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I. INTRODUCTION

This work is concerned with optimal space-time
adaptive processing (STAP) in environments which
cannot support fully adaptive processing due to
size, weight, and power restrictions. Typical sensor
platforms which exhibit such restrictions include those
that operate in airborne, space-segment, and undersea
environments. The primary difficulty in STAP is that
the dimension of the adaptive weight vector, which
equals the product of the number of antenna elements
and the number of Doppler bins, becomes large. Both
the required sample support for STAP detection and
the computational complexity of the algorithms, which
update this weight vector, increase in proportion to the
dimension of the weight vector. When the data from
auxillary range gates are used for interference and
clutter estimates, the required large sample support
necessitates the use of range gates which are relatively
far from the range gate of interest. These distant
range gates may not preserve the homogeneity of the
clutter and may not provide good estimates of the
interference near the range gate of interest, thereby
resulting in degraded performance.

Thus, real-time STAP implementations need a
lower dimensional processor to be realizable from a
computational viewpoint. A dilemma is encountered
when the steady-state solution requires a larger
number of weights than the platform can support. In
this work a general methodology is developed which
reduces the dimension of the weight vector for target
detection without adversely affecting the steady-state
solution.

The optimal weight vector for adaptive signal
detection takes the form of a linearly constrained
Wiener filter [1-7] where the constraint is in angle
and Doppler. It is noted that this linear constraint
for STAP detection is not the same as the popular
minimum-variance, distortionless-response (MVDR)
constraint for wideband arrays [8]. At first glance
the form of the constrained Wiener filter for STAP
and target detection does not provide much insight
to the problem of reducing the dimension of the
weight vector. As a consequence there is no clear
methodology for finding the conditions needed to
optimize a partially adaptive STAP system.

The most effective previously proposed
reduced-rank solutions to the STAP problem require
an eigendecomposition of the array covariance matrix
or its estimate [9-15]. These methods are based
on the principal component approximation of a
covariance matrix [16, 17]. One goal of approximating
the covariance matrix with a low-rank estimate is
to simplify the weight update algorithm. Notably,
the weight vector obtained by reducing the rank
of the covariance matrix through these techniques
has full dimension [12-15]. Finally, the principal
component approach requires that the dimension of
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Fig. 1. Optimal joint Gaussian detector.

the noise subspace eigenstructure be known precisely.
This dimension corresponds to the true rank of the
interference-plus-clutter covariance matrix. Since this
rank is never known a priori, it must be estimated.
The penalty for underestimating the rank of this
total noise contribution can be great; the detection
performance degrades rapidly as the number of
principal eigenvectors retained is decreased below the
dimension of the noise subspace eigenstructure.

In this work a new method is introduced to achieve
a reduced-dimension array processor using, what is
called, a cross-spectral metric. The technique utilized
here not only reduces the rank of the covariance
matrix, but reduces the dimensionality of the problem
itself. The largest eigenvalue magnitude criteria
may also be used in the context of this new method
for reduced-dimension detection, and the results
are identical to that previously reported for the
reduced-rank detection techniques.

The cross-spectral metric was introduced
recently for narrowband MVDR processors and
least-squares adaptive filters [18, 19]. For these cases
the cross-spectral metric was shown to provide an
upper-bound on the minimum mean-square error
performance obtainable by all other eigen-based
techniques.

Here the use of the cross-spectral metric
is extended to STAP for target detection. It is
shown that this metric also maximizes the output
signal-to-interference plus noise ratio (SINR) [6,
20], thereby optimizing the weight vector for signal
detection under the joint Gaussian assumption [3].

The optimal processor for detection under the
joint Gaussian assumption is interpreted as consisting
of two systems in cascade, as depicted in Fig. 1.
The first system is a noise field estimator which
utilizes the constrained Wiener filter. This estimation
system produces the best estimate of the test cell
with which the presence or absence of a target is
to be determined. The second system consists of a
hypothesis testing mechanism which implements the
detection criterion. The input to the optimal processor
is the observed radar return, and the output is a
decision D with respect to target presence (D = 1)
or absence (D = 0). With this interpretation of the
optimal detector, the process of partial adaptivity
belongs within the first system, and resuits in
reduced-dimensional estimation.
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Fig. 2. 3-D CPI data cube.

The STAP detection criterion of primary interest in
this work, termed an adaptive matched filter (AMF)
constant false-alarm rate (CFAR) test, is reviewed
with a known covariance in terms of the standard
direct-form detector in Section II. The equivalent
full-dimensional generalized sidelobe canceller (GSC)
form [2, 21] of the detector is derived in Section IIL
The GSC form processor is utilized next in Section IV
to derive a new reduced-dimensional GSC AMF
CFAR detector which uses the cross-spectral metric.
Here it is demonstrated that the cross-spectral metric
maximizes the output SINR as a function of the
dimension of the processor. The statistics of the
reduced-dimension AMF CFAR test with known
and unknown covariance are derived in Section V.

An example of the performance of partially adaptive
STAP for target detection is presented in Section VI.
Extensions and the conclusions are provided in
Section VII.

Il.  SPACE-TIME ADAPTIVE PROCESSING AND THE
AMF CFAR TEST WITH KNOWN COVARIANCE

Radar returns are collected in a coherent
processing interval (CPI), which can be represented
as the 3-D data cube shown in Fig. 2. The data
is then processed at one range of interest, which
corresponds to a slice of the CPI data cube. This
slice is a J x K space-time snapshot whose individual
elements correspond to the data from the jth pulse
repetition interval (PRI) and the kth sensor clement
[3, 22]. Hence this 2-D space-time data structure
consists of element space information and PRI
space-Doppler information. The snapshot is then
stacked column-wise to form the KJ x 1 vector x.

If a target is present in the range gate of interest,
then the return is composed of components due to the
target, the interference sources or jammers, clutter,
and white noise:

X=X +X; +X. +X,. (1)

If no target is present, then the snapshot consists only
of interference, clutter, and white noise. The total
input noise vector n is given by

n=Xx;+X.+X,. (2)
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The input noise covariance matrix is then defined to
be

R = E[nn"]. 3)

Radar detection is a binary hypothesis problem,
where hypothesis H, corresponds to target presence
and hypothesis H;, corresponds to target absence.
Each of the components of the space-time snapshot
vector x are assumed to be independent, complex,
multivariate Gaussian. This snapshot, for each of the
two hypothesis, is of the form,

Hy:x=n
C))
H :x=Xx +n.
The KJ x 1-dimensional space-time steering vector
v(¥,,w,) is defined as follows:

v(d,,w,) = b(w,) ®a(¥,) (5)

where b(w,) is the J x 1 temporal steering vector at
the target Doppler frequency w, and a(4,) is the K x 1
spatial steering vector in the direction provided by
the target spatial frequency ¢,. The notation (-)® (:)
represents the Kronecker tensor product operator. For
convenience in the analysis to follow, the normalized
steering vector in the space-time look-direction is
defined to be

_ v(d,,w,)
T VI w)vPw)

The two hypothesis in (4) may now be written in the
form

(6)

Hy:x=n o

H :x=as+n

where a = |ale/® is a complex gain whose random
phase ¢ is uniformly distributed between 0 and 2.
The random vector x, when conditioned on ¢, is
Gaussian under both hypotheses. The conditional
probability densities of x are

- ; —(x-as)R~!(x-as)
Fan, ) = X |R]]

4 ®)
Jritto.6(X) = THR""-’“‘ ol

where ||(-)|| is the determinant operator. The likelihood
ratio test then takes the form,

1 o
J;}H; (x) Efoz Lm,,a(x)dff) i‘;
= i 7
f:t|Ho(1) ﬂfo L|H.,,¢(x)d¢5 Hy

9)

where 7 is some threshold. Using the densities in (8),
the test in (9) becomes

s oot
A = I2la [sHRx[)elel s R™s E n
o

(10)
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where I;(-) is the modified Bessel function of

the first kind. The noise covariance matrix R is
nonnegative definite and the modified Bessel function
is monotonically increasing in its argument. Therefore,
the test in (10) reduces to

H,
— D~
Ay =Is"R lxlzém

Ho

(11)

where the new threshold 7, is related to the previous
threshold 7 as follows:

_ 15 (peletsm )] o
Al (
The test in (11) was the first STAP detection criterion,
developed in the well-known papers by Brennan and
Reed [3] and Reed, Mallett, and Brennan (RMB)

[4]. The RMB test takes the form of a matched filter
for incoherent detection and is a Bayes optimal test
which is maximally invariant with respect to the group
of phase shifts. However, as noted by Kelly [23],
no predetermined threshold can be set to achieve a
specified false alarm probability since the detector
is designed to operate in an unknown interference
environment.

The RMB test in (11) can be modified to
have a CFAR property via a normalization by the
output power. This new AMF CFAR test, derived
independently in [24] and [25], takes the form,

B |SHR"le2 f;
g sHR-1s ;fo?h (13)

and is an optimum group invariant hypothesis test
with respect to the change-of-scale and the initial
target phase groups. The probability of detection for
the AMF CFAR test A, is given by [24]

oo n,—£
p=Y (£ ) ot s 1)

n=0

(14)

where ¢ is the output SINR, Q(-) is the incomplete
gamma function, and the threshold 7, is found from
the false alarm probability:

PFA = Q(luﬂz) =e ™,

The RMB and AMF CFAR tests may be
interpreted as functions of an optimal weight vector
wging [4], which is obtained by an unconstrained
optimization of the SINR as follows:

(15)

where k is some arbitrary complex constant. The
constrained optimization implemented by the sidelobe
canceller form, which is introduced in the next
section, fixes the value of k to provide a normalization
by the output power. The weight vector in (16) is now
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considered using a constrained optimization for target
detection under the joint Gaussian assumption. The
optimal constrained weight vector for maximizing
the output SINR, while maintaining a normalized
response in the target spatio-Doppler look-direction,
was originally given in [2] as follows:
_ Rls
WsINR = GHR=TS

a7n

The output y formed by applying this latter weight
vector to the primary data is

s/R-'x
Y = WEINRX = 7R (18)
and the resulting output SINR is
2 2
gl . _ ol =|a%s"R's  (19)

=
P Wi RWsing

where |a|? is the output power due to the target signal
under hypothesis H,; and

1

~ sHR-1s
is the output noise power of the processor. The
weight vector in (17) is the result of a constrained
optimization in which a beam is placed in that spatial
and Doppler look-direction which is given by the
steering vector s. This direct-form processor is
depicted in Fig. 3.

The RMB test in (11) may now be expressed in
the form

P (20)

Hp-la2io2 < |22 5
A= RSP =2 20, @)
Ho
which demonstrates that the RMB detector compares
a threshold 7, with the ratio of the output power to
the square of the noise output power. The normalized
AMF test in (13) may similarly be written in the form,

Hp-l 2 |)’1”§
By = "Ry = -2
Hy

) (22)
where the threshold 7, is now compared with the ratio
of the output power to the noise output power.

An equivalent new AMF CFAR detector is now
developed which is characterized by a sidelobe
canceller form. This sidelobe canceller form is used
next to reduce the dimension of the weight vector
Wging» Which maximizes the output SINR and the
probability of detection under the joint Gaussian
assumption. The goal of this data reduction step is to
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obtain a reduced-dimension test criterion which yields
decisions which correspond with the full-dimension
AMF CFAR test in (13).

. GSC FORM PROCESSOR

The direct-form STAP processor described in
Section II is transformed into the GSC form. The
GSC processor results in an unconstrained weight
vector and reformulates the STAP detector structure
into the form of a standard Wiener filter. This GSC
form of the detector provides a deeper insight to the
rank-reduction and dimensionality reduction problems
than appears to be possible otherwise.

Consider now using a unitary KJ x KJ matrix
operator T to transform the data prior to detection.
The resulting output SINR after such a transformation
is identical to the original direct-form detection
processor. The structure of this operator is partitioned

[ ]
-
B

where the KJ x 1-dimensional conventional
space-time beamformer s is defined in (6) and B is the
full-row rank N x KJ signal blocking matrix which
maps x onto the null-space of s, where N = (KJ —1).
Hence,

(23)

Bs=0

so that the matrix B effectively blocks any signal
coming from the spatio-Doppler look direction. Any
full row-rank matrix B that satisfies (24) and results in
an invertible T is a valid signal blocking matrix. The
Gram-Schmidt algorithm may be applied then to this
matrix to generate an orthonormal B and a unitary T.
Two algorithms for directly finding an orthonormal B,
using the singular value decomposition (SVD) and the
QR decomposition, respectively, are described in the
Appendix.

The transformation of the radar return x by the
operator T in (23) yields a vector X which has the

form
S EIN
x=Tx= =
Bx b
where the scalar-valued beamformed output is denoted
by d. Here also the N-dimensional vector b is termed
the noise subspace data vector. It is seen now that the

transformed data vector X has an associated covariance
matrix R; which takes the form:

i

Ty R,

(24)

(25)

R; =TRT! = [ (26)

The N x N noise subspace covariance matrix R, is
expressed by

R, = E[bb”] = BRB”. (27)
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Fig. 4. Full-dimension GSC processor.

The N x 1 cross-correlation vector between the noise
subspace data vector and the beamformer output is
given by

r,; = E[bd'] = BRs (28)

where * represents the complex conjugate operator.
The scalar ¢ in (26) is computed to be

02 =sRs (29)

and represents the variance of the conventional
beamformer output.

Next let T operate on the steering vector s. This
operation yields the unit transformed, steering vector
e,, given by

1
e, =Ts= (30)
0
Then the optimal weight vector in these transformed
coordinates is given by

R:'e [ 1]
w = —=
8¢ efiR-'e,  |-w

where R; is the covariance matrix in (26). The
partitioning of the matrix operator T leads naturally

to the form of the GSC array processor depicted in
Fig. 4 [2, 7, 21]. This processor results in a fixed
weight of unity for the upper branch and an adaptive
weight vector w of dimension N = KJ — 1 in the
lower branch. The optimal value of the vector w in
(31) is provided by the Wiener solution corresponding
to the filter depicted in Fig. 4:

(31)

W= R;Irbd (32)

where R, and r,, are computed in (27) and (28),
respectively. The GSC form processor implements

the KJ-dimensional weight vector in (31) using the
partitioning defined in (25). In a data adaptive mode
of operation, the steady-state performance of the GSC
and the direct-form processor are identical, but the
adaptive weight vector w in the GSC is of a lower
dimension. Hence, the computational requirements for
updating this weight vector are reduced and the GSC
form therefore can be considered canonical.

GOLDSTEIN & REED: THEORY OF PARTIALLY ADAPTIVE RADAR

The output of the arrays, utilizing the weight
vectors described in (17) and (31), are identical
and, using (25) and (31), may be expressed as
follows:

y= w?’INRx = w?sci = (SH = WHB)X. (33)

The output noise power is found by a substitution of
(32) into (33) and the evaluation of the mean-square
value of y using (20) as follows:

1

O
sR-ls

05— TpuR; ' Tpy. (34)
The definitions of the filters s and B imply that
the output SINR may be written by (19) in a more

illuminating form as follows:

lof?

2 e -
L rdeb Thd

£E= (35)

The observation data covariance matrix R, is
expressed now in terms of its eigenvectors and
eigenvalues as follows:

R, = UAUY (36)

where U is a unitary N x N matrix composed of the
eigenvectors {V;}¥, and A is the diagonal matrix of
associated eigenvalues {);}Y . The noise process b,
defined implicitly in (25) is transformed to a principal
coordinate process p as follows:

p = Ufp. (37)
A normal component covariance matrix R, cross-
correlation vector r,;, and Wiener filter w,, are
defined now as follows:
R, =E[pp”) =UR,U=A (38)
r =Elpd’] = Ur,, (39)
wy =R>'r,, = Ufw. (40)

The GSC in these normal coordinates, depicted

in Fig. 5, is equivalent to the GSC in Fig. 4. In a
data adaptive mode of operation, these two array
processors have identical steady-state characteristics
but may exhibit different transient behavior. The
array output of the GSC in normal coordinates is
given by

y = (s —wiU*B)x = (s" —w'B)x. (41)
Note that the output noise power,
P=g;-riR'r, = -Tp,R;'r,,  (42)
and that the SINR,
2 2

2 = = =
0i — TRty o -l R T,

are conserved by the operator U.
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Fig. 5. Full-dimension GSC processor in principal coordinates.

Fig. 6. Reduced-dimension GSC processor.

IV.  PARTIALLY ADAPTIVE STAP AND THE
CROSS-SPECTRAL METRIC

We now derive the cross-spectral metric for
optimal subspace selection and dimensionality
reduction in partially adaptive STAP. The problem
of reducing the degrees of freedom for an array
processor involves selecting a subset or some
combination of the elements to be adaptively
weighted. For notational purposes, let the space
spanned by the columns of the fully adaptive array
covariance matrix be denoted by C¥, implying that
the observation covariance matrices R, and R, are of
dimension N x N and the vectors r,, Coas W, and wy,
are N x 1-dimensional vectors. The partially adaptive
GSC shown in Fig. 6 utilizes an N x M transformation
operator I, in place of U in Fig. 5, to form the order
M reduced-dimension observation data vector,

z=U"D (44)
where M < N. The associated M x M reduced-
dimension covariance matrix is given by

R, =U"RU = Ay (45)

where A, is the diagonal matrix composed of the M
eigenvalues corresponding to the eigenvectors to be
selected which form U. The cross-correlation between
the process z and the beamformed signal 4 is given by

r,; = E[zd") = U"r,,. (46)

The data vector z is then processed by the reduced-
dimension weight vector w,,, which is of dimension
M x 1. From Wiener filter theory this weight vector is
expressed finally by

Wi &R P w5 W, (47)
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The most popular technique for subspace selection
is based on the principal components method
[9-15]. This method determines the SVD of the
N x N-dimensional covariance matrix R, and selects
the M largest eigenvectors (those correspondlng to
the largest eigenvalues) to form the M-dimensional
eigen-subspace ¥ C CV in which the adaptive
processor operates. However, this technique does
not directly consider the maximum output SINR
performance measure to maximize the probability of
detection, which is a function of not only the space
spanned by the noise covariance matrix R, but also of
the cross-correlation between the beamformed signal d
and the noise process b.

The derivation in [18] is now used to reduce the
dimension of the Wiener filter in a manner which
maximizes the output SINR. To accomplish this
consider the selection of an N x M transformation
matrix I, which is composed of some M columns
from U (see Fig. 6). The operator I{ is constrained
therefore to be a subset of M of the N possible
eigenvectors of R,,. This particular constraint allows
a direct comparison with the principal component
technique, which chooses the dimensionality reducing
transform U to be composed of those M eigenvectors
which correspond to the largest M eigenvalues.

Thus, the particular problem at hand is to choose the
subspace spanned by a set of M eigenvectors out of
the N available such that the resulting M-dimensional
Wiener filter yields the largest output SINR out of

all (};) possible combinations of eigenvectors. The
subspace spanned by the columns of the optimal
reduced-dimensional covariance matrix which achieves
this maximization of the output SINR as a function of
filter dimension is denoted by 2 c CV.

Now denote the reduced-dimensional processor
output by y,. This is illustrated in Fig. 6. A study of
Figs. 5 and 6 suggest that the reduced-dimensional
processor output may be expressed by the relation,

y=01, whUH — iy [;] (48)
Denote the weight error vector between the full-
dimension weight vector and its reduced-dimension
version by

By (42) the output noise power for the reduced-
dimension processor is now computed in this notation
to be

B=0;-rR;'r, +e"Re>P (50)
and the SINR of the reduced-dimension processor is
expressed as

lof?

— < E.
& o’ﬁ—rde;'rpd+sHRbs-£

(51
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Note that the target signal power is not affected by
reducing the dimension of the problem; the reduction
in dimensionality is only a function of the noise field
estimation. A comparison of (42) with (50) or (43)
with (51), shows that it is desirable to choose the
dimensionality reducing operator I/ in a manner that
minimizes the additional mean-square error. Define
the N x M subspace index matrix J, given by

J=U%U. (52)

This matrix is composed of N orthonormal unit
vectors and N-M null vectors in an order which
corresponds with the selection of the M columns

of U that were retained to form the dimensionality
reducing operator /. Now, one wants to minimize the
scalar term e” R, e which appears in (50) and (51) as
follows:

min[e”R, €] = min[(wiiRY/2 - whRY/2JH)

x (R} *wy — JR!2w,)]. (53)

Thus evidently the best solution for (53) is to choose
that set of M rows of U for the M x N matrix U
such that JR_E’EWM is the best low dimensional
approximation to the vector R:,” 2WN

The Wiener—Hopf relationship for the

full-dimensional case is given by

R, Wy =T, (54)

A multiplication of both sides of (54) by R'” 2 on the
left yields the following relationships:

RL}ZWN -, Rp_”zrpd - A—lfzuﬁrbd
-v.IHrbd..
V ’\l
Vi g

(55)

VT
L Ay
where U is the unitary matrix composed of the
eigenvectors {V;} | and A is the diagonal matrix

of associated eigenvalues {);}/ . Hence in order to
make the vector JR;/*w,, be the best low dimensional
approximation to the vector R:.,.f sz, it is necessary to
rank order the terms in (55) by their magnitude. With
this ranking of the eigenvectors which compose the
matrix U, the index matrix J takes the form

()

where I is the M x M identity matrix and O is the
(N — M) x M null matrix. Then the dimensionality

(56)
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reducing operator I is selected by choosing those M
eigenvectors of U which correspond with the largest
M values of the sequence of non-negative terms

2
H
Vi Tha

A

fori =1,2,...N. Note that the metric in (57) measures
the cross-spectral energy projected along the ith
eigenvector. With this selection, the columns of the
reduced-dimensional covariance matrix R. span the
Mdimensional cross-spectral subspace 2 C C¥ to
provide the largest output SINR of any Mdimensional
subspace which is spanned by M of the N columns
of U.

Clearly, the subspace 2 spanned by the columns
of eigenvectors corresponding with the M largest
values of the cross-spectral metric is not the same
as the subspace ¥ spanned by the eigenvectors
corresponding with the M largest eigenvalues for
all values of M. This means that the Wiener filter in
the cross-spectral subspace © yields an output SINR
which is always larger than or equal to that provided
by the Wiener filter in the subspace ¥. We conclude
that the reduced-dimension Wiener filter found via the
cross-spectral metric maximizes the output SINR as a
function of the order of the filter for the eigenvector
basis. Thus the cross-spectral metric results in an
upper-bound on the performance of eigen-based rank
and dimensionality reduction techniques.

To demonstrate that the cross-spectral metric is
optimal for each filter order M < N, we consider
the decomposition of the SINR performed by the
full-dimensional matrix of eigenvectors U. The output
SINR of the full-dimension processor, from (38) and
(43), can be expressed as

(57)

o

He 12°
2 _ 5N Vi el
T4 i=] Ai
The optimal SINR of the reduced-dimension processor
is expressed as

{= (58)

|f-'f|2
z;en

Finally, a comparison of the declsmn rule in (57) with
the expressions in (58) and (59) demonstrate that the
cross-spectral metric maximizes the output SINR as a
function of the order of the weight vector.

£r=

(59)
l'bd12

V. REDUCED-DIMENSION AMF CFAR TEST WITH
KNOWN AND UNKNOWN CONVARIANCE

The AMF CFAR test in (13) is defined in terms of
the output signal y and the output noise power P of
the direct-form processor. The GSC is then derived as
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the canonical form of this optimal array processor
in Section III, where it is also demonstrated that the
GSC yields an output signal and SINR which are
equivalent with that provided by the direct-form
processor.

An optimal reduced-dimensional STAP design
technique is derived in Section IV, where the GSC
form processor is utilized. It is also shown in
Section IV that the target signal power is not affected
by a reduction of the weight vector dimensionality.
Thus, as mentioned in Section I, the process of
dimensionality reduction for partially adaptive STAP
belongs within the noise field estimation system
shown in Fig. 1. The cross-spectral metric provides
an upper-bound on the output SINR achievable
by reduced-rank and reduced-dimension detectors
using an eigenvector basis. This fact explains why
the cross-spectral metric provides the capability to
achieve a reduction in the dimensionality of the
weight vector below the dimension of the noise
subspace eigenstructure without a significant loss in
performance. The cross-spectral metric given in (57)
provides the best set of the possible () eigenvectors
of the noise subspace covariance matrix to select for
dimensionality reduction. These optimal eigenvectors
are then used by the hypothesis testing mechanism to
determine target presence or absence. A new optimal
reduced-dimensionality AMF CFAR test is now
formally defined and analyzed.

A. Reduced-Dimension AMF CFAR Test with Known
Covariance

For convenience, we now rewrite the AMF CFAR
test in (22) as follows:

Is"R7!x[> _ [y 4
h="gRs =P g™ (60
Hp
The array output of the reduced-dimension processor
Y,, derived in (48) and depicted in Fig. 6, is written
now in the form,

y, =6 —whUB)Xx =d —whiz=d - R 'z.
(61)

Also the output noise power of the reduced-dimension
processor P, in (50) may be expressed by

P =0} - iR, (62)

where the covariance matrix R. and the cross-
correlation vector r,; were defined in (45) and (46),
respectively. In terms of the expressions in (61) and
(62), a new optimal reduced-dimension version of the
AMF CFAR test is obtained as follows:

|y|2H;
Ay =22,
* B g
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(63)

where the SINR of the reduced-dimension processor is
given by
lof?

v -1 '
05 —TR; L]

& = (64)

The probability of detection of this new reduced-
dimension AMF CFAR test in (63) is now given by

oo n,—£
P, = z (.(ﬁ_r.lf_) Q(n+1,7,)

n:ﬁ

(65)

which is similar in form to (14), and the probability of
false alarm retains the form in (15):

Fep=0(,m) =™, (66)

Note that the expressions in (61)-(66) are valid for
any unitary operator used for dimensionality reduction
with a subspace selection rule which chooses M

of the N columns of the unitary operator. This
includes, but is not limited to the reduced-dimension
principal component and cross-spectral AMF CFAR
tests, which use the unitary matrix composed of the
eigenvectors of R,.

B. Reduced-Dimension AMF CFAR Test with
Unknown Covariance

The reduced-dimension AMF CFAR test is now
examined for the case of unknown covariance. The
standard approach for radar detection when the noise
covariance is unknown is to obtain an estimate from
some L > KJ range gates in the neighborhood of the
range gate currently being tested for signal presence.
The data in the range gate of interest is termed the
primary data. The L nearby range gates, which yield
what is termed the secondary or auxillary data, are
assumed to be target free. It is also possible to assume
that only multiple snapshots of the same range gate
are available. The presentation of the material in this
section follows similar derivations given previously
for full-dimension detectors [24-30].

It is well known that the maximum likelihood
estimate of the covariance matrix R is provided by
the sample covariance matrix R, i.e.,

P
R= EZn,-nf’

i=1

(67)

where n; is the KJ x 1 vector of samples from the ith
nearby range gate. Define an auxillary KJ x L data
matrix A by

A=[n,, mn, n,] (68)
so that the sample covariance matrix R may be written
in the form,

R= %AAH. (69)
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Then the AMF CFAR test is expressed in terms of the
sample covariance matrix as follows:

!sh'f{-lez _ Lis" (AAH)~1x]2 f;

= = . (70
= i Siaan)Ts om0

The data matrix A is expressed now in the form
A=R'"*X (71)

where X is a KJ x L matrix of zero-mean,
independent and identically distributed, complex
Gaussian variates with unit variance. Then an
equivalent test to the sampled data AMF CFAR test
in (70) is provided by

_ LISHR—llz(xxH)—lR-—UZxIE !;

% T TGHR-12(XXH)-'R-1/2s ;;’?z. (72)

The methodology used in the previous section for
transforming the observed data into the GSC form is
now applied to the auxillary data. The new normalized
transformed steering vector is given by

-1/2
. e} 3)
VsHR-1s
and the unitary matrix T in (23) is redefined to be
vi
T= 74
=) &

where B, = null(v) is the N x KJ blocking matrix
associated with the vector v (which can be found
using one of the methods presented in the Appendix),
Tv = e, the vector e, is defined in (30), and N =

KJ — 1. The matrix T operates on the data matrix X
defined in (71). The transformed data matrix X has

the form,
- D
X:TX={ ]
B

where D is the 1 x L beamformed data vector and B is
the N x L noise subspace data matrix.

The dimensionality reducing N x M transform U,
defined to be composed of those M eigenvectors of
BB" which maximize the cross-spectral metric given
in (57) with r,, = B,XX"v, is applied next to form a
(M + 1) x (M + 1) transformed reduced-dimensional
sample covariance matrix as follows:

(75)

- 1 07 1 o
g TXX”T”'[ ]
X [0 u”] 0 u
_{DD” 'DZH}_ 6% T -
T lzpH zzH] &, R,

where the reduced-dimensional M x L auxillary data
vector Z is given by

Z=Uu"B. 77
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The primary data is also transformed by R=!/2 and T
to obtain

d
x, = TR Wz= { } (78)

b
and the reduced-dimension M x 1 primary data vector
is then given by

z, =U"Db. (79)

The optimal (M + 1) x 1-dimensional weight vector in
these transformed coordinates is given by

. 1
“gsc = _‘}rjl

where the M x 1-dimensional vector W, is provided
by the Wiener solution corresponding to the filter
depicted in Fig. 4, namely

(80)

W, = (22" zD" =R i, 81)
The resulting output power is given by
B =52-tERE,. (82)

The reduced-dimension AMF CFAR test with an
unknown covariance corresponding to the test in (70)
is expressed now in the form,

d—wHz | 2 H
H-wnl P2,
Gi—TuR{'y b H
where the threshold 7, in (83) is related to the
original threshold 7, in (70) by

2, =

=2

=7 (84)

Next the denominator of the reduced-dimension
sampled data AMF CFAR test in (83) is rewritten in
the form,

B =D - z¥R;' 2" = DCDY. (85)

The vector D is a 1 x L zero-mean, white Gaussian
random vector. Therefore the distribution of D can be
denoted by

D —s N,(0.1) (86)

where N, (0,I) is a joint Gaussian density of zero
mean and covariance I, the L x L identity matrix.
Also it is easily shown by (77) that the matrix I— C,
given by

a-C)=z2"R;'z (87)

is a projection matrix of rank M which projects
vectors onto the reduced-dimension auxillary data
noise subspace. The matrix C is also an idempotent
pro_iection matrix of rank L — M, and the distribution
of P, is therefore central x? with L —M degrees of
freedom [31]. Thus the distribution of f’, is expressed
by

g — x%_ M (88)
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The output of the reduced-dimension GSC form
array variate may be expressed next by

y, =d—iiR:'z, (89)

which is conditionally complex Gaussian distributed
when the quantities z, and Z are fixed. The

conditional covariance of y, is p~!, where
1

1+zHR7z,

The parameter p is the well-known RMB loss factor
[4, 25, 27, 32] for the reduced-dimension processor,
and it has a central Beta distribution which is given by

o AH( !

JSp) = BML-M+D) (91)
where
_(a= Db —1)!
plab) = S ©2)

Hence the distribution of the reduced-dimension AMF
CFAR test is given by

5 X8 _ 7
A LPlz,2)e—p i =L 93)
2,,(yr n,.l P ) P Xi_,u p
where § is the noncentrality parameter, given by
6 = pg,. (94)

The parameter « is the ratio of two independent
X2 variables where the numerator is noncentral x?
distributed. Hence, under hypothesis H,, v has a
noncentral F distribution [31] given by

e—&

Lo (N = B(1,L—M)(1 +y)t-M+1

x |F, (L—M+1,l.16%¥)- (95)

Therefore, the conditional distribution of the test
A, given z, and Z under hypothesis H,, may be
expressed by
et p
fa\:.,lpﬂn(q) - B(1,L—M) (1 + gp)t=M+1

8qp
X IFI (L—M + l,l,m‘;) . (96)

The unconditional probability density function of the
reduced-dimension AMF CFAR test is then computed
as follows:

1
fuo i@ = ]ﬂ fao o @Sy @dp D)
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which is expressible in the form,
1
B(l,L-M)BM,L—M +1)

I L-M+lgy _ M1
o / o7 (1—pM
0

T+ g1

ff\:, |H, (@)=

5
x |F, (L-M+1,1,I+L’;p) dp (98)

where g > 0. Finally by (98) for a fixed threshold 7,
the probability of detection is computed to be

Pp(ﬂ)zf fnzﬁwl(Q)dq
n

_ /l e—épL—H(l _p)M-I
“Jo BULL=M)BM,L-M +1)

1
% f (1 _q)L-M-l
np/1+np

x  Fi(L-M +1,1,8q)dgdp

1 Y M-
e d i

xigl" M2 k+1,L-M)d (99)
hnk! 1+np ’ P

where Z(x,a,b) is the incomplete beta function. The
distribution of the reduced-dimension AMF CFAR test
under hypothesis H,, requires that the variable § be set
to zero, and (98) reduces to

1
a0, 6D = G T B LM+ D

lpL—M+I(l _p)M—I
o (1+gpt-M+l

which, for the selected threshold 7, yields a false
alarm probability given by

dp  (100)

B = [ fuo, mla)da
n

1
B, L-M)BM,L-M +1)

oo rl pL—M-I-[(l ___p)H—l
g

0 (l +qp)L—M+l

1 1 p L-M
TBM.L—-M+ 1)[0 (1+qp)

x(1—pM-ldp.

dpdq

(101)

Since the P, is only a function of the threshold 7 and
the integers L and M, all of which are held fixed, the
test A, is CFAR.
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Fig. 8. Full-dimension optimal Wiener filter.

VI. AN EXAMPLE OF THE PERFORMANCE OF

PARTIALLY ADAPTIVE RADAR

A simulation is now considered which utilizes the
parameters of the DARPA Mountaintop radar in order
to compare the performance of the reduced-dimension
detectors with that of the full-dimension, joint domain
optimal detector. The AMF CFAR test is utilized
exclusively for this example.

The Mountaintop radar employs the Radar
Surveillance Technology Experimental Radar
(RSTER) and the Inverse Displaced Phase Center
Array (IDPCA), both colocated at the same site
[33]. It is assumed that the radar is in the RSTER-90
configuration and the receive-only mode. The transmit
frequency is 450 MHz. This radar consists of K = 14
elements and J = 16 pulses in the PRI. The elevation
angle 6 is fixed (pre-beamformed), and the azimuth
angle ¢ is the only free parameter. The dimension
of the adaptive processor is KJ = 224. The GSC

GOLDSTEIN & REED: THEORY OF PARTIALLY ADAPTIVE RADAR

processor beamforms the target signal in the top
branch and utilizes in the lower branch a blocking
matrix B which blocks the target signal from being
observed at the weight vector. The noise subspace
data vector in the lower branch is then of dimension
N =KJ —1 = 223. The corresponding full-dimension
GSC weight vector is also of dimension 223 x 1.
For the purposes of this analysis, three barrage
jammers and land clutter compose the interference
enviroment. Also one target signal is assumed to be
present. It is assumed that the radar platform is at
a height of 500 m, and that the platform velocity is
500 m/s. The target, which is assumed also to be
at a height of 500 m, has a range of 22 km and an
azimuth of —30°. The target velocity is 250 m/s.
This target has a signal-to-noise ratio (SNR) of
15 dB, representing a small, nonfluctuating,
constant radar cross-section target. The three
jammers have azimuth angles of —60°, 30°, and 60°,
with jammer-to-noise ratios of 30 dB, 40 dB, and
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Fig. 10. Reduced-dimension cross-spectral subspace Wiener filter.

30 dB, respectively. The clutter-to-noise ratio is
set to be 30 dB.

The cross-spectral metric is now applied to the
GSC and the detection performance is compared with
the principal component techniques such as PCI [14,
15] and the Eigencanceler [12, 13]. The performance
of the fully adaptive GSC, the partially adaptive
eigen-subspace GSC, and the partially adaptive
cross-spectral subspace GSC processors are evaluated.

To obtain the performance of the subspace
selection techniques, the dimension of the adaptive
processor is assumed to be reduced from N =
223 weights to M = 50. The dimension of the
noise subspace eigenstructure is calculated to be
approximately 70. This is the lower bound needed
for the standard rank or dimensionality reduction
techniques [9-11].

The power spectrum of the data, averaged over
500 snapshots, is presented in Fig. 7, from which it is
evident that the target signal is not discernible. Fig. 8

1320

presents the gain of the optimal space-time Wiener
filter, in which it is seen that this space-time weight
vector of dimension 223 is capable of attenuating all
jammers and clutter while simultaneously passing the
target signal. The full-dimension Wiener filter yields
an output SINR of 38.28 dB.

Fig. 9 depicts the space-time gain of the
50-dimensional eigen-subspace Wiener filter. The
clutter and most of the power from the three jammers
is passed with relatively high gain; there is little
attenuation of the noise. The output SINR obtainable
by the 50-dimensional eigen-subspace Wiener filter is
25.98 dB, reflecting a loss of 12.3 dB.

The space-time gain of the 50-dimensional
cross-spectral subspace Wiener filter is depicted in
Fig. 10. It can be seen that by simply selecting a
different set of 50 eigenvectors, the resulting array
response closely approximates the full-dimension
optimal STAP matched filter and the clutter and
jammers are attenuated. The resulting output SINR
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Fig. 11. Output SINR of reduced-dimension processors as
function of Wiener filter order.

is 38.03 dB, reflecting a loss of only 0.25 dB in
the reduction of the weight vector dimension from
223 to 50. This is due to the better selection of
the 50 eigenvectors of R obtained by a use of the
cross-spectral metric.

The performance of these two reduced-dimension
processors may also be evaluated by plotting the
output SINR as a function of Wiener filter order.

The SINR for the eigen-subspace and cross-spectral
subspace reduced-dimension processors are compared
with the full-dimesnional SINR in Fig. 11 as the
dimension increases from 1 to 223. It can be seen
from this figure that the eigen-subspace processor
converges to the optimal SINR in an abrupt manner,
thereby obtaining the optimal value only when the
Wiener filter order reaches the dimension of the
noise subspace eigenstructure. This is characteristic
of the eigen-subspace techniques in nearly all of its
applications since the principal components method
does not yield an optimal filter as a function of
order. By contrast the cross-spectral metric depicts
an exponential-like convergence to the optimal SINR.

The above simulation shows that the
reduced-dimension Wiener filter in the cross-spectral
subspace outperforms the Wiener filter in the
eigen-subspace for all filter orders less than the
dimension of the noise subspace eigenstructure.

It is verified in Fig. 11 that the cross-spectral

metric provides an upper-bound to the SINR
performance achievable by a reduction of the number
of eigenvectors of the array covariance matrix.
Finally, note for the Mountaintop radar example

that the reduction of the weight vector dimension

to 50 weights can be interpreted as an error in the
estimation of the dimension of the noise subspace
eigenstructure. It is clear from Fig. 11 that the penalty
in SINR performance for underestimating the rank of
the noise subspace eigenstructure is greatly reduced
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Fig. 12. AMF CFAR test probability of detection versus
normalized output SINR for case of known covariance.

in the cross-spectral approach to dimensionality
reduction. This robustness property is paramount for
reduced-dimension detection of targets in unknown
noise environments.

Next the probability of a false alarm for each
test is set to Py, = 1076, The detection probabilities
with known noise covariance are calculated for the
full-dimension test (223 adaptive weights) and for the
two reduced-dimension tests (50 adaptive weights) in
the eigen-subspace and the cross-spectral subspace.
The resulting plots of F,, versus the normalized
output SINR are presented in Fig. 12. The normalized
SINR is calculated by dividing the output SINR
of each reduced-dimension detector by the output
SINR of the full-dimension detector. It is seen that
the full-dimension AMF CFAR detector and the
50-dimensional cross-spectral AMF CFAR detector
exhibit very similar performance. By comparison the
50-dimensional eigen-subspace detector performs
quite poorly. Recall that a target input SNR of
15 dB is used in the graphical examples presented
earlier in this section. The full-dimension and
cross-spectral AMF CFAR detectors both yield a
detection probability which is nearly equal to unity
for this target. The eigen-subspace detector, however,
yields a P, which is near zero for this same scenario.
The 50-dimensional cross-spectral subspace detector
yields a 12 dB improvement in detection sensitivity
over the 50-dimensional eigen-subspace detector.
This corresponds with the estimated 12 dB gain of
the cross-spectral subspace processor over the SINR
obtainable by the eigen-subspace processor depicted in
Fig. 11.

The performance of the AMF CFAR detector
with unknown covariance is now considered. The
false alarm probability is evaluated as a function of
the threshold while the dimension of the detector,
which is N for the full-dimension and M forthe
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reduced-dimension, and the number of range gates
used to estimate the covariance, which is L = 2KJ =
448, are held fixed. The graph in Fig. 13 demonstrates
that in order to obtain P, = 1075, the full-dimension
detector (N = 223) must select the threshold to be 5 =
0.1270, and the reduced-dimension detectors (M = 50)
must utilize a threshold which is set to be = 0.0390.
Next, these required values for the threshold are used
along with the output SINR, which is calculated for
the Mountaintop radar example above, in order to
determine the performance of the full-dimension

and reduced-dimension AMF CFAR detectors. The
probability of detection versus the normalized output
SINR is depicted in Fig. 14 for the case when the
noise covariance is unknown.

The full-dimension AMF CFAR test performs
approximately 3 dB below the case when the
covariance is known. Also the 50-dimensional
eigen-subspace AMF CFAR detector with an unknown
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and estimated covariance performs approximately
10 dB below that of the full-dimension AMF CFAR
detector with unknown covariance. When the
covariance is known, this reduced-dimension detector
performs 12 dB below the full-dimension detector
due to the SINR loss. This SINR loss between

the full-dimension and eigen-subspace detector is
partially offset by the fact that the threshold for

the reduced-dimension detectors is lower than the
threshold for the full-dimension case. A comparison
of the detection sensitivity for the eigen-subspace
AMF CFAR detector with known and unknown
covariances demonstrates that the latter case is
degraded by only approximately 0.5 dB.

Conversely, the 50-dimensional cross-spectral
subspace detector outperforms the full-dimension
AMF CFAR detector. Here it is shown that the
subspace selection by the cross-spectral metric
provides an output SINR which is nearly equivalent to
that of the full-dimension case. However by lowering
the threshold for this reduced-dimension detector,
the detection probability calculation integrates over
a broader range of values thereby yielding a 2.5 dB
increase in detection sensitivity as compared with the
full-dimension detector when the noise covariance is
unknown. It is noted that the detection performance
of the cross-spectral subspace AMF CFAR test
with unknown covariance is only 0.5 dB less than
the full-dimension AMF CFAR test with known
covariance (the matched filter).

VII. CONCLUSIONS

A general methodology is introduced in this
paper to describe reduced-dimension detectors and
to analyze their statistical properties and performance.
In particular, closed form expressions are derived for
the detection and false alarm probabilities under the
conditions of both known and unknown covariance
matrices. Although the AMF CFAR test is emphasized
in this paper, the analysis techniques developed herein
extend readily to nearly any other test simply by
relating the variables which compose the test to the
GSC.

The computational complexity requirements of the
eigendecomposition performed for subspace selection
suggest that other procedures need to be discussed.

It is noted that other unitary operators U may be
used with the cross-spectral metric to determine the
transformation U, to yield new reduced-dimension
tests which may exhibit approximately the optimal
performance obtained herein. The Gram—Schmidt
procedure introduced by Brennan and Reed [34-36]
is one method for achieving a lower complexity
transformation to find the cross-spectral metric.
Another example is to approximate the cross-spectral
metric with a unitary operator which does not
completely decorrelate the noise subspace covariance
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