y = [yt y2@ y3'1* ;
end } if rx
else
if rx > maxx,
1x1 = x(max(1,round(1x/step))) ;

x1 = [minx : step : 1xl-step]’ ;
x2 = [1x1 : step : mx1]’ ;

x3 = [mxi+step : step : maxx]’ ;
yl = zeros(size(x1)) ;

y2 = max(1 + (x2-¢)/s,0) ;

y3 = max(1 - (x3-c)/s,0) ;

y = [Yil y2’ y3mj; ;



else
1x1 = x(max(1,round(1x/step))) ;
inrxl = (min(lnx,round(rx/step))) ;
if inrxl == 0,

inrxl = 1;

end
rxl = x(inrx1) ;
x1 = [minx : step : 1lxl-step]’ ;
x2 = [1x1 : step : mx1]’ ;
x3 = [mxl+step : step : rxi]’ ;
x4 = [rxi+step : step : maxx]’ ;
yl = zeros(size(x1)) ;
y2 = max(1 + (x2-¢)/s,0) ;
y3 = max(1 - (x3-c)/s,0) ;
y4 = zeros(size(x4)) ;
y P [yi: sz YSJ y41]1 ;

end % if rx

end % if 1x

return ;

% Function ‘‘extend.m’’ : Computes the meet under product t-norm
between two type-1 sets. Both the type-1 sets are required to
have domain [0,1].

% Inputs : All column vectors - domain of the type-1 sets ("x");
and their membership functions ("y1" and "y2"). Default value for
the optional scalar argument ‘‘tol’’ is 0.005. While applying the
Extension Principle, if the difference between to domain points is
less than ‘‘tol’’, they are assumed to be equal.

function [y] = extend(x,y1,y2,tol)

if nargin == 3,
tol = 0.005 ;
end % if

1x = length(x) ;
y = zeros(size(x)) ;
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for i1 =1 : 1x,

if 3t » %,

clear xn ynl yn2
end % if
k = x(il1) ;
xn = x(i1 : 1x) ;
ynl = y1(i1 : 1x) ;

yn2 = y2(i1 : 1x) ;
xmat = xn*xn’ ;
y-mat = ynl*yn2’ ;
[in1, in2] = find( abs(xmat-k) <= tol) ;
y(i1) = max(diag(ymat(ini,in2))) ;
end % for

return ;

E.1.3 Triangular Meet Approximation

Although we found an expression for the result of the actual meel operation for two
triangular membership functions, it is too complicated, and moreover, it is difficult
to extend it to the meet of more than two triangular membership functions. Hence,
we seek a triangular approximation, because, if we can approximate the result of the
meet of two symmetrical triangles with another symmetrical triangle, we will be able
to generalize the results of the meet of two symmetrical triangles to the meet of more
than two triangles and this will a save a lot of computations while implementing a
triangular type-2 fuzzy logic system. In order to find such an approximation, we

first find upper and lower bounds on the result of the actual meet operation.

E.1.3.1 Lower Bound

To find a lower bound on the meet between two triangular fuzzy sets, we proceed

exactly in the same manner as we did in the Gaussian case [see Appendix C.8.3 -
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Eq.(C.146) onwards]. Consider the two triangular type-1 sets considered in Theo-

rem E.1. We rewrite their membership functions here for convenience,

1 —|=£L| ; v€Elef—sy,¢5+ 5]
f(v) = g Cat URE (E.71)
0 : otherwise
1—|==2 ; welc,—s,,¢,+3
g(w) = K L R (E.72)
0 ! otherwise

where z = max{z,0}, T = min{z, 1}.

In order to find the lower bound, we first assume that F is a singleton (let’s call
it ) with i (c;) =1 and pp (v) = 0 for v # ¢, and that G has the membership
function g described in (E.72). The resulting membership function is a scaled version

of g, 1.e.,

ti nc(0) = pg/c)

£ _.
— - I:ss,.g ; %E[M,Cg—f—sg]
0 : otherwise
1— |2l o g€ [efle, — s,),cr(c, F 3
- C!Sg [ f( g g) f( g Q)] (E,?S)
0 : otherwise

Now, we assume that G (let’s call it G,) is a singleton at ¢, and F has the
membership function f described in (E.71). The resulting membership function is a

scaled version of f, i.e.,

teng,(0) = pp(0/cy)
e

&
Js,—l i € lep—sper Ty

— 1 -
0 : otherwise

fas E—CEcg

Cgsf

_ ;0 € [coler — 1), cq(er + 7))

(E.74)

0 : otherwise
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Observe that pp < pg; therefore pp ng < pipng. Similarly, ppng, < ppng. This
shows that each of (E.73) and (E.74) is a lower bound on the result of the meet.
We select the maximum of them as the actual lower bound. If we assume that

cr(cy +54) < ¢y(cy + s5), the lower bound is

AT T | =22 | 5 6 € [es', ep(cy F55)] o
lu’FnG( ) = O=cic ("‘5)
1 - CgSf i 9 € [Cf(Cg + 59)?C§(cf + Sf)]
where cs = max{cys,, ¢gs5} [recall Eq. (E.7)] and
cs' = min{es(cy — s4), colcy — s5)} (E.76)
If we assume that ¢,(c; + s7) < cs(c, + s4), then the lower bound is
fi—cyc ————
L _(p) = 1_|_5§_2 ;0 € les’,cqlcr + 55)] E.77
Hing(0) = g (E.77)
]~ crog | 0 € [co(cr +51),¢r(cy + 3g)]

where ¢s is as in (E.7) and cs’ is given in (E.76). Observe, from (E.75) and

(E.77), that both the expressions for the lower bound are the same in the inter-

val [es',min{cs(c, + s¢), ¢y(c; + 57)}]. They differ outside this interval; therefore,

to simplify (E.75) and (E.77) a little bit, we ignore the part of the curve lying outside

[es’, min{cs(c, + 5,) s ¢5(cy + 57)}]. This will let us generalize the bound to the case
of more than two sets easily; hence, a lower bound on the meet of I and G is given

as

(E.78)

) L —|=22] 5 0 € [es’, min{es (7 F55), (6 F 57)}]
Hing(0) =

0 : otherwise

where c¢s’ is as in (E.76).
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Generalization to the case of more than two triangular sets, proceeds in a man-
ner exactly similar to the generalization of the lower bound on the meet between
Gaussian type-1 sets. (See Example C.2). We state the result here.

If we have n triangular fuzzy sets f’,,...,f’ﬂ having centers ¢y, ca,...,c, and

spreads sy, S2,...,Sn, then a lower bound on the result of their meet is given by

I _ |9'—nl.1= G
Sy

;0 € [l

0 ; otherwise

f‘;:-::f.‘l(a) = (Efg)

where

lo=min{cr=s; [] ci, . G=5; [[ &i»--»en—sn [[ &f58=12",n

ii#1 ii# ] fiin

and

I‘ﬂ=1Tlil'l{Cl+51 ]:[ C{,"‘,Cj+3j 1__[ cia"'acn+3n ]___[ Ci};i=1:2="'sn
§i#l HiF] iji#n
(E.81)

E.1.3.2 Upper Bound

< oye;

First we consider the case where ¢; > sy and ¢; > s,. We show that, in this case,
the straight line, [;(0) [see Fig. E.1 (c)], joining the point (csc,,1) and the point
[(¢; — s5)(cy — 84),0] forms an upper bound on the result of the meet. The equation

of this line is

f—cyreq . _ _
tl(g) — l + CICU_(C!—SI](cg—sg} ! 9 € [(Cf Sf)(Cg SQ)! C_'ng] (E82)
0 : otherwise
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From (E.3), we have to show that

L(0) > -Sf;;[v’é —les=sp)es=50)]5 (er—sp)ey—s,) SO<esi  (E83)

Let us assume that for (¢; — sy5)(¢c; —s,) <0 < sy,

1(0) < —[VB = fles = s7)(es = s9)]” (E.84)

{9y
Equation (E.84) implies that for (¢; — sf)(c, — s4) < 0 < csy,

8 — cscq
1+ <
creg — (e — s5)(eg — s4)

VB = fler — s — 5)]'

SfSg
0 — (cy —sy)(cg — 35)

= <
creg = (er = s1)(¢g = 34)
;:Ty[‘/‘_? = /les = sp)(es — %)]2 (E.85)
. [VE+les = snlea = 50)] _
creg — (cf — 55)(cg — $4)
_1‘[‘/5‘ Vler = sp)(e; — 55) (E.86)

Sf8yg

While going from (E.85) to (E.86), we have made use of the fact that 6 > (c; —

ss)(ey — 84), and

0—(cs—s1)(cs=34) = [VO+/(es = 51) ey — 85)| [VO=y/(es — 57)(es = 5,)] - (E8T)

Equation (E.86) implies that

1 1
\ﬁcf —s7)(eg = $4) [Cng — (e = s5)(cg = 3y) * Sf3g

‘/5[1 N 1 )]

SfSg CfCg — (cf —sg)(cg — 34

| <
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CySg + €4Sy
= /(er —s5)(eg = 5y)
\/ T " ereg = (er —51)(eg = 34))5184
N CfSg + CgSp — 2848,
[ereg — (er = sp)(cg — sg)]5754
= \/(Cf — s7)(cg — 5q)(crsg + ¢g55) < Vl(cysy + cpsp — 254s,)  (E.88)

Now, we use the fact that 6 < cs;. Let us assume that cs; = ¢} (f{f:—:f), which

implies that c;s, > ¢,s; [Eq. (E.26)]. Continuing with (E.88), this implies

£ —8,
Vier =sp)eo = sy)(ersg +epsp) < ey [(2—
cr— Sy

= (cf—sp)(crsg+cgsy) < crlersy+cgsp —2555g)

)(CJ'SQ + ¢Sy — 255,)

= —sylcpsg+egsy) < —2cysps,
= ep8s+¢C;8y > 20585

= Cg8f > CfS8y (E.89)

which contradicts our assumption that css, > ¢,s5 and consequently contradicts
(E.84); implying that (E.83) is true. If we assume that cs; = ¢ (%’g'_"—:gi), we get a

similar contradiction.

For ¢s; < 0 < cjc,, we have to show that [see (E.3)]

0 — cseqy

L(9) =21+ (E.90)
cs
i.e., (after some algebra) we have to show that
cpeg — (cf = 87)(cg — 85) 2 €8 (E.91)

where cs is given in (E.7). Observe that

creg — (cp —sp)(cg —8g) = cpsg+cysp— 818y

= crsgtspleg—sg) > ¢y



= cgsptsgley —s5) > sy (E.92)

which shows that (E.91) is true. Observe that we have made use of the fact that
¢ > sy and ¢; > s,. From (E.83) and (E.91), we see that [;() is, indeed, an upper
bound on psna(0) when ¢f > sy and ¢ > s,.

Next, we consider the case ¢y < sy and/or ¢; < s,. From (E.4), we see that we
again have to show (E.91) for 0 < 0 < ¢sc,. Observe, however, that in this case, the
inequalitites shown in (E.92) may not hold true; therefore, for this case {;(#) may
not remain an upper bound. For this reason, we choose the following straight line

as an upper bound for 8 < cycy,

f—crcqg i _
1,(0) = 1+ C—*'—!sg_l_cg” v Oe [max{ﬁ, creg — (epsy + cgs;)},cfcg] (E.93)
0 : otherwise

Since cs, + ;85 > cyey — (cf — sp)(cg — 84), 12(0) > 11(0); therefore, I5(0) forms an
upper bound when ¢; > sy and ¢, > s,. Also, since ¢ysy + ¢gs; > max{cys,y, ¢85},

I,(0) forms an upper bound when ¢; < s; and/or ¢, < s4; therefore,

Hgné(ﬂ) =10(0) ; (cf— sp)(cg — 85) <0 < ¢y (E.94)

where [5(0) is as in (E.93).
8 Zeqe,:
We show that the straight line joining the points (csc,, 1) and [(cf + s5)(¢y + 34), 0]

[see Fig. E.1 (c)] forms an upper bound on pzna(0), i.e., we want to show that the

line
B—C!Cq :
l5(0) = L~ Greaaae 0 €leres (erF351)(es 55)) (E.95)
0 3 otherwise

forms an upper bound for 8 > cye,.
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Consider the case when ¢; +s; < 1 and ¢; + s, < 1. For ¢j¢c, < 0 < csq, we have

to show that [see (E.5)]

0 —
Llo)ys 1 - L5000 (E.96)
cs
Observe that
(cf+sp)(cg+sg) —creqg = cpsg+ oSy + 555,
> max{cssy, o851 = ¢S (E.97)

which shows that (E.96), is true. For e¢s; <0 < (¢f + s5)(¢y + 84), we have to show
that [see (E.5)]

0 = CJng > I
(cp 4 s7)(eqg+5g) —creg — Sp8g

Vi- e +s)(e+s)]  (E®)

Let us assume that

0 — cycy 1 ¢ 2
1- ' < —[VO = /(cs + sp)(cy +5,)| (E.99)
(s +57)(cg +59) — 16y SfSg - \/( Pt TRl

—0 + (5 + sy)(cg + s4) 1 -
< —[VB—fles + 57 + 5,)] (E.100
(CJ' +3f)(cg+3‘q)—c_'rc§ SfSg L "/( /] fI\ty g)_ )

[ler +ses+5)+ V0] 1

(cr 4 s5)(eg +84) — €564 S1Sg

:\/(Cf W SJ’)(CQ y Sg) - \/5 (E.lﬂl)

While going from (E.100) to (E.101), we have made use of the facts that 6 < (¢ +
s7)(¢s + ), and

(cs + s7)(ey + 85) =0 = [\/{e + 57)(eg + ) + VO] [\fles + 57)(cs +55) = VO]
(E.102)

Equation (E.101) implies that

\/5[1 1

+ <
sgsg  (cp+sp)eg + Sg) — cfcy]
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Vier e +5,)[=— - :
spsg  (er+s5)(cy +85) —creq

= ‘/5("}‘99 + cysf +2s58) < \/(Cf + s7)(¢g + 8g)(crsg + cgsy) (E.103)

Now, we use the fact that @ > cs;. Let us assume that cs, = cf(ﬁfﬁf) which

implies that ¢ys, > ¢,s7 [Eq. (E.38)]. Therefore, continuing with (E.103), we have

g ('Ej,i_‘:) (crsg+cgsy+2s58y) < \/(Cf +57)(cg +55)(crsg + ¢g5¢)
= clersgtogsy+2sp8y) < (cp+55)(ersy + ¢osy)
=  2cpsp8, < sp(ersy+cySy)
= 2cpsy < cfs;+ ¢Sy
=5 GfSy & S (E.104)

which contradicts our assumption that cys, > ¢,;s; and consequently contradicts

cf +s5 f
cgtsg

(E.99), implying that (E.98) is true. If we assume that cs; = cz( ), we get

g
a similar contradiction. From (E.96) and (E.98), we see that {3(f) forms an upper
bound on pgna(0) for epeq < 0 < (ep+s7)(cy+5,), when ¢y +s; < 1 and ¢;+s, < 1.

Next, we consider the case when ¢; + s; > 1 and/or ¢, + s, > 1. From (E.6),
we see that for c;c, < 0 < cs3, we have to show (E.96) and (E.98) again, and this

can be done in exactly the same manner as we did above for the case ¢y +s5 < 1

and ¢, + s, < 1. For 0 > cs3, we take an indirect approach to prove that {3(0) is an

upper bound. We show that for cs3 < 0 < (¢ + s5)(c; + 54)5

L Vi- i+ +s)] 2 max{[1- (22)][1- (=),

S58g 84 Sy

- (2] (5] o

81




Observe that the RHS of (E.105) can be rewritten as

max{ 1 - (S [1- (5. (- (52 - (5]}

Sf ,Sf

= max{ —{(e, +55) ~ Oll(es + 57 ~ 1],

fog

ey + ) = O(eq + 55) — 11} (E.106)

SfSg

Let us assume that (¢; + sy) < (¢g + 84), so that from (E.62), we have

max {ﬁ[(cg + s4) — O)[(es +s7) = 1], s_js_g-[(cf +s7) = 0][(¢cg +s4) — 1]}
1

= —J[(cs +55) = 0)[(cy + 54) — 1] (E.107)

SfS8g

Now assume that

Sfl—sg VO —[(cr + s7) (e, + Sg)r <

1

[(es +s7) = Ol(cy +54) = 1] (E.108)

fog

0+ (cs + 51)(cy + 55) = 2/0(cs + 57)(cg + 55) <

4

(cr +s7)(cg + sg) — (s +55) — O(cg +s4) +0

—2/0(cs + 57)(cy +54) < —(cs +57) = 0(c, + 5,)
21/0(cs + s7)(cy + ) > (g +57) + 0(cy + s5)

40(cs + s7)(cg + 85) > (e +57) +0(cg + 5,)]”

46(cy + sy)(cg +89) > (e +57)" +0%(cg + 59)* +20(cs + 57)(cq + 54)
0> (cs +57)° + 6%(cy + 55)* — 20(cy + 57)(cg + 59)

0> [(ef +357) — 0(cy + 8,))° (E.109)

¢ 44

which is, of course, false and therefore, shows that (E.108) does not hold; implying

that (E.105) is true. Observe that our assumption (¢; + sy) < (¢; + s5) does not
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contribute to the result. Even if we assume otherwise, we arrive at the same conclu-
sion. Equation (E.105) along with (E.98) proves that /3(0) is also an upper bound
on pna(0), when ¢f + sy > 1 and/or ¢; + s, > 1.

From (E.83) , (E.91) , (E.96), (E.98) and (E.105), we see that

ina(0) = 13(0) 5 crey <0 < (cpFs7)(ey F59) (E.110)

where [3(0) is as in (E.95).

Combining (E.94) and (E.110), we get the upper bound for the meet as

E f—cyc
1+ c!sg+c;s! ; 0€ [(Cf —ss)(cg — 8y), Cfcg]
U = b—cyecqy ; n
’uf"né(o) - 1= (c!+s;}{cgfl-sg)—cfcg ) S [Cfcﬂ’ (Cf + S!)(Cg + 59)] (Elll)

0 4 otherwise

For 0 < c;c,, generalization of (E.111) to the case of more than two triangular
type-1 sets proceeds exactly in the same manner as in the case of the first approxima-
tion for meet between Gaussian type-1 sets (see Section 2.3.1). For § > ¢j¢,, we find
the upper bound on the meet of more than two triangular type-1 sets using the same
principle as in the case of two triangular sets : the straight line joining the unity
membership point ([Ti, ¢i, 1) and the rightmost point of the domain [[Ti=; (¢i+s:), 0]
forms an upper bound on the result of the meet.

If we have n triangular fuzzy sets Fl, seica ,f‘n having centers ¢y, ¢z,...,¢, and
spreads sy, 82,...,8y,, then an upper bound on the result of their meet is given by

4 [H-_[:ali] 3 0 e []___[?=i(c1: - Si)s H?:l Ci]

8ul

W 5 (0) =4 1-[El=] o e [T o, T (@ Fs0) (E.112)

Sy2

0 : otherwise
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where

Sulr = [31 H ¢ + 82 H G o+ oSy H i M H c,-];
i5i#1 i3i#£2 ] iji#n
1=1,2,--+,n (E.113)

n

Say = H(c,-+s;)—f_[c1- (E.114)

i=1
E.1.3.3 Meet Approximation

We want an approximation of the meet between triangular fuzzy sets that is a
symmetrical triangle lying between the lower and upper bounds derived in Sec-
tions E.1.3.1 and E.1.3.2, respectively.

Consider the case of two triangles. Observe from (E.78) and (E.111), that for
the approximation to lie between the two bounds for # < cyc,, we need the spread
of the approximating triangle to lie between cs = max{cssy,cys¢} and cys, + ¢4y
One simple choice for the spread that satisfies this condition is \/W It is
easy to see that this choice lies between the bounds for # > cyc, also; therefore, we

choose the following approximation for the meet of F and G.

f—c
1-— |-—159— ; O€e [(c_fcg - \/c}sg + c2s2), (creg +[chs2 + cgs?f)]

A c2s24cls
HEnG = e R &
0 i otherwise

(E.115)

Generalization of this result can be done exactly in the same manner as the

generalization of the Gaussian approximation (see Section 2.3.2). We state the
result here.

If we have n triangular fuzzy sets F‘l,...,ﬁ‘n having centers ¢;,¢z,...,¢, and

spreads sy, Sa,...,8s, then the triangular approximation to their meet is given by

A 1_|9—]l§:‘=,c« s 0€ (MM, ¢ — 3), (TT=; ¢ + 3)]
Hon f (0) =

= 0 : otherwise

(E.116)
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where

L
5= [sf [Hed++s Il d+-+s2 11 cf]’ 1 i=1,2,:+,n (E.117)
111#1 1iE] fi#n
Observe that this approximation is very much similar to the Gaussian approxi-

mation for the meet between Gaussians [see (2.59)].

E.1.4 Bounds on the Approximation Error

The procedure for finding bounds on the approximation error for the meet between
triangular fuzzy sets is also exactly the same as in the Gaussian case (see Ap-
pendix C.8.4). Though we were able to find an exact expression for the actual meet
curve for the case of two triangles, we do not have expressions for the case of more
than two triangles; therefore, we have to rely on the upper and lower bounds to find
bounds on the approximation error. From the discussion in Section E.1.3, it is clear
that both our approximation as well as the actual result of the meet lie between
the derived upper and lower bounds; therefore, the difference between the approx-
imation and the error is always less than the larger of the difference between the
approximation and the upper bound, and the difference between the approximation
and the lower bound, 1.e.,

e, 7,(0) = e, 7,(0)] < max{[,uﬁ,. ¢ (0) = i 7.(0)]

=1 =l i=1%1

[ﬁ”.‘;ll—“i(g) - “gz;lﬁi(ﬁ)]} ; 0 €[0,1] (E.118)

where fin l;«_(ﬁ), ,u:_!l,, 7 (0) and pl. & (0) are given in (E.116), (E.112) and (E.79),
=171 =10 i=1"1
respectively.
Figure E.2 shows some examples of the triangular meet approximation and the

upper and lower bounds. Observe that the actual result is not symmetrical and the
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approximation seems to be closer to the actual result on the left-hand side of the

unity membership point.

E.2 Algebraic Sum of Triangular Type-1 Fuzzy

Numbers

E.2.1 Algebraic Sum of Triangular Fuzzy Numbers under

Minimum f-norm

Theorem E.2 Given n type-1 triangular fuzzy numbers Fy,...,F,, with centers
C1,Cy ..., Cn and spreads sy, Sy, . .., Sn, their affine combination Y7, a; F;+ 3, where
a; (i=1,...,n) and B are crisp constants, is also a triangular fuzzy number with

center Y0, azc; + B, and spread YI-, |asi|.

Proof : We prove the theorem in two parts : (a) we prove that a,—f‘l- + B is a
triangular fuzzy number with center a;c; + 8 and spread |e;s;|; and (b) we prove
that 37, f‘i is a triangular fuzzy number with center }_"_, ¢; and spread 37, o;.

(a) Consider

. =/vew (1= =) 1w (E.119)

Si
where V; = [¢; — si, ¢; + si]. Multiplying F; by a constant a;(= 1/;) yields [using

the Extension Principle (Chapter 2)]

by = [ (=52 =1/t
- LEQ:’V, (l - [U ;Ci])/(a"v) (E.120)
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where o;V; = [ai(e; — si), @i(ci + si)]. Now, adding a crisp constant 8(= 1/8) to

a,-l?‘i, we get

afi+p = [ [0-]=E)*1]/ 0w +p)
- AEQ.‘V{+,6 (1 B |v ;-Ci D/(O';‘U +5) (E.121)

where o;Vi + 3 = [ai(c; — si) + B, i(ei + s:) + B]. Let oo + 8 = o'; this gives
v = (v' — 3)/a;, which when substituted into (E.121), leads to

s,
N

which shows that a;ﬁ“f + B is a triangular fuzzy number with center a;c; + 8 and

Y=BY . W
aiﬁi +h /v’Ec:x.'V.'+ﬁ [1 B }( . ) -

Si

spread |a;s;|. Note that this result does not depend on the kind of ¢-norm used,
since a; and @ are crisp numbers.
(b) Suppose that we have two triangular type-1 fuzzy numbers I and G, character-

ized by membership functions f and g, such that

1 — =2 s velep—sp,er+8
0 : otherwise
and
1— =2 ; weeyg—sgc+s
g(w) = %9 (e = 89265+ 5] (E.124)
0 : otherwise
The algebraic sum of I and G under minimum ¢-norm is given as
f«*+c‘;=f ] [f(v) A g(w)]/(v + w) (E.125)
vel JweG
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If 0 € F + G, the membership grade of 0 can be expressed as

pipa(0) = P [f(v) A g(6 —v)] (E.126)
vel

Observe, from (E.123) and (E.124), that f(v) is a triangle with center ¢; and spread
st, and g(0 — v) is a triangle with center (8 — ¢,) and spread s,. It is easy to see
that the supremum of the minimum of these two triangles is reached at their point
of intersection between their means. To find the point of intersection, we equate
f(v) and g(# — v). Observe that, since we want to find the point of intersection
lying between the means, if ¢c; > (6 —¢,) [i.e., if § < (¢; + ¢,)], we have to use the
equation for v < ¢ for f(v) and the equation for v > (0 —¢,) for g(6 —v). Similarly,
if ¢; < (0 —¢y) [ie., if 0 > (¢s + ¢;)], we have to use the equation for v > ¢; for
f(v) and the equation for v < (0 — ¢;) for g(6 —v). If ¢; = (0 —¢,), 0 = c; + ¢, and
pigc(0) = 1.

0 < ¢+ ¢, : Equating f(v) and g(0 — v), if v* is the point of intersection, we have

1+U“—-c; _ 1+(9—cg)—v*
Sf Sg
= (v —¢s)sy = [(0—cg) —v7]sy
- 5% &= (G - CQ)SJ' + CySg (EIQT)
Sf+ 8y

Using (E.127) in (E.126), we have

0 —(cy +¢)

 O<ec : 15,128
Py + S_g ’ < (‘f + (’J ( )

pipy(0) = f(0) =g(0 —v7) =1+

For 0 > ¢; + ¢,, equating f(v) and g(0 — v), we have

v*—cf_l_(ﬂ—cy)—v‘

Sf Sg

1= (E.129)



which gives us the same v* as in (E.127). From (E.126), we get

0 —(cr+¢)

pipa(0) = f(v7) =g(0 —v") =1~ s +s,

. 0>c/+c,  (E.130)

Observe also, from (E.123) and (E.124), that (¢; — sf) + (¢; — s4) < 0 < (cf +
sf) + (¢q + s,); therefore, from (E.128) and (E.130), we get

cf+cf,
]' + | sp+8g

i (er—sp)+(cg—8g) SO < (ep+57)+ (¢ +54)

#F‘+C:('9) = ;
0 : otherwise

(E.131)

Generalizing to the sum of n triangular type-1 fuzzy numbers, we get that if

we have n triangular type-1 fuzzy numbers, IE‘I, ...,F_ with centers ¢y,...,c, and

spreads si,...,S,, thier algebraic sum is given as

pse g, (0) = { -

Combining parts (a) and (b), we get the result in Theorem E.2. O

) G L= [Zt 1(.‘, z:;l 5§, E?:l ¢ + Z?:l Si]

: otherwise

(E.132)

E.2.2 Algebraic Sum of Triangular Fuzzy Numbers under

Product t-norm
Under the product ¢-norm, the result of the algebraic sum of two type-1 triangular

numbers is not a triangle. We first give the exact result and then approximate it

with a symmetrical triangle.

Theorem E.3 Suppose that we have two triangular type-1 fuzzy numbers F and

G, characterized by membership functions f and g, where f and g are as given in
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(E.123) and (E.12{). The algebraic sum of F and G under product t-norm is given

as
f 2
43;39 [9 — (e —sp) + (¢ — -‘39)]] i (e —sp)+(cg—3y) L0 <L esy
345(0) R ; esi <0< crte
F+G - —(cs+ec
1= :la:({{s::—,sz]i ) Cy + Cqg < 0 < CS5
2
\ 43;39 [9 = [(csr +s7) +(cg + Sg)]] ; css <0< (cp+sg)+(cg+35g)
(E.133)
where
ess = min{(cs+s7)+ (e —55), (cr—s)+(cots)}  (E134)

ess = max{(cs +ss)+(cg —8g), (e —s7) + (5 + 5) } (E.135)

Proof : The algebraic sum of F and G under product ¢-norm is given as

PeG= [ [ 0w+ w) (E.136)

Equation (E.11) can be interpreted as follows. Each element v of set F adds to
every element w of set G, and, at the same time, the membership grade of v in F
multiplies the membership grade of w in G. So, given a particular element v; of F,
what we get as a result of these multiplications is a shifted and scaled version of
the membership function of G [shifted along the independent axis by vy and scaled
along the dependent axis by f(vq)]. This process is repeated for every element of
I and finally, the meet of ' and G is given by the envelope of all the above scaled
triangles.

Figure E.3 shows this interpretation pictorially. Observe that if we interchange
I and G, the above interpretaion still holds.

One obvious thing that can be observed from (E.136) is that only one point in
the domain of I + G will have a membership grade equal to unity, and this point

is equal to ¢; + ¢,. Observe, from Fig. E.1 (b), that to the right of the unity
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membership point ¢; + ¢, pp,q is a curve that touches the right side of each scaled
triangle. Similarly, to the left of ¢; + ¢5, g, g touches the left side of each scaled
triangle. From this, we infer that to the left of ¢ +¢,, the left half of G (i.e., v < ¢;)
contributes to g, g, and, to the right of ¢; + ¢,, the right half of G (e, v > ¢)
contributes to g, . Also, from (E.1) and (E.2), it is clear that the domain of F+G
is [(cf — s7) + (cg — 89), (5 +57) + (5 + )]

We can write the membership function of F + G as follows : for (¢; — s;) + (¢, —

sg) S0 < cs+cy,

(0 —v)—c¢, v —cy
e, a(0) =sup |1+ 14 E.137
rrsa(0) = sup | I —— (E.137)
where the interval V} is found as follows. Since v € F and here, we are considering
points to the left of ¢; [see (E.123) and the discussion in the preceding paragraph].
This gives us v € [¢; — s7,¢/]. Similarly, since (§ — v) € G and we are considering
points to the left of ¢, we have (0 — v) € [¢; — 54, ¢, 1., v € [0 — ¢4, 0 — (¢, — 5,)].

Combining these two constraints, we have
Vi= ey —spe] N[0 =g, 0 — (g — 55)] (E.138)

Observe that (¢ —sy) +(cg — 85) L0 =0 —(cg—5,) > ¢y —sypand 0 < cp+¢y =
0 — ¢, < cy; therefore, V; is a non-empty interval.

Similarly, for ¢; + ¢, <0 < (c5 +55) + (cg + 54),

a0 = swp [14 (=) 0e ()] @am)

Sg Sf

where the interval V, is found as follows. Since v € F and here, we are considering
points to the right of ¢; [see (E.123) and the discussion in the preceding paragraph).

This gives us v € [cy, ¢ + s7]. Similarly, since (§ — v) € G and we are considering



points to the right of ¢,, we have (0 —v) € [¢,, ¢, + 5], i.e., v € [0 —(c; + 84),0 — ¢,].

Combining these two constraints, we have

Vi = [epyes+ s 00— (5 + 55),0 — <] (E-140)

It is easy to see that V; is non-empty for ¢y + ¢, < 0 < (c5 + s7) + (€5 + 54)-
Combining (E.137) and (E.139), we have

r Sup,ey, [l + (@—_—:;uﬂ-)] [I + (%:L)} i (ep—s5)+ (g —84) £
(0) = | 0<ci+c
Hi4a(0) =
o supev, [1 = (5222 [1 - (52)] e+ <
0 < (cr+s5)+(cg+ )

(E.141)
where V] and V, are as in (E.138) and (E.140), respectively.

For (¢; —ss) +(c; —s5) < 0 < cf+ ¢y, the objective function to be maximized is

510 = [+ (L) (5

Sf
Cg (0 —v) c v
- [0~ 2+ L=y 2
Cy 0 —v
yify - B E Pl (E.142)
Sg7 Sf SfSg

The first and second derivatives of S1 are

; ey 1 oy 1 (0—2v)
_ 11 _@yl E.143
SL(y) (1 Sf)sg+ (1 sg)s_,r_l_ SfSg ( )
-2
SfSq
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Since S1” < 0, S1 is concave. To find its supremum, we equate S1’ to zero. If the

supremum is achieved at v = v*, we have

1 1 0 — 2v*
R N L
Sf’ Sg Sg” Sf SfSg
> (57— e+ {5y ~5) +8— 2" =0
0+ (cy—35p) — (6 —3;)
2

= v = (E.145)

Let us see if v* satisifes the constraint v* € Vj. For v* to belong to V, it has
to satisfy four conditions [see (E.138)] : v* > ¢; — 54, v* < ¢f, v* > 0 — ¢, and
v* < 0 —(c;— 8y). Since 8 2 (cf — 1) + (cg — 8g), (¢ —sf) S v* < 0 —(cy — 84).

To satisfy the other two conditions,

v <cp & 0<(cptsp)+ (e —sy)
v >0—c, & 0<(cs—sp)+(cg+sy)

=2v" €V, & 0 <min{(cs+ sf) + (cg — sy), (cs — 5¢) + (cg + 55) }(E.146)

Substituting (E.145) into (E.142), we get

npia(0) = 4313 (0= [(cr—sp)+(es—50)l] 5 (er—s7)+(cy—s,) SO esy
e (E.147)
where
csy = min{(cs +s7) + (¢g — 89), (¢ — s7) + (¢g + 59) } (E.148)

If § > csy, the supremum of S1 is reached at a point greater than ¢; or less than
(0 — ¢,) [(E.146)]. If csq = (cy + s5) + (¢g — 54), then > cs4 & v™ > ¢;. Since 51
is concave, the supremum in V] is attained at v = ¢y; therefore, substituting v = ¢

in (E.142), we get

s
pipa(0) =1+ —(?—W o (eptsp)+(cg—sg) <0< cr+c, (E.149)
g
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If csq = (c; — s57) + (¢ + s4), then 0 > esy & v* < (0 — ¢,) [see (E.146)]. Since S1
is concave, the supremum in V} is attained at v = (# — ¢;); therefore, substituting

v=(0—c,) in (E.142), we get

0 — (c; +
pipa(0) =1+ —(csff %) 0 (e —sp)+(cgt+sg)<0<cs+¢, (E.150)
Note that
sp 28 & (cr+sp)+(cg—3g) Z (cr—s7)+(cg+3g) (E.151)

Combining (E.149), (E.150) and (E.151), we get

0.~ (cr+¢)

: 0 < [£.152
g, esqy <0< cp+ey (E.152)

Hipa(0) =1+

For ¢;+ ¢, < 0 < (¢ +sf) + (¢g + 84), the objective function to be maximized is

s20) = [1- (2= - (5]
- [0+ -0+ -5
= e+ D) -G D5
(1% :) :’f U(.ff;v) (E.153)
The first and second derivatives of S2 are
S2(v) = (14 %);—g ~(1+ z—j)é 4 (g;i") (E.154)
§2"(v) = S;'jg (E.155)
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Since 52" < 0, S2 is concave. To find its supremum, we equate S2’ to zero. If the

supremum is achieved at v = v*, we have

1 1 (0-2v"
(1+c—’)ﬁ—(1+§i—);+-(~s—fs:’—)zo

= (c_f-{-s_f)—(cg+sg)+9~—2'v*=0

5 g DG 3{3 — (gt ) (E.156)

4

Let us see if v* satisifes the constraint v* € V.. Ior v* to belong to V;, it has to
satisfy four conditions [see (E.140)] : v* > ¢p, v* < ¢p + 57, v* > 0 — (¢y + s4) and
v" < (0 —¢y). Since 0 < (cp + 57) + (cg + 8g), 0 — (cg + 55) < v™ < (¢p +55). To

satisfy the other two conditions,

vt 2 & 02 (cp—sp)+ (et sy)
v*<O0—c, & 02> (cs+55)+(cg—3g)

S0 eV, @ 0> max{(es —s7) + (¢ + 8), (e + ) + (¢ — 55){E-157)

Substituting (E.156) into (E.153), we get

iec(0) = 4‘;39 [0 = [(cs+57)+ (e + sg)]]z i ess <0< (ep+sp) +(cg+8g)
(E.158)
where
css = max{(c; — s5) + (cg + 89), (5 +57) + (¢ — 35)} (E.159)

If & < css, the supremum of S2 is reached at a point »*, which is either less
than ¢; or greater than (0 — ¢,) [(E.157)]. If ess = (c; — s7) + (¢5 + s;), then
0 < cs5 & v* < ¢s. Since S2 is concave, its supremum in V, is attained at v = ¢j.

Substituting v = ¢s in (E.153), we get
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0 —(cs+c
pac(0) =1 - ED o << (o) e tsy)  (ELG0)
g
If ess = (¢f + s5) + (¢, — s4), then 0 < cs5 & v™ > (0 — ¢;) [see (E.157)]. Since S2
is concave, the supremum in V; is attained at v = (6 — ¢,); therefore, substituting

v=(0-c¢,) in (E.153), we get

0—(cf+
pipa(0) =1- % iocptey <0< (e +sp)+ (e, —sy) (E.161)
Note that
& 2 sg & (ertsy)+(eg—3g) Z (cf—sy)+(cg+g) (E.162)

Combining (E.160), (E.161) and (E.162), we get

9_(61 +Cg)

: <4 .16:
max{ss,s;} ¢rtieg 2V <o (E.163)

pisa(0) =1—

Combining (E.147), (E.152), (E.158) and (E.163), we get

'8

0= [(er—s) + (e - Sg)]r i (cr—sp)+ (e —85) <0 < esy

9_(6 +c‘) . o .

Hiyé (9) = < 1+ max{s_f,s;} s csy < g S cy -+ &y
frall) = »

| — 8—(cs+cq) ) . 5 < cse

max{sy,sg } !

43139 [9 —[(cs +57) + (g + .sg)]]2 i css <0< (cp+sp)+ (cg+8g)
(E.164)

where cs4 and css are as in (E.148) and (E.159), respectively. O
In order to find a triangular approximation to the algebraic sum of triangular
type-1 fuzzy numbers under product {-norm, we first find upper and lower bounds

on the actual result of the algebraic sum in (E.164).
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E.2.2.1 Lower Bound

We, next, show that the symmetrical triangle with center ¢;+c, and spread max{sy, s, }
forms a lower bound on the actual result of the algebraic sum in (E.164). The equa-

tion of this triangle is

L i 0€e;+cy—si,c5+cy+ s
1(0) = |t [er + ¢g = s1,¢7 + ¢ + s1] (E.165)
0 : otherwise

where

gy =max{sy, s,k (E.166)

Observe, from (E.164), that for csq < 0 < cs5, i, 5(0) = U(0). For (¢; —sy) +

(e, — 85) < 0 < csy, let us assume that pp &(0) < 1(0), ie., assume that, for

(cr —s5) + (cg — 8g) < 0 < cs4y

1 2 0 — (cs+¢g) _
Tore 0= ler—sp) + =l <10 —= (E-167)
Let s; = sy (i.e., let s; > s,). Then (E.167) implies
1 2 0 — (cs +¢y)
rore 0~ e =)+ (o =soll] <14 —==
1 20— (cy—s5)—cy
> G0l =) +e -l <=
= 0% —2[(c; — sp) + (c5 = s9)l0+ [(cf = 57) + (e — 55)]” <
454[0 — (cs — s5) — ¢4
= 02 —2f(c;—sp) + (cg + IO+ [(cf = 57) + (e = 5p)]” <
—4s,4((c; — sf) + ¢ (E.168)

Observe that
[(cs—s5) + (g — 39]]2 + 4dsg[(cy — sp) +eg] = [(cs—s5) + (g + 59)]2 (E.169)
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From (E.168) and (E.169), we have
10— [(cs = 57) + (cs +5,)]] <0 (E.170)
which shows that our assumption (E.167) must be false; therefore,
10) < ppya(0) 5 (e —sp)+(cg—g) SO <esy (E.171)

If we assume that s, > sy, we get a similar contradiction.
By proceeding in a similar manner, we can show that {(#) also forms a lower

bound on pg, () for css < 8 < (¢f + sy) + (cg + sg); therefore, we can say that
k() = 1(6) (£172)
where [(0) is as given in (E.165).

E.2.2.2 Upper Bound

We show that the symmetrical triangle with center (¢; + ¢,) and spread (sy + s,)
forms a upper bound on the actual result of the algebraic sum in (E.164). The

equation of this triangle is

sgtsg

u(0) = { ] s lﬁ—(cg-}-cg} i O€((cf—sp)+(cg—sq),(cp+sf)+ (cg+ 34)]

0 : otherwise

(E.173)

Since the spreads s; and s, are positive, (s; +s,) > max{sy, s, }; and therefore,

u(f) > ppyg for csq < 0 < css. It is obvious that at 0 = [(c; — s7) + (c; — 9],

iy = u(f). For (cy —s5) + (cg — 84) < 0 < sy, let us assume that u(0) < ppyq,
i.e., let us assume that

9—(cf+cg) & 1
Sp+ 84 4s¢s,

1+ [9 —[(ep —s5) + (g — 39)]]2
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0 — [(cf — sy) + (¢ — 3y)] 1 2
— iz, -3 —
Sf+ g < 4sys, [0 ey =sp)+ (e 39)]]
4Sng
57+ 5, < 0=[(cs—s5) + (e — 59)]
45;39

= 0 > (C;—S;)-{- (Cg‘—Sg]-{r- (E.174)

Sp+ S,

Let s; > s,. This implies that [dsss,]/[s; + s,] = [4s4]/[1 + s4/s7] > 254, which,

together with (E.174) implies that
0> (c;—s5)+ (c;+ sy) (E.175)

Our assumption that s; > s,, together with (E.151) and (E.148), implies that
csy = (¢; — sy) + (¢, + s4) and since we have considered that § < csy, (E.175) can
not be true, which means that our assumption that u(0) < pp,q(0) must be false.
A similar conrtradiction can be obtained by assuming that s, > s;. This shows that
u(0) forms an upper bound on pp,¢(0) for (c; —sf) + (¢ —s5) < 0 < es4.

By proceeding in a similar manner, we can show that «(f) also forms an upper

bound on g, () for ess < 0 < (¢f + s7) + (¢ + sy); therefore, we can say that
W, 5(0) = u(0) (E.176)
where u(#) is as given in (E.173).

E.2.2.3 Triangular Approximation

To find a triangular approximation, we choose a symmetrical triangle that lies be-
tween the upper and lower bounds on the actual result of the algebraic sum. By

observing (E.165) and (E.173), we can see that a triangle with center (¢ + ¢,) and
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spread \/s} + s2 gives such an approximation, i.e., we propose the following approx-

imation for the algebraic sum of F and G :

1 | Eterig) i 0€les+¢ey—spg,¢r+Cy+ s
P5F‘+('3(9) ~ [ Sfq [ef + ¢y fa:¢f T Cg i (E.177)
0 ' otherwise

where
Spg = \!S?-}-Sé (E.l?S)

Generalizing to the sum of n triangular type-1 fuzzy numbers, we find that the

algebraic sum of n triangular type-1 fuzzy numbers, F|,...,F, with centers ¢y,..., ¢,

and spreads sp,...,$,, under product {-norm can be approximated as
9—2? ci
1- | S| 5 0€ (Do — VI s D 6+ /T S
prr pO)n g Vae
h 0 : otherwise
(E.179)
Using part (a) of Theorem E.2 with (E.179), we have the following result :
Given n type-1 triangular fuzzy numbers ﬁl, T f‘n, with centers ¢y, ¢, ..., ¢, and
spreads si, g, . .., Su, their affine combination 37, o F,+ 3, where o (i = 1,...,n)

and (3 are crisp constants, is approximately a triangular fuzzy number with center

Yoy aici + B, and spread /3 1L, a?s?.

E.3 Weighted Average of Triangular Type-1
Fuzzy Numbers

Consider the weighted average

M "
Lizi Wizl (E.180)

5 TR 4 Wiy War) =
J( 1y 3 <My W1, ) ) Z?ilwf
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where z; € R and w; € [0,1] for | = 1,..., M. If each z is replaced by a type-1
fuzzy set Z; and each wy is replaced by a type-1 fuzzy set W;, then the extension of

(E.180) gives

Yo T Waye W) = o [ [ ﬂiﬂf-tz,(Z:)*ﬂfl#w,(wr)/
iz, Wi (E.181)

T ¥ S
=1 W

where 7 and % both indicate the ¢-norm used ... product or minimum.

Theorem E.4 If cach Z, is a triangular type-1 fuzzy number, with center ¢; and
spread s;, and if each W, is also a triangular type-1 fuzzy number with center by and
spread A, then Y is approzimately a triangular type-1 fuzzy number, with center C
and spread S, where

M
¢ = Zizhia (E.182)

2!:1 h’l

and

M (s +(a—C)2A7)
\/Z:_:“ TG ~ . if product t-norm is used

S = L, Limi (E.183)
}:"‘[(h‘sﬂﬂc*_cm’] , if minimum t-norm is used
Z!:l h"‘
provided that
A.'
L, E.184

: s g R R M M
The triangular approxzimation improves as ( Hadh A;/ iy h;) grows smaller. Under
minimum t-norm, the result is ezact when Y0 A; = 0, i.e., when &y = 0 for
l=1,...,M.

Proof : The proof proceeds exactly like the proof of Theorem 2.5 in Appendix C.11,
the only difference being that now the condition required for a good approximation is
(=M, A)/[SM, ) < 1instead of k[0, AJ/[ T hu] < 1 [see (2.76)]. The factor

of k appeared in the Gaussian case, because the membership of a point in a Gaussian
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type-1 set is never exactly equal to 0; we just neglected the memberships outside
+kA,, since they were too small. In the triangular case, however, the memberships
of points outside £4, are equal to 0; and therefore, the factor of k& disappears.

We get a result similar to (C.229) :

Y::i[z( i )+ W (C’_C)]+c (E.185)
T T TNy '

where Zl’s are zero-mean triangular type-1 fuzzy numbers with spreads s;’s and
E_,’s are zero-mean triangular type-1 fuzzy numbers with spreads A;’s. The result
in Theorem E.4 follows by applying results in Theorem E.2 and Section E.2.2.3 to
(E.185). ]

Comment 1 : When product ¢-norm is used, the result in Theorem E.4 is not exact
even when A; = 0 for [ = 1,..., M, because the algebraic sum of triangular type-1
sets under product ¢-norm does not remain triangular (see Section E.2).

Comment 2 : Comments 2 and 3 at the end of Appendix C.11 apply in this case

as well.
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g9 g 1

1
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@, N0
0.5+ / N -
Vi ~
/ Y
/ N
0 V. 1 1
(c'—sf) (cg—sg) Sy (cf+sf)(cg+sg) 1

(c)

Figure E.1: (a) Two triangular fuzzy sets. (b) Interpretation of the meet as the
envelope of a collection of scaled triangles. The dashed line shows the actual result
(Theorem E.1). (c) The domain of the actual meet result and the lines [;(f) and
[3(0) used in the calculation of the upper bound.
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o8
os
(3 ey« [03.07]
LU d
LE apraads (67,01
o4
LR

oz

taters =05, 08 ]

sprantn - (0 4.04]

oontein = [ 32,04 ]

apreads = {02.03]

cantors = |6.9,04, 05

aprads =[02.03.08)

Figure E.2: Some examples of upper and lower bounds in (E.112) and (E.79), and the
approximation in (E.116). In each figure, the solid line shows the actual result of the
meet (computed numerically), the dashed line shows the triangular approximation
and the dash-dotted lines show upper and lower bounds. In (b), the two triangles

are coincident.
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Figure E.3: (a) Two triangular fuzzy sets. (b) Interpretation of their algebraic sum
as the envelope of a collection of shifted and scaled triangles. The dashed line shows

the actual result (Theorem E.3).
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