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Abstract: Several neuron activation functions have been proposed (e.g.,
linear, binary, sigmoid) for recurrent and multilayer Artificial Neural
Networks. In this report we present a hysteretic neuron activation
function for optimization and learning. We include this neuron within
the framework of the Hopfield network to form the Hysteretic Hopfield
Neural Network (HHNN). We then propose a dynamical equation, and
an energy equation for this model using the well known Cohen-Grossberg
theorem. Finally, these equations are used to prove Lyapunov stability of

the HHNN.

1 Introduction

In this report, we propose a new neuron model that is based on a phenomenon

found widely in nature, namely hysteresis. Recall that hysteresis [1] is defined as a
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lagging effect due to a change of force acting on a body. Hysteresis manifests itself in
the structures of many co-operative dynamical systems (formed of local interactions).
In a study of prey selections by frogs (snapping of the frog to sensory stimulus, e.g.,
flies) [2], a phenomenon related to hysteresis was observed. Hysteresis was also dis-
covered in the stretch receptor organs (SRO) of the crayfish [3]. Many engineering
systems display hysteresis. Among these are mechanical structures stressed beyond
the elastic range, and aerostructures (aircraft, missiles) subjected to acoustic or aero-
dynamic loads. Hysteretic and eddy current losses also appear in the core of a 3-phase
transformer [4]. Marshall, et. al. [5] give a detailed explanation of hysteresis as it
occurs in ferromagnetic materials (relating the magnetic field intensity and flux den-
sity as the current is varied). The identification of hysteretic type nonlinearities is
important in earthquake resistant designs of buildings (e.g., [6], [7]).

Taga (8] developed a network containing 6 coupled oscillators (that functioned as
neurons) to control bipedal locomotion. Each oscillator received feedback about the
state of the biped’s limbs; thus, biped velocity could be controlled, and, by varying the
amplitude of the network’s activation function, abrupt transitions between walking
and running could be obtained. These transitions exhibited hysteresis (i.e., the walk-
to-run transition occurred at a faster progression speed than the reverse transition).
Similar hysteretic behavior can also be observed in humans [9]. Hoffman and Benson
[10] demonstrated that a single cell-level neuron model, based on an analogy between
the immune system and the central nervous system, exhibits hysteresis.

Models of hysteresis appear, for example, in [11],[12],[13], and [14]. Hysteretic neu-
ron models using signum functions have been proposed by Yanai & Sawada [15], and
Keeler et al. [16], for associative memory. They demonstrated that their hysteretic
models performed better than non-hysteretic neuron models, in terms of capacity,
signal-to-noise ratio, recall ability, etc. Takefuji & Lee [17] proposed a two state
(binary) hysteretic neuron model such that: (1) if the input to a neuron exceeds a
threshold (upper trip point) the neuron fires (i.e., the output of the neuron is unity);
(2) if the input is below a certain threshold (lower trip point), the output of the neu-
ron is zero; and, (3) if the input to the neuron is between these trip points, the output

equals its previous value.



In this paper, we describe an hysteretic neuron model that differs from those in
[15],[16], and [17] in the following ways: it (1) is multivalued, (2) has memory, and
(3) is adaptive.

In Section 2, we present the hysteretic neuron and the Hysteretic Hopfield Neural
Network (HHNN) along with its circuit dynamical equations. In Section 3, we briefly
review the concept of Lyapunov stability for nonlinear dynamical systems. We also
introduce Cohen-Grossberg (C-G) theory for analyzing stability of systems. As an
interesting example, we show that the energy function for the Hopfield neural network
can be obtained from C-G theory. Using similar analysis, we then obtain the energy

function for the HHNN. Section 4 concludes this report.

2 Hysteretic Hopfield Neural Network

2.1 Hysteretic Neuron

Our hysteretic neuron is similar to other neuron models, in that it processes a
linear weighted combination of inputs. It differs from other neuron models in that
its nonlinear gain (activation) function is the hysteresis function depicted in Fig. 1.

Mathematically, our hysteretic neuron gain function is described as:

y(z]#) = Bl — A(#)] = tanhy(&)(z — A#))] 1)
where
iy o FRD )
Yp z<0
say=1 ¢ ®=20 (3)
I} el

and 3 > —a, and, (Ya,v3) > 0.



The mapping that is effected by this transformation is y : 2 — R. Note that,
in the special case when a = 3, and vy, = 73, the activation function becomes the
conventional sigmoid. Observe that this neuron’s output not only depends on its
input, x, but also on derivative information, namely, z. It is the latter information
that provides the neuron with memory and distinguishes it from other neurons. If,
for example, x is positive at one time point and increases in value at the next time
point, the activation function remains along segment C' — A. On the other hand, if
is positive at one time point and decreases at the next time point, then the activation
function jumps from hysteretic segment C'— A to segment B — D. So, this hysteretic
neuron has the potential for much more action than the usual neuron.

One interpretation of the two segments in the hysteretic neuron is that continued
learning occurs along the top segment C'— A, but forgetting or reduced learning drops
us to segment B — D.

Note that the hysteretic neuron’s activation function has four parameters associ-
ated with it, namely, o, 3,74,73. Usually, one does not tune a neuron’s activation
function because, for the most part, there are no parameters to tune (or there is, at
most, one parameter, the slope of the sigmoid). The hysteretic neuron is different in
this sense, and we can think about tuning all of its parameters in order to maximize
its performance. So, it seems that the hysteretic neuron provides us with much more

flexibility than the usual neuron.

2.2 Hysteretic Hopfield Neural Network

A circuit-based noiseless dynamical model of the hysteretic neuron is depicted in
Fig. 2a. Important considerations in the design of such an analog circuit are that
its individual components have a negligible propagation time, and the differentiator
and integrator have a unity RC-time constant. In Fig. 2b, we assume a negligible
effect of the capacitance, and a high internal resistance of the operational amplifiers
in the differentiator-integrator pair. The net resistance in the two branches consisting
of current sources [ 2 a;/R; and Iy 2 B;/R; is denoted R;. Accordingly, we can
place a resistance of the same value (i.e., /;) in the branch which is in parallel with

the capacitor C;, as shown in Fig. 2a. The logic device denoted by an arrow after
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node J, switches to the upper branch if &; > 0, and to the lower branch if z; < 0.
Applying Kirchoff’s Current Law (KCL) to node J, we obtain the following circuit
equation:
cj%“;i:—%qu%‘jf)quiwﬁyiﬂj j=1,2,...,N (4)
where y; is a shorthand notation for y;(z;|@;) given by (1), and A;(Z;) is as defined in
(3).

We refer to the interconnection of the N nonlinear equations in (4) as a Hysteretic

Hopfield Neural Network. Unlike the usual Hopfield Neural Network (HNN), the

i=1

HHNN includes memory.

3 Stability of the HHNN

An important consideration in the theory of nonlinear systems is to define and
analyze stability. Aleksander Mikhailovich Lyapunov, a Russian mathematician from
the late nineteenth and early twentieth centuries, developed an approach for doing
this that is widely used in the control theory literature, and is now known as the
direct method of Lyapunov. Its key feature is that it leads to conclusions about
stability of nonlinear systems without having to explicitly solve the system’s nonlinear
differential equation. Lyapunov used this approach to investigate the stability of
systems that involve the rotation of heavy fluids. It has also become an important
tool for establishing the stability of HNN’s [18] or more complicated nonlinear feedback
neural networks [19]. We use it to study the stability of the HHNN.

To begin, we recall the definition of a Lyapunov function and stability in the sense
of Lyapunov (e.g., [20]). For a function E(y1,¥2,...,yn) to be a Lyapunov function, it
must satisfy the following three properties: let y*=col(y},v3, ..., yx) be an equilibrium
point for a dynamical system; then, (1) E(y],¥5, .- yn) = 05 (2) E(y1,¥2,.-.,yn) > 0,
y# y*; and, (3) E(y1,¥2,..., yn) should have partial derivatives with respect to all y;.

Given that E(y1,y2,...,yn) is a Lyapunov function, and if

dE(ylvy% seey UN)

< "
dt <0 (5)




then y™ is stable in the sense of Lyapunov.

The stability of the HHNN can be demonstrated by either of two approaches:
(1) use the Cohen-Grossberg theory [19] that is already based on Lyapunov stability
theory, or (2) a direct approach in which we must establish an energy function, show
that it is a Lyapunov function, and then demonstrate the truth of (5) for it. Here we

take the former approach.

3.1 Cohen-Grossberg Theory and Its Relation to Hopfield
Neural Network Theory

We now review the Hopfield neural network, and the Cohen-Grossberg (C-G) theory
pertaining to the stability of a general class of nonlinear dynamical systems. We
also describe the existence of a well known relationship between the C-G theory and
Hopfield neural network theory.

The dynamics for the Hopfield neural network can be stated, as

I‘\F

dexj(t) o 210 +X wint) +1; j=1,2,..,N, (6)
dt RJ t=1

where wj;, wjs, ..., w;N are the weights representing conductances between the N
neurons (including a self-feedback conductance) and neuron j. The input to a
neuron is denoted by {z;,j = 1,2,..., N}, and the output from a neuron is denoted
by {y;,7 = 1,2,..., N}, and both have their units represented in Volts. The output

y; and input x; satisfy the following nonlinear relation,

|
—

yi = ¢i(z;) = tanh(yiz;) (

The energy function associated with (6) can be expressed as [21, 22

1N N N 1 Y N
E(yl,yg? vy YN) = 5 Zzwjiyiyj * Z Ef(ﬁfl(b’) dv — Z ijj (3)
< 4=1 3=1 =14 0 =1



Hopfield and Tank have shown, that: 1) E(yi,y2,...,yn) is a Lyapunov function, and
2) The model in (6) and (7) is stable according to (5). We shall now state the C-G
theory, and then demonstrate that this theory encompasses the Hopfield neural

network theory [23].

In 1983, Cohen and Grossberg [19] presented a general principle for assessing the
stability of a certain class of neural networks that are described by the following

system of coupled nonlinear differential equations,

%:a uj [b h‘.‘jr chtd’ u ’ 7 =120V (g)

According to Cohen and Grossberg, this class of neural networks admits a Lyapunov

function, defined as

Uy

N N N ;
> S ciwhbiw) - 2 [ b€ ds  (10)

=1 j=1 i=ly

E(ug,ug,...;u

[\Dli—l

where,

d[1h;(&;)]
d§;

For E(uj,us,...,uy) to be a valid Lyapunov function, the following conditions

(&) = (11)

must hold:

1. The synaptic weights of the network should be symmetric, i.e.,

Co =i} (12)

2. The function a;(u;) must satisfy the nonnegativity condition

(Lj(uj) > 0; (13)

and,



3. The nonlinear input-output function (activation function), ®;(u;), must be
monotonic [a function f: X — Y is monotone if <y = f(z) < f(y)].

Under these conditions, the Cohen-Grossberg theorem states that: For the system
of nonlinear differential equations (9) that satisfy the conditions of symmetry, non-
negativity, and monotonicity, the Lyapunov function E, defined by (10), satisfies the

condition

dE
@ =
To demonstrate that the C-G model includes the Hopfield-Tank model as a special

<0 (14)

case, we form a correspondence table (Table 1) between the quantities in (6) and
(9). So that we may demonstrate that the Hopfield-Tank energy function (8) can be
obtained from the C-G Lyapunov function (10), the following mathematical facts will

be required:

1.
yi = ¢i(x;) = x5 = ¢ (y;) (15)
2.
fé}(ﬂfj)d-’fj = ] dy; = y; (16)
0 0
3 " ;
/?ﬂj(ﬁ}(-fj)dﬂ’j = /ﬁbfl(yj)dyj (17)
0 0

The proofs of (16) and (17) are given in Appendix A.
Substituting the quantities from Table 1 into (10), we derive the Hopfield-Tank

energy function as follows:

1 N
(1,22, TN) = ;Zzw,,m Z[(——H)qs zj)dz;  (18)
==l =1 i=1y
| NN N 1 "3 N %
E(z1,23,...,ZN) = 3zzwﬁyiyj+z E/:Ejfﬁ}(ifj)dwj_z_/‘rjﬁb}(l‘j)d-’f’j (19)
= i=14=1 j= 70 i=1 0

E(yla Y2y .uey yN)

N N M. 4 Y N
—=> D wiyiyi + E/Gf’fl(yj) dy; — Y Liy;  (20)
] =115 i=l1

i=1 j=1

l\&'l'—'
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where we used (16) and (17) (involving transformation of variables from z; to y;) to

obtain (20) from (19). Equation(20) can be rewritten, as

lx:l»—l

E(ylay% UN

N N N Y N
—5 DD Wi+ ) iR / 67 (v)dv =3 Ly;  (21)
j=1 il 0 i=1

i=1j3=1
Comparing (8) and (21), we see that the Hopfield-Tank energy function has indeed
been obtained from C-G theory.

3.2 Lyapunov Stability of the HHNN Model

We now demonstrate Lyapunov stability of the HHNN by creating the correspondence
table between the C-G model (9) and the HHNN model (4), forming the energy
function for the HHNN using the correspondence table and (10), and, invoking the
C-G Theorem (14).

Comparing the C-G dynamical model (9), and the HHNN model (4), we form
Table 2

In the same manner as we derived (15), (16), and (17), we can obtain the following;:

L

y; = yi(;la;) = dilz; — Ai(25)]) = &5 — Ai(@5)] = 67 (v)) (22)
i . .
ffﬁ;[@‘j = Aj(@)] dej = j dy; = y; (23)
3. . 0 . 0
j%q‘)}[-’”i — A;(7;)] dz; = fé}‘(yj)dyj +A;(75)y; (24)
o 0

The proof of (24) is given in Appendix A.
On using the energy function (10) from the C-G theory and the results in Table

2, we find

/\(

E(.’Ifl,;l'z.. QS [ £y a’J)]d‘IJ

(25)

N N
ZzwjlylyJ Z[(__‘F‘r e

i=1 j=1 =1 0

l\:llv—-

11



N N N

E(zq,z,,.. = ——ZZwﬂy;y} Z/R—J — Aj(%;)] dz;

2 =1 j=1 =1
L J 1 25(35) :
_Z/B‘%’[fﬂj — Aj(;)] dxj — Z/—R- &l — Ai(a5)] dx; (26)

Substituting (23) and (24) (involving transformation of variables) into (26), and

making use of (22), we find

N N

E(Jlans WYN) = ——Zzwp.f'a.}; +Z /Qﬁ I[JJ 37:'3"} ]dy.r ZIJJ'J (27)
i=

o e

Observe that (8) and (27) are structurally the same, the difference being in the
complicated nature of the hysteretic activation function ¢7'[y;(x;|2;)] in (27). Also,
the difference in the representation of the Hopfield neuron model in (6) and the HHNN
model (4) is the presence of a “hysteresis generating” term );(#)/R; and a switching
mechanism. Consequently the HHNN is stable in the sense of Lyapunov via the C-G
theory.

4 Conclusions

In this report we have addressed theoretical issues pertaining to the HHNN (Hys-
teretic Hopfield Neural Network). In essence, we have demonstrated Lyapunov stabil-
ity for the HHNN using the established C-G theory. To achieve this, we have compared
the general dynamical equation (9) from C-G theory, to the HHNN equation given by
(4), so as to establish a link between the individual parameters in the two equations.
We then substituted these quantities in the formula for the Lyapunov function (10),
to obtain the Lyapunov function for the HHNN. Finally, we invoke the C-G theorem
(14) to prove stability of the HHNN.
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Appendix A: Proofs

A.1: Equation (16)

Ty Yy
fé}(wj)drvj = / dy; = y;
0 0

Proof:
dy;  doi(z;) .,
dz; - dz; < ¢j($3)
dy; = ¢i(x;)dz;
Ty Yy
[ $ieiyda; = [ dy; =y,
0 0
A.2: Equation (17)
z; Yy
/ -1
f&)iﬁbj(@'j)dxj = /¢j (y;) dy;
0 0

Proof:
Jd:ﬁj 2N
ijdyj = a:_,'qb;v(xj)dxj
Ly Y Yy
[ 28wy das = [widyi = [ 67 (w) dy;

0 0 0

where we have used (15) to obtain the last equality.

A.3: Equation (24)

Zj Yy
fmjé’}[ifj — ()] da; = /d’}l(y:)dyj + A (75)y;
0 0
Proof:
ly; doilz;: — Ai(2; , .
¥
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z;dy; = zidi[z; — Aj(<;)]de;

Ty Yy 5

fﬂfjfi)}[ﬂu — A&;)]dz; = fﬂ«'jdyj = /[¢}1(yj) + Ai(Z5)]dy; = fé,?‘(yj)dyj + Ai(75)y;

0 0 o

The last relation was obtained using (22).
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Table 1: Correspondences between C-G and Hopfield-Tank model

Cohen-Grossberg model | Hopfield-Tank model
Hj Ty
a;(u;) c;!
bj(u;) —zi/R; + 1
Cit —wji
i(u;) yi = ¢;(x;)

Table 2: Correspondences between C-G and HHNN models

Cohen-Grossberg model HHNN model
u;j s
aj(u;) a5
bj(u;) —z;/R; + I; + Xi(2;)/ R;
Cii —wj;
i(u;) yi = y;(a;la;) = dsla; — Aj(a)]

17



hig| Nl S
xm | Activation oy
. —_—
2 function '
/ |— — —— |
N
*N
(a)

Output : y

Figure 1: (a) A neuron model. (b) Hysteresis neuron activation function.
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Figure 2: (a) Hysteresis neuron circuit; (b) Differentiator-Integrator pair in series,

and modeled as net resistance.
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