USC-SIPI REPORT #334

Adaptive Stochastic Resonance

by

Sanya Mitaim

August 1999

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 400
Los Angeles, CA 90089-2564 U.S.A.



To my parents Sawat and Cattleya Mitaim
To my wife Worralux and my daughters Napat and Samon
Their undying love and confidence in me were a true

inspiration and a constant source of strength throughout my research endeavor.

ii



Acknowledgements

I would like to thank my advisor Dr. Bart Kosko for his help and insights. He provided
invaluable guidance and honest criticism throughout the years that we worked together. It has
been an honor to work with a scholar of such consistent creativity and enthusiasm.

I wish to thank Dr. Robert E. Kalaba and Dr. Armand R. Tanguay, Jr. for sharing their
ideas and passions in stochastic resonance. Thanks to Dr. Antonio Ortega and Dr. Michael G.
Safonov for serving on my committee and for their technical insights. I also wish to thank Dr.
George P. Papavassilopoulos and Dr. Rod Taber for their advice and encouragement.

Many other people deserve my gratitude for helping me to reach this point. My friends and
colleagues Dr. Junavit Chalidabhongse, Sukumal Imudom, Margarida Karahalios, Ian Y. Lee,
and Sean T. Morrow, often gave sound technical advice and emotional support. Dr. Julie A.
Dickerson and Dr. Hyun Mun Kim always gave invaluable advice especially during the early
years of my Ph.D. program.

Thanks to Wuttipong Kumwilaisak, Krisda Lengwehasatit, Poonsuk Lohsoonthorn, Dhawat
Pansatiankul, Sunil Bharitkar, Raghavendra Singh, Dr. Moe Z. Win, and Dr. Youngjun Yoo for
their company and conversations during the past years. I wish to thank Linda Varilla of the
SIPI administrative office for her support and encouragement.

I also wish to thank teachers and friends at the USC Aikido Club, especially Robert Dziubla,
Gary Wyshel, Jed Mortenson, Jeff Hruby, Mark Colopy, Ellen Valles, Michelle Van Noy, Michael
Chapman, Ryan Fong, and Angela Trinh. Thank you for sharing your passions in Aikido, your
friendships, and entertainment during and after each practice.

Thank you to my family here in Los Angeles. My mother-in-law Chintana Sookkao, my
sisters-in-law Pakpisut and Prairin Sookkao, and family friends Saran Phuangchoey and Piyawan
Tangseveepan who always provide invaluable support in so many ways.

I also wish to acknowledge and thank the Royal Thai Government for providing me with

this opportunity to conduct Ph.D. research at USC.

iii



Contents

List of Figures
Abstract

1 Introduction
1.1 Stochastic Resonance. . . . .. . .. ... ... .. .. .....
1.2 Current State of Research on Stochastic Resonance . . . . . . .

1.3 Adaptive Stochastic Resonance: Dissertation Objective and Results . . . .. ..

1.4 Dissertation Qutline . . ... ... ... ... ... .. .....

2 Stochastic Resonance and Optimal Noise
2.1 Stochastic Dynamical Systems . .. ... ... .........
2.2 Performance Measures . . . . . . . ... ...t
2.2.1 Signal-to-NoiseRatio. . . . . ... ... ... ... ...
2.2.2 Cross-Correlation Measures . . . . ... .........
2.2.3 Information and Probability of Detection ... ... ..
2.2.4 Probability of Residence Time and Escape Rate . . ..
2.2.5 Complexity and Other Performance Measures . . . . . .
23 OptimalNoise . ........ ... ... ...

3 Stochastic Resonance in Computer Simulation
3.1 Nonlinear System Simulations . . . . ... ... .........
3.1.1 Nonlinear Systems with White Gaussian Noise . .. . .
3.1.2 Nonlinear Systems with Other Finite-Variance Noise . .
3.1.3 Nonlinear Systems with Alpha-Stable Noise . . . .. ..
3.2 Performance Measures . . . .. ... ... ... . ........

..........

..........

3.2.1 Signal-to-Noise Ratio in Nonlinear Systems with Sinusoidal Input . . . . .

3.2.2 Cross-Correlation Measure . . . ... ..........
3.3 Stochastic Resonance and Alpha-Stable Noise . . . . .. .. ..
3.3.1 SR Systems and Simulation Models . . ... ......

3.3.2 Exponential Law with Linear Least-Square Fit of Log Data . . . . .. ..

333 TestResults. . . ... . .. ... . .. e ee..

4 Adaptive Stochastic Resonance with Gradient Learning
4.1 Stochastic Gradient Learning on the Signal-to-Noise Ratio . . .
4.1.1 Learning Law from the System Math Model . . . . . . .
4.1.2 Approximation of the Learning Term % .......
4.1.3 SR Optimality for the SNR Measure . . . . . . ... ..

4.2 Stochastic Gradient Learning on the Cross-Correlation Measure

vi

xiv

11
11
17
18
20
21
22
22
23

24
24
25
27
28
30
30
37
37
39
42
43

46
47
49
53
55
56

iv



43 Robust SR Learning . . .. . ... ... . . e
4.3.1 Impulsiveness of the Learning Term . .. ... ... ............
4.3.2 Cauchy Suppressor . . . . . . . o i i i i e e e

4.4 Additive Fuzzy Systems and Function Approximation . ... ...........

Simulation Results

5.1 Adaptive Stochastic Resonance: Signal-to-Noise Ratio . ... ...........
5.1.1 SR Test Case: The Quartic Bistable System . . . ... ... ... .....
5.1.2 Other SR Systems . . . . . ... .. . . ... .
5.1.3 Fuzzy SR Learning: The Quartic Bistable System . ... ... ... ...

5.2 Adaptive Stochastic Resonance: Cross-Correlation Measure . . . . ... ... ..

53 Conclusion . .. . . . . . . . e e e e e e

6 Future Research
Bibliography

A Fuzzy Sets and Fuzzy Function Approximation

A.1 The Standard Additive Model (SAM) Theorem . . . .. ... ...........
A.2 Supervised SAM Learning . . . . . . . . . . .. . e e e e
A.3 Sets as Points: The Geometry of Discrete Fuzzy Sets . . . . . ... ... .. ...

Neural Fuzzy Agents for Profile Learning and Adaptive Object Matching

B.1 Smart Agents: Profile Learning and Object Matching . . . ... ... .. .. ..
B.2 Agent Architecture . . . . . . . ... L e
B.3 Profile Learning with Sunsets and Flowers . . . . .. .. ... ... ........
B.4 Adaptive Fuzzy Object Matching . . . . . .. .. ... ... ... .. ... ...
B.5 The Agent-User Interface: The Q & A Bottleneck. . . . .. . ... ... .. ...
B6 Conclusion . ... ... ... ... e e



List of Figures

1.1

1.2

1.3

14

Uniform pixel noise can improve the subjective response of our nonlinear percep-
tual system. The noise gives a nonmonotonic response. A small level of noise
sharpens the image features while too much noise degrades them. These noisy
images result when we apply a pixel threshold to Van Gogh’s popular “12 Sun-
flowers” painting: y = g((z + n) — ©) where g(z) =1 if z > 0 and g(z) = 0 if
z < 0 for an input pixel value z € [0,1] and output pixel value y € {0,1}. The
input image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold
is © = 0.1. We threshold the original “12 Sunflowers” image to give the faint
image in (a). The uniform noise » has zero mean m, = 0. The noise variance
o2 grows from (b)-(d): o2 = 2.67 x 1072 in (b), 62 = 6.51 x 10~2 in (c), and
02 =1.67x1071in (d). -« o v it
System diagram for stochastic resonance within a signal-to-noise framework. A
dynamical system £ = f(z) + s + n has input forcing signal s and noise n. The
system output y depends on the system state z through y = g(z) and Y[k] is
the discrete Fourier transform (DFT) of the time signal y(t). Wavelets or other
transforms can replace the DFT block. The figure shows how the input noise
process n(t) drives the spectral signal-to-noise ratio (SNR) of the system. This
suggests that stochastic gradient ascent on the SNR can learn the optimal noise
level that achieves stochastic resonance. . . . . ... .. ... ... .......
Gaussian noise can improve the output signal-to-noise ratio of a quartic bistable
dynamical system & = z — 2® + s + n. The plot (a) shows the sinusoidal input
signal s(t) = 0.1sin(27(0.01)t). The zero-mean Gaussian noise n has variance o2.
The graphs (b)-(d) show the system output y(t) = z(t) for different noise levels:
o =0, 0.5, and 1. The system barely responds to the input signal s when there
is no noise (¢ = 0) in (b). The plot (c) shows that the right amount of noise
(o = 0.5) maximally enhances the performance of the system so that its output
resembles the sinusoidal signal. Too much noise (¢ = 1) destroys the periodic
pattern in theoutput asin (d). ... ... ... ... . L. oo Lo,
The non-monotonic signature of stochastic resonance. The graph shows the
smoothed output signal-to-noise ratio of a quartic bistable system as a function
of the standard deviation of additive white Gaussian noise. The vertical dashed
lines show the absolute deviation between the smallest and largest outliers in
each sample average of 20 outcomes. The system has a nonzero noise optimum
and thus shows the SR effect. The noisy signal-forced quartic bistable dynamical
system has the form & = f(z) + s(t) + n(t) = z — 2® + e sinwpt + n(t) with binary
output y(t) = sgn(z(t)). The Gaussian noise n(t) adds to the external forcing
narrowband signal s(f) = esinwgt. Equation (3.15) in Chapter 3 defines the
SNR measure. Other systems can use multiplicative noise [9, 28, 76, 85, 90, 96]
or use non-Gaussian noise [41, 43,44,92,251). . ..................
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3.1

3.2
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(I) Unforced quartic potential: U(z,t) = —12? + z*. (II) Forced evolution of
the noise-free quartic potential system: Ul(z,t) = —1z% + 1z* + lzsin2rt. (a)
Unforced potential surface at ¢t = 0 when the sinusoidal forcing term is zero. (b)
Surface U(z, t) at time ¢t = . (c) Surface U(z,¢) at time¢t=3. . .. .. ... ..
The closed form solution of signal-to-noise ratio for a quartic bistable system
% = az — bx® + 5(t) + n(t) as in (2.29). The sinusoidal input s(t) = € sin 27 fot has
small amplitude € = 0.2 and low frequency fo = 0.01. The system’s parameters
are a = b = 1 and so the SNR closed form solution (2.29) gives an estimate of
optimal Gaussian noise n at 0* = Up = /a2/4b=05. . . . .. . ... .....
System diagram for stochastic resonance within a cross-correlation framework. A
dynamical system & = f(z) + s + n has input forcing signal s and noise n. The
system output y depends on the system state z through y = g(z). The input
noise process n(t) drives the cross-correlation measure C. Note that C does not
depend on the spectral structure of the input signal or noise processes. . . . . . .

Probability density functions and random realizations. The figure shows Gaus-
sian, Laplace, uniform, and binary random variables w with zero mean and vari-
ance of two: E[z] = 0 and E[z?] = 0% = 2. The pseudo-random number genera-
tors in [261] act as noise sources with these probability densities. . . .. ... ..
Samples of standard symmetric alpha-stable densities and their realizations. (a)
Density functions with zero location (¢ = 0) and unit dispersion (y = 1) for
a =2, 1.5, 1, and 0.5. The densities are bell curves with thicker tails as o
decreases. The case ¢ = 2 gives a Gaussian density with variance of two (or
unit dispersion). The parameter & = 1 gives the Cauchy density. (b) Samples of
alpha-stable random variables with zero location and unit dispersion. The plots
show realizations when « = 1.9, 1.5, 1, and 0.5. Figure 3.1 shows the case of
a = 2 (Gaussian). Note the scale differences on the y-axes. The alpha-stable
variable  becomes more impulsive as the parameter « falls. The algorithm in
[39, 303] generates these realizations. . . . . ... .... ... ....... . ...
SNR measure of the quartic bistable system £ = z — 23 + s(t) + n(t) with output
y(t) = sgn(z(t)). The sinusoidal input signal s is s(t) = esin 2x fot where ¢ = 0.1
and fo = 0.01 Hz. (a) SNR-noise profiles of zero-mean white noise from Gaussian,
Laplace, uniform, and binary probability densities. The simulation ran over 20
distinct noise seeds over 10,000 seconds with time step AT = 10000/1000000 =
0.01 seconds in the forward Euler formula of numerical analysis. (b) Average
SNR-noise profile and its spread for Laplace noise. (c) Average SNR-noise profile
and its spread for uniform noise. (d) Average SNR-noise profile and its spread
for binary noise. Figure 1.4 shows a like SR profile for Gaussian noise. Figure
5.6 shows the SR profile for the quartic bistable system when chaotic noise drives
the system. The plots show distinct spreads of SNR for each kind of noise. . . . .
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3.4 SNR-noise profiles of a quartic bistable system and a FitzHugh-Nagumo (FHN)

3.5

3.6

4.1

neuron model. The plots show SNR-noise profiles for alpha-stable noise with
a = 2 (Gaussian density) and @ = 1 (Cauchy density). The densities have zero
location a = 0 and dispersion v that depends on a noise scale x through v = k®.
The scale x equals /20 for a Gaussian density (when a = 2) with variance o2.
(a) The quartic bistable system & = z — 2 + s(t) + n(t) with binary output
y(t) = sgn(z(t)). We limit the magnitude of the system state z in (3.57) so
that |z| < 10 as in Section 3.3.1. The sinusoidal input signal s(t) = esin 27 fot
has amplitude ¢ = 0.1 and frequency fo = 0.01. (b) The FHN model has the
form et = —z(z? - §) — 2+ A+ s(t) + n(t) and £ = z — 2z for € = 0.005 and
A = —(5/12v/3 + 0.07) = —.31056 with a sinusoidal input s(t) = esin2n fot
where € = 0.01 and fo = 0.5. We limit the magnitude of the FHN model to
|z| < 2. Figure 3.5 shows the SR profiles of these systems for a cross-correlation
C performance measure. . . . . . . . ¢ o vt vttt e e e e e e

Cross-correlation C versus noise profiles of a quartic bistable system and a FitzHugh-

Nagumo (FHN) neuron model. The plots show the cross-correlation C profiles
for alpha-stable noise with & = 2 (Gaussian density) and a = 1 (Cauchy den-
sity). A noise scale « relates a dispersion  through v = £*. The scale & equals
V20 for a Gaussian density (@ = 2) with variance o2. (a) The quartic bistable
system & = z — z° + s(t) + n(t) with binary output y(t) = sgn(z(t)) with the
modification that |z| < 10. The sinusoidal input signal s(¢}) = esin2n fot has
amplitude ¢ = 0.1 and frequency fo = 0.01. (b) The FHN model has the form
et = —z(z? — 41)—2+A+s(t)+n(t) and 2z = z — z with |z| < 2 and ¢ = 0.005
and A = —(5/12v/3 + 0.07) = —.31056. The sinusoidal input s(t) = &sin 27 fot
has parameterse =0.01and fo=0.5. . .. ... ... ... ... ... .....
Optimal dispersion 7,p¢ versus  in alpha-stable distribution for (a) the quartic
bistable system, (b) the FHN model, (c) the bistable potential neuron model
(Cohen-Grossberg one-neuron neural network), (d) the duffing oscillator, (e) the
threshold system, and (f) the pulse system with sinusoidal inputs. The plots
on the left-handed side use the SNR performance measure and the plots on the
right-handed side use the cross-correlation measure C. The mark x shows the
“optimal” dispersion for each a-stable noise seed. Least-square regression defines
the straight lines. . . . ... ... ... . .. . i e

Visual display of a—solf'TRl = 31:%‘5;1 - NL'.%& in (4.73) with simulation of gg— from
math model as in (4.29) for the quartic bistable system with sinusoidal input
s and Gaussian noise n(t): £ = = — 2® + esin27f + n(t) where ¢ = 0.1 and
f =0.01 Hz. The system has linear output y(t) = z(t) in (I) and binary output
y(t) = sgn(z(t)) in (II). The noise variances are the constants o2 = 0.25. (a)
Cauchy-like samples of 9%1 at each iteration n. (b) Converging variance test
as test of infinite variance. The sequence of sample variances converges to a finite
value if the underlying probability density has finite variance. Else it has infinite
variance. (c) Log-tail test of the parameter « for an alpha-stable bell curve. The
test looks at the plot of log Prob(X > u) versus logu for large . If the underlying
density is alpha-stable with a@ < 2 then the slope of this plot is approximately
—a. This test found that & & 1 and so the density was approximately Cauchy.

38
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4.2

4.3

4.4

4.5

Visual display of & = "7, . 5,241 with simulation of ¥ in (4.29) from
the system’s Jacobian. (I) The quartic bistable system = = z — 2% + s(¢) + n(t)
where s(t) = esin 27 f withe = 0.1 and f = 0.01 Hz and linear output y(t) = z(t).
(II) The FHN model ez = —:c(:z: -3 —z+A+s(t)+n(t) and 2 = z — z with
sinusoidal input signal with e = 0.01 and fo = 0.5, output y(¢) = z(¢), and
parameters € = 0.005 and A = —(5/12v/3+40.07) = —.31056. The noise variances
are the constants o2 = 0.25 for the quartic blstable system and 02 =4 x 107
for the FHN model (a) Cauchy-like samples of 2<a 5> at each iteration n. (b)
Converging variance test as test of infinite variance. The sequence of sample
variances converges to a finite value if the underlying probability density has
finite variance. Else it has infinite variance. (c) Log-tail test of the parameter
a for an alpha-stable bell curve. The test looks at the plot of log Prob(X > u)
versus logu for large u. If the underlying density is alpha-stable with a < 2 then
the slope of this plot is approximately —a. This test found that o = 1 and so the
density was approximately Cauchy for bothcases. .. ...............
Visual display of sample statistics of approximated % for the quartic bistable
system & = z — 2% + s + n with sinusoidal input s(t) = 0.1sin27(0.01)¢ and
Gaussian noise n(t). The system has linear output y(¢) = z(¢) in (I) and binary

output in (II). (a) Cauchy-like samples of is-amn at each iteration n We compute
Sn=S$uc1 _ NaolN
95NRy 5t each iteration from ‘9SNR" ~ ( 1 2=l )sgn (0, — On—1) in

(4.53). We vary the noise level O’n betweeg on = 0. 50 "and o, = 0.51 so that
sgn (o, — opn—1) changes values between 1 and —1. The plot shows impulsiveness
of the random variable &6’%&. (b) Converging variance test as test of infinite
variance. The sequence of sample variances converges to a finite value if the
underlying probability density has finite variance. Else it has infinite variance.
(c) Log-tail test of the parameter « in for an alpha-stable bell curve. The test
looks at the plot of log Prob(X > u) versus logu for large u. If the underlying
density is alpha-stable with o < 2 then the slope of this plot is approximately
—a. This test found that a = 1 and so the density was approximately Cauchy.
The result is that we need to apply the Cauchy noise suppressor (4.77) to the
approximate SR gradient m“- in (4.53) as well as to the exact SR gradient in
(A.73). . o o e e e e

Visual display of samples from the equilibrium term &,, = —:- (-8-§l / %) (a)

Cauchy-like impulsive samples of £, at each iteration n for the discretized version
of the quartic bistable system & = z — 23 + £sin 27 fot + n(t) where ¢ = 0.1 and
fo = 0.01 Hz. The system outputs are (I) y; = z; and (II) y; = sgn(z;). The noise
intensity is the constant o2 = 0.25 that lies near the optimal level. (b) Converging
variance test as a test for infinite variance. The sequence of sample variances will
converge to a finite value if the underlying probability density has finite variance
and diverges if it has infinite variance. (c) Log-tail test of the parameter « in an
alpha-stable probability density. The test plots log Prob(X > u) versus logu for
large u. If the density is alpha-stable with @ < 2 then the slope of this plot is
approximately —a. The test found o = 1. So the probability density of £, was

Cauchy suppressor The graph in (a) shows the Cauchy suppressor as a function
o(z) = H—zq The plots in (b) show samples of the impulsive gradients %
and their Cauchy suppressed samples. . . . ... ... .... .. .. .......
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4.6

4.7

4.8

5.1

5.2

5.3

Feedforward fuzzy function approximator. (a) The parallel associative structure
of the additive fuzzy system F : R® — RP with m rules. Each input zo € R"
enters the system F as a numerical vector. At the set level zy acts as a delta
pulse §(z — z¢) that combs the if-part fuzzy sets A; and gives the m set values
a;(z0) = [pa 6(z — Zo)aj(z)dz. The set values “fire” or scale the then-part fuzzy
sets B; to give B}. A standard additive model (SAM) scales each B; with a;(z).
Then the system sums the B;- sets to give the output “set” B. The system output
F(zo) is the centroid of B. (b) Fuzzy rules define Cartesian rule patches 4; x B;
in the input-output space and cover the graph of the approximand f. This leads
to exponential rule explosion in high dimensions. Optimal lone rules cover the
extrema of the approximand as in Figure 4.7. . . . . .. ... .. ... ......
Lone optimal fuzzy rule patches cover the extrema of approximand f. A lone
rule defines a flat line segment that cuts the graph of the local extremum in at
least two places. The mean value theorem implies that the extremum lies between
these points. This can reduce much of fuzzy function approximation to the search
for zeroes £ of the derivativemap f': f'(£)=0. . ... .. ... ... ......
Fuzzy function approximation. 2-D Sinc standard additive model (SAM) func-
tion approximation with 100 fuzzy if-then rules and supervised gradient descent
learning. (a) Desired function or approximand f. (b) SAM initial phase as a flat
sheet or constant approximator F. (c¢) SAM approximator F after it initializes
its centroids to the samples: ¢; = f(m;). (d) SAM approximator F after 100
epochs of learning. (¢) SAM approximator F after 6000 epochs of learning. (f)
Absolute error of the fuzzy function approximation (|f = F|). . . .. .. ... ..

Learning paths for the quartic bistable system & = z — 2® + s + n with sinu-
soidal input s and Gaussian noise n. The sinusoidal input s(t) = £sin 2 ft has
parameters € = 0.1 and f = 0.01. The system has linear output y(¢) = z(¢) in
(a) and binary output y(t) = sgn(z(t)) in (b). The learning law takes the form
(4.44). The optimal noise level is o & 0.5 for both cases. The impulsiveness of
the learning term 25NE destabilizes the learning process near the optimal noise

Learning paths for the quartic bistable system & = z — 3 + s +n with sinusoidal
input s(f) = esin2xft and Gaussian noise n. The system has linear output
y(t) = z(t). The learning law has the form (5.10). The parameters of input sine
waves are (a) € = 0.1 and f = 0.001 and (b) (a) € = 0.1 and f = 0.01. Optimal
noise levels are (a) ¢ =~ 0.35 and (b) o &~ 0.5. The learning paths converge close
totheoptimallevels. . . . . . ... ... ... ... .. .. . .. . ...
Impulsive effects on learning paths of noise intensity o,. The quartic bistable
system has the form & = z — 2 + s(t) + n(t) with binary output y(t) = sgn(z(t))
and initial condition z(0) = —1. The input sinusoid signal function is s(t) =
0.1sin27(0.01)¢. (a) The sequence o, with different initial values that differ from
the optimum noise intensity. (b) Noise-SNR, profile of the quartic bistable system.
The graph shows that the optimum noise intensity lies near ¢ = 0.5. The paths
of o, do not converge to the optimum noise. This stems from the impulsiveness
of the derivative term 25JlBa in the approximate SR learning law (5.11). . . . . .
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5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Learning paths of o, with the Cauchy noise suppressor ¢(z) = 2z/(1 + 2%) for
the quartic bistable system with binary threshold output y; = sgn(z:). The
term ¢(%ﬂ) replaces %‘1 in the SR learning law (4.50). The paths of oy,
wander in a Brownian-like motion around the optimum noise. The suppressor
function ¢ makes the learning algorithm more robust against impulsive shocks.
The input signals are (a) s(t) = 0.1sin2x(0.001)¢, (b) s(t) = 0.1sin2x(0.005)t,
(c) s(t) = 0.1sin27(0.01)t, and (d) s(¢) = 0.2sin27(0.01)¢. . . . . . ... .. ...
Learning paths of o, for other noise densities in the quartic bistable system
with binary output y; = sgn(z,). The input signal is s(¢) = 0.1sin2#(0.01)¢. The
optimal noise lies near o = 0.5 for both cases of (a) Laplace noise and (b) uniform
DOISE. o v v e e e e e e e e e e e e e e e e e e e e
Learning paths of the scaling factor A, in chaotic noise n, = An(z, — §) from
the logistic dynamical system 2;+1 = 42;(1 — 2;). The dynamical system is the
quartic bistable system with binary output y, = sgn(z;). The input signal is
s(t) = esin 2w fot where fo = 0.01 Hz and € = 0.1. The top figure shows a sample
noise path n; from the chaotic logistic map when A, =1. . ... ... ......
Learning paths of s, for alpha-stable noise in the quartic bistable system with
binary output y; = sgn(z;). The input signal is s(t) = 0.1sin2x(0.01)¢. (a)
a=19. (b) @ =1.8. (c) a =1. The noise scale « acts like a standard deviation
and controls the width of the alpha-stable bell curve through the dispersion v =
£*. Learning becomes more difficult as o falls and the bell curves have thicker
tails. The impulsiveness is so severe in the Cauchy case (c) that &, often fails to
converge. Note the noisy multimodal nature of the SNR profiles. . ... ... ..
SR learning paths of o, for the threshold system y; = sgn(s; + n; — ©) where
sgn(z) = 1 if z > 0 and sgn(z) = -1 if z < 0. The sinusoidal input is s, =
€ sin 2w fot with additive white Gaussian noise sequence n¢. The parameters are
(a) fo =0.001,£=0.1,and © = 0.5 and (b) fo =0.001,e=05,and©® =1.. ..
SR learning paths of g, for the forced bistable neuron model £ = —z +2tanhz +
€sin 27 fot + n(t) with binary output y(t) = sgn(z(¢)). The parameters of the
sinusoidal inputs are fo =0.01 Hzand (a) e =0.1and (b) e=0.3. ... ... ..
SR learning paths of o, for the FitzHugh-Nagumo neuron model ei = —z(z% —
1) = z+ A+ s(t) + n(t) and 2 = z — z with output y(t) = z(t). The parameters
are € = 0.005 and A = —(5/12v/3 + 0.07) = —.31056. The sinusoidal input
signal is s(t) = esin 27 fot where (a) € = 0.01 and fo = 0.1 Hz and (b) € = 0.01
and fo = 0.5 Hz. Figures (a) and (b) show how SR learning convergence can
depend on initial conditions. The distant starting point g > 7.5 x 10~2 leads
to divergence in the third learning sample in (a) but leads to convergence in the
third learning samplein (b). . . . . . .. .. .. L. oo L o oo
SR learning paths of o, for the forced Duffing oscillator # = —6% + = — z® +
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Abstract

This dissertation introduces and explores the new property of adaptive stochastic resonance
(ASR). Stochastic resonance (SR) occurs when noise enhances an external forcing signal in a
nonlinear dynamical system. ASR uses statistical learning techniques that learn the optimal
level of noise to add to a nonlinear system in the sense that this level of noise will maximize the
system’s signal-to-noise ratio or that it will improve or extremize other measures of how well
the system performs. This dissertation studies how adaptive systems can achieve ASR based on
only samples from the process or based on these samples and minimal estimates of the system
dynamics.

The fundamental result of this research is that stochastic gradient learning can achieve ASR.
A statistical learning system can learn the SR effect if it performs a stochastic gradient ascent
on a system performance measure such as the system’s spectral signal-to-noise ratio. But the
gradient becomes so impulsive near optimality that it can destabilize the learning process. A
Cauchy noise suppressor solves this problem and lets the stochastic-gradient learning laws train
on noisy input-output samples to achieve stochastic resonance.

This research led to new stochastic learning laws for different types of systems and signals
and for different types of performance measures. Stochastic gradient ascent on the signal-
to-noise ratio led to ASR for narrowband signals. But broadband forcing signals required a
correlation performance measure and often required some estimate of the Jacobian structure of
the dynamical system.

We discovered stochastic resonance in nonlinear systems with impulsive noise that has infi-
nite variance. An exponential law relates the SR effect or the optimal noise dispersion to the
impulsiveness. We also showed that “smart” or black-box function approximators such as adap-
tive fuzzy systems can learn to induce the SR effect in many nonlinear systems. We developed

new fuzzy learning laws for systems that take as input both numerical vectors and entire fuzzy
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sets. The appendices present these fuzzy results and apply them to the multimedia problem of
teaching an intelligent agent to learn a user’s preferences and to search databases on the user’s
behalf.

This research revealed many problems with ASR. The adaptive system required a large num-
ber of input-output samples or it required at least some knowledge of the system dynamics and
signals. We found no theorems to guarantee that the stochastic learning algorithms converge.
This reflects a fundamental problem of research in SR and ASR. Even simple system nonlinear-
ity can complicate or preclude a closed-form analysis and do so even if we have exact knowledge
of the nonlinear signal systems. Future research may lead to new learning laws or to new ways
to approximate the dynamics of nonlinear systems that stochastically resonate. This will help
answer the key question that underlies ASR: Which noisy dynamical systems show what SR

effects for which forcing signals and for which performance measures?
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Chapter 1

Introduction

1.1 Stochastic Resonance

Noise can sometimes enhance a signal as well as hurt it. The fact that “noise helps” may seem
at odds with almost a century of effort in signal processing to filter noise or to mask or cancel it.
But noise is itself a signal and a free source of energy. Noise can amplify a faint signal in some
feedback nonlinear systems even though too much noise can swamp the signal. This implies
that a system’s optimal noise level need not be zero noise. It also suggests that nonlinear signal
systems with nonzero-noise optima may be the rule rather than the exception.

Figure 1.1 shows how uniform pixel noise can improve our subjective perception of an image.
Here the system quantizes the original gray-scale “12 Sunflowers” image into a binary image of
black and white pixels. It gives an output as a white pixel if the input gray-scale pixel equals or
exceeds a threshold and a black pixel if the input gray-scale pixel is below the threshold. This
quantizer system is biased since it does not set the threshold at the midpoint of the gray scale.
So the quantized version of the original image contains almost no information. A small level of

noise sharpens the image contours and helps fill in features when it adds to the original image



(a) (b) (c) (d)

Figure 1.1: Uniform pixel noise can improve the subjective response of our nonlinear perceptual
system. The noise gives a nonmonotonic response. A small level of noise sharpens the image
features while too much noise degrades them. These noisy images result when we apply a pixel
threshold to Van Gogh’s popular “12 Sunflowers” painting: y = g((z+n)— ©) where g(z) = 1 if
z > 0 and g(z) = 0 if z < O for an input pixel value 2 € [0, 1] and output pixel value y € {0,1}.
The input image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold is © = 0.1.
We threshold the original “12 Sunflowers” image to give the faint image in (a). The uniform
noise n has zero mean m, = 0. The noise variance 2 grows from (b)-(d): o2 = 2.67 x 1073 in
(b), 02 = 6.51 x 1072 in (c), and 02 = 1.67 x 107! in (d).

before the system applies the threshold. Too much noise swamps the image and degrades its
contours.

Consider an example where noise can enhance an output of a dynamical system. Figure 1.2
shows the system diagram & = f(z) + s + n with input forcing signal s and noise n. The system
output y(¢) depends on the system state z(¢) through y = g(z). Then we take the discrete
Fourier transform of the output samples y: to compute the spectral signal-to-noise ratio (SNR)
with (3.15) in Chapter 3. Figure 1.3 shows an example where noise can enhance the output
of the popular quartic bistable dynamical system & = z — 2° + s + n [13, 27, 217] discussed
in Chapter 2. A weak sinusoidal input signal s and additive white Gaussian noise n force the
system. The system output y(t) = z(t) barely respond to the sinusoidal input signal s when
the noise n is absent (when o = 0). A small amount of noise (¢ = 0.5) improves the system
output so that it resembles the sinusoidal input signal while too much noise (¢ = 1) destroys

the periodic pattern of the system output. Other signal systems might use a cross-correlation

measure as in Figure 2.3.
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Figure 1.2: System diagram for stochastic resonance within a signal-to-noise framework. A
dynamical system & = f(z) + s + n has input forcing signal s and noise n. The system output
y depends on the system state z through y = g(z) and Y[k] is the discrete Fourier transform
(DFT) of the time signal y(t). Wavelets or other transforms can replace the DFT block. The
figure shows how the input noise process n(t) drives the spectral signal-to-noise ratio (SNR) of
the system. This suggests that stochastic gradient ascent on the SNR can learn the optimal
noise level that achieves stochastic resonance.

Stochastic resonance (SR) [11, 12, 13, 22, 24, 27, 77, 93, 102, 148, 188, 189, 219, 223, 224,
234, 313] occurs when noise enhances an external forcing signal in a nonlinear dynamical system.
SR occurs in a signal system if and only if the system has a nonzero noise optimum [212]. The
classic SR signature is a signal-to-noise ratio (SNR) of the system output that is not monotone.
Figure 1.4 shows the SR effect for the quartic bistable dynamical system. The sinusoidal input
signal has the form s(t) = esinwpt and the additive white Gaussian noise n has zero mean
and variance o?. Equation (3.15) in Chapter 3 defines the SNR of the system output y at
the frequency wp. The SNR rises to a maximum and then falls as the variance of the additive
white noise grows. Note that the SNR is not infinite for zero input noise because it measures
the spectral energy ratio of the system output y. The SNR becomes large when the output
y resembles the sinusoidal input signal s so that most of its spectral energy engery lies in the
frequency bin wg. More complex systems may have multimodal SNRs and so show stochastic
“multiresonance” [92, 308].

Stochastic resonance holds promise for the design of engineering systems in a wide range
of applications. Engineers may want to shape the noise background of a fixed signal pattern
to exploit the SR effect. Or they may want to adapt their signals to exploit a fixed noise

background. Engineers now add noise to some systems to improve how humans perceive signals.
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Figure 1.3: Gaussian noise can improve the output signal-to-noise ratio of a quartic bistable
dynamical system & = z — 2° + s + n. The plot (a) shows the sinusoidal input signal s(t) =
0.1sin(27(0.01)¢). The zero-mean Gaussian noise n has variance 0. The graphs (b)-(d) show
the system output y(t) = z(¢) for different noise levels: ¢ = 0, 0.5, and 1. The system barely
responds to the input signal s when there is no noise (¢ = 0) in (b). The plot (c) shows that the
right amount of noise (¢ = 0.5) maximally enhances the performance of the system so that its
output resembles the sinusoidal signal. Too much noise (¢ = 1) destroys the periodic pattern in
the output as in (d).
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Figure 1.4: The non-monotonic signature of stochastic resonance. The graph shows the
smoothed output signal-to-noise ratio of a quartic bistable system as a function of the stan-
dard deviation of additive white Gaussian noise. The vertical dashed lines show the absolute
deviation between the smallest and largest outliers in each sample average of 20 outcomes. The
system has a nonzero noise optimum and thus shows the SR effect. The noisy signal-forced
quartic bistable dynamical system has the form & = f(z) + s(t) + n(t) = z — 2% + e sinwot + n(t)
with binary output y(t) = sgn(z(t)). The Gaussian noise n(t) adds to the external forcing
narrowband signal s(tf) = esinwpt. Equation (3.15) in Chapter 3 defines the SNR measure.
Other systems can use multiplicative noise [9, 28, 76, 85, 90, 96] or use non-Gaussian noise
[41, 43, 44, 92, 251].



These systems include audio compact discs [177], analog-to-digital devices [10], video images
[285], schemes for visual perception [268, 269, 291], and cochlear implants [79, 216, 220].

Some control and quantization schemes add a noise-like dither to improve system per-
formance [10, 174, 177, 239, 285]. Additive noise can sometimes stabilize chaotic attractors
[16, 89, 201]. Noise can also improve human tactile response [54, 271}, muscle contraction [48],
and coordination [57). This suggests that SR designs may improve how robots grasp objects
[69] or balance themselves. SR designs might also improve how virtual or augmented reality
systems [33, 125] can create or enhance the sensations of touch and balance.

Stochastic resonance designs might lead to better schemes to filter or multiplex the faint
signals found in spread spectrum communication systems [82, 290]. These systems transmit and
detect faint signals in noisy backgrounds across wide bands of frequencies. SR designs might
also exploit the signal-based crosstalk noise found in cellular systems [169, 292], Ethernet packet
flows [170], or Internet congestion [132].

The study of SR has emerged largely from physics and biology. The awkward term “stochas-
tic resonance” stems from a 1981 article in which physicists observed “the cooperative effect
between internal mechanism and the external periodic forcing” in some nonlinear dynamical
systems [13]. (A more apt term might be “noise resonance.”) Scientists soon explored SR in
climate models [236] to explain how noise could induce periodic ice ages [11, 12, 234, 235].
They conjectured that global or other noise sources could amplify small periodic variations
in the Earth’s orbit. This might explain the observed 100,000 year primary cycle of the
Earth’s ice ages. This SR conjecture remains the subject of debate [84, 235, 315]. Physi-
cists have since found stronger evidence of SR in ring lasers [203, 304], threshold hysteretic
Schmitt triggers [80, 204], Chua’s electrical circuit [4, 5], bistable magnetic systems [111],
electron paramagnetic resonance [94, 97, 270], magnetoelastic ribbons [294], superconducting
quantum interference devices (SQUIDs) [119, 136, 275], Ising systems {20, 227, 289], coupled

diode resonators [178], tunnel diodes [198, 199], Josephson junctions [23, 120}, optical systems



[9, 70, 140], chemical systems [71, 83, 114, 124, 149, 172, 218], and quantum-mechanical systems
(107, 108, 109, 110, 180, 195, 250, 266, 302].

Some biological systems may have evolved to exploit the SR effect. Most SR studies have
searched for the SR effect in the sensory processing of prey and predators. Noisy or turbulent
water can help the mechanoreceptor hair cells of the crayfish Procambarus clarkii detect faint
periodic signals of predators such as a bass’s fin motion [67, 68, 224, 247, 254, 258, 313]. Noise
helps the mechanosensors of the cricket Acheta domestica detect small-amplitude low-frequency
air signals from predators [173, 206, 207). Dogfish sharks use noise in their mouth sensors when
they detect periodic signals from prey [17]. The SR effect appears in the mechanoreceptors in
a rat’s skin [53] and in the neurons in a rat’s hippocampus [104]. The SR effect also occurs
in a wide range of models of neurons [26, 28, 50, 51, 52, 118, 253, 297] and neural networks

[25, 26, 28, 30, 31, 47, 50, 51, 52, 133, 134, 176, 181, 182, 183, 184, 185, 186, 221, 228, 251].

1.2 Current State of Research on Stochastic Resonance

Research in SR has grown from the study of external periodic signals in simple dynamical
systems to the study of external aperiodic and broadband signals in more complex dynamical
systems [38, 41, 47, 50, 51, 52, 53, 118, 127, 173, 255, 297]. The analyses in current SR research
literature focus on systems with small forcing signals and Gaussian noise or other finite-variance
noise. These assumptions give rise to simple closed-form approximations of the SR effect. But
they do not represent all systems in real-world situations. The breadth of SR systems discussed
in the previous section suggests that the SR effect may occur in still more complex dynamical
systems for still more complex signals and noise types. These sighal systems may prove too
complex to obtain closed-form math models. And the math models may still prove too complex
to approximate the SR effect with simple closed-form techniques. This suggests in turn that
we might use “intelligent” or adaptive model-free techniques to learn or approximate the SR

effects.



Most SR research to date deals with Gaussian noise. A few models work with other finite-
variance noise such as uniform noise, Laplace noise, or (bounded) chaotic noise [41, 43, 44,
92, 212, 251]. This dissertation explores adaptive stochastic resonance with noise from these
densities. It also shows for the first time the SR effect that arises from infinite-variance noise such

as alpha-stable noise. Here a dispersion measure replaces the more common variance measure.

1.3 Adaptive Stochastic Resonance: Dissertation

Objective and Results

Studies of “stochastic resonance” (SR) show that sometimes noise can help a system as well as
hurt it. Noise can enhance signals that force a nonlinear system. This raises many new research
questions: What is the best level of noise for a given feedback or feedforward system? What is
the best type of noise? Which signals best “resonate” with which noise types?

This dissertation explores these questions with what we call edaptive stochastic resonance
(ASR). ASR uses statistical learning techniques to learn the optimal level of noise to add to a
nonlinear system to maximize its signal-to-noise ratio or to improve other measures of how well
the system performs. ASR can also tune the forcing signals or tune the nonlinear system itself
to improve its performance.

This dissertation studies ASR. for two broad categories of signal systems. The first category
consists of systems with narrowband or sinusoidal forcing signals. The second broad category
consists of systems with any periodic signals and broadband or non-periodic signals. ASR
techniques are simpler in the narrowband case. The learning schemes tend to involve less com-
putation and yield more accurate results in the narrowband case than they do in the broadband
case.

The fundamental result of this research is that stochastic gradient learning can achieve ASR.
A statistical learning system can learn the SR effect (can converge to or near the optimal level of

additive noise) if it performs a stochastic gradient ascent on a system performance measure such



as the system’s spectral signal-to-noise ratio. But statistical tests confirm that simple gradient-
ascent learning laws fail to converge to the optimal noise values. The learning process becomes
so impulsive (it approximates a thick-tailed Cauchy probability density) near optimality that it
destabilizes the learning process. So the noise optimum acts more as a dynamical repellor than
as an attractor. We overcame this problem by including a Cauchy noise suppressor from the
theory of robust statistics. This Cauchy-suppressor structure allows many types of stochastic-
gradient learning laws to “blindly” train on noisy input-output samples and achieve the SR
effect for a wide range of nonlinear dynamical systems, performance measures, forcing signals,
and noise types.

This research led to many other results. Different types of systems and signals required
different types of performance measures and thus different stochastic learning laws (but all
need Cauchy impulse suppression). A system’s spectral signal-to-noise ratio worked well for
narrowband signals but not for the more general case of broadband forcing signals. Broadband
forcing signals required a correlation performance measure and thus a correlation-based learning
law. Broadband models often required some estimate of the Jacobian structure of the forced
dynamical system.

This research also discovered the first instance of stochastic resonance in nonlinear systems
where the forcing noise is so impulsive that it has infinite variance. All published SR models
to date assume that the forcing additive noise has finite variance. Almost all SR models have
assumed that the noise is Gaussian. Indeed the standard graph of the SR effect plots the signal-
to-noise ratio on one axis against this finite-variance term on the other axis. This formulation
precludes even the definition of the SR effect in the general case when the noise process has
infinite variance. The implicit assumption in such models is that variance equals dispersion. But
a mathematical variance is just one of many ways to measure the dispersion in a random variable.
We showed that if we parametrize infinite-variance noise densities with the a of alpha-stable

probability densities then not only does the SR effect still occur (when we plot a performance



measure against a bell-curve’s dispersion parameter ) but in many cases it obeys an exponential
law: 7op () = BA®. The SR effect tends to lessen as the impulsiveness increases (as « falls).

The research further showed that “smart” or black-box function approximators can learn to
induce the SR effect in many nonlinear systems. We showed this for adaptive fuzzy systems
that slowly learn from input-output samples of the process how to tune their if-then rules
to achieve the SR effect. We developed along the way new fuzzy learning laws for systems
that take as input both numerical vectors and entire fuzzy sets. Appendices A and B present
this background research on how a large class of feedforward fuzzy systems can learn from
sample data and “blindly” approximate functions and how we can apply these new tools to the
multimedia problem of teaching an intelligent agent to learn a user’s preferences and search
databases on the user’s behalf.

This research also revealed many problems with the ASR results. Even the best applications
involved heavy computation and required a large number of input-output samples that real
systems may not provide. The only evidence that the learning algorithms converged came from
extensive computer simulations of all known SR models. The research did not produce a formal
theorem that proved convergence. This reflects the fundamental problem of research in SR
and ASR. We seldom have exact knowledge of the sampled nonlinear signal systems or of the
forcing broadband signals. Even the few known SR systems are sufficiently nonlinear to greatly
complicate a closed-form analysis. A key challenge is to estimate at least the Jacobian structure
of the sampled systems with unknown dynamics. Such research faces a tradeoff. ASR learning
schemes will tend to improve as we know more of the dynamical structure of the system or of the
spectral structure of its forcing broadband signals. But the more such knowledge we require the
more we restrict the application of ASR techniques. Future research may lessen this tradeoff if
it leads to new SR performance measures or to new learning laws or to new ways to approximate

the dynamics of nonlinear systems that stochastically resonate.



1.4 Dissertation Outline

This dissertation consists of six Chapters. Chapter 1 introduces the notion of stochastic reso-
nance (SR) and states the problems in adaptive stochastic resonance. Chapter 2 briefly reviews
nonlinear systems with external forcing signal and noise terms and defines the performance mea-
sures for different kinds of input signals and systems. Chapter 3 describes a discrete algorithm
that simulates nonlinear dynamical systems with additive forcing signals and noise and defines
the performance measures from sample data. It also tests many SR systems with alpha-stable
noise. Chapter 4 derives the learning laws that stochastically determine the optimal noise in a
nonlinear system and presents the adaptive fuzzy function approximator as a universal approxi-
mator. Chapter 5 shows simulation results of adaptive stochastic resonance for many dynamical
systems and for many noise types Chapter 6 concludes this dissertation and discusses future
research in adaptive stochastic resonance. Appendix A discusses adaptive fuzzy systems as uni-
versal function approximators that learn from sample data. Appendix B shows how we apply
this universal approximator to learn a user’s preferences and search a database on the user’s

behalf.
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Chapter 2

Stochastic Resonance and

Optimal Noise

Not all dynamical systems show the SR effect. And the SR effect does not occur for all input
forcing signals. This chapter reviews several nonlinear dynamical systems and their forcing
input signals and noise that show SR. The sinusoidal or broadband signals and additive noise
force the dynamical systems. The output of a dynamical system depends on the system states.
The system performance depends on the input signal and output measurements. Below we list
many signal systems in the literature that exhibit the SR effect. Their optimal noise inputs are
nonzero. Then we review performance measures that determine the SR effect. Then we explore

the concept of optimal noise.

2.1 Stochastic Dynamical Systems

Nonlinearity and feedback can lead to stochastic resonance. This section reviews the main known
dynamical systems that show the SR effect. These models involve only simple nonlinearities.

And they simply add a random noise term to a differential equation rather than use a formal

11



Ito stochastic differential [49, 69, 99]. There are so far no theorems or formal taxonomies that
tell which dynamical systems show SR and which do not.
Consider a dynamical system that relates its input-output response through a differential

equation of the form

z = f(z)+u(z,t) (2.1)

y(t)

9(z(t)) (2.2)

Here a smooth nonlinear function f : R* — R" governs the system’s dynamics. The input u
may depend on both time ¢ and on the system’s state . The system is unforced or autonomous
when u(z,t) = 0 for all z and ¢t. The system output or measurement y € R” depends on the
state = through y = g(z) for a map ¢ : R® — RP. The output of a simple scalar model neuron
may be a signum function: y = sgn(z).

The input function u can be a deterministic function or a random process or a combination.

For example  can have the form

u(z,t) = s(t)+n(?) (2.3)

when u does not depend on z and the input forcing signal s and noise n are additive. This gives

(2.1)-(2.2) a form of

g = f(z)+s(t) +n() (2.4)

y(t) 9(z(t))- (2.5)

This dissertation works with dynamical systems of the form (2.4)-(2.5). Below we list some

popular systems in the SR literature.
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Figure 2.1: (I) Unforced quartic potential: U(z,t) = —122 + 1z*. (II) Forced evolution of the
noise-free quartic potential system: U(z,t) = —3z? + 2% + lzsin2rt. (a) Unforced potential

surface at ¢ = 0 when the sinusoidal forcing term is zero. (b) Surface U(z,t) at time t = . (c)

3
Surface U(z,t) at time t = 3.

¢ Quartic Bistable System [13, 63, 86, 95, 128, 141, 217, 321]. The quartic bistable system

is the most studied model that shows the SR effect. It has the form

(7]
z = —==U(z,t)+s(t) +n() (2.6)
oz
= az - bz + s(t) +n(t) 2.7
for a quartic potential U(z,t) = —%:1:2 + %x“ with @ > 0, b > 0, input signal s, and white noise n

with zero mean and variance ¢2: E[n] = 0 and Var(n) = 62 < co. The output of this system can
have a linear form y(t) = z(t) or a binary form y(¢) = sgn(z(t)). Researchers sometimes include
the forcing signal s and noise n in the potential function: U(z,t) = —222+ 224 +2(t)[s(t) +n(2)].

The unforced version of (2.7) has the form & = azx — bz®. It has two stable fixed points at
z = +c = ++/a/b and one metastable fixed point at £ = 0. These fixed points are the minima
and the local maximum of the potential U (z,t) = —%a? + 2z*. Figure 2.1(I) shows the quartic
potential for a = b = 1. The two minima are at z = +1. The figure shows the potential at

rest and hence with no input force. Figure 2.1(II) shows the potential U(z,t) when the external

sinusoidal input modulates it at each time instant 2.
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e Threshold Systems [41, 92, 101, 105, 142, 143, 246]. Threshold systems are among the
simplest SR systems. They show the SR effect for many of the performance measures in the
next section. A simple threshold system can take the form

-1 if z(t)<©
y(t) = sgn(z(t)) = (2.8)
1 if z(t)>0
for the signal z(t) = s(¢) + n(¢) and a threshold © € R.

Thresholds quantize signals. So we state the general forms of uniform infinite quantizers

with gain G > 0. A uniform mid-tread quantizer with step size A has the form

v = Qo) = aa|Z2 42|, (29

A mid-riser quantizer has the form

ca

= (2.10)

v® = Qe = a2,

The floor operator || gives the greatest integer less than or equal to its argument. Researchers
have studied the SR effect in M -level quantizers that approximate some dynamical systems
[248].

¢ Bistable Potential Neuron Model [28]. This neuron model is a bistable system of the
form

T = —x + (o + nm(t)) tanh z + ng(t) + s(2). (2.11)

The multiplicative and additive noises n,, and n, are zero mean and uncorrelated. The term

7o is a constant. The output of the system has a binary form y(t) = sgn(z(t)).

14



¢ FitzHugh-Nagumo (FHN) Neuron Model (38, 50, 51, 52, 118, 181, 182, 221, 253, 314].

The FHN neuron model is a two-dimensional limit cycle oscillator that has the form

€T z(z—a)(l—z)—w+ A+s(t) +n(t) (2.12)

2 = z—z-b (2.13)

Here z is a fast (voltage) variable, z is a slow (recovery) variable, A is a constant (tonic)
activation signal, s is an input signal, and n is noise. The system output can take the linear
form y(t) = z(t) or we can consider the average firing rate where y(t) is a low-pass filtered version
of z. Sample constants for the SR effect are € = 0.005, a = 0.5, A = —5/12v/3 = —0.24056, and
b=0.15 [52].

o Integrate-Fire Neuron Model [26, 32, 42, 44, 50, 85, 259, 297). This neuron model

has linear activation dynamics:

£ = Aur — )+ p+ 3(t) + n(t) (2.14)

where z is cell membrane voltage, p is a positive drift, A is a decay constant rate, and u, is
a resting level. A threshold function governs the neuron’s output pulse firing and gives the
nonlinear system that shows the SR effect.

e Hodgkin-Huxley Neuron Model [50, 183, 255]. The Hodgin-Huxley model is among

the most studied models in the neural literature:

Ci = —gnam3h(z —zNa) - gkP (T — k) — grl@ — L) + T+ s(t) +n(t) (2.15)
m = am(@)(1-m) = Bn(z)m (2.16)
h = ap(@)1 - h)—Bu(z)h (2.17)
p = ap(@)(1-p)-Bp(x)p. (2.18)
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Here z is the membrane potential or activation and m is the sodium activation. The term h
is the sodium inactivation, p is the potassium activation, C is the membrane capacitance, zz
is the leakage reversal potential, g, is the leakage conductance, zx is the potassium reversal
potential, g is the maximal potassium conductance, pg is the potassium ion-channel density,
TN is the sodium reversal potential, gy, is the maximal sodium conductance, pn, is the sodium
ion-channel density, I is an input current, and s is a subthreshold aperiodic input signal. The
membrane potential z determines the output firing of the neuron. SR occurs when a low level
of noise n brings the input signal above the neuron’s firing threshold.

e Monostable Systems [72, 73, 75, 112, 298, 306]. These systems have no potential barriers
as do bistable and multistable systeins. They have only one stable fixed point. A special case

is the single-well Duffing oscillator:
EF+2ME +wiz+ 923 = s(t) +n(t) = ecoswot + n(t) (2.19)

where I, |6w| < wp and yéw > O for dw = wp — wy. These systems show the SR effect in the
small signal limit with an approximate linear response.

e Array and Coupled Systems [25, 28, 30, 31, 47, 50, 51, 52, 106, 129, 133, 134, 144, 176,
181, 182, 183, 184, 185, 186, 215, 221, 227, 228, 229, 251, 263, 268, 269]. These systems combine
many units of the above systems. They include neural networks and other coupled systems. A

special case is the Cohen-Grossberg [158] feedback neural network:

N
Ci; = —% +5 mijtanhz; +s(8) +n(t)  fori=1,..,N (2.20)

i =

for neural activation potential z;, synaptic efficacy m;;, and hyperbolic neural firing function
S;(z;) = tanhz;. Simulations show that the SR profile grows more peaked as the number N of

neurons grows [134]. One study [134] found that the SR effect goes away for N > 10.
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¢ Chaotic Systems [3, 5, 13, 36, 60, 187, 237, 309, 310, 323]. Some chaotic systems show
the SR effect. These models include Chua’s electric circuit, the Henon map, the Lorenz system,

and the following forced Duffing oscillator:

& = —0&+z+a®+esin(wot) +n(t) (2.21)

with linear output y(t) = z(t). At least one researcher [100] has argued that noise-induced
chaos-order transitions need not be SR.
¢ Random Systems [15, 19, 29, 77, 171, 324]. These systems include many classical random
processes such as random walks and Poisson processes. They also include the pulse system [15]
whose response is a random train of pulses with a pulse probability r that depends on an input
signal V through
r(V(¢)) = r(0)exp(V(¢)). (2.22)

The input V is the signal plus noise: V'(¢) = s(t) + n(t). This model includes many kT-driven
physio-chemical systems [15].

Other systems in the literature show the SR effect 7, 11, 14, 20, 62, 126, 147, 200, 202,
227, 234, 264, 288, 307, 316, 320]. Special issues of physics journals [24, 219] also present other

systems that show SR. Most use the SR measures in the next section.

2.2 Performance Measures

SR depends on how the signal system “performs” as an input noise intensity varies. These
performance measures can depend on the forcing signal and noise and can vary from system to
system. They also depend on the application of the signal system. A system shows the SR effect
when nonzero noise maximizes a given performance measure. Different performance criterion
can give different performance curves and thus different “optimal” noise levels for a dynamical

system. There is no consensus in the SR literature on how to measure the SR effect.
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Some researchers study a stochastic dynamical system in terms of the Fokker-Planck (or
forward Kolmogorov) equation [65, 145, 222, 272):

op

2
2 o D (e t)p) + 5 g bz 1)) (223)

for the drift term a(z,t) and the diffusion term b(z,t). This partial differential equation stems
from a Taylor series and shows how a probability density function p of a Markov system’s states
evolves in time. But SR dynamical systems in general need not be Markov processes [90, 231].
System nonlinearities often preclude closed-form solutions. Approximations and assumptions
such as small noise and small signal effects can give closed-form solutions in some cases. These

solutions motivate some of the performance measures below.

2.2.1 Signal-to-Noise Ratio

The most common SR measure is some form of a signal-to-noise ratio (SNR) [80, 86, 98, 130,
202, 321]. This seems the most intuitive measure even though there are many ways to define a
SNR in a nonlinear system.

Suppose the input signal is the sine wave s(t) = e sinwpt. Then the SNR, measures how much

the system output y = g(z) contains the input signal frequency wy:

S

SNR = 10log N (2.24)
S(wo)

101 dB. 2.25

%€ N(wo) (2:25)

The signal power S = |Y (wp)|? is the magnitude of the output power spectrum Y (w) at the input
frequency wy. The background noise spectrum N(wp) at input frequency wp is some average
of |Y(w)|? at nearby frequencies [135, 202, 321]. The discrete Fourier transform (DFT) Y'[k]

for k =0,...,L — 1 is an exponentially weighted sum of elements of a discrete-time sequence
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Figure 2.2: The closed form solution of signal-to-noise ratio for a quartic bistable system ¢ =
az — bz® + s(t) + n(t) as in (2.29). The sinusoidal input s(t) = € sin 27 fot has small amplitude
e = 0.2 and low frequency fo = 0.01. The system’s parameters are a = b = 1 and so the
SNR closed form solution (2.29) gives an estimate of optimal Gaussian noise n at o* = /Up =

Va2]4b = 0.5.

{y0,%1,---,yL~1} of output signal samples
L—1
2nkt
Y[k] = ye exp{———}- 2.26
(%] ;Jt xp{~——} (2.26)

The signal frequency wp corresponds to bin ko in the DFT for integer ko = LAT fo and for
wo = 27 fo. This gives the output signal in terms of a DFT as S = |Y[ko]|2. The noise power
N = Nlko) is the average power in the adjacent bins kg — M, ..., ko — 1, ko +1,...,ko + M for

some integer M [6, 321]:
1 M
N = 222 > (¥Tko = 3] + (Y ko + )I°)- (2.27)
=1

We expand this noise term to include all energy not due to the signal as discussed in Chapter 5.
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An adiabatic approximation [202] can give an explicit signal-to-noise ratio R for the quartic

bistable system in (2.7) with sinusoidal input s(t) = & sinwpt:

4q2%e2c? exp{ 4Uo}
S [V2ee%? 2Up 72(a2)2 T o2
R N [ (02)? exp{-?,‘,—}] 1= 32 4U, 9 (228)
oz &P —7}"‘“’0
p) 2.2
% exp{—2Uo/0?}. (2.29)

Here Uy = a/4b is the barrier height when ¢ = 0, £ = +c = ++/a/b defines the potential
minima, and o2 is the variance of the additive white Gaussian noise n. This result stems from
Kramers rate [164] if the signal amplitude ¢ is small and if its frequency is smaller than the
characteristic rate or curvature at the minimum U"(%c) [202]. The SNR approximation (2.29)
is zero for zero noise 02 = 0. It grows from zero as o2 grows and reaches a maximum at
02 = Up before it decays. So the optimum noise intensity is 0> = Uy = a%/4b. Figure 2.2
shows the SR profile of the closed form SNR in (2.29) for the quartic bistable system with
sinusoidal input. The parameters are a = b = 1 and ¢ = 0.2. Then the optimal noise level is at
02 = Uy = a®/4b = 0.25.

There is no standard definition of system-level signal and noise in nonlinear systems. This
dissertation works with a SNR that is easy to compute and that depends on standard spectral
power measures in signal processing as defined in Chapter 3. We apply the SNR measure only
to nonlinear systems with sinusoidal input signals. Figure 1.2 shows the diagram of a dynamical

system and how we obtain the SNR measure of the system output y.

2.2.2 Cross-Correlation Measures

These “shape matchers” can measure SR when inputs are not periodic signals. Researchers
coined the term “aperiodic stochastic resonance” (ASR) [47, 50, 51, 118] for such cases. They

defined cross-correlation measures for the input signal s and the system response in terms of
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Figure 2.3: System diagram for stochastic resonance within a cross-correlation framework. A
dynamical system & = f(z) + s + n has input forcing signal s and noise n. The system output
y depends on the system state x through y = g(z). The input noise process n(t) drives the
cross-correlation measure C. Note that C does not depend on the spectral structure of the input
signal or noise processes.

the mean transition rate r in the FHN model in (2.12)-(2.13):
Co = m1§.x{s(t)r(t+1')} (2.30)

and the normalized measure which has the form of sample correlation coefficients

= Go (2.31)

C, = — = .
s2(8)]H/2{[r(t) — r(®)]?}1/2

Here 7 is the time average: T = % /0 Tz(t)dt. Note that the cross-correlation measure Cp can
take any real value Cy € R and the correlation coefficient C, lies between —1 and 1. Figure
2.3 shows the diagram of a dynamical system and how we obtain the cross-correlation measure
Co of the system output y. This dissertation considers the cross-correlation measure Cy for

nonlinear systems with both sinusoidal and broadband input signals.

2.2.3 Information and Probability of Detection

Tools from information theory can also measure SR. The information rate of a threshold system
shows the SR effect for subthreshold inputs [32, 41, 42, 297). The FitzHugh-Nagumo (FHN)
neuron model (2.12)-(2.13) shows SR for aperiodic input waveforms when we measure the cross-

correlation between input and output or the information rate [50, 52, 118]. Noise can also
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sometimes maximize the mutual information [58]:

I(X;Y) = H(X)-HX|Y) = gp(z,y)log%. (2.32)

The mutual (Kullback) information I(X;Y’) and Fisher information [58] can measure SR in
some neuron models [32, 230, 297]. Probability of correct detection and other statistics can also

measure SR [127, 135, 297)].

2.2.4 Probability of Residence Time and Escape Rate

This approach looks at the probability P(T) of the time T that a dynamical system spends in
a stable state between consecutive switches between the stable states [62, 77, 95, 141, 322]. So
P(T) depends on the input noise intensity. Data can give a histogram of this P(T') to estimate
the actual probability for each input noise intensity o2. The probability of residence time relates
to the first passage time density function (FPTDF) or the interspike interval histogram (ISIH)
found in the neurophysiological literature [19, 26, 29, 37, 87, 184, 185, 181, 182, 183, 194]. The
symmetric bistable system (2.7) with input s(t) = esinwpt gives a system that tends to stay at
or wander about one stable state for T = Tp/2 = 27 /wp seconds and then hops to a new stable

state as it tracks the input.

2.2.5 Complexity and Other Performance Measures

Researchers have suggested other ways to measure SR. These include Lyapunov exponents, Shan-
non entropy, fluctuation complexity that measures the net information gain, and e-complexity
for first-order Markov stochastic automata [187, 317).

Other forms of SR measures also occur in the SR literature. They include the other signal-to-
noise ratios [73, 143, 157, 175, 179), the amplification characteristic of a system like those found
in electronic devices [9, 45, 108, 109, 146), susceptibility [74, 75, 215, 299], “crisis” measure in

chaos [36], and prediction error of spike rates [38]. The number of SR performance measures will
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likely grow as researchers explore how noise and signals drive other systems in the vast function

space of nonlinear dynamical systems.

2.3 Optimal Noise

Stochastic resonance occurs when noise enhances a signal in the output of a system. So SR
occurs if and only if the system has nonzero noise optimum. The performance of the SR system
improves as noise grows from zero noise to a maximum and then falls as more noise swamps
the signal system. This rise and fall of a system performance measure as noise grows implies
a local maximum of the performance at some noise level. Some systems may have multiple
local maxima or stochastic “multiresonance” [92, 308]. This dissertation consider signal systems
with only one maximum in their SR profiles. The noise levels that maximize given performance
measures define the best noise or the optimal noise for such signal systems.

We can also change the shape of the probability density function that underlies the additive
noise that induces SR. This gives a more general definition of optimal noise drawn from all
possible probability distributions. An even broader scope would consider that an “optimal
noise” is some “signal.” So any deterministic or random signals that add to a system and
maximize its performance measure also qualify as optimal “noise.” Some systems may favor a
combination of different sinusoidal signals to enhance a particular input sine wave. This form of
crosstalk of many signals that enhance each other may prove useful in some nonlinear dynamical
systems. ASR for these systems may require knowledge and analysis of the signal systems rather
than just a few of their input-output samples.

This dissertation assumes that the form of input noise density does not change for a given
signal system. The ASR learning scheme only varies a variance or a dispersion measure of
the probability density function. Then the ASR system learns the optimal variance (through a
standard deviation) or dispersion (through a noise scale) of this density to achieve the stochastic

resonance effect.
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Chapter 3

Stochastic Resonance in

Computer Simulation

Discrete simulations can model the known continuous-time nonlinear dynamical systems in
Chapter 2. A stochastic numerical scheme approximates the system dynamics and its signal
and noise response. We use a simple stochastic version of the Euler scheme to model a nonlinear
system with input forcing signal and noise. We measure how the system performs based only

the system’s input-output samples.

3.1 Nonlinear System Simulations

Consider the forced dynamical system (2.4)-(2.5) with additive forcing input signal s and “white”

noise n

f(z) + s(t) +n(t) 3.1)

8-
il

9(z(t)). (3.2)

<

~~
s

—
I
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These models simply add noise term to a differential equation rather than use a formal Ito or
Stratonovich stochastic differentials [49, 69, 99]. Throughout this dissertation the “whiteness”
of a random variable n implies that n is white over some large but finite frequency bandwidth
interval [— B, B] for some large B > 0. Random numbers from the algorithms in [261, 39, 303]
act as noise from various distributions in our simulations. The sections below show how we

discretize the continuous-time systems to the discrete-time systems for computer simulation.

3.1.1 Nonlinear Systems with White Gaussian Noise

Consider the dynamical system (2.4) with initial condition z(to) = z¢. Here the white Gaussian
noise w has zero mean and unit variance so n = gw has zero mean and variance 2. This system

corresponds to the stochastic initial value problem [99]
dX = f(t,X)+a(t,X)dW (3.3)

for initial condition X (to) = Xo. Here f(t,X) = f(X)+3(t), o(t, X) = o and W is the standard
Wiener process [99]. We obtain its discrete form for computer simulation from the stochastic

version of Euler’s method (the Euler-Maruyama scheme) [61, 99, 134]:

Ty = o+ AT (f(ltt) + St) + a\/A_th (3.4)

y = g(xy) (3.5)

fort =0,1,2,... and initial condition zo. The input sample s; has the value of the signal s(¢tAT)
at time step . The zero-mean white Gaussian noise sequence {w;} has unit variance o2, = 1.
The term VAT scales w; so that VAT w; conforms with the Wiener increment [99, 134, 222).
The output sample y; is some transformation g of the system’s state ;.

This simple algorithm gives fairly accurate results for moderate nonlinear systems [99, 134,

183, 222]. There exist other algorithms that give more accurate numerical solutions of the
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Figure 3.1: Probability density functions and random realizations. The figure shows Gaussian,
Laplace, uniform, and binary random variables w with zero mean and variance of two: E[z] =0
and E[z°] = 0 = 2. The pseudo-random number generators in [261] act as noise sources with
these probability densities.

corresponding stochastic differential equations to more complicated system dynamics [99, 197].
All of the simulations in this dissertation will apply the Euler’s scheme in (3.4)-(3.5).

The numerical algorithm in [261] generates a sequence of pseudo-random numbers from a
Gaussian density with zero mean and unit variance for {w;} in (3.4). The Gaussian probability

density function (pdf) has the form

p(z) = Uﬁ;exr)(—%(m;m)z) (3.6)
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for mean E[z] = m and variance Var(z) = E[(z — m)?] = o>. Figure 3.1 shows the Gaussian

and other pdf’s that have zero mean and a variance of two.

3.1.2 Nonlinear Systems with Other Finite-Variance Noise

Now we consider a system (2.4) with any finite-variance noise n with other distributions. Sup-

pose the noise n has variance 0. We again apply the above Euler’s method for this system

Tiy1 = Tt + AT (f((tg) + St) + a\/A_th (37)

Ye+1 g(Te41)- (3.8)

Here the random sequence {w;} has distribution P(w) with zero mean and unit variance. The
numerical algorithms in [261] generate sequences of random variables with Laplace, uniform,
and binary density functions. A zero-mean Laplace random variable z has a density function of

the form [249)

pla) = £ exp(—clal) (3.9)

2 .
where z has variance Var(z) = E[z?] = 2 A density function for a zero-mean uniform random
variable = has the form

— if|z]|<a
p(z) = ¢ 2a (3.10)
0

otherwise

2
where z has variance E[z?] = %. A binary (bipolar) random variable z with zero mean and

variance ¢ has the density function

p(z) = (5(:1: —0) +6(z + a)). (3.11)

Do =

Here § is the Dirac delta function. Figure 3.1 plots the above probability density functions and

their realizations with mean zero and variance of two: E[z] = 0 and E[z?] = 2. The ASR
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simulations in Chapter 5 also test an SR system with input noise from an output of a chaotic

time series (the logistic map).

3.1.3 Nonlinear Systems with Alpha-Stable Noise

Here we consider a class of symmetric alpha-stable bell curves with parameter a in the charac-
teristic function exp{—|w|*} [18, 81, 286, 287]. The parameter « lies in 0 < a < 2 and gives the
Gaussian random variable when @ = 2 or when ¢(w) = exp{—w?}. So the standard Gaussian
random variable has zero mean and variance 02 = 2. The parameter « gives the thicker-tailed
Cauchy bell curve when a = 1 or ¢(w) = exp{—|w|} for a zero location and unit dispersion
Cauchy random variable. The moments of stable distributions with a < 2 are finite only up
to the order k for k < a. The Gaussian density alone has finite variance and higher moments.
Alpha-stable random variables characterize the class of normalized sums that converge in distri-
bution to a random variable [18] as in the famous Gaussian version of the central limit theorem.
Figure 3.2 shows realizations of some symmetric alpha-stable random variables.

Again we assume that the Euler’s method above applies to this class of random variables
with inifinite variance. Let w be a standard alpha-stable random variable with parameter a and
zero location and unit dispersion: ¢ = 0 and v = 1. Let & = 4!/® denote a “scale” factor of a
random variable. Then n = skw has zero location and dispersion v = x*. This leads us to the

Euler’s numerical solution

Tet1 z; + AT (f(mt) + 8t) + m/A—th (3.12)

v = g(xe). (3.13)

Here the factor VAT may not give the same interpretation as in the case of Gaussian random
variable from the Wiener increment viewpoint. The algorithm in [39, 303] generates a standard

alpha-stable random variable w.
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Figure 3.2: Samples of standard symmetric alpha-stable densities and their realizations. (a)
Density functions with zero location (@ = 0) and unit dispersion (y = 1) for a = 2, 1.5, 1,
and 0.5. The densities are bell curves with thicker tails as @ decreases. The case a = 2 gives
a Gaussian density with variance of two (or unit dispersion). The parameter a = 1 gives
the Cauchy density. (b) Samples of alpha-stable random variables with zero location and unit
dispersion. The plots show realizations when a = 1.9, 1.5, 1, and 0.5. Figure 3.1 shows the
case of & = 2 (Gaussian). Note the scale differences on the y-axes. The alpha-stable variable
z becomes more impulsive as the parameter a falls. The algorithm in [39, 303] generates these
realizations.
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3.2 Performance Measures

The choice of performance measure depends on an application of the system. Engineers often
rely on signal-to-noise ratio (SNR) to measure the quality of output signals and how their filters
perform. Other popular measures include mean-squared error and bit-error probability in many
signal processing and communication applications. These measures may not give the same
“optimal” noise level. This dissertation works with the two most popular performance measures
in the SR literature: signal-to-noise ratio and cross-correlation. These performance measures

depend on the input-output samples of dynamical systems.

3.2.1 Signal-to-Noise Ratio in Nonlinear Systems with

Sinusoidal Input

We start with a sinusoidal input and view the output state y(t) = g(z(t)) of the dynamical
system as a mixture of signal and noise. We arrange the DFT computation so that the energy
of the sine term lies in frequency bin k9. The squared magnitude of this energy spectrum
Y[ko] acts as the system-level signal: S = 2|Y[ko]|>. We view all else in the spectrum as noise:
N = P — 8 = P —2|Y[ko)|? where the total energy is P = E,ﬁ;& |Y[k}|2. We ignore the factor
L that scales S and P since the ratio S/N cancels its effect.

Suppose a nonlinear dynamical system has a sinusoidal forcing function s(t) of known fre-
quency fo Hertz. We search the sinusoidal part r(t) of the output y(t) for the known frequency
fo but unknown amplitude and phase in the system output response y(t). The “noisy signal”

y(t) has the form of “signal” plus “noise”:

Yy = ¢+ ng. (3.14)

The signal-to-noise ratio (SNR) at the output is the spectral ratio of the energy of {r:} to the
energy of {n:}. We assume that the signal s(t) is always present. This ignores the important
problem of signal detection but lets us focus on learning the SR effect.
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We define the SNR measure as

S S
N = — = —=——, .

SNR N P=3% (3.15)

L-1
Here S = 2|Y[ko)|?, P = Z |Y'[k]|?, and Y'[k] is the L-point discrete Fourier transform (DFT)

k=0

of y,:
= 2nk
YR = ) w exp{~i—~t}. (3.16)
=0

We assume that the discrete frequency ko = foLT, > 0 is an integer for sampling rate 1/7T; an d
wo = 2w fo. We also assume that there is no aliasing due to sampling. Then we can show that for

large L the SNR measure in (3.15) tends to the standard definition of SNR as a ratio of variances:

Theorem:
L—
o IR -2IY[R)? oh e P Eign?

T

Here o2 = % / (Asinwgt)?dt = A%/2 and 02 = Var(n) = E[n?]. We need further assump-
0

tions to derive (3.17). First consider the “energy” in each frequency bin k of the transform

Y[k

[Y{E)? = Y[k]Y*[k] (3.18)

(R[K] + N{k]) (R[k] + N[k])* (3.19)

KJd+ A m,>y R[K|R*[K] + RIEIN*[K] + R*[k]N[k] + N[k|N*[%] (3.20)

|R[K]|? + |N[k]|* + 2Re{R[K|N*[k]} (3.21)

where R[k] and N[k] are the DFTs of 7; and n; in (3.14). Suppose the sinusoidal term has the
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form

ry = Acos(2nw foTst + ¢) (3.22)

fort =0,...,L — 1. Its DFT has the form [240]

! 2k
R[k] = Z Tt exp{—iTt} (3.23)
t=0
L-1
2nk
= Z Acos(2m foTst + @) exp{—th} (3.24)
t=0
_ . B ﬁ sinaQ(k — ko)  sinaQ(k + ko)
= exp{ikQ¢ - a)} T k=) 20k + o) (3.25)
A
= exp{ik($ - )} = (80 — ko] + o[k — (L — ko)) (3.26)
8
. . 2r LTa .
where ko = foLT, > 0 is an integer, = is a frequency band, a = , and § is the

LT, 2
Kronecker delta function. So R[k] vanishes when both k # ko and k # L — ko. This gives

L-1 2 A2
S IRMP = IRkl + |BL- ko = 20B? = 2(22)" = A @)
k=0 8

So R[ko] and R[L — ko) contain all the energy of the sinusoidal signal 7;. We define the noise
power as 02 = E{n?} and assume that n; is stationary and ergodic with zero mean. Then

Parseval’s theorem gives

L-1 L-1
YINKE = LY Inef? (3.28)
k=0 =0
~ L(Lo2) (3.29)
= L%32. (3.30)

The ergodicity of n; gives (3.29). Now consider the total output spectrum P:

L-1
P = Y |Y[K? (3.31)
k=0
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L-1
Ykl + YL -ko]?+ ) |Y[]2 (3.32)
k=0,k#ko,L—ko

L-1
Ykl + >INk (3.33)
k=0,k#ko,L—ko

L-1
2|R[ko]l® + 2|N[ko]|® + 4 Re{R[ko]N*[ko]} + > INKI®  (3.39)
k=0,k#ko,L—ko

L-1
= 2|Rlk]®+ (X IN[k][?) + 4Re{RlkolN"[kol}. (3.35)
k=0
Then (3.35) and (3.21) give
L-1
P - 2[Y[k]® = ) INK? - 2|N[k]* (3.36)

=0

Then the SNR structure in (3.15) follows:

S

S
_ 2|RIko]1? + 2{N[ko][* + 4Re{R[ko] N*[ko]} (338
L-1 2 2 ’
(A2 INTEIEZ) - 21N Tk
2|R[Ico]|2 _ L2A2/2 _ A2/2
CUNEE D o (339

for large L and for small (or null) |[N[ko]| and |N[L — ko)|. Note that |[N[ko]| = |N[L — ko]| for
ko # 0 due to the symmetry of the DFT.
The result (3.39) also holds if the zero-mean noise sequence 7, is not correlated in time and

does not correlate with r,. Then we can take expectations of 2|Y [ko]|? and P — 2|Y [ko]|? to get

E[[YklP] = E[IRlkol + INTkoll® + 2Re{Rlko] N"[ko]} | (3.40)

E[|R[ko][*] + E[|N[kol|* ] + 2Re{ E[ R[ko] ]| E[ N*[ko] ]}] (3.41)

< 2k .y L2 27k \*
E[|RIko]l*] + E[( 3 ne exp{-i=-6}) ( > exp{—i20r))’]
t=0 r=

py 2rk |1*
+2Re{Rlko) E[ Y s exD{—iTT}] } (3.42)

7=0
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L-1L-1

BRIkl + Y Y Blnen,] exp{—iZ2(t — 7))

t=0 =0
L-1
+2Re{E[ Rlko]] ( Y E[n.] exp{i22—k'r})} (3.43)
7=0
L-1L-1 ok
= |Rlko]>+)_ > o7 6[t—7] exp{~i——(t =)} +0 (3.44)
t=0 r=0
= |Rlko]|® + Lo (3.45)
A2

and

L-1
E[P—2[Y[k)?] = E[Y INK® - 2INlko]?] (3.47)
L—lk_o
= Y Lo? —2Ld? (3.48)
k=0
= L?0% -2Lo2. (3.49)

Putting (3.46) and (3.49) into (3.15) gives

2 E[|Y[ko]?]

SNR 3.50
B[P — 21Y ko]l (3.50)
2(L?4% + Lo?
(_22%_ (3.51)
Lig2 - 2Lo2
2
Then SNR — A2 as L — oo.

o3

Figures 1.4 and 3.3 shows the SR profile with this SNR measure for the quartic bistable
system with forcing sinusoidal input signal s and Gaussian, Laplace, uniform, and binary noise
n. Figure 3.4 shows the SR profiles for a quartic bistable system and the FitzHugh Nagumo
neuron model with with forcing sinusoidal input signal and alpha-stable noise. Figure 5.7 shows
the SR profiles of the quartic bistable system for other impulsive noise with infinite variance.

Figure 5.6 shows the SR profile of the quartic bistable system for chaotic noise from a logistic

dynamical system.

34



-5
5 T T T T T T

i solig: Gaussian noise | :

---dashed: Laplace nolse - - -+ - -10f
i dashed-dotted: Uniform noise’
-, dotedBinaynose

@
T
L
&

T
al I'I

(I"illlll::ll.|
SN IIH
Vel

'
' u::.,u' N H
' ||'||I|| |'”|..|| [N

l.”l'l'l' ot

SNR = 10 log S/N dB
5 )

SNR=10log S/N dB
8

At tan
] IR
n HE B TPt BT T 1] L]

—"50 0;‘ O:l 0?8 0:8 : 1.2 Il,d 1:6 I:B 2 [ 0‘2 0'.4 06 o:a : |lz 14 18 1.8 2
Standard deviation ¢ of additive white noise Standard deviation o of additive white Laplace noise
(a) (b)
" K '
-10F =10
15}
g a .}
z 2
g €.
o o
- 2
n "
g™ :
7 6 -
a0}
I
) -30}
'
a5} ] i
: 1
) 02 04 08 o] 1 12 14 1.8 18 2 -WO 02 04 0.6 08 1 1.2 14 16 18 2
Standard deviation o of additive white Uniform noise Standard deviation o of additive white binary noise
(c) (d)

Figure 3.3: SNR measure of the quartic bistable system & = « — 22 + s(t) + n(t) with output
y(t) = sgn(z(t)). The sinusoidal input signal s is s(t) = esin 27 fot where ¢ = 0.1 and fo = 0.01
Hz. (a) SNR-noise profiles of zero-mean white noise from Gaussian, Laplace, uniform, and
binary probability densities. The simulation ran over 20 distinct noise seeds over 10,000 seconds
with time step AT = 10000/1000000 = 0.01 seconds in the forward Euler formula of numerical
analysis. (b) Average SNR-noise profile and its spread for Laplace noise. (c) Average SNR-noise
profile and its spread for uniform noise. (d) Average SNR-noise profile and its spread for binary
noise. Figure 1.4 shows a like SR profile for Gaussian noise. Figure 5.6 shows the SR profile
for the quartic bistable system when chaotic noise drives the system. The plots show distinct
spreads of SNR. for each kind of noise.
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Figure 3.4: SNR-noise profiles of a quartic bistable system and a FitzHugh-Nagumo (FHN)
neuron model. The plots show SNR-noise profiles for alpha-stable noise with a = 2 (Gaussian
density) and a = 1 (Cauchy density). The densities have zero location a = 0 and dispersion 7
that depends on a noise scale  through v = k*. The scale « equals v/20 for a Gaussian density
(when a = 2) with variance o2. (a) The quartic bistable system & = z — 23 + s(t) + n(t) with
binary output y(t) = sgn(z(¢)). We limit the magnitude of the system state z in (3.57) so that
|| < 10 as in Section 3.3.1. The sinusoidal input signal s(t) = e sin 27 fot has amplitude € = 0.1
and frequency fo = 0.01. (b) The FHN model has the form ez = —z(z% — 1) — 2+ A+5(t) +n(t)
and z = z — z for € = 0.005 and A = —(5/12V/3 + 0.07) = —.31056 with a sinusoidal input
s(t) = esin 2w fot where ¢ = 0.01 and fo = 0.5. We limit the magnitude of the FHN model to
|z| < 2. Figure 3.5 shows the SR profiles of these systems for a cross-correlation C' performance
measure.
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3.2.2 Cross-Correlation Measure

The cross-correlation measure is simple and straightforward to compute. Here we follow the
definition defined in [47, 50, 51, 118] as in (2.30) except that we omit the maximum argument.
We let 7 = 1 replace the maximum argument over the time 7. Then the cross-correlation

measure C for discrete simulations in this dissertation has the form

t~
|
-

StTt+1- (3.52)

=
-
i
o

Figure 3.5 shows the SR profiles with the cross-correlation measure C' for the quartic bistable
system and the FitzHugh-Nagumo neuron model with sinusoidal inputs and noise with Gaussian

and Cauchy densities.

3.3 Stochastic Resonance and Alpha-Stable Noise

Most SR studies deal with Gaussian noise. A few systems work with other finite-variance noise
such as uniform noise, Laplace noise, or (bounded) chaotic noise [41, 43, 44, 92, 212, 251]. This
raises new questions: Will the signal system show the SR effect if the input noise has infinite
variance? How does impulsiveness reshape the SR profile of a signal system? Does an increase
in impulsiveness affect all SR systems in the same way? How does the increase in impulsiveness
change the SR effect? What happens when the input noise grows more impulsive?

The dissertation empirically explores the relationships of the parameter a in alpha-stable
distributions that determines impulsiveness and the optimal levels of noise in many stochastic
resonance systems. This section shows simulation results of nonlinear systems with alpha-stable

noise for different a’s. We seek the relationship between a and the optimal dispersion ,pt.
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(b) FitzHugh-Nagumo neuron model

Figure 3.5: Cross-correlation C versus noise profiles of a quartic bistable system and a FitzHugh-
Nagumo (FHN) neuron model. The plots show the cross-correlation C profiles for alpha-stable
noise with a = 2 (Gaussian density) and o = 1 (Cauchy density). A noise scale k relates a
dispersion < through v = k®. The scale k¥ equals V20 for a Gaussian density (o = 2) with
variance o2. (a) The quartic bistable system & = z — 2 + s(£) + n(t) with binary output
y(t) = sgn(z(t)) with the modification that |z| < 10. The sinusoidal input signal s(¢) =
esin2w fot has amplitude ¢ = 0.1 and frequency fo = 0.01. (b) The FHN model has the
form ez = —x(z® — 1) - 2+ A + s(t) + n(t) and 2 = z — z with |z| < 2 and € = 0.005 and
A = —(5/12/3 + 0.07) = —.31056. The sinusoidal input s(t) = esin2n fot has parameters
€ =0.01 and fo =0.5.
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3.3.1 SR Systems and Simulation Models

The computer simulation uses a discrete version in (3.12)-(3.13).

Typ1 = o+ AT (f(.'l)t) + St) + \/A_Tlﬂ'wg (353)

Y1 = g(Tes1) (3.54)

with initial condition z¢ and output y;. We assume that this discrete model applies to systems
with alpha-stable noise. The zero-location white alpha-stable random sequence {w;} has unit
dispersion v,, = 1. So n; = kw; has dispersion v = k*. Note that a unit dispersion for Gaussian
density (when a = 2) equals a variance of two. We tested the following models:

¢ Quartic bistable system (modified): The forced quartic bistable system has the form

i = z—z°+4s(t) +n(t) (3.55)

y(t) = sgn(z(t)) (3.56)

for binary output y(f). We test the quartic bistable system model with the sinusoid input
s(t) = esin 2w fot for e = 0.1 and fo = 0.01. The discrete version of the quartic bistable follows

from (3.4)-(3.5) as

Tyl = I+ AT(:Bt - IE? + St) + VAT kw, (357)

Y1 = Sg0(Tetr)- (3.58)

We limit the magnitude of the system state z; to 10 in the simulation model (3.57) because the
impulsiveness of the alpha-stable noise could take z; to oo in computer simulations. We let
Ty41 = 10 when ;41 > 10 and let z;41 = —10 when 2,4, < —10 in the discrete dynamic (3.57).
This gives a modified version of the quartic bistable system. The optimal dispersion 7,p: has

the form y,p:(c) = k* for the noise scale « in (3.57).
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e FHN model (modified): The forced FHN model has the form

i = —a(a? - %) C A4S () (D) (3.59)
2 = z-2z2 (3.60)
y(t) = z(t) (3.61)

for € = 0.005 and A’ = —(5/12+/3 + 0.07) = —.31056 as in [118] and linear output y(t). We use
a sinusoidal input s'(t) = e sin 2w fot where € = 0.01 and fp = 0.5. We can rewrite (3.59)-(3.61)

as

i = —-]eia:(:z:z - i) - %z + %A + -i—s'(t) + %n'(t)
= —%m(a? - %) - %z + A+ s(t) +n(t) (3.62)
2 = -z (3.63)
¥ = st (3.64)

for A= A'/e. Then (3.4)-(3.5) give the discrete version to simulate the FHN model as

1 1 1
Ty = 3+ AT (— E:z:(:z;2 - Z) -2 +A+ st) + VAT kw; (3.65)
21 = 2+ AT (2t — 2) (3.66)
Y41 = Tgga. (3.67)

We also modify the recursive relation (3.65) so that the magnitude of z;;; does not exceed 2.
The optimal dispersion 4op: has the form yop:(@) = &* for the noise scale « in (3.65).
e Bistable neuron model: The bistable potential neuron model with Gaussian white noise

has the form

& = —z+2tanhz + s(t) +n(t) (3.68)
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y(t) = sgn(z(?). (3.69)

The sinusoid input is s(t) = esin2x fot for € = 0.1 and fo = 0.01. The discrete version has the

form

Tgp1 = T¢+ AT(—ZB; + 2tanhz; + St) + VAT kwy, (370)

Yer1 = SEN(Tysr)- (3.71)

We test this neuron model with sinusoidal input s(t) = € sin 27 fot where € = 0.1 and fp = 0.01.

¢ Duffing oscillator (modified): The forced duffing oscillator has the form

i = —0.152+z — 2% + esin(wot) + n(t) (3.72)

y(t) = (). (3.73)

We test the duffing oscillator with sinusoidal input s(t) = e sin 2x fot for £ = 0.3 and fo = 0.01.

The discrete version of the duffing oscillator has the form

Tl = T¢t+ ATz ' (374)
241 = 2z +AT(-02 + 24 — a:f + s¢) + VAT kwy ‘ (3.75)
Yeer = SEO(Tt1)- (3.76)

¢ Threshold system: The output y of a simple feedforward threshold system has the form

ye = sgn(sq+n,—0) = sgn(s; + kwy — O) (3.77)

The optimal dispersion v,p¢ has the form y,pe(a) = £* for & in (3.77).
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o Pulse system: This doubly Poisson process generates a pulse train with probability

then depends on the input V(t) = s(t) + n(?)

r(V(¢)) = r(0)exp(V(2)). (3.78)

Here we let 7(0) = 1. The sinusoid input is s(t) = esin2x fot for ¢ = 0.5 and fo = 0.05. The

system generates an output y() as a unit pulse with a rate r(t).

3.3.2 Exponential Law with Linear Least-Square Fit of Log Data

Consider the SR-noise profiles for the quartic bistable system and the FitzHugh-Nagumo neuron
model with alpha-stable noise. Figures 3.4-3.5 shows the profiles of these systems and alpha-
stable noise for o = 2 and & = 1. Note how the optimal noise scale &, falls as a falls. Since
the dispersion depends on & through v = k* we then hypothesize that the optimal dispersion

Yopt(c) of the system obeys the exponential law

Yopt (@) = BA® (3.79)

for some factors B, A € R. Then

logYopt(a) = logB+alogA = aa+b (3.80)

for a = log A and b = log B. The least square method gives the a and b values as

N s — v .
a= Z&:l (a" a) w; and b=w—-—aa (381)

Zi=1 0‘? - N(a)?

for N data pairs (c;,w;) where w; = log7Yopt(;) at the experiment ¢ with the parameter o;.
This method is the same as the minimum variance method for arbitrary random variables and

the maximum likelihood method for normal random variables [249].
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The correlation coefficient 72 (coefficient of determination) indicates how good the linear

model fits the data

_@-wp _ (S -m)
T X (wi—m)? Y(a - @) Y (wi —W)?

2 (3.82)

where 0 < |r|] < 1 and |r| =1 iff w; = @; = aa; = b for every i. The positive and negative signs

reflect the positive and negative slopes.

3.3.3 Test Results

Table 3.1 below shows the parameters a and b of the linear least square fit of logarithm of
the optimal dispersion y,p: and the parameter a. The correlation coefficients 72 measure how
well the regression aa + b fit the data. Figure 3.6) shows the optimal dispersion ~,p () and
the parameters a. The plots in Figures 3.6(a)-(d) for feedback systems seem to agree with the
exponential law. Figures 3.6(e)-(f) shows the plots for the feedforward systems which do not

seem to follow the exponential law. Their correlation coefficients 72 are small.

SNR C
parameters e parameters T
Quartic bistable | a = 1.2855, b = —3.4053 | 0.8524 | a = 1.2075, b = —3.1682 | 0.8442
FHN a = 0.7602, b = —2.5183 | 0.8320 | a = 0.8061, b = —2.5968 | 0.8690

Bistable neuron | a = 1.8823, b= -3.9775 | 0.9646 | a = 1.9175, b = —3.9628 | 0.9605
Duffing oscillator | @ = 0.7320, b = —3.3057 | 0.7444 | a = 0.8912, b = —3.3204 | 0.8175
Threshold a = —0.6157, b= 0.3346 | 0.8952 | a = —0.6142, b = 0.3312 | 0.8949
Pulse a = 0.0692, b = 0.2267 | 0.0406 | a = 0.2478, b = 0.2516 | 0.3361

Table 3.1: Linear least square fit of the log of optimal dispersion v and the parameter a in
alpha-stable distribution. The parameters a and b relate logy and « through a straight line:
logv(a) = aa +b.
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Figure 3.6: Optimal dispersion 7,p: versus a in alpha-stable distribution for (a) the quartic
bistable system, (b) the FHN model, (c) the bistable potential neuron model (Cohen-Grossberg
one-neuron neural network), (d) the duffing oscillator, (e) the threshold system, and (f) the
pulse system with sinusoidal inputs. The plots on the left-handed side use the SNR performance
measure and the plots on the right-handed side use the cross-correlation measure C. The mark
x shows the “optimal” dispersion for each a-stable noise seed. Least-square regression defines
the straight lines.
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Chapter 4

Adaptive Stochastic Resonance

with Gradient Learning

How can an adaptive system learn the SR effect? This chapter explores that question. The
adaptive technique should depend on only the input-output samples of the system and not on
a math model of the system dynamics. Then we can in theory apply the adaptive technique to
any nonlinear dynamical system and for any performance measure.

This raises some key questions: How can the adaptive technique capture the structure of the
performance measure and input noise from system input-output data so it can add the right
amount of noise? How can the technique extract crucial information from the input-output
data so it can quickly adapt the additive noise when the underlying statistics of the signal and
system have changed? And how can the technique process the input-output data so it can use
fewer data samples and fewer computations and can still maintain its performance to track the
best noise?

Here we assume full control of a noise source with a specific random distribution. Such

device is a pseudo-random number generator. Numerical algorithms let us generate pseudo-
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random numbers for many forms of distributions that we use as noise in discrete simulations of
dynamical systems [39, 261, 303].

We seek to maximize the performance measure P of the dynamical system ¢ = f(z) +s+n
with output y = g(z). The performance measure P : Rl — R is a function of L output
measurements {y; }. Throughout this dissertation we apply the stochastic gradient algorithm on

the performance measure P:
oP
m;(t+1) = mi(t) +pe 5— (4.1)
J 4 6m,-

where m; is the jth parameter of an adaptive system F' and where y; is a learning rate at
iteration t. Formal stochastic approximation [273] further requires that the learning rate pp,

must decrease slowly but not too slowly:

oo [o <]
Z p:i < oo and Z fn = 00. (4.2)
n=1 n=1

Linear decay terms u, = 1/n obey (4.2). We used small but constant learning rates in most
simulations.

This learning law requires the gradient Bﬁr%' The question is how can we estimate this
gradient from the input-output data? The adaptive system needs to extract crucial information
from input-output samples. Below we show how we can obtain a noisy measurement of the

gradient from the system math model and also a noisy estimate from the input-output data.

4.1 Stochastic Gradient Learning on the Signal-to-Noise

Ratio

An adaptive system can learn a SR noise pattern that maximizes a dynamical system’s SNR.

The learning law updates a parameter m; of the adaptive system F' at iteration n with the
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deterministic law
OE[SNR]

mi(n+1) = mi(n)+ p, 5
¢

(4.3)

for learning coefficients {u,}. This is gradient ascent learning. We assume that the first-
order moment of the SNR exists. We seldom know the probability structure or the expectation
of the SNR. So we estimate this expectation with its random realization at each time step:

E[SNR] ~ SNR. This gives the stochastic gradient learning law

dSNR
c')m,-

mij(n+1) = mi(n) + pn (4.4)

or simple random hill climbing. We assume the chain rule holds (at least approximately) to give

8SNR _ OSNR 4o
Om; =~ 8o Om;’

(4.5)

Here o is the noise level or standard deviation of the forcing noise term n(t). We want the
adaptive system F such as a fuzzy system in Section 4.4 to approximate the optimum noise
level & for any input signal or initial condition of the dynamical system: F ~ . We then use ¢

and F interchangeably:

dSNR _ OSNR OF
amj - do amj.

(4.6)

The term ;TFJ, shows how any adaptive system F depends on its jth parameter m;. We again

assume that the chain rule holds to get

OSNR _ OSNR 0S | OSNR ON

3 ~ 05 8o ' ON b0’ (4.7
Then SNR = S/N implies that
dSNR a S 1
s ~ @SN N “8)
OSNR _ 0S _ S _ S\ ws)
ON - 8NN N2~ N~ ’
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Like results hold for the decibel definition SNR = 10log S/N dB for the base-10 logarithm:

OSNR 0 S 1

25 = %mlogﬁ = (1010ge)§ (4.10)
dSNR 0 S 1

- = WIOIOgN = —(1010ge)ﬁ. (4.11)

We next put (4.8)-(4.11) into (4.7) to get the log term that drives SR learning:

—
o1y
h
wn
2
=

IQJ
2
tn

Ndo N oo it SNR =5

OSNR _

o (4.12)

(10loge) (%gg - %g—g) if SNR = 10 log %

4.1.1 Learning Law from the System Math Model

We now derive the SR learning laws in terms of DFTs. The math model in (2.1)-(2.2) gives the
exact learning laws. Recall that the L-point DFT [240] for a sequence of states {y;} has the

form
L-1

27k
Yalkl = > yrsns1-1) exp{—le} k=0,...,L—1. (4.13)
1=0

The time index n denotes the current time ¢ = nT, for the sampling period T,. Let %}L denote
the partial derivative of the signal energy S at iteration n with respect to the output y evaluated

0Sn _ 95n [4]. We likewise put ONn _ aN"['] and oy _ %

at time step j: % = By B; By J e 6_0[’7] We assume
some form of the chain rule holds to give
n n
9. 95n %yl and aév" = ——%N n %. (4.14)
9o j=n+1-L dy; do g j=nt1-L Yi 90

We first derive %}L and %;} in (4.14). Consider the partial derivative of |Y,[k]|?> with respect
to y at time step j:
)

Y,,[k]r = 5 VHYIH (4.15)

9
Oy
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= Y, [k] Y‘[k] + Y"‘[k] 51; Yalk]
- Yl exp{z'T(j ~(n+1- D))

+ 10 exp{ =i 22— (n+1- L))
= Re{Yalk exp{i (i~ (v +1- L)})
= 2Re{Yq[K]} cos (3Z—k(j - (n+1-1))

— 2Im{Y,[k]} sin (2—!’;5(1' —(n+1- L)))

So the partial derivative of the signal spectrum S, = 2|Y;[ko]|? is

89S,

Wj = 4Re{Yy[ko]} cos (2—7rLk—°(j -(n+1- L)))

— 4Tm{Y,[ko]} sin (2’2“" (G—(n+1- L))).

The partial derivative %”;‘- follows in like manner:

8N, _ 8
S = By P
a L : as,,
= n[kll
yJ b=

08,
= —. L Z y: - a—y: from Parseval’s relation

&S’n

= 2Ly; - By

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

We can consider the term %{} in (4.14) as a sample of %ff at the time step j. We need to estimate

%g from sample data or from the system math model.

Recall the math model of the dynamical system (2.1)-(2.2) and let G(z,u,t) = f(z)+u(z,t).

Assume that this is a scalar system and that u(z,t) = s(t) + n(t) where n(t) = ow(t) for the
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zero-mean white noise process w(t) with unit variance E[w?] = 1. So the model becomes

z = G(z,s0,w,t) = f(z)+s(t)+ow(t) (4.25)
y(t) = g(z(?). (4.26)
The chain rule gives
oy _ 090
80 ~ 9z 80 (4.27)

Let 7(t) denote g—:. Assume that G is sufficiently differentiable. Then differentiate % with

respect to time [8] to get

dp _ d0z\ _ ad _ 0G(z,s,0,w)
dt E(aa) T 8o do (4.28)
G oz 9OG oG oG
= %5; + s = a—x’ll(t) + 30" (4.29)
The last derivative % results from G’s explicit dependence on o. So the derivatives % and
% for the additive case G(z, s,0,w) = f(z) + s(t) + ow(t) follow
oG 0
% = ;9_:1;[ (4.30)
oG (7]
% - a—a[f(m) + s(t) + ow(t)] = w(t). (4.31)

The extension to multi-variable system is straightforward. Suppose m differential equations
represent a dynamical system with m forcing signals and noise. Then the states z, signal s, and

n are m-D vectors. We can express the dynamics in the form

f1 (IE) + sl(t) + 'I'Ll(t) = G (:l:, sl,nl) (432)

I

- f (@) + 8m(t) + 0 (t) = Gulz, 8m,7m) (4.33)
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For simplicity we consider scalar system output y € R. We again let n;(t) = o;w;(t) for

zero-mean white noise processes w; (). The chain rule gives

0y _ hd dg Ox;

67;_,,' = 2 6_3,',60'] . (4.34)
Let n;;(t) denote g—j;}. It follows that
0k _ G
M= aa,- - aaj (4.35)
d 3G, B:ck 3G 6sk BG, an;,)
- 4+ %G e 4.36
‘; (Bwk da; ' sy 8a; = Ony, Bo; (4.36)
i an 6$L
-5 ( e ) + 6ijwilt) (4.37)

,.
1l

1

where we let Osi = 0 for all j, & (because the input signal does not depend on the noise level),

9o
0G; ong dorwy
6nk

= i, and — = = §;zw;. If the system has only one input forcing signal and
noise (both of which may enter the system at different states) then

0o; Oo;

. 63'%' _ BG,
"= 9 ~ B0 (4.38)
0G; 6$k 6G,- ds 0G;0n
Z 3z; 0o | 8s 60 T On 9o (4.39)
Z (gft gxk) + w(t) if the noise n enters the system at x;
B k (4.40)

Z (BG 8&) otherwise
— \ 0z} 9o

or we can rewrite in matrix form (here we assume that n(t) = ow(t) enters the systems at z;)

7 = J(@n+ew(t) (4.41)
where 7 = [, ---n,]7 and the unit vector e; = [0 --- 010 --- 0]7 has all zero elements but
unity at the ith slot. Here J(z) = [%] is the Jacobian matrix of the system evaluated at z.

J
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We need to simulate the evolution (4.29) for -g% and obtain g-g from (4.27). Then we put

(4.20), (4.24), and gg- into (4.14) to get the stochastic gradient learning law:

on+1) = o(n)+pn BSal\ijn (4.42)
_ OSNR,, 8S, = OSNR, dN,
= o+ (T35, 5 ow, ar) (443)

1 2 8S, 0y 1 2. 8N, By
= +pn (= e L Y (444
o(n) + in (s,, l=n+zl—-b dy 9o N, z=n+zl_,: o 80’) (4.44)

Here we omit the constant factor 10loge from (4.8)-(4.11) or view it as part of the learning
rate p, in (4.44). The learning law for the parameters m; of a function approximator F' that
approximates the surface of optimal noise levels follows in like manner. Here F replaces the

parameter o so the learning law becomes

OSNR,,
mij(n+1) = mj(n)+pn e (4.45)
J
_ OSNR, 0S, OSNR, ON,
= min) + i (g m; * “oN, am,.) (446)
1 z 08, oy, OF
= my(n) +pn (o Shm
(Sn l=n+Zl— L dy, OF Om;
1 2 ON, 8y, OF
- haeh ot A Sl I (4.47)
N, ity Oy 8F6mj)
We get (4.44) if o replaces F and m;. Appendix A derives the last partial derivative % in

the chain-rule expansion (4.6) for all SAM fuzzy parameters m;. This is again the step where
users can insert other adaptive function approximators F' and derive learning laws for their

parameters m; by expanding z?_nf; .

4.1.2 Approximation of the Learning Term 2552

The above learning law requires a complete knowledge of the math model that describes the
dynamical system. It also needs accurate estimation of the evolution of (4.29). This may not

be practical in many cases since we do not know the mathematical models (2.1)-(2.2). Suppose

53



we have access to the system input {s;} and output {y;}. These input and output time series
let us compute the performance of the system. SNR requires the knowledge of input spectrum
while cross-correlation computes the inner product of the input and output sequences.
Suppose we have access to the output samples of the SR system with sinusoid input. Then
we can compute the DFTs of the L samples to get the signal energy S and noise energy N in
the SNR. Then we can approximate %75-' and % with a ratio of time differences at each iteration

n:

BS,, ASn _ Sn“'Sn—l

~ = 4.48
Oo, Aoy On — Op-1 ( )

ON,, AN, Np— Ny,
~ = . 4.49
9oy Aoy, On — Op—1 ( )

So the learning law becomes
OSNR,
Ont1 = Op+Un B0 (4.50)
_ 1 985, 1 8N,
= Onp+in (E{B_a - N_n do ) (4.51)
1 Sn—sn—l 1 Nn_Nn—l

= — - . 4.52
a"+#"(Snan—on_1 N, an—an_l) (4.52)

We also replace the difference ¢,, — 0,1 with its sign sgn(o, — 6,—1) to avoid numerical insta-

bility. The gradient becomes

8SNRn -~ (Sn—'Sn—l _Nn—Nn—l
60' = Sn Nn

) sgn(on — On—1). (4.53)

This approximation gives the SR learning law

Sp—Sn-1 Np—Np_
Ont1 = on+un( = 5 o2 N = 1)sgn(an—an_l). (4.54)
n n

This learning law does not require that we know the dynamical model. It depends only on

samples from the system dynamics and from the input signal s(t). Stochastic approximation
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and perturbation give similar form of learning when we can sample the system performance

measures [122, 277, 293].

4.1.3 SR Optimality for the SNR Measure

Recall the general form of the learning law (4.12)

185 SNR AN , 8
Noo N G0 it SNR =
OSNR

(10loge) (%g—i - %g—f) if SNR = 10 log %

The right side of (4.55) leads to the first-order condition for an SNR extremum:

105 10N _
S8c Nd&s
or simply
s s
N ~ N©

We can rewrite this optimality condition as

_ 88/
= 9Njoo

Oopt

s
N

Oopt

(4.55)

(4.56)

(4.57)

(4.58)

when the partial derivatives of S and N with respect to ¢ are not zero at o = gop:. Equations

(4.56) and (4.58) give a necessary condition for the SR maximum. The result (4.58) says that

at SR the ratio of the rate of changes of S and N must equal the ratio of S and N. This has

the same form as the result in microeconomics [165] that the marginal rates of substitution of

two goods must at optimality equal the partial derivatives of the utility function with respect

to each good. But (4.57) and (4.58) hold only in a stochastic sense for sufficiently well-behaved

random processes.
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We find the second-order condition for an SR maximum when SNR = 10log S/N from

8°SNR _ & 8SNR

0 > 0T = 35 B (4.59)

= % (10loge) [%% - %%—Ja\i] (4.60)

= w00g0) [ (557 + 5 (- 5.)) = (75 * 5 (~ we50) )] 460

= 000 [ 552 - 55 (50) ~wow + (%) | (42)

= (10loge) [ég%f _ %%g-] (4.63)

or &~ < M. The last equality follows from the first-order condition 443 - FO =gor & = ~

since then Qs:}i = S%'Ji A like result holds for SNR = S/N. We still get the second-order

condition
18%°S 18°N

595 N 3o% < 0. (4.64)

These first- and second-order conditions show how the signal power S and noise power N relate

to each other and to their derivatives at the SR maximum.

4.2 Stochastic Gradient Learning on the Cross-Correlation
Measure

This section derives a learning law for the cross correlation measure C in (2.30) for the system

F(x) + s(t) +n(t) (4.65)

z

y(t) 9(z(2))- (4.66)

The cross-correlation measures the performance of the system from its input-output samples

with the form
n

Co= > Sisr (4.67)

t=n—L+1
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where we assume that the dynamical system has time lag 7 = 1 in (2.30). Our goal is to find
the scale ¢ that maximize C. Stochastic gradient ascent can learn this ¢ through the learning

law:

aC,
Optl = 0’n+/.lza—;. (468)
Now we derive the learning term
oC, 7] -
ag" = % > swen (4.69)
t=n—L+1
n
0
= Z 6_3tyt+l (4.70)
t=n—L+1 g
n
Os; Oyt+1
= Z Y1 + St (4.71)
t=n—L+1 60' aa
n
=y ol (4.72)
t=n—L+1 o

where we let % = 0 since the input signal s does not depend on noise level o. Again the
difficulty here is to obtain the partial derivative &’g%. We use the algorithm (4.41) in the
previous section to simulate this term where we use the math model of the system. Future

research needs to find a way to approximate it to relax the assumption of the math model.

4.3 Robust SR Learning

The performance gradients % and %% give crucial information for adaptive systems to achieve

stochastic resonance. But their estimates may be too noisy to prove useful. This section exam-

ASNR,

ines the statistics of the noisy gradients =3~ and %% and how they affect adaptive stochastic

resonance.
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4.3.1 Impulsiveness of the Learning Term

Much of the noisiness and complexity of the random learning law (4.4) stems from the probability

structure that underlies the learning term aSNR The probability density of 8SNR depends on

the statistics of the input noise, the differential equation that defines the dynamical system,

and how we define the signal and noise terms S and N. Below we test statistics of the random
8SNR

processes “3°% and % for the quartic bistable system and the FitzHugh-Nagumo neuron model

with sinusoidal inputs.

Impulsiveness of the Learning Term 3%% from Math Model

The results in Figure 4.1 suggest that in some cases the density of 8%% is Cauchy or otherwise

belongs to the “impulsive” or thick-tailed family of symmetric alpha-stable bell curves with
parameter a in the characteristic function exp{—|w|*} [18, 81, 286, 287]. The parameter « lies
in 0 < @ < 2 and gives the Gaussian random variable when a = 2 or ¢(w) = exp{—w?}. It gives
the thicker-tailed Cauchy bell curve when a =1 or ¢(w) = exp{—|w|}. The moments of stable
distributions with a: < 2 are finite only up to the order k for k¥ < a. The Gaussian density alone
has finite variance and higher moments. Alpha-stable random variables characterize the class
of normalized sums that converge in distribution to a random variable [18] as in the famous
Gaussian version of the central limit theorem. The noisiness or impulsiveness of the %ﬁ—based
learning grows as « falls. Note also that the ratio X/Y is a Cauchy random variable if X and Y
are Gaussian [81, 249] or if they obey certain more general statistical conditions [163, 167]. The
simulations found that the impulsiveness of asa% and hence of the learning process stemmed at
least in part from the step size of the successive DFTs in (4.13).

We simulate the random gradient %’* with the partial derivatives from (4.20), (4.24),

and gg from (4.29):

9SNR,, 1 i 89S, oy 1 2 ON,, Oy
= L %on Oyt _ - . (4.73)
8o Sn l=n+zl—- L oy Oo N, ’=n+zl_ L Oy Oo
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Figure 4.1: Visual display of 2)fa = 183 _ 480 in (4.73) with simulation of 3% from

math model as in (4. 29) for the quartic blstable system with sinusoidal input s and Gaussxan
noise n(t): £ = z — 2® +esin2x f + n(t) where £ = 0.1 and f = 0.01 Hz. The system has linear
output y(¢) = z(¢) in (I) and binary output y(t) = sgn(z(t)) in (II). The noise variances are
the constants o2 = 0.25. (a) Cauchy-like samples of %"L—Rﬂ- at each iteration n. (b) Converging
variance test as test of infinite variance. The sequence of sample variances converges to a finite
value if the underlying probability density has finite variance. Else it has infinite variance. (c)
Log-tail test of the parameter « for an alpha-stable bell curve. The test looks at the plot of log
Prob(X > u) versus logu for large u. If the underlying density is alpha-stable with a < 2 then
the slope of this plot is approximately —a. This test found that a = 1 and so the density was
approximately Cauchy.

i) SNRn

The simulations confirm that the random gradient is often impulsive and can destabilize

the learning process (4.44) at or near the optimal noise level. The impulsiveness of %N—Rl

in Figure 4.1 suggests that % may have an alpha-stable probability density function with

parameter a < 2. A log-tail test found that @ ~ 1. So as%l again has an approximate Cauchy

distribution.

Impulsiveness of the Learning Term g—f from Math Model

Consider the learning term 4 from (4.72)

n

aCyp Z OYt+1
et s Lt (4.74)
do ey 2 8o
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Figure 4.2: Visual display of % = Y0, _; ., sta—’(’.;;ﬂ with simulation of 2% in (4.29) from
the system’s Jacobian. (I) The quartic bistable system & = z — z3 + s(t) + n(t) where s(t) =
esin2nf with ¢ = 0.1 and f = 0.01 Hz and linear output y(t) = z(¢). (II) The FHN model
e = —z(z? — 1) —z+ A+s(t)+n(t) and z = -z with sinusoidal input signal with £ = 0.01 and
fo = 0.5, output y(t) = z(t), and parameters ¢ = 0.005 and A = —(5/12v/3 + 0.07) = —.31056.
The noise variances are the constants o2 = 0.25 for the quartic bistable system and 62 = 4x10~®
for the FHN model. (a) Cauchy-like samples of aTc;n at each iteration n. (b) Converging variance
test as test of infinite variance. The sequence of sample variances converges to a finite value
if the underlying probability density has finite variance. Else it has infinite variance. (c) Log-
tail test of the parameter a for an alpha-stable bell curve. The test looks at the plot of log
Prob(X > u) versus logu for large u. If the underlying density is alpha-stable with o« < 2 then
the slope of this plot is approximately —a. This test found that a = 1 and so the density was
approximately Cauchy for both cases.

where we simulate the term gg from (4.29). The simulations confirm that the random gradient
% is impulsive and may have an alpha-stable density function with parameter o < 2. A log-tail
test found that a =~ 1. So % in (4.72) also has approximate Cauchy distribution. Figure 4.2

shows the tests for the Quartic bistable system and the FHN model.

Impulsiveness of the Learning Term B%IZR from Approximation

Consider the learning term 2NE from the approximation (4.53)

8SNR,, Sp—Sn1  Np—Np_
™ ( el S 1)sgn(a,.—a,,_,). (4.75)
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Figure 4.3: Visual display of sample statistics of approximated for the quartic bistable
system & = x — z° + s + n with sinusoidal input s(t) = 0.1sin27(0.01)¢ and Gaussian noise n(t).
The system has linear output y(t) = z(t) in (I) and binary output in (II). (a) Cauchy-like samples
of &NBa at each iteration n We compute 255 Ra at each iteration from ZNRa n (Sa=Snoi _

Nn—'Nn—l "

=" )8gn (0n —0n—1) in (4.53). We vary the noise level o, between o, = 0.50 and o, = 0.51
so that sgn (05, — 05,—1) changes values between 1 and —1. The plot shows impulsiveness of the
random variable %ﬁ. {(b) Converging variance test as test of infinite variance. The sequence
of sample variances converges to a finite value if the underlying probability density has finite
variance. Else it has infinite variance. (¢) Log-tail test of the parameter « in for an alpha-stable
bell curve. The test looks at the plot of log Prob(X > u) versus logu for large u. If the
underlying density is alpha-stable with a < 2 then the slope of this plot is approximately —a.
This test found that o &~ 1 and so the density was approximately Cauchy. The result is that
we need to apply the Cauchy noise suppressor (4.77) to the approximate SR gradient % in
(4.53) as well as to the exact SR gradient in (4.73).

Simulations also show that this approximation of % is often impulsive and can destabilize
the learning process (4.54) in Figure 5.3. The impulsiveness of %"}1 in Figure 4.3 suggests
that 25NBa may have an alpha-stable probability density function with parameter a < 2. A

log-tail test found that & ~ 1. So 25]Ba in (4.53) also has an approximate Cauchy distribution.
Other Statistics at Optimality
As an aside we also form the random optimality “error” process £:

S 8S/9s

= ¥~ oN/ae (4.76)
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Figure 4.4: Visual display of samples from the equilibrium term &,, = —f—,':- - (% / %ﬂ). (a)
Cauchy-like impulsive samples of &,, at each iteration n for the discretized version of the quartic
bistable system & = z — z3 + £sin 27 fot + n(t) where ¢ = 0.1 and fp = 0.01 Hz. The system
outputs are (I) y; = z; and (I) y; = sgn(z:). The noise intensity is the constant 02 = 0.25
that lies near the optimal level. (b) Converging variance test as a test for infinite variance. The
sequence of sample variances will converge to a finite value if the underlying probability density
has finite variance and diverges if it has infinite variance. (c) Log-tail test of the parameter a
in an alpha-stable probability density. The test plots log Prob(X > u) versus logu for large u.
If the density is alpha-stable with a < 2 then the slope of this plot is approximately —a. The
test found a = 1. So the probability density of £,, was approximately Cauchy.

near the optimum noise ¢ = o,,:. The statistics of £,, change with the noise level o? and with
the sinewaves values € and fo. The empirical histogram of £, is a bell curve. A key question is
how thick are its tails. Figure 4.4 shows &, samples from the quartic bistable system (5.3)-(5.4)
with Gaussian noise n(t) = ow(t). The convergence of variance test [286] confirms that £, had
infinite variance in our simulations. The log-tail test [286] of parameter a in the family of alpha-
stable probability densities leads to the estimate @ ~ 1.0. So the &, density is approximately
Cauchy. Recall also that Z = X/Y is a Cauchy random variable if X and Y are Gaussian
[81, 249] or if they obey certain more general statistical conditions [163, 167]. This suggests

that much of the impulsive nature of £, may stem from the ratio of derivatives in (4.76).
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Figure 4. 5 Cauchy suppressor. The graph in (a) shows the Cauchy suppressor as a function
é(z) = %5 +z . The plots in (b) show samples of the impulsive gradients mﬁ and their Cauchy
suppressed sa.mples

4.3.2 Cauchy Suppressor

This section introduces a Cauchy noise suppressor from the theory of robust statistics [131).
The previous section and the simulations in Chapter 5 show that the learning term %‘L is
impulsive at the optimality. This impulsiveness can destabilize the learning process of o, to
find the optimal noise level. The theory of robust statistics [131] suggests one way to reduce the
impulsiveness of %. We can replace the noisy random sample z,, with a Cauchy-like noise
suppressor ¢(z,) [131):

$(zn) = (4.77)

1+z2'

Figure 4.5 shows the Cauchy suppressor function and when it applies to the samples a_s& We

let ¢(ng'—¢R1) replace the noise gradient 3—%“%"- in (4.73). This gives the robust SR learning law

BSNR,,).

o(n+1) = o(n) + un¢( 5% (4.78)

Simulations in chapter 5 show that the Cauchy noise suppressor can reduce the impulsiveness

of the learning term and stabilize the learning processes.
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4.4 Additive Fuzzy Systems and Function Approximation

We can replace an adaptive system F in (4.1) with an adaptive fuzzy function approximators
(158, 159, 160, 161, 162]. The learning laws update the parameters m; of a SAM fuzzy system.
Part of this dissertation explores how to learn the SR effect with this adaptive fuzzy function
approximator for the quartic bistable and other dynamical systems with sinusoidal inputs.

Adaptive fuzzy systems approximate functions with if-then rules that relate tunable fuzzy
subsets of input and outputs. Each rule defines a fuzzy patch or subset of the input-output
state space. The fuzzy system approximates a function as its rule patches cover the graph of the
function. These systems resemble the radial-basis function networks found in neural networks
[116, 214, 162]. Neural-like learning laws tune and move the fuzzy rule patches as they tune the
shape of the fuzzy sets that make up the rule patches. The learning laws in the appendix use
input-output data from the sampled noisy dynamical system. The rule patches move quickly to
cover optimal or near-optimal regions of the function (such as its extrema). Experts can also
state verbal if-then rules in some cases and add them to the fuzzy patch covering. These rules
offer a simple way to endow a fuzzy approximator with prior knowledge or “hints” [1, 2] that
can improve how well a fuzzy system approximates a function or how well it generalizes from
training samples [238]. Fuzzy systems achieve their patch-covering approximation at the high
cost of rule explosion [161, 162]. The number of rules grows exponentially with the state-space
dimension of the fuzzy system. We stress that our SR learning laws can also tune non-fuzzy
adaptive systems.

Adaptive fuzzy systems offer a balance between the structured and symbolic rulebased expert
systems found in artificial intelligence [276] and the unstructured but numeric approximators
found in modern neural networks [116, 117, 158]. These or other adaptive model-free approx-
imators might better model the SR effect in some dynamical systems. Our first goal was to
show that adaptive systems can learn to shape the input noise and perhaps shape other terms

to achieve SR in the main closed-form dynamical systems that scientists have shown produce
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to produce the SR effect. OQur second goal was to suggest through these simulation experi-
ments that adaptive fuzzy systems or other model-free approximators might achieve SR in more
complex dynamical systems that defy easy math modeling or measurement.

The scalar SAM fuzzy system F : R® — R can learn the SR pattern of optimum noise of
an unknown dynamical system if it uses enough rules and if it samples enough data from a
dynamical system that stochastically resonates. Below we derive a gradient-based learning law
that tunes the SAM parameters to achieve SR from samples of system dynamics. It can also
tune the parameters in other adaptive systems. We first define a practical SNR measure in
terms of discrete Fourier transforms. Other SR measures can give other learning laws.

A fuzzy system F : R™ — RP stores m rules of the word form “If X = A; Then Y = B;” or
the patch form A; x B; C X xY = R™ x RP. The if-part fuzzy sets A; C R™ and then-part fuzzy
sets B; C RP have set functions e; : R* — [0,1] and b; : R? — [0,1]. Generalized fuzzy sets
map to intervals other than [0,1]. The scalar sinc set functions in Figure 5.12 map real inputs to
“membership degrees” in the bipolar range [-0.217,1]. The system design must take care when
these negative set values enter the SAM ratio in (4.80). The system can use the joint set function
a; or some factored form such as a;(z) = aj(z1)- - a}(zs) or aj(z) = min(a}(21),.-.,a}(za))
or any other conjunctive form for input vector z = (z1,...,,) € R" [158].

An additive fuzzy system [158, 159] sums the “fired” then-part sets B; :

B(z) = ijB; = ijaj(:v)Bj. (4.79)
=1 j=1

Figure 4.6(a) shows the parallel fire-and-sum structure of the standard additive model (SAM).
These nonlinear systems can uniformly approximate any continuous (or bounded measurable)
function f on a compact domain [159, 162]. Engineers often apply fuzzy systems to problems of
control [138] but fuzzy systems can also apply to problems of communication [242) and signal
processing [154] and other fields such as multimedia software agent [211, 213] in Appendix B.

Figure 4.6(b) shows how three rule patches can cover part of the graph of a scalar function
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(b)

Figure 4.6: Feedforward fuzzy function approximator. (a) The parallel associative structure of
the additive fuzzy system F : R® — RP with m rules. Each input zg € R™ enters the system
F as a numerical vector. At the set level xo acts as a delta pulse d§(z — zp) that combs the
if-part fuzzy sets A; and gives the m set values a;j(zo) = [ 6(z — Zo)a;(z)dz. The set values
“fire” or scale the then-part fuzzy sets B; to give B;. A standard additive model (SAM) scales
each B; with a;(z). Then the system sums the B; sets to give the output “set” B. The system
output F(zp) is the centroid of B. (b) Fuzzy rules define Cartesian rule patches A; x B; in the
input-output space and cover the graph of the approximand f. This leads to exponential rule
explosion in high dimensions. Optimal lone rules cover the extrema of the approximand as in
Figure 4.7.
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Figure 4.7: Lone optimal fuzzy rule patches cover the extrema of approximand f. A lone rule
defines a flat line segment that cuts the graph of the local extremum in at least two places. The
mean value theorem implies that the extremum lies between these points. This can reduce much
of fuzzy function approximation to the search for zeroes Z of the derivative map f': f'(£) = 0.
f : R = R. The patch-cover structure implies that fuzzy systems F' : R® — RP suffer from rule
ezxplosion in high dimensions. A fuzzy system F needs on the order of k"+P~! rules to cover
the graph and thus to approximate a vector function f : R* — RP. Optimal rules can help deal
with the exponential rule explosion. Lone or local mean-squared optimal rule patches cover the
extrema of the approximand f [161, 162]. They “patch the bumps” as in Figure 4.7. Better
learning schemes move rule patches to or near extrema and then fill in between extrema with
extra rule patches if the rule budget allows.

The scaling choice B} = a;(z)B; gives a standard additive model or SAM. Appendix A.1

shows that taking the centroid of B(z) in (4.79) gives the following SAM ratio [158, 159, 160, 161]

ijaj(:v)V,-c,- m

F@) = S5—— = Y pi@es. (4.80)
Y wjai(z)V; =t
i=1

Here V; is the finite positive volume or area of then-part set B; and c; is the centroid of B; or
wjai(z)V;
its center of mass. The convex weights p (), ... ) have the form p;(z) = =74
g Pl( )1 :pm( ) p]( ) zzt_—l 'w,-a,-(a:)Vi

The convex coefficients p;(x) change with each input vector z.
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Now we give a simple local description of optimal lone fuzzy rules [161, 162]. We move a
fuzzy rule patch so that it most reduces an error. We look (locally) at a minimal fuzzy system
F : R = R of just one rule. So the fuzzy system is constant in that region: F' = ¢. Suppose

that f(z) # c for = € [a, )] and define the error

ez) = (f(z) - F(@)* = (f(z) - o). (4.81)

We want to find the best place &. So the first-order condition gives Ve = 0 or

0= a—z(m—x) = 2(f(m)—c)%. (4.82)
Then f(z) # ¢ implies that
Oe(z) _ Of(z) _
o 0 = 57 = 0 (4.83)

at £ = £. So the extrema of e and f coincide in this case. Figure 4.7 shows how fuzzy rule
patches can “patch the bumps” and so help minimize the error of approximation.

Supervised gradient ascent changes the SAM parameters with performance data such as the
SNR. Appendix A.2 derives the supervised SAM learning algorithms. The learning laws for the

centroid and volume have the form

0SNR

cit+1) = ci(®) +m 55 Pi®) (4.84)
and  Vi(t+1) = Vi(t)+um % pj‘gc) [c; — F(z))]. (4.85)

Learning laws for set parameters depend on how we define the set functions. Figure 5.12 shows

the sinc set functions [162, 209, 210] that we use in the SR simulations. The scalar sinc set
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function has the form

sin (z ;m,)
¢

: = —J 4.
d
So to the learning laws for the parameters m; and d; have the form
_ _ . OSNR . p;(z ' z —m; 1
mit+1) = my(e)+ w5 = e~ F@IZES (a,(z) cos ( 7 ) sy (487
' _ OSNR pilx) ( T —my 1
dG+D) = &)+~ o~ F@ILS (ai(e) - cos ( 7 ) o (4.88)

Like results hold for the learning laws of product n-D set functions as discussed in Appendix
A.2. The learning laws update each SAM parameter to maximize the performance measure
P of the SR dynamical system. This process repeats as needed for a large number of sample
data pairs (z,y;). Figure 4.8 shows how supervised learning moves and shapes the fuzzy rule
patches to give a finer approximation as the system samples more input-output data. Figure

4.8(f) displays the absolute error of the sinc-based fuzzy function approximation.
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Figure 4.8: Fuzzy function approximation. 2-D Sinc standard additive model (SAM) function
approximation with 100 fuzzy if-then rules and supervised gradient descent learning. (a) Desired
function or approximand f. (b) SAM initial phase as a flat sheet or constant approximator F.
(c) SAM approximator F after it initializes its centroids to the samples: ¢; = f(m;). (d) SAM
approximator I after 100 epochs of learning. (e) SAM approximator F' after 6000 epochs of
learning. (f) Absolute error of the fuzzy function approximation (|f — F).
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Chapter 5

Simulation Results

This chapter shows how the stochastic SR learning laws in Chapter 4 tend to find the optimal
noise levels in many dynamical systems and for many noise distributions. This holds for both
the SNR and cross-correlation measures for systems with sinusoidal inputs. The learning process
updates the noise parameter o, at each iteration n. The learning process is noisy and may not
be stable due to the impulsiveness of the random gradient Q%%“R—“- for SNR measure and %—g—:
for cross-correlation measure C. A Cauchy noise suppressor from the theory of robust statistics
[131] can help stabilize the learning process. Then sample paths of o, converge and wander
about the optimal values if the initial values were close to the optimum.

The response of a system depends on its dynamics and on the nature of its input signals.
We apply the SNR measure to the quartic bistable and other dynamical systems with sinusoidal
inputs. Then we test the cross-correlation measure with sinusoidal and other broadband input
signals.

Figure 5.13(a) shows how the optimum noise level varies for each sinusoidal input signal in the
quartic bistable system. The learning process samples the system’s input-output response as it
learns the optimum noise for sinusoidal cases. An adaptive fuzzy system can encode this pattern

of optimum noise in its if-then rules when gradient learning tunes its parameters. The fuzzy
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system learns this optimum noise level as it varies the output of a random noise generator. More

complex fuzzy systems can themselves act as adaptive random number generators [162, 242].

5.1 Adaptive Stochastic Resonance: Signal-to-Noise

Ratio

This section presents simulation results for adaptive stochastic resonance with signal-to-noise
ratio measure. This measure applies to narrowband sinusoidal signals. We set up a discrete
computer simulation for each system as described in Chapter 3. The learning process itself
does not use the system model in any calculation. It needs access only to the system’s input-
output responses. The learning process’s sampling period T, differs from the time step AT of
the dynamical system’s simulator in (3.4)-(3.5). The subsampling rate for the quartic bistable

system is 1:50. We ignored all aliasing effects.

5.1.1 SR Test Case: The Quartic Bistable System

We test the quartic bistable system (2.7) in detail because of its wide use in the SR literature
as a benchmark SR dynamical system. The quartic bistable system for a = b = 1 with binary

output has the form [223]

& = z—2°+s(t) +n() (5.1)

y(t) = sgn(xz(t)) (5.2)

or y(t) = z(t) in the linear-output case. The sinusoidal input forcing term is s(¢) = esinwpt.
The term n(t) = ow(t) is a zero-mean additive white Gaussian noise with variance ¢2 and where

E[w] = 0 and E[w?] = 1. The discrete version has the form (3.4)-(3.5):

T = o+ AT (:z:t — 23 +esin2n foATt) + oVATw, (5.3)
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ye = sgn(z) or Yy = 3 (5.4)

with initial condition 2¢. The time step is AT = 0.0195. The sampling period is Ty = 0.976
with 1:50 subsampling.

We can freely choose the time length between the iteration step n and the step n+1. Longer
time lengths can better show how the noise intensity o at iteration n affects S,, N,, and SNR,,.
We chose the time length T, — 75, = 2000 seconds for the simulations of the quartic bistable
system. The sampling period was T; = 0.976 seconds. This yields 2048 samples per iteration.
This long period of time allows for low frequency signals such as fo = 0.001 Hz.

The simulations use Gaussian noise, Laplace noise, uniform noise, and impulsive alpha-stable
noise. We also test the quartic bistable system with the chaotic noise from the logistic map.
Figures 1.4, 3.3, and 5.6 show the output SNR for input signal s(t) = 0.1sin27(0.01)¢ for

Gaussian noise, Laplace noise, uniform noise, and chaotic noise from the logistic map.

SR Learning from the Math Model

In this section tests the exact learning law (4.44) on the quartic bistable system. The Jacobian

of the quartic bistable system has the form

oG

5= (%[m — 2 + s(t) + ow(t)) (5.5)

= 1-3z% (5.6)

Then the partial derivative %g = w(t) from (4.31) gives the evolution of 7(t) = g—ﬁ for the

quartic bistable system

7 = (1-32%)n(t) + w(?). (5.7
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Figure 5.1: Learning paths for the quartic bistable system & = z — 23 + s + n with sinusoidal
input s and Gaussian noise n. The sinusoidal input 8(t) = € sin 2« ft has parameters € = 0.1 and
f =0.01. The system has linear output y(t) = z(t) in (a) and binary output y(t) = sgn(z(¢)) in
(b). The learning law takes the form (4.44). The optimal noise level is o 2 0.5 for both cases.

The impulsiveness of the learning term BS‘:ﬂR destabilizes the learning process near the optimal
noise level.

Its discrete version has the form

nt+1) = nt)+ AT (1-322)n(t) + VATw,. (5.8)

We used the initial condition %‘—:} = 0 in simulations. Then we get g% from (4.27) for use in the
learning law (4.44). The linear output y = g(z) = z has gg— = 1. We can approximate a binary
output as g(z) = sgn(z) = tanh(cz) for a large positive ¢ > 0. Then g—g- = ¢(1 — tanh?(cz)).

We test the learning law (4.44)

_ 1 ¢ 9%0m _ 1 5~ 9N.oy
on+1) = a(n)+p, (Sn 1=n+21_1, 3y 9o N ¢=,,.,_ZI_L o 60)' (5.9)

Figure 5.1 shows the simulation results. It displays the unstability in the learning due to the

impulsiveness of the random gradient —351:—R as shown in Figure 4.1. So we replace the noisy

9SNR,

5o > with a Cauchy-like noise suppressor d)(%) [131] as described in

random sample
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Figure 5.2: Learning paths for the quartic bistable system & = z — z® + 5 + n with sinusoidal
input s(t) = esin2x ft and Gaussian noise n. The system has linear output y(¢) = z(t). The
learning law has the form (5.10). The parameters of input sine waves are (a) ¢ = 0.1 and
f =0.001 and (b) (a) € = 0.1 and f = 0.01. Optimal noise levels are (a) ¢ =~ 0.35 and (b)
o 2 0.5. The learning paths converge close to the optimal levels.

Section 4.3.2:

aSNR"). (5.10)

o(n+1) = oln) +pn o5

Figure 5.2 shows the results of the SR learning law (5.10) with the gradient in (4.73). The o,

learning paths in (4.44) converge near the optimal noise level.

Learning Law with Approximation of %

This section tests the learning law with approximation of the gradient term as in section 4.1.2:

( Sn — Sn-1 _ Np — Np

5 N ) sgn(op — on—1)- (5.11)

On+l = On+fin

This learning law does not use the math model of the system. It depends only on samples from
the system dynamics and from the input signal s(z).

Figure 5.3(a) shows sample learning paths of g, for the quartic bistable system and approx-
imation (4.53). Figure 5.3(b) shows the noise-SNR profile of the dynamical system. The o,

learning paths converge to the optimum noise values only in some cases. The chance of path
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Figure 5.3: Impulsive effects on learning paths of noise intensity o,. The quartic bistable system
has the form z = z — z3 + s(t) + n(t) with binary output y(t) = sgn(z(¢)) and initial condition
z(0) = —1. The input sinusoid signal function is s(t) = 0.1sin2x(0.01)t. (a) The sequence
o, with different initial values that differ from the optimum noise intensity. (b) Noise-SNR
profile of the quartic bistable system. The graph shows that the optimum noise intensity lies
near o = 0.5. The paths of ¢, do not converge to the optimum noise. This stems from the
impulsiveness of the derivative term Q—SgTRu in the approximate SR learning law (5.11).

convergence is higher for larger amplitudes of sinusoidal inputs. The paths do not converge
as often for small amplitudes. The simulations confirm that the random gradient %& in
(4.53) is often impulsive and can destabilize the learning process (5.11) as in Figure 5.3. The

impulsiveness of 25NEa in Figure 4.3 suggests that 250 Ra

may have an alpha-stable probability
density function with parameter a < 2. A log-tail test found that a ~ 1. So ﬁ%‘ﬂ in (4.53)
also has an approximate Cauchy distribution.

We again apply the Cauchy-like noise suppressor from robust statistics [131] to reduce the
impulsiveness of the approximated term QS%E in (4.53). So QS(a—Sa“L-ﬁn) replaces the approxima-

tion of the noise gradient 25R= in (4.53) to give the robust SR learning law

Sn—Sn-1  Np—Np_
Ontl = Op +un¢(( 5. - - N, l)sgn(a,, —a,._l)). (5.12)

Figure 5.4 shows the results of the SR learning law (5.12). The o, learning paths converge to
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the optimum noise level if the initial value lies close enough to it. Then o, wanders in a small
Brownian-like motion about the optimum noise level.

Like results hold for other noise densities with finite variance such as Laplace and uniform
noise. Figure 5.5 shows o, learning paths for the quartic bistable system (5.3)-(5.4) with Laplace
noise and uniform noise. We also use a chaotic time series as the forcing noise n; in the quartic
bistable dynamical system [137]. The simple and popular logistic map creates the noise sequence
{z:}:

zep1 = 420 (1 — 2z) (5.13)

from the initial value 29 = .123456789 [137]. The positive sequence {z;} stays bounded within

the unit interval: z, € (0,1). The chaotic noise n; comes from
1
ny = Az — 5). (5.14)

The factor A > 0 acts as the scaled power or standard deviation if the term (z; — 1) is a
zero-mean random variable with unit variance. Learning tunes A so that the dynamical system
shows the SR effect. Figure 5.6 shows a sample chaotic noise sequence and shows two A learning
paths on their way to stochastic convergence.

We also test the quartic bistable system with alpha-stable noise. Figure 5.7 shows the paths
of the optimal dispersion v, for @ = 1.9, 1.8, and 1. The learning degrades as « falls and the

alpha-stable bell curves have thicker tails.

5.1.2 Other SR Systems

The SR learning schemes also work for other SR models. We here show only the results for

zero-mean white Gaussian noise.
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Figure 5.4: Learning paths of o, with the Cauchy noise suppressor ¢(z) = 2z/(1 + 22) for
the quartic bistable system with binary threshold output y; = sgn(z:). The term ¢( 8—381\{,—'1"-)
replaces 63%1_,,_ in the SR learning law (4.50). The paths of o, wander in a Brownian-like
motion around the optimum noise. The suppressor function ¢ makes the learning algorithm
more robust against impulsive shocks. The input signals are (a) s(t) = 0.1sin27(0.001)¢, (b)

s(t) = 0.1sin27(0.005)t, (c) s(t) = 0.1sin27(0.01)¢, and (d) s(¢) = 0.2sin27(0.01)t.
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Figure 5.5: Learning paths of ¢, for other noise densities in the quartic bistable system with
binary output y; = sgn(z;). The input signal is s(¢) = 0.1sin27(0.01)t. The optimal noise lies
near o = 0.5 for both cases of (a) Laplace noise and (b) uniform noise.

Threshold neuron model

We first test the discrete-time threshold neuron model

1 ifs;+n, > 0O
Y = (5.15)
-1 ifsg+n < O

for t = 0,1,2,... The threshold © sets the output of the neuron. The sinusoidal input has
the form s, = esin27fyATt. The Gaussian noise n, has variance 62. The threshold system
is not a dynamical system but it does show SR. Figure 5.8 shows the result of learning when
fo =0.001, £ = 0.1, and © = 0.5 and when fo = 0.001, € = 0.5, and © = 1. The sampling

period is T; = AT = 1.

Bistable potential neuron model

We next test the bistable potential neuron model with Gaussian white noise [28]

t = -—z+2tanhz+ s(t) + n(t) (5.16)

y(t) = sgn(z(t)). (5.17)
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Figure 5.6: Learning paths of the scaling factor A, in chaotic noise n; = An(z; — 1) from the
logistic dynamical system 241 = 42;(1 — 2;). The dynamical system is the quartic bistable
system with binary output y; = sgn(z;). The input signal is s(t) = & sin 27 fot where fo = 0.01
Hz and € = 0.1. The top figure shows a sample noise path n; from the chaotic logistic map
when A4, = 1.

We ignore the multiplicative noise in (2.11). Figure 5.9 shows the SR learning paths of o,,. The
sinusoidal input is s(¢) = esin 2w fot where fo = 0.01 Hz and € = 0.1 and the € = 0.3. The time
step in the discrete simulation is AT = 0.0195. The sampling period is T; = 0.975 or 50 times

the time step AT.

FitzHugh-Nagumo neuron model

We next test the forced FitzHugh-Nagumo neuron model [221]. We rewrite (2.12)-(2.13) with

a = 0.5 and with the changes of variablesz -+ 2+ 0.5, 2z > 2—-b+05,and A - A-b+0.5

(52):
i = —w(a?— %) — 24 A+ s(t) + (D) (5.18)
3 = z-2 (5.19)
y(t) = =z(b). (5-20)

The constants are € = 0.005, a = 0.5, and A = —(5/12v/3 + 0.07) = —.31056 as in [118]. The

sinusoidal input is s(t) = & sin 27 fot with € = 0.01, fo = 0.1 and 0.5 Hertz. The sampling period
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Figure 5.7: Learning paths of k, for alpha-stable noise in the quartic bistable system with
binary output y; = sgn(z;). The input signal is s(t) = 0.1sin27(0.01)t. (a) a = 1.9. (b)
a = 1.8. (c) a = 1. The noise scale £ acts like a standard deviation and controls the width of
the alpha-stable bell curve through the dispersion v = k®. Learning becomes more difficult as
a falls and the bell curves have thicker tails. The impulsiveness is so severe in the Cauchy case
(c) that &, often fails to converge. Note the noisy multimodal nature of the SNR profiles.
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Figure 5.8: SR learning paths of o, for the threshold system y; = sgn(s, + n, — ©) where
sgn(z) = 1 if £ > 0 and sgn(z) = —1 if £ < 0. The sinusoidal input is s; = esin 27 fot with
additive white Gaussian noise sequence n;. The parameters are (a) fo = 0.001, € = 0.1, and
© =0.5 and (b) fo =0.001,¢ = 0.5, and © = 1.
is Ty, = 0.01 with AT = 0.001.

The Jacobian of the FHN model (5.18)-(5.20) has the form

8,1 1
J(z,z) = € 4e € (5.21)
1 -1

Figure 5.10 shows the learning paths of the standard deviation ¢, of the Gaussian noise n.
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Figure 5.9: SR learning paths of o, for the forced bistable neuron model & = —z + 2tanhz +
e sin 27 fot + n(t) with binary output y(t) = sgn(z(¢)). The parameters of the sinusoidal inputs
are fo = 0.01 Hz and (a) € = 0.1 and (b) € = 0.3.

Duffing oscillator

We also show SR learning in the forced Duffing oscillator with Gaussian white noise n [237]:

& = =0.152+ 2 — 23 + e sin(wot) + n(t) (5.22)

y(t) = =z(t). (5.23)

Figure 5.11 shows the learning paths of o, for sinusoidal input s with frequency fo = 0.01 Hz

and with amplitudes € = 0.1 and € = 0.3. The sampling period is T, = 0.02 with AT = 0.005.
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Figure 5.10: SR learning paths of o, for the FitzHugh-Nagumo neuron model ez = —z(z? —
1) —z+ A+ 5(t) +n(t) and 2 = z — z with output y(t) = z(t). The parameters are € = 0.005
and A = —(5/12v/3 + 0.07) = —.31056. The sinusoidal input signal is s(t) = & sin 27 fot where
(a) e = 0.01 and fo = 0.1 Hz and (b) ¢ = 0.01 and fo = 0.5 Hz. Figures (a) and (b) show
how SR learning convergence can depend on initial conditions. The distant starting point
g0 > 7.5 x 1073 leads to divergence in the third learning sample in (a) but leads to convergence
in the third learning sample in (b).
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Figure 5.11: SR learning paths of o, for the forced Duffing oscillator # = -z +  — 23 +
€ sin 27 fot + n(t) with output y(t) = z(¢) and J = 0.15. The parameters of the sinusoidal inputs
are fo = 0.01 Hz and (a) ¢ = 0.1 and (b) € = 0.3.

5.1.3 Fuzzy SR Learning: The Quartic Bistable System

We use a fuzzy function approximator F' : R® — R to learn and store the entire surface of
optimal noise values for the quartic bistable system with sinusoidal inputs. The fuzzy system
had as its input the 2-D vector of sine wave amplitude € and frequency fo. We test the system
with the fixed input initial value z(0) = —1. The fuzzy system itself defines a vector function
F : R? - R and uses 200 rules. The chain rule extends the learning laws in the previous sections

to tune the fuzzy system’s parameters m; as in (4.4):

0SNR,

mi(n+1) = m;i(n) +pn
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T 6_Tn‘j. (5.25)

= mJ(n) + in

Appendix A.2 derives the partial derivative 86_111:; for the sinc SAM fuzzy system that we use.

The Cauchy noise suppressor gives the learning law as

95Mhn) OF (5.26)

Figure 5.12 shows how we form a first set of rules on the product space of the two variables
€ and fo. It also shows how the learning laws move and shape the width of the if-part sinc
set. Figure 5.13 shows the results of SAM learning of the optimal noise pattern for the quartic

bistable system. The sinc SAM uses 200 rules. Fewer rules give a coarser approximation.

5.2 Adaptive Stochastic Resonance: Cross-Correlation
Measure

This section explores adaptive stochastic resonance for a quartic bistable system and a FitzHugh-
Nagumo neuron model with the cross-correlation measure C in (3.52). The cross-correlation
measure can apply to both narrowband and broadband signals. Signal-to-noise ratio works
well with the sinusoidal signal because it computes the spectral ratio of output energy at a
given frequency wp. This concept might not extend to broadband signals in nonlinear systems
since their energy can spread over a broad range of frequencies. Cross-correlation measure and
correlation coefficients define how well the input and output matches in shapes.

This section explores ASR for systems with broadband signals. Most real-world systems
deal with broadband signals rather than sinusoidal signals because broadband signals contain
more information [50). Examples of broadband SR systems include crickets [173], rat [53], and
human [48, 54, 57, 271]. Figure 5.14 shows samples of broadband signals. We create broadband

signals by convolving a sequence of Gaussian noise with windows in signal processing such as
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Figure 5.12: If-part sinc fuzzy sets. (a) Scalar sinc set function aj(xz) = sinz/xz. Sinc sets
are generalized fuzzy sets with “membership values” in [-.217,1]. Element z belongs to set A;
to degree aj(z): Degree(z € A;) = a;(x). (b) Initial subsets for sine wave amplitudes and
frequencies. There are 10 fuzzy sets for amplitude £ and 20 fuzzy sets for frequency fy. The
product of two 1-D sets gives the 2-D joint sets: a;(z) = a;(e, fo) = a} () G,:?(fo). So the product
space gives 10 x 20 = 200 if-part sets in the if-then rules. (c¢) One of the 2-D if-part sinc sets in
the 200 rules at the initial location. (d) Learning laws tune the location and width of the same
set in (c) after 30 epochs of learning.
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system with binary output. (a) The optimum noise pattern when inputs are sine waves with
distinct amplitudes and frequencies. (b) SAM fuzzy approximation of the optimum noise after
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amplitudes and frequencies. The quartic bistable system has the form & = z — 2% + s(t) + n(t)
with initial condition z(0) = —1. The initialized SAM gave the output value 0.2 as its first
estimate of the optimal noise level.

Hanning window [240]. This limits the range of the signals’s spectrum. We also include non-
sinusoid periodic signals in this category because they can have broad spectrum. We test the
ASR learning schemes for both types of input forcing signals and Gaussian noise.

The learning law for optimal noise level ¢ for the cross-correlation measure has the form

(4.68)
Ontl = On+ “386; (5.27)
with the learning term (4.72)
2 = X st (5.28)
t=n—L+1

The learning scheme uses L input-output samples to compute the performance gradient %‘L

and update o, at each iteration n. This follows the procedure in the previous section for the
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Figure 5.14: Samples of broadband signals. The signals s;, 82, and s are periodic signals with
broad spectrum while the other three signals s4, s5, and s¢ are aperiodic broadband signals. We
generate broadband signals by convolving a sequence of Gaussian noise with Hanning windows
[240].

SNR measure. In this section we will also test a gradient learning scheme that updates o, at

every input-output sample (8¢, ¥s4+1)-

Quartic bistable system

First we consider the popular quartic bistable system with sinusoidal input signal and cross-
correlation measure. We test the exact learning law that requires the Jacobian matrix of the

system. The Jacobian for the quartic bistable system # = = — z® + s + n has the form

g_i = %[f(a;).{.s-{-aw] = -:—':); = -(;1—2:(3:—:1:3) = 1- 322 (5.29)

So the evolution of n = gg for the quartic bistable system with linear output y(t) = z(¢) has

the form

7 = (1-32%)n+w(t). (5.30)
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The derivative % is the Jacobian matrix for multi-dimensional systems. We simulate gg in

(5.30) with its discretized version

n(t+1) = n(t) + AT(1 - 3z2)n(t) + VATw, (5.31)

for a zero-mean unit variance random sequence w; from a random number generator that adds
noise ny; = ow, to the system. The learning scheme uses this partial derivative gg to compute
the performance gradient %%1 in (5.28). Figure 5.15(a) shows the SR learning paths of o,, for

the forced quartic bistable system. The Cauchy suppressor ¢ replaces the performance gradient

ac

Sc with ¢(%) in the learning law (5.27). We can approximate the performance gradient %

with sample differences

oC  C(o+Ao)-C(s - Ao)
oo 2A0

(5.32)

where Ao and u,, satisfy certain technical conditions of stochastic approximation [152]. We use
constant 4 and Ac. Figure 5.15(b) shows that SR learning paths of o, slowly converge and
wander about the optimal noise level. The learning law that use Jacobian gives better learning
paths.

Next we update the noise level o, in (5.27) at each input-output sample (s;,ys4+1). Figure
5.16(a) shows the impulsiveness of the term gg from the above evolution of the quartic bistable
system with sinusoidal input and constant noise levels. This might also cause of impulsiveness
in the learning of SNR. Figure 5.16(b) shows the learning paths of the parameter ¢ at each time
step £. The learning algorithm updates the parameters o, at every sample y; of the dynamical
system. The impulsiveness of gg— pushes the trajectory away from the optimal noise levels.

Since we update the noise level o at every time step ¢ it is logical to replace % with the
Cauchy-suppressed version ¢(§-;i) rather than the total learning term ¢>(%§). Figure 5.17(a)

shows the learning paths for ¢(%S—) (as in our results in SNR case) comparing to the results
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Figure 5.15: Learning paths of o, for the quartic bistable system # = = — z3 + s + n with
linear output y(t) = z(t) and cross-correlation measure C. The sinusoidal input signal is s =
esin 2w fot for € = 0.1 and fo = 0.01 and n is Gaussian noise. The optimal no:se level is

= 0.6. (a) The learning process uses Jacobian of the system to simulate -1 for ¢ in

(5.28). A Cauchy suppressor applies to the term % (b) The learning scheme approx1mates

the performance gradient ‘gf with the differences %f— ~ C@+A”) C(" 49) 35 in stochastic

approximation framework [152]. The paths converge and wander near the optimal noise level.

when the learning law uses -g-g in Figure 5.17(b). Figure 5.18(a) shows the results when the

algorithm updates the noise level at a subsampling rate of 100:1. The paths look smoother.
We also test the Cauchy suppressor to the term st-QL*- in (5.28). This derives from the
conjecture that the term i"—‘*— is impulsive instead of just the term a—’g;'i. Figure 5.18b shows
the learning paths.
Then we test the quartic bistable system with broadband signals. Figure 5.19 shows the

learning paths. The learning scheme uses the Cauchy-suppressed term ¢(-g—f§) in (5.28). The

paths converge close to the optimal noise level.

FitzHugh-Nagumo neuron model

Now we consider the FitzHugh-Nagumo (FHN) neuron model (5.18)-(5.20) with sinusoidal input
signal. We test the learning law (5.27) that updates after L samples. We apply a Cauchy noise

suppressor to the term %f;l. Then we test the learning that updates every sample y,. The Cauchy

91



4 5 [}
Time step t
T T T

" 2, 1 1

4 s 0
Time step t
v v y

! Tumeseﬂapt ¢ x10*
(b)
Figure 5.16: The partial derivative gg and the learning paths for the quartic bistable system

with output y(t) = z(t). The optimal noise level is ¢ = 0.6. The learning process update o,
at every sample time ¢. (a) The adaptive system simulate -g—g from the system Jacobian (5.31).

The term g—} shows an impulsive nature at the optimal noise level and thus can destabilize the
learning process in (b).

noise suppressor applies to the term gg and update the noise level every time we sample the
dynamics.

The results for the FHN model with cross-correlation measure were not satisfactory for both
cases of sinusoidal and broadband signals and for both ways of updating the optimal noise level.
The paths did not converge to the optimal noise level even when we used the math model (the
Jacobian) to simulate the term %g in the learning law. This suggests that there might be other
structure effects of the learning process besides the impulsiveness of gg and g—f that we are not
aware of. Future research would examine this effect in more detail or derive a new learning law

that might overcome this effect.

5.3 Conclusion

Stochastic gradient ascent can learn to find the SR mode of at least some simple dynamical
systems. This learning scheme may fail to scale up for more complex nonlinear dynamical

systems of higher dimension or may get stuck in the local maxima of multimodal SNR profiles.
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Figure 5.17: Learning paths for the quartic bistable system # = z — 2% + s + n with output
y(t) = z(t). The input signal is s(¢) = 0.1sin27(0.01)¢ and n is additive Gaussian noise. The
optimal noise level is ¢ = 0.6 for a cross-correlation measure C. (a) The learning law replaces
% with ¢(42). (b) The learning law replaces 92 with ¢(2%). The results show that ¢(3L
gives better learning.

Simulations showed that impulsive noise can destabilize the SR learning process even though
the learning process does not minimize a mean-squared error. Simulations showed that the
key learning term itself can give rise to strong impulsive shocks in the learning process. These
shocks often approached Cauchy noise in intensity. A Cauchy noise suppressor gave a working
SR learning scheme for the DFT-based SNR measure. Other SNR measures or other process
statistics may favor other types of robust noise suppressors or may favor still other techniques
to lessen the impulsiveness.

The learning scheme updates the standard deviation o or the noise scale x of zero-mean
noise w with unit variance (or unit dispersion). A sign of this scale k has no effect because
the noise has zero mean. This also implies that there is a local extremum of the SR profile at
the zero noise level. The expected value of a performance gradient equals zero at zero noise
level: E[4E] =0 at o = 0 (if the expectation exists). The gradient-based learning can therefore

wander about zero noise as well as nonzero noise since the adaptive system uses only noisy

measurements of the performance gradients.
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Figure 5.18: Learning paths for the quartic bistable system with sinusoidal input and linear
output y(t) = z(t). The optimal noise level is & = 0.6. (a) A Cauchy suppressor replaces
%g with ¢(‘—§ﬁ-) in the learning law (5.27) and (5.28). Here the update has a subsampling rate
at 100:1 while the sampling rate in Figure 5.17 is 1:1 with the dynamical system. (b) Here
the learning law applies the Cauchy suppressor to the term st%% to obtain ¢(st%) in the
performance gradient (5.28). The learning paths ¢, converge close to and wander about the
optimal noise level.

Better learning schemes should escape from this trap of local minima. An adaptive system
might perform some random search such as simulated annealing [155] but the system should
spend most of its time at or near the optimal noise. An ideal system might encode the informa-
tion in the signal and noise structures it has learned. Then it would spend less time searching for
the optimal noise. This system would map a space of input signal to optimal noise levels. The
system might use a finite-dimension space of features of input signals such as a few frequencies
of interest as inputs. The system might also combine the knowledge it has learned from other
signals to help search for the optimal noise of a new input signal. An adaptive fuzzy system
is a candidate for such a system but it suffers exponential rule explosion when the number of
features is large.

Zero-mean noise might not be the best noise for all systems. An adaptive system might also
adapt the mean or bias of the noise that it adds to adaptively achieve stochastic resonance. A
more complicated learning scheme might learn the best distribution of input noise. A learning

system of this type would combine a random search on the space of all possible probability

94



14
12}
L " N H . 1o} 4
% 1 2 3 4 s ° .
. Time step t x10' - [TI.
T T H v H tal ! 1
. . > “ ! lI
: : s "I":I"-l'
: - phipe
: 286l RUTIIE
: : e BRI
: : 1 th
: : - Ganrtinn !
H H N H N i : LI ||||||"|I|||I|III.II|.'|L
[ 1 2 3 [ 8 s 7 [ o Vit ':l::"ul"l'l:l'.'.:‘:
O D) N
. ' Time stept i x10 LA
: ! 2} !
. 1
: "
G0 B R S s ol
: ity
: : Vi g [T
: H ML E U AR
) 1 2 3 s 0 7 8 )

4 05 1 15
Time step t x10* Standard deviation o of additive white Gaussian noise

Figure 5.19: Learning paths of o; for the quartic bistable system with linear output y(t) = z(t)
and cross-correlation measure C. The top figure shows part of the broadband input signal s(t)
that forces the quartic bistable system ¢ = £ — 2° + s + n. The optimal noise level is ¢ ~ 0.6
as in the SR profile of a cross-correlation measure C. The learning law replaces g{f with ¢(%§).
densities with some analysis of the past input-output data to find the best noise. Better sys-

tems might learn the waveform or sequence of added “noise” that maximizes the performance

measures.
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Chapter 6

Future Research

This dissertation studies how we can adaptively achieve stochastic resonance. The SR learning
schemes converge to and wander about the optimal noise level for sinusoidal input forcing signals.
This follows from the stationarity statistics of the SR effect because the power spectrum of a
sinusoidal signal is constant over periods of time. So the best noise is fixed at a constant level
if the nonlinear system is time-invariant. Then the adaptive system can update the noise level
after it samples enough data points to better estimate the performance gradients. It can also
apply other schemes such as gradient averaging [277] that give more reliable estimates of the
performance gradients %.

Broadband signals complicate the learning process. The power spectrum of a broadband
signal changes over time when we consider its Fourier spectrum over small windows of time.
If the qualitative response of a nonlinear system depends on the spectrum of the input forcing
signal then the statistics of the SR effect can also change over time. So the optimal noise can
vary as the input signal spectrum changes. The adaptive system needs to track these changes so
it can still add the right amount of noise to achieve the SR effect. The learning scheme may need
to sample the dynamical system more frequently and may need to update the noise level more

frequently. The dissertation derives such a learning law that uses the Jacobian of a nonlinear
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dynamical system. The learning scheme assumes that we know the system dynamics and that
we have access to all of the system states. These assumptions do not hold in many cases.
Future systems may relax these assumptions as they approximate the dynamics from input-
output samples. A straightforward extension is to apply the “embedding theorem” that states
that there exists an F' that maps the past samples of the time series {y(¢t — j7)} to the current

sample y(t):
y(©) = Fy(t-7),...,y(t - dgr)) (6.1)

for a sufficiently large embedding dimension dg and time delay 7 [196, 243, 284, 295, 301]. So
we can construct or estimate F from sample data {y(t — j7)} and derive the learning law with
the technique discussed in Chapter 4 for a dynamical system (6.1). Such learning laws will use
the Jacobian matrix J = %—5 from the estimated map F. Local or global dynamic modeling can
adaptively approximate the map F [262]. The method of least squares can give an estimate of
the Jacobian J from data points within local region in the reconstruction space [282]. Another
gradient system such as the LMS algorithm [262, 312] can give an estimate of the Jacobian

matrix J from the input-output sample data:
J¢+1 = J¢ - [I.nv_]E‘ (62)

Here E is the error of a linear modeling E = 1|ly(¢t +1) — §(¢ + 1)||?> where §(t + 1) = Juy(¢) + be.
Then the adaptive system simulates g{f from the Jacobian estimate as in Chapter 4.

Do we need to estimate the entire Jacobian matrix? Accurate Jacobian estimation requires
a large amount of data and computation [262, 282] that complicates the ASR system. This
dissertation derived a gradient-based ASR for the SNR and cross-correlation measures that
relies on the gradients gg—. One way to obtain this gradient is to simulate it from the Jacobian

of the system. This raises the question whether we need the Jacobian to obtain g}g-. The
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idea is to obtain or estimate the gradient g—g directly from input-output data. Applications of
perturbation analysis [35, 103, 123, 293] may give a way to estimate the gradient -gg— directly
from input-output data. Ideal adaptive stochastic resonance would derive a learning law that
truly depends on only data. It might depend on some form of rough approximation of the
Jacobian matrix J or on the gradients g—g or on both or neither. But it needs to quickly capture
the structure of F (from the data {y(t — j7)}) so it can track the nonstationary statistics of the
SR effect.

Future research will also derive learning laws for ASR with other performance measures such
as mutual information, probability of correct detection, probability of residence time, and Lya-
punov exponents. These measures may require different techniques to extract SR information.
A gradient-based ASR for the mutual information I(s,y) as in (2.32) may require an estimate
of the joint probability density of the input signal s and the output y: aﬂg‘(;’—’y). This may not
be practical and we may need to find other ways to derive learning laws for mutual information
measure.

ASR simulations also show that the gradient gg is impulsive even when the learning system
uses the math model (the system Jacobian), when we have has access to all of the system states,
and when we use Gaussian or other finite-variance noise. We lack a formal explanation of this
observed effect. The simulations also show that straightforward application of gradient learning
does not always give convergence to the optimal noise level. A Cauchy noise suppressor partially
overcomes and helps stabilize the learning processes. But the ASR simulations for the cross-
correlation measure fail to converge to the optimal noise levels for the FHN neuron model. This
suggests other structural effects in the learning processes. Better ASR systems should identify
these problems and find solutions to improve convergence.

This dissertation shows in sum that gradient-ascent learning can find the SR mode of the
main known dynamical models that show the SR effect and can do so in the presence of a wide
range of noise types and signal types. This suggests that SR may occur in many multivariable

dynamical systems in science and engineering and that simple learning schemes can sometimes

98



measure or approximate this behavior. We lack formal results that describe when and how such
SR learning algorithms will converge for which types of SR systems. This reflects the general
lack of a formal taxonomy in this promising new field: Which noisy dynamical systems show

what SR effects for which forcing signals and for which performance measures?
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Appendix A

Fuzzy Sets and Fuzzy Function

Approximation

A.1 The Standard Additive Model (SAM) Theorem

This appendix derives the basic ratio structure (4.80) of a standard additive fuzzy system.
SAM Theorem. Suppose the fuzzy system F : R® — RP is a standard additive model:
F(z) = Centroid(B(z)) = Centroid(z wja;(z)B;) for if-part joint set function a; : R* — [0, 1],
Jj=1

rule weights w; > 0, and then-part fuzzy set B; C RP. Then F(z) is a convex sum of the m

then-part set centroids:

Zm: wjaj(z)V;c; m
F(z) = ji—ﬁ = z;pj(m)cj. (A.1)
w,-aj :ZIVj =
i=1
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The convex coefficients or discrete probability weights p;(z),...,pm(z) depend on the input =

through

w;a;(z)V;

Xm: wiai(z)Vi |

i=1

p;(2) (A.2)

V; is the finite positive volume (or area if p = 1) and c; is the centroid of then-part set B;:

v =‘AmemwM@rw% > 0, (A3)
/Rybj(yl,-.-,yp)dyl---dyp

/bj(yl,---,yp)dyn---dyp
RP

(A.4)

Proof. There is no loss of generality to prove the theorem for the scalar-output case p = 1
when F : R® — RP. This simplifies the notation. We need but replace the scalar integrals over
R with the p-multiple or volume integrals over RP in the proof to prove the general case. The

scalar case p = 1 gives (A.3) and (A.4) as

vo= [ s (A.5)
/m ybi(y) dy
6 = Tz T (A.6)

[ twa

Then the theorem follows if we expand the centroid of B and invoke the SAM assumption

F(z) = Centroid(B(z)) = Centroid(z wj aj(z) B;) to rearrange terms:

j=1
F(z) = Centroid(B(z)) (A.7)
/ yb(y) dy
= = (A.8)
L
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/ y Y w;bi(y)dy
1

—00

= — (A.9)
| wibway

=

=1
o0 m
/ y Z wj aj(z) bj(y) dy
=1
wj a;(z
=1

—00

= (A.10)
/ y) dy
wj a;(z) / yb; (y)d
= =2 (A.11)
Z wj a;j(z) / bi(y) dy
m / yb;(y) dy
> wiai(e) V; =2
S i ’ (A.12)
D wiai(@)V;
i=1
Z wj a;j(z) Vjc;
= = . (A.13)
> wja;(z)V;
j=1

Generalizing the SAM system leads to the set SAM F that maps fuzzy sets A in the input
space R™ to vector points y in the output space R?. So the set SAM F : F(2”") — RP has as
its domain the fuzzy power set F(2%") or the set of all fuzzy subsets A C R™ with arbitrary set
function a : R™ — [0,00). The point SAM is a special case of the set SAM for a singleton input
fuzzy set A = {zo} C R™: a(z) = §(z — zo) where § is a Dirac delta function in the continuous
case or a unit bit vector in the discrete case. Correlation computes the “fired” fit value of the
Jjth set a;(A) as [162]

a;j(A) = /a(:z:) a;j(x)dz. (A.14)

Then the fired fit value a;(zo) of the singleton set A = {zo} follows from the sifting property of
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delta pulses:

a;(4) = /d@q&ﬂx (A.15)
= / 5 — o) a;(z) do (A.16)
= aj(ﬂ,'()). (A17)

m
The set SAM equation follows from the SAM additive combiner B(A4) = Z wj a;(A) B; [162]:

j=1
F(A) = Centroid(B(A)) (A.18)
= Centroid(iwjaj(A)Bj) (A.19)
Jj=1
z w; aj(A) Vj ¢; m
= = = Y pi(d)c;. (A.20)
Y wiai(A)V; =t
j=1

where the convex coefficients py (4),...,pm(A) depend on the input fuzzy set A through

w; a;(A)V;

pj (A) = m .
> wiai(A)V;
i=1

(A.21)

A.2 Supervised SAM Learning

Supervised gradient descent can tune all the parameters in the SAM model (4.80) [160, 162]. A

gradient ascent learning law for a SAM parameter § has the form
oP
Et+1) = &)+ me € (A.22)

where y is a learning rate at iteration t. We seek to maximize the performance measure P of
the dynamical system ¢ = h(g, u). Here the signal-to-noise ratio (SNR) defines the performance

P. Other systems can use different measures such as cross-correlation or mean-squared error.
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Let EJ‘? denote the kth parameter in the set function a;. Then the chain rule gives the gradient
of the SNR with respect to EJ‘F, with respect to the then-part set centroid c;, and with respect

to the then-part set volume V;:

OSNR OSNR OF Oa; OSNR _ OSNR OF OSNR OSNR OF

= — = = >, and = 2
ofF = oF o4 % 0 . oF o ™ oy, ~ ok av; AP
We have derived the partial derivative 331}}1 = a%NR in Section 4.1. We next derive the partial

derivatives for the SAM parameters:

oF (i w; a;(z) V.) (wj Vicj) —w; V; (i w; ai(z) V; Ci)
i=1 i=1
ba; m ?
(Z w; a;(x) Vi)

= NV ey 22 (A.25)

Z w; a;(z) V; aj(@)
i=1

(A.24)

The SAM ratio (4.80) gives [160]

3_57 = _;"jaj(w)Vj = (@) (4.26)
T Y wa@
i=1
and 3—5 Y arf;(m) [c; — F(z)] — PJ’&’") e — F(z)). (A27)
’ > wiai(@) Vs !
i=1

Then the learning laws for the centroid and volume have the final form

ci(t+1) = ci(t)+p BSBNR pi(z) (A.28)
and  Vi(t+1) = Vi(t)+m 3881:R p’é‘”) [c; — F(z)]. (A.29)
M
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Learning laws for set parameters depend on how we define the set functions. The partial

o . . . - m; T —m;
derivatives for the scalar sinc set function a;(z) = sin (z 7 J ) / ( 7 / ) have the form
J J

gﬁ _ (aj(z) — cos (-”7 _djmj )) T —lmj for z # m; (A.30)
m; 0 for x =m;
% = (aj (x) — cos (a: ;jmj )) ;—J (A.31)

So this scalar set function leads to the learning laws

m(t+1) = ma(t)+ucasNR[ ()]pJ x)( )—cos(x_mj)) —lm,- (A.32)

8o a;j(z) d; z
dit+1) = d;(t)+m 32 R [e; = F(:c)]i;g; (a,j(:z:) — cos (a: ;Jm,)) % (A.33)

The application in Appendix B applies the SAM system to minimize the squared-error
E(z) = 1 (f(z) — F(z))? of the function approximation. So we use a gradient descent learning

law for a SAM parameter £
0F

Et+1) = &) — e £ (A.34)
Then the chain rule gives the gradient of the error function with respect to E}', with respect to

the then-part set centroid c;, and with respect to the then-part set volume V; as

0B _OEOF Oy O _OEOF . OE _GEOF ..
ot ~ OF da; 08’ dc;  OF oc;’ av;, ~ OF ov; '

We have derived the partial derivatives 2, 8=, and gy~ in (A.25),(A.26), and (A.27). We
need only derive the partial derivative gﬁ

OF

5 = -(@-F@) = -&@) (A.36)
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Then the learning laws for the centroid and volume have the form

ci(t+1) = c¢;(t) + pee(z) pi() (A.37)
and  Vie+1) = V) +mele) B2 [ - Flz)) (4.38)

J

The learning laws for set parameters follow in like manner. For example the scalar sinc set

function has the learning laws

mit+1) = my(t) + pel@)fe; — F(:c)]p " (“’; (a, (z) — cos ("” — My )) —  (A39)

T —mj
1
dit+1) = dj(t)+ pee(x)[c; — F(z )]p,(:v; (aJ(:l:) - cos ) T (A.40)
i
. L . T —m; .
The partial derivatives of the scalar Laplace set function a;(z) = exp {— | P |} with respect
to its two parameters m; and d; have the form
aaj . 1
—= = sign(z —mj)—a;(z A4l
amj J) Idjl J( ) ( )
Oa; . |z — my|
— = sign(d;)——=—"a;(z A.42
f = () (o) (.42)
where we define the sign function as
1 ifz>0
sign(z) = -1 ifz<0 (A.43)
0 ifz=0

Substitute (A.41)-(A.42) in (A.35) and in (A.34) to obtain the learning laws

my(t+1) = my(t)+ me(o) les - F(@))py(e) sgnle = my) oy (A.44)
Gt+1) = dy(t) + pel@) e; - F@)]ps(@)sign(dy) Z=. (A.45)

]
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Like results hold for the learning laws of product n-D set functions. A factored set function
aj(z) = a;(ml) ---a}(z,) leads to a new form for the error gradient. The gradient with respect

to the parameter mf of the jth set function a; has the form

OE OE OF da; Oat da; T aj(z)
_— = =1 where ——J- = I I ai(z;) = J . (AA46
om* OF da; da’ Om} Bak pors (@) HC) (440

Products of the scalar sinc set functions defined the if-part fuzzy sets A; C R™ in the SAM
approximator for adaptive stochastic resonance simulations in Chapter 5.

The application in Appendix B used product of the scalar sinc set function to define the
if-part fuzzy set in the fuzzy profile approximator and used product of the scalar Laplace set
function for the fuzzy equality measure. But it used the set SAM system instead of the simple
point SAM. The learning laws follow from the structure of the set SAM.

We now derive learning laws for the set SAM. The chain-rule terms in (A.35) become

OF OFE oF Oa;
@(A) = 3@ éa—j(A)éé;(A) (A.47)
9 9E, . OF
6_cj(A) = 6_F(A)6_cj(A) (A.48)
OE OFE OF
A = FEA) 5 (A.49)
Then (A.25)-(A.27), and (A.36) give
@ = ~(GAW-FA) = -4 (A.50)
oF o pi(4)
OF
567(14) = p;(4) (A.52)
oOF . _ pm(A)
6_1/}(A) = JV]_ [ej — F(A)]. (A.53)
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The learning laws for then-part set centroids ¢; and volumes V; are

cji(t+1) = ¢;(t) + pee(A) p;i(A) (A.54)
VD) = Vi +meld) B8 o - pa) (4.55)
7

But the partial derivative of the jth set function with respect to its parameters ff has the new
form

Oa;
ok

7

%/aj(m) a(z)dz (A.56)
j

/ %(1}) a(z) dz continuous case
- e (A.57)
Z 2 (x) a(z) discrete case

aé!

Then we substitute these partial derivatives into (A.34) to obtain the set-SAM learning rules.

A.3 Sets as Points: The Geometry of Discrete Fuzzy Sets

This appendix reviews the unit-cube geometry of discrete fuzzy system and derive the new
adaptive equality measure. Let X be a set of n elements: X = {z;,...,z,}. Any subset A C X
defines a point in the n-D unit hypercube I™ = [0,1]". The set of all fuzzy subsets of X or
F(2%) fill in the cube. So the ordinary power set 2% or the set of all 2" subsets of X equals
the Boolean n-cube B™ : 2X = B™. Fuzzy subsets A C X define the points inside or on the
n-D unit hypercube [158, 162] as in Figure A.1. A set A C X is fuzzy when the “laws” of
noncontradiction and excluded middle do not hold: AN A® # ) and AUA® # X.

Figure A.1 shows an example when X = {z1,z2}. Then there are 4 binary subsets of
X : 2% = {0,{z1},{z2},{=1,22}}. The space X = {z1,z2} lies at (1, 1). The empty set
@ lies at the origin (0, 0) and the other two (standard) subsets {z;} and {z2} are at (1, 0)

and (0, 1). A fuzzy subset A C X defines the fuzzy unit or fit vectors A = (a;,az) € I? for
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Figure A.1: Geometry of discrete fuzzy sets. Sets as points in a unit hypercube or fuzzy cube.
Fuzzy set A C X = {&1,...,%,} defines a point in the fuzzy cube [0, 1]*. Here X = {z1,22},
A= (%1), and B = (},3). We define fuzzy-set intersection fitwise with pairwise minimum,
union with pairwise maximum, and complementation with order reversal (a°(z) = 1 — a(z)).
F(2#) and F(2%) define the fuzzy power sets or the sets of of all fuzzy subsets of A and B.
Each set C C X is a subset of A to some degree and so C belongs to F((24) to some degree. C
is a 100% subset of A if and only if c(z) < a(z) for all z € X. Then C € F(24) and so the set
point C lies on or inside the hyper-rectangle F(24). Partial subsets lie outside F(24).
a1,az € [0,1]. Figure A.1(a) shows an example of a fuzzy set A. The geometrical view reveals
the 2"-fold symmetry of the set A and its set operation products with respect to the midpoint.
The midpoint is the maximal fuzzy set. It alone obeys A = A°. The midpoint alone has spherical
symmetry and lies equidistant to all 2" cube vertices.

Figure A.1(b) shows the 2-D cube with the fuzzy sets A = (,}) and B = (3,3). We can

define fuzzy-set intersection fitwise with pairwise minimum, union with pairwise maximum, and

complementation with order reversal:

anb(z) = min(a(z),b(z)) (A.58)
aUb(z) = max(a(z),b(z)) (A.59)
a’(z) = 1-a(z) (A'.GO)

The subsethood theorem [158] measures the degree to which a set A contains in a set B and
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does so in a simple ratio of cardinalities:

¢(AN B)

S(A, B) = Degree(A C B) = W (A61)
where c is a counting or cardinality [158) measure
q4) = Y a(z) or o(A) = / o(z) do (A.62)
X

z;€X

for integrable fuzzy set function a : X — [0,1]. This positive measure stems from the geo-
metric interpretation of the fuzzy power sets F(24) and F(28) [158, 162]. The subsethood
measure extends the histogram intersection in (B.21). The subsethoods need not be symmetric:

S(A,B) # S(B, A). So we use a new symmetric measure [162] of fuzzy equality as in (B.9) :

E(A,B) = Degree(A =B) %ﬂ—g; (A.63)
S(A,B)S(B,A) (A.64)

S(4,B) + (B, A) — S(4, B) S(B, 4)

Then we use the identities min(a,b) = 3(a + b — [a — b]) and max(a,b) = 3(a + b +a — B|) to

derive (A.68):

qanp [ minta@).b@)ds

£(A,B) = = (A.65)
«(AUB) / max(a(z), b(z)) dz
/a(a:) + b(z) — |a(z) — b(z)| d= (A.66)
- /a(:z:) + b(z) + |a(z) — b(z)| dz '
_ [la(@) - b(@)| dz
_ Ja(z) + b(z) dz
= L lleE -t (467
J a(z) + b(z) dx
_ 1-d(A,B)
~ 1+d(4,B) (A.68)
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where fuzzy set A C R" has set function ¢ : R* — [0,1] and B C R"™ has set function

b: R" - [0,1] and

=Bl = [ la@)-ba)lds (A.69)
lA+B| = / la(z) + b(z)| da (A.70)
7 IA-Bll _ [la(z) = b(z)dz

Sums can replace the integrals in the discrete case.
We next derive a supervised learning law to tune the parameters of the set functions. Square
error for a desired matching value D has the form E = (D — &)2. The chain rule gives the

derivative of the squared error with respect to the kth parameter of the jth set function m;r' as

e gl a
The derivatives have the form
OFE
% - [D(A,B) — E(A,B)] (A.73)
o _LeehD) am
aif;: - A (afz;: 14~ Bl - J(A,B)a%fllA +BI). (A.75)

We now derive the derivatives of the “norms” ||A — B|| and ||4 + B|| for the discrete sets A
and B with respect to the parameter mf in our image matching problems. The result follows
from equations (B.14)-(B.15) and

N
> _lA@E:) - B(z)
”A - B ” = i=1

1A+ BJ| N
Z |A(z:) + B(z:)|

i=1

d(A, B) (A.76)
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and the assumption that each set has its own independent parameters (so — 6 =0fori#j):
m¥
7
b3}
WHA - Bl
= am; ‘; |A@:) - B(z:)] (A.77)
al ]
= Y sign(A@) - B@) 5 (A@) - BG) (4.78)
i=1 J
a m m
= Z [Slgn(A(:L', - B@E) g (Z Aia(z) -y By al(:i:,-)) ] (A.79)
=1 =1

N m
= 3 [sen(A@) - BE) 5o (3 wle) @@ - a@s)) ] (480
=1 7 =1
N m
= > [s1gn(A(a‘si)—B(z':,))Z( aih (mz)(al(TA)—al(TB)))] (A.81)
i=1 1= J
- | da(#:)
= Y sign(A(%;) - B@: )[[aj Ty) - a;(T5)] aa w
i=1 ]
+es(@)( Tt~ )] (A82)
= (oy(Ta) - 0T S sign(Ae) - Bla) e
=1
+ (agfnjzA) aangB ) Emgn(A (L‘, (S_Bt)) a,-(a‘ci) (A83)
; <

7]
The derivation proceeds in like manner for W”A + B|| as

8a;(%;)  (0a;(Ta)  8a;(Ts)y == .
lA+B| = [a;(Ta)+a;( TB]E: il + (== + ) Y aj(z:]A84)
6 ’” I 4 — om " ( 3m§ Bmg ) P J

N
since a(z) > 0 for all « € X. The condition a;(T4) = Z t4 aj(%;) and aj(Tg) = Z th a;(Z;)
i=1

from (B.8) gives

Oa; _ N 8a, s A85
am’”( Ta) ZtAa k (A.85)
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a“’ (T) = Zt‘B ga,k 7 (A.86)

i=1

Appendix A.2 derives the partial derivatives of the Laplace set function a; with respect to its
two parameters in equations (A.41)-(A.42). Then substitute (A.85)-(A.86) into (A.83)-(A.84)
to obtain (A.75) and substitute (A.73)-(A.75) to obtain (A.72) and the learning law for each
parameter in the form of (A.34):

1+6AB) 1
1-d(4,B) [[A+ B

mf(t+1) = "(t — (D E(A B))

(aJ (T4) — aj(TB) ) > SIgn( B(z i)) sign(z; — m})

i=1

a;j(Z;)

1

|d%|
N ] N

+ (X (¢ ~ t) sign(@: — m¥) & a;(z:)) Y sign(A(@:) - B(7:)) a5(3:)
i=1 J i=1

N

(aj(Ta) - a;(Tp)) D _ sign(z; —mf) ==

i=1

(ty — th) sign(&; — mf) T;}k—, ai() 3 aj<fi>) ] (A-87)
J i=1

— d(A, B)

*+

NN

‘dkl a’J(-’”z)

-

1

o
Il

1+&(4,B) 1
4(4,B) TA+BI "

N -
[(a,- (T4) - a;(T5)) > sign (A(z:) - B(%:)) sign(d}) W a;(z:)

dit+1) = di(t) - (D(A,B) - £(4,B) ) 1=

N - .
+ (;(t’ — tiy) sign(d¥) | l|d§'_-|2 a;(Z:) ) Z 51g11( (Z:) —B(x,)) aj(Z:)
— CZ(A, B) ((aj(TA) - aj(TB)) Z sign(df) % Gj(fi)
i=1

Al |7 — mj]|

+ (Xt — th) sign(d) ld_klg a,(zz)Zag(mz)} (A.88)

i=1
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Appendix B

Neural Fuzzy Agents for Profile
Learning and Adaptive Object

Matching

A neural fuzzy system can learn an agent profile of a user when it samples user question-answer
data. A fuzzy system uses if-then rules to store and compress the agent’s knowledge of the
user’s likes and dislikes. A neural system uses training data to form and tune the rules. The
profile is a preference map or a bumpy utility surface defined over the space of search objects.
Rules define fuzzy patches that cover the surface bumps as learning unfolds and as the fuzzy
agent system gives a finer approximation of the profile. The agent system searches for preferred
objects with the learned profile and with a new fuzzy measure of similarity. The appendix
derives the supervised learning law that tunes this matching measure with fresh sample data.
We test the fuzzy agent profile system on object spaces of flowers and sunsets and test the fuzzy
agent matching system on an object space of sunset images. Rule explosion and data acquisition

impose fundamental limits on the system designs.
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B.1 Smart Agents: Profile Learning and Object Matching

How can we teach an agent what we like and dislike? How can an agent search new databases
on our behalf? These are core questions for both human agents and intelligent software agents.
We explore these questions with the joint tools of fuzzy rule-based systems and neural learning.

These tools exploit the filter and set-theoretic structure of agent search.

Figure B.1: Profile learning. A neural fuzzy agent learns a user’s utility surface as the user
samples a database of classic paintings. The 12 bumps or extrema on the preference map show
how much the user (or the agent who acts on the user’s behalf) likes or dislikes the 12 paintings.
Here the evolving utility surface forms in the “mind’s eye” of a neural fuzzy agent based on
nineteenth-century English philosopher John Stuart Mill.

An intelligent agent can act as a smart database filter [113, 190]. The agent can search a
database or search a space of objects on behalf of its user. The agent can find and retrieve
objects that the user likes. Or the agent can find and then ignore or delete objects that the user
does not like. Or it can perform some mix of both. The agent acts as a filter because it maps
a set of objects to one or more of its subsets. The agent is “smart” [21, 191, 296] to the degree
that it can quickly and accurately learn the user’s tastes or object profile and to the degree that

it can use that profile map to search for and to rank preferred objects. Figure B.1 shows how an

agent can learn and store user tastes as a bumpy preference surface defined over search objects.
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Agent search depends on set structure in a still deeper way. The search system itself may
have many parts to its design and may perform many functions in many digital venues [55, 319].
But at some abstract level the agent partitions the object space into two fuzzy or multivalued
sets with blurred borders. The agent partitions the space into the fuzzy set of objects that it
assumes the users likes and into the complement fuzzy set of objects that it assumes the user
does not like. All search objects belong to both of these fuzzy sets to some degree. Then the
agent can rank some or all of the objects in the preferred set and can pick some of the extremal
objects as its output set.

The agent needs a profile of its user so that it can group objects and rank them. The agent
must somehow learn what patterns of objects the user likes or dislikes and to what degree he likes
or dislikes them [192, 265]. This profile is some form of the user’s implicit preference map. The
user may state part of this map in ordinal terms: “I like these red flowers more than I like those
blue flowers. I like the large purple flowers about the same as I like the small red-white flowers.”
The objects may be fuzzy patterns or fuzzy clusters in some feature space [166, 244, 245).

Microeconomic theory ensures that under certain technical conditions these complete ordinal
rankings define a numerical utility function. The utility function is unique up to a linear
transformation [64, 121, 241]. So we can in theory replace the ordinal claim “I like object
A at least as much as I like object B” with some cardinal relation u(A) > u(B) and vice versa.
The utility function u : O — R converts the ordinal preference structure into a numerical utility
surface in an object space O of low or high dimension [64, 121, 241]. The user likes the surface’s
peak objects and dislikes its valley objects.

We use neural fuzzy systems to learn the user’s profile or utility surface as a set of adaptive
fuzzy if-then rules. The rules compress the profile into modular units. The rules grow the profile
from a first set of sample data or question-answer queries and change the profile’s shape as the
agent samples more preference data. The modular structure of the rules lets the user add or

delete knowledge chunks or heuristics.
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Figure B.2: Search Objects. Samples of flower images in the test database. (With permission:
Hitachi Viewseum, Copyright (©1995, 1996, 1997, Hitachi, America, Ltd. All rights reserved.)

These fuzzy systems are universal approximators [159] but they suffer from exponential rule
explosion in high dimension [161]. Their first set of rules give a quick but rough approximation
of the user’s profile. Each rule defines a fuzzy patch or subset of the object space (or product
object space). Mean-square optimal rules cover the extrema or bumps of the profile surface
[161]. Then other rule patches tend to quickly fill in between these bumps as learning unfolds.
Figure B.2 shows some of the flower test images we used to form a 4-D feature space of objects.
Figure 4.8 shows how a neural fuzzy system with 100 rules approximates a 2-D profile surface.
The utility profiles grow finer as the user states more numerical ranks for test objects or pattern
clusters. Rule explosion remains the chief limit to this approach.

We also combine neural learning and fuzzy set theory to search for preferred objects. We cast
this search problem as one of fuzzy similarity matching and define a new measure for the task
and show how supervised learning updates this measure. The user gives the system matching
degrees in the unit interval for a test space of sunset images. Supervised gradient descent tunes
the measure and defines a similarity surface over the sunset object space. Similar objects have

nearly the same utility but objects with the same utility need not be similar. Other systems
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might combine the “smart” techniques of fuzzy profile learning with fuzzy object matching to

aid in the agent search process.

B.2 Agent Architecture

Figure B.3 shows our schematic view of an intelligent agent. The agent can reside in a physical
world (robot) or in a virtual world (softbot) [139, 193]. The interface/sensor module transforms
the information into a bit stream. The preprocessor compresses the pattern of objects or actions.
The compressed patterns might be colors or textures used in image search or filtering [233, 300},
keywords used in text search or e-mail classifiers or news-filtering agents [190], or object features

that agents use if they bargain or negotiate [46, 252, 267, 274, 281).

Learning/Adaptation
g Memory
X 7
\, Users E e g 4 R : % ‘
8{1’]3‘3‘5 = @ - Preprocessing : Evaluation of Data/Action
g haractersy vy |=E= - Feature Extractor _=fgz=] - Preferernce Map
Situations { 8 - Action Interpreter - Classification/Clustering
in Physical} ggm| =
or Virtual § i v %
World : = :
. Command - Decision/Action
& 4——; Interpreter .4........... - Acquisition
s - Negotiation

Figure B.3: Agent environment. Schematic view of an autonomous agent in a physical or virtual
world. The agent interacts with objects or characters in the environment and adapts itself to
better execute its goals.

A learning and memory module records the compressed patterns of the utility surface. The
surface changes over time as the user gives more Q & A samples. This gives a bumpy surface
that tends to better and better match the user’s underlying preference map.

The decision maker module receives the data from the evaluation module and then decides

what to do [192]. A classifier agent sends the control signal to that class to which the object
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belongs [190]. Then an agent must decide which step to take next. The agent may need to
bargain or negotiate with other agents [46, 267].

This paper deals largely with the block that computes the “value” or “worth” of an object
or action. The preference map u : O — R defines the value of each object. The user prefers
object O; to object Oz (or O; = O2 in preference notation) if and only if u(0,) > u(0s).
Information agents need some form of these preference maps to decide search issues on their
user’s behalfs [150, 156, 226, 311]. A fuzzy function approximator can give a good approximation
of the preference map if the fuzzy system does not need too many rules and if the system can
sample enough accurate user preference data. We also suggest a method to elicit consistent user

preference data.

B.3 Profile Learning with Sunsets and Flowers

Users can define preference maps on an image space of sunsets or flowers. Each person has his
own likes or dislikes that define his own fuzzy pattern of object clusters. The clusters depend on
the features that define the objects. Recent work on object recognition [300] and content-based
image retrieval [233] suggests that features define the “look” of the images. These features
include colors, shapes, and textures. Research in machine vision seeks invariant features that
can map all images into smaller clusters [34, 40, 91, 233, 256, 257, 300, 318].

Figure B.4 shows a block diagram of a neural fuzzy agent that learns a user profile in a
space of images. We used a multi-dimensional histogram of an image as features for our fuzzy
agent prototype. Niblack [233] and Swain [300] used color histograms to recognize images and
to structure their image database retrieval systems. The histogram technique itself ignores the
spatial correlation of pixels in images. This has led many researchers to suggest other local

features [34, 233, 256]). We use the image dispersion o;; as an extra feature [260):

oy = %[ 3 Z[z(i+m,j+n)—i'(i+m,j+n)]2]l/2 (B.1)

m=—wn=—w
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Figure B.4: Data acquisition. A fuzzy agent can learn a user’s unknown preference map. The
user acts as a teacher or supervisor and gives the system question-answer training samples. Then
supervised gradient descent tunes the fuzzy system to better approximate the user’s preference
map.

where W = 2w + 1 and where

(i) = ﬁ% > > a(i+mi+n) (B.2)

m=—wn=—uw

defines the sample mean in the W x W window centered at pixel location (i, 7).

For each image we obtain its 4-D normalized histogram. The first three components are
hue 7, saturation s, and intensity v in the hue-saturation-intensity color space [260]. The other
component is the standard deviation ¢ of the intensity component. We view this normalized
4-D histogram as an input discrete probability density function to the fuzzy system and write

it in the form

Ny, N, Ny No

T(h,s,v,0) = Z Z Z Z Li g d(h — ’_?,;) 0(s—35;5)d(v— Ug) 8(o — ay). (B.3)

i=1l9=1 k=1 I=1

Here Ny, Ng, N,, and N, are the number of bins on axes of hue, saturation, intensity, and
standard deviation. So the total number of histogram bins is N = Nj x Ny x N, x N,. The

term h; is the bin center of the ith hue and likewise for §;, oy, and ;. The term t; x; is a
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normalized frequency of occurrence of the feature vector (h;, 5j, Ux, 01). We write the N-bin

histogram T in the more compact form
N
T(h,s,v,0) = T(x) = Y tad(z—Zn). (B.4)
n=1

The vector Z, has the center of the histogram bin as its components: %, = (h;,, 3;,, . ,01,)
as in (B.3). The normalized frequency of occurrence ¢, replaces the corresponding ¢;, ;, k. i, in
(B.3).

This histogram T is the input to the fuzzy system. Appendix A.1 shows that this gives a

generalized SAM ratio (4.80) [158, 162] as a set SAM system:

Zm: aj(T)Vje; m

FT) = = = Y pi(T)ej. (B.5)
3 6i(T)Y; 3=t
i=1

The convex coefficients p;(T) > 0 and Z;"=1 Pj(T) =1 have the form

a;(T)V;

. (B.6)
> ai(T)V;
i=1

pi(T) =

The correlation of a fuzzy set function a; : X C R* — [0,1] with a 4-D histogram of an image

T has the form

a;(T) = /Xa,-(h,s,'u,a)T(h,s,’u,a)dhdsdvda (B.7)

N
> tna;(@a). (B8)
n=1

The value a;(T) states the degree to which fuzzy set T belongs to fuzzy set A;. The set

correlation a;(T) need not lie in the unit interval. It can take on any finite nonnegative value:
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a;(T) € [0,00). The set SAM ratio in (B.5) still gives an output as a convex sum of the then-part
set centroids ¢; as the point SAM in (4.80).

We tested the fuzzy agents with 88 flowers images and 42 sunsets images. Figure B.2 shows
some of the test images. We assigned subjective values to all images as numbers from 0 to 10.
The value 10 stands for “It is maximally beautiful” or “I really love it.” The value 0 stands for
“It is minimally beautiful” or “I really hate it.” The histogram bins were 8:4:4:4for h:s: v : 0.
So there were a total of 512 bins. The fuzzy system also had 512 fuzzy rules. We initialized
the fuzzy agent so that it would be “indifferent” to all images (a score of 5) and trained it with
supervised gradient-descent learning. The initial maximum absolute error was 5 and the mean
absolute error was 2.45. The fuzzy agent converged after 40,000 epochs to our preference map
and gave a score close to ours. This held for almost all test images. The maximum absolute
error was 0.96 and the mean absolute error was 0.18. This error stemmed from too few features.
Using more features tends to improve the system’s accuracy but at the expense of greater rule
complexity.

We used a histogram based on color and variance because it captured the relative amount
of colors in the image that affect much of human perception [233, 300]. We can also compute
histograms easily and they are translation and rotation invariant [300]. Our systems for profile
learning and searching did not depend on how we chose object features. The fuzzy agent could
use other inputs from this image database or from others. These input features might include
shapes [233, 256, textures [34, 233, 256, 257], wavelet transforms [40, 305], or other statistical

measures [256].

B.4 Adaptive Fuzzy Object Matching

This section presents fuzzy equality as a measure of similarity between objects and shows how to

tune it. A search or filter agent matches objects in the databases to the query object and acts on
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the match results. Supervised learning tunes the fuzzy equality measure to better approximate
the user’s perception of similar objects.

A fuzzy system can assist in database search in many ways. Fuzzy matching is perhaps the
simplest way. The fuzzy equality measure [162] between two fuzzy sets can define the similarity
between objects. The equality measure £(A, B) measures the degree to which fuzzy set A equals
fuzzy set B. It measures how well A matches B and vice versa. Suppose fuzzy sets A and B are
nonempty. Then £(4, B) = £(B, A) € [0,1], £(4, A) = 1, and £(A, D) = 0 for the empty set 0.

The equality measure depends on the counting or cardinality [158] function ¢ of a fuzzy set as

(AN B) /min(a(a:),b(a:)) dz
£(A,B) = Degree(A = B) 2L 2 - (B.9)
c(AU B) / max(a(z), b(z)) d
where
N
o(4) = i;ai or  (d) = /R a(a)dz (B.10)

for an integrable fuzzy set function a : X — [0,1]. The fuzzy equality measure rests on the
theory of fuzzy sets as points in unit hypercubes or fuzzy cubes. Appendix A.3 reviews this
unit-cube geometry of discrete fuzzy sets [158, 162].

Consider an example. Let a = (.8 .4 0) and b = (.1 .5 .2) be discrete set functions for
fuzzy sets A and B in X = {1, z2,23}. So the set function or fit vector a = (a; a2 as) defines
the fuzzy set A as a; = a(z1) = -8, a2 = a(z2) = 4, and a3 = a(z3) = 0. The fit vector b
defines the fuzzy set B as by = b(z;) = .1, ba = b(z2) = .5, and b3 = b(x3) = .2. Then fuzzy set

A equals fuzzy set B to degree one-third:

£(A,B) = Degree(A=B) = %83—;% (B.11)
_ Y5 _, min(a;, b;) (B.12)

Yo, max(a;, b;)

d1+.4+40

1
8+5+.2 3 (B.13)
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A fuzzy system maps two objects (or their two vectors of “features”) to the output fuzzy
sets A and B. Then the equality measure gives a value near 1 if the two objects match well or
“look alike.” It gives a value near 0 if they match poorly.

We use the same histogram features as in the prior section to match images. Let T4 and
Tp be the histograms of two images. Again we view these two normalized N-bin histograms as
discrete probability density functions whose domain X = {Z;,...,&n} is a set of vectors Z; that
define the bin centers. This gives the same form as in (B.4). Then we compute the correlation

of a set function a; with two histograms T4 and T’p as in (B.8) with

N
A = ai(Ta) = ) Ta(Za)ai(Zn) (B.14)
n=1
N
B; = a;(Te) = Y Tp(Zn)a;(Zn). (B.15)
n=1
This gives two m-D vectors of set values (Ai,...,A4,) and (By,...,Bp) from m fuzzy rules.

The standard additive structure of fuzzy systems suggests that the output fuzzy set should equal
the sum of the scaled then-part sets [162]. So we define the then-part sets to be the same as the

if-part sets. So the output fuzzy sets A and B from the histograms T4 and T have the form

A) = Y Aja;() (B.16)
Jj=1

B(z) = Y Bjaj(x) (B.17)
=1

where £ = (h,s,v,0) € X. The input to the system is an N-bin histogram on the discrete
domain X = {Z1,...,Zn}. Then we can view the output sets A and B as discrete sets and

rewrite (B.16) - (B.17) as

A@Zn) = Y Aja;(Zn) (B.18)
j=1

B(Z.) = Y Bja;j(zn) (B.19)
=1
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Figure B.5: Adaptive fuzzy search. Fuzzy equality measures the likeness of two objects A and B.
Supervised learning tunes the fuzzy equality measure £(A, B) inside the fuzzy-cube state space
to better approximate the user’s perception of similar images. The equality measure grows to
unity as the 4 and B set points approach each other. The cube midpoint M is the maximally
fuzzy set where £(M, M°¢) = 1. Binary sets V' lie at the 2" cube vertices and they alone give
E(V,Ve) =0.

forn =1,...,N. Then the fuzzy equality (in the discrete case) in (B.9) measures the degree to

which fuzzy set A equals or matches fuzzy set B:

N
Zmin(A(ﬁi),B(ﬁi))

£(4,B) = & | e
Zmax(A(i'i)aB(fi))
=1

This in turns measures the “similarity” between two images.
The similarity measure depends on how we define the m fuzzy rules. Tuning or learning
schemes can move or reshape the fuzzy sets to approximate desired matching values. Appendix

A.3 derives the learning laws that tune the set-function parameters in €.
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Figure B.5 shows a block diagram of how a fuzzy agent matches images. The simulation used
T —m;
d;

trained the fuzzy matching system on a space of sunset images with the histogram intersection

a 4-D version of the 1-D Laplace set function a;j(z) = exp{—| ’} in (A.85) - (A.86). We
in [300]:

N
Z min(H;, I;)
=
SH,I) = LN—— (B.21)
> H;
i=1
The fuzzy system gave a rough approximation of the histogram intersection. We may not be

able to find a closed-form formula for matching in the general case. Then the fuzzy matching

process might learn from Q & A sessions or from other user feedback.

B.5 The Agent-User Interface: The Q & A Bottleneck

How does an agent get numerical values for sample objects? What questions should the agent
ask the user in a Q & A session? How many objects must a user rank? These questions reveal
the practical weakness of any search system that depends on numbers. Cardinal data eases
numerical processing but comes at the expense of a question-answer bottleneck.

This section reviews some of the techniques used in decision theory to rank objects. We show
how to apply the technique to obtain numerical values for all sample objects. Other criteria can
help agents ask users new questions in Q & A sessions.

Suppose a user states a subjective numerical value for each sample object in a list. There are
problems with this absolute valuation beyond its artificial nature and the sheer inconvenience it
forces on the user. Miller [205) observed that the largest number of objects that our minds can
process at one time is the “magic number” 7+2. We tend to forget how we have ranked objects
at the top of the list when we rank objects at the bottom of the list. Relative rankings can

increase the “capacity” of our information processing {205]). Then techniques in decision theory
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allow us to rank objects with only pairwise comparisons [56, 150, 151, 278]. We can compute
these relative object weights and convert them to the user’s absolute weights.

Saaty’s analytic hierarchy process (AHP) [278, 279, 280] can find the numerical values. AHP
computes the relative weights w = (wy,...,w,) of n objects from their pairwise comparisons.
Let a;; be a ratio scale [278] of comparison of object O; and O;. Then a reciprocal matrix
A = [a;j] has its elements of the form a;; = 1/a;; for i,j = 1,...,n. So the diagonal entries
are always unity: a; = 1 for all i = 1,...,n. The claim “I like object O; twice as much as I
like object O2” gives ajo = 2. Its reciprocal az; = 1/2 gives the claim “I like object O half
as much as I like object 0;.” The principle eigenvector w of a matrix A obeys the equation
Aw = Amaxw. The Perron-Frobenius theorem of matrix algebra ensures that Apax is the unique
maximum (positive) eigenvalue of A [88]. The components of w are always positive and allow
us to recover the relative object weights [278).

Suppose reciprocal matrices A and B for objects Oy, O2, O3, and O4 have the values

A |01 Oy O3 O4ff w B |01 O O3 O4f w
Op|1 L 5 10238 0|1 &+ 5 10242
O;|2 1 10 2 |0476 O2|2 1 7 30494
Os| §+ & 1 & [0.048 Os;| & L 1 10056
Os|1 % 5 1/0238 Os(1 3 4 1 ]0.208

The matrix A contains many claims such as “I like object O2 twice as much as I like object O;

”

and ten times as much as I like object Os. I like the object O; as much as I like O4.” Users
may prefer to say that they like an object O2 ten times as much as they like O3 than to say
that they like O3 one tenth as much as they like O2. Agents can offer users both options.

The matrix A is “consistent” but B is not. A matrix is consistent when its elements a;;
obey air = ajja;i for all 4,5,k = 1,...,n [278]. Each row of a consistent matrix is a multiple

of the first row. Consistency also implies transitivity: The claim @23 = a21a13 implies that if

we prefer Oz to O; (O; > O2) and if we prefer O; to O3 (O, > Os) then we prefer O; to
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O3 (O2 > O3). But pairwise comparisons are often inconsistent. So the weight matrix may
look more like B than like A. The maximum eigenvalue Amax Obeys Amax > 7. The equality
Amax = 7 holds if and only if the reciprocal matrix A is consistent. The consistency measure
£ = (Amax — n}/(n — 1) can help the agent decide whether it needs to ask a user to verify the
rankings [278, 280].

The principle eigenvectors w = (wy,ws, w3, ws) and v = (v1,v2,v3,v4) above reflect the
relative weights of objects from comparison matrices A and B. The preference order from A
is O3 = 0y ~ O4 > O3 where ~ denotes the indifference preference between two objects. The
preference order from B is O3 > Oy = O4 > O3. Then a linear (affine) transformation L relates
the weights to the user’s subjective values: u(0;) = L(w;) = cw; + d for some ¢ > 0 and some
d € R. This holds because we assume that w measures the relative utility of objects and because
a linear transformation preserves the structure of a utility function [64, 121, 241].

An agent must interact with the user to get the transform coefficients ¢ and d. The agent
picks any two objects that have different weights and asks the user to give non-negative weights
for both objects. Then the agent can solve for the coefficients ¢ and d and find the rest of
the object weights. Arbitrary positive values for two mid-rank objects can give negative values
for low-rank objects. So the highest-rank and lowest-rank objects are often the best choice.
Suppose for matrix B that u(0O,) = 10 and ©(0O3) = 1. Then ¢ = 20.55 and d = —0.15. This
gives u(01) = cv; +d = 20.55 x 0.242 — 0.15 = 4.82 and u(04) = 20.55 x 0.208 — 0.15 = 4.12.

Consistency gives a linear ranking complexity. A consistent user needs to give only n — 1
pairwise rankings to construct a matrix. Then we can deduce the other entries from a;; = a;ra;
for all i,7,k = 1,...,n. But humans are seldom consistent. So an agent may need the user to
give $(n® — n) rankings to form a matrix. This may not be practical for large n. The agent
can estimate the matrix entries with the geometric mean of all paths in the matrix from the
first n rankings [115]. He can use other criteria [115, 208] to ask the user for additional pairwise
rankings. This can reduce the number of rankings from %(n2 — n) rankings to on the order of

n rankings.
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A final remark concerns scaling fuzzy profiles. A linear transformation L both preserves the
structure of a preference map [64, 121, 241] and preserves how the agent’s neural fuzzy system
models the preference map. This always holds for the SAM fuzzy system F. Suppose the linear

transformation L consists of the matrix C and the vector d. Then (4.80) gives

m

L(F(z)) = CF(z)+d = c( Zl p;(z) c,-) +d (B.22)
J=
- f; pi(@) (Cey) +d (B.23)
]=
= i, pj(z) (Ccj +d) since ilpj(z) =1 (B.24)
i= i=
- Z pi(@) (B.25)
p=

where ¢; = Cc;j+d = L(c;). So an agent can change the profile to match the user’s new scale or
new set of data. A neural fuzzy agent may also want to rescale its profiles for large hierarchical

systems where each system level has its own ratio scale.

B.6 Conclusion

Neural fuzzy systems can assist agents in many ways. We have shown how these adaptive
function approximators can both help learn a user’s preference map and help choose preferred
search objects cast as features of low dimension. The color histogram we used did not give a
complete set of features. Other neural fuzzy systems can more fully combine these two fuzzy
tasks to aid in agent database search. Future research may depend on advances in pattern
recognition and machine vision. Neural fuzzy systems might also assist agents when agents
bargain [46, 267, 274] or cooperate [66, 225] with other agents. Then an agent may try to learn

a second or third user’s profile as well as learn its master’s profile.
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Agents could also help neural fuzzy systems approximate functions from training samples.
Today most neural fuzzy systems work with just one fuzzy system and one supervised or un-
supervised learning law. Rule explosion in high dimensions may force the user to replace the
lone fuzzy system with several smaller systems. Agents can help combine these fuzzy systems
[160, 162] if they pick and change the weights or rankings of each system based on sample
data or domain knowledge. Agents can also pick which learning law to use or which set of
parameters to use as the system tunes its rules on-line. Still more complex hybrids can use
nested agents within multi-system function approximators and use the approximators to help
higher-level agents learn profiles and search databases and perhaps perform other agent tasks.

The neural fuzzy agent needs to improve how it acquires knowledge {153, 283]. The agent
should not ask the user too many questions. The agent needs to learn the user’s profile fast
enough before it tires the user. Efficient agents would make the user state rankings that are at
most linear in the number of search objects or search-object clusters. Our system asks the user
a large number of numerical questions even though the user may not want to give and perhaps
cannot give precise numerical answers to these questions. Researchers have long searched for
techniques that can lessen the number of numerical questions the system must ask the user
[153, 283]. The bootstrap and other statistical methods [78] may offer more efficient ways for
an adaptive agent to sample its user and its environment. Ordinal or chunking techniques
[168, 205, 232] may also ease the burden of preference acquisition. But all such techniques tend

to increase the complexity of the neural and fuzzy systems.
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