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Reduced-Rank Adaptive Filtering

J. Scott Goldstein and Irving S. Reed

Abstract— A novel rank reduction scheme is introduced for adaptive
filtering problems. This rank reduction method uses a cross-spectral
metric to select the optimal lower dimensional subspace for reduced-rank
adaptive filtering as a function of the basis vectors of the full-rank space.

1. INTRODUCTION

This correspondence is concerned with rank reduction in adaptive
signal processing. The goal of reduced-rank adaptive filtering is to
find a lower dimensional filter that yields a steady-state performance
that is as close as possible to that obtained by the full-rank solution.
The motivation for rank reduction can be attributed to many factors.
First, it is very common for the problem under consideration to be
overmodeled. In this case, the rank may be reduced to the dimension
of the signal subspace to suppress the noise. Second, it could be
required that the adaptive filter be of a particular order. perhaps
lower than the dimension of the signal subspace, due to complexity
constraints or other real-time implementation requirements. For this
compression problem, it is desired that the steady-state performance
of the reduced-rank filter be as close as possible to the full-rank
optimal solution for each value of the filter rank. Clearly, the solution
to the compression problem satisfies the overmodeling problem when
the rank of the filter equals the dimension of the signal subspace.
Finally, the popular least squares (LS) class of algorithms converge as
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a function of the filter order, implying that lower-rank filters converge
faster.

Previous work in reduced-rank adaptive filtering has been con-
cemed primarily with the overmodeling problem [1]-[8]). For nota-
tional purposes, the full-rank problem is defined to be of dimension
N. In addition, let D denote the dimension of the signal subspace.
With this notation, the previous work on rank reduction consisted of
an estimation of the covariance matrix of the observed data and then
a determination of its singular value decomposition (SVD). Those
eigenvectors corresponding to the largest D singular values are then
retained to form the rank D eigensubspace in which the reduced-
rank filter will operate. This method is very effective if the proper
dimension D is known exactly. In the event that this dimension is
not known, then one must either estimate it or choose a rank large
enough to ensure that at least D eigenvectors are retained. If fewer
eigenvectors are retained. the performance will suffer greatly.

In this correspondence. a metric is found that relates directly to
the data space and provides a measure of the cross-spectral energy
projected along each basis vector. Those M bases for which this
energy contribution is greatest are retained. It is demonstrated that this
cross-spectral metric obtains the best low-rank filter as a function of
the basis used. In addition. for the overmodeling problem, this metric
provides a more robust criterion than the largest eigenvalue criteria
for M < D. This counterintuitive result yields a steady-state solution
that is the upper bound on the performance of an adaptive filter that
operates in the rank M eigensubspace for all A < N,

II. THE FULL-RANK LS PROBLEM
Let X denote an L x V' data observation matrix. and let d be some
desired data vector of dimension L. The goal of the LS problem is
to find the best approximation of d that is solely a weighted linear
combination of the N column vectors that compose X. The error €
to be minimized is given by

e=d-Xw (N

where w is the .V-dimensional weight vector to be determined.
The LS method estimates the N x N covariance matrix R, =
X "X and the ¥ x 1 cross-correlation vector between the observed
data and the desired signal vector r s = X7d.The standard LS
solution for w is then provided by ws. which is computed as

wrs = RI'r.a (2)

This solution yields ¢,s = d — Xwys as the error vector with
minimum Euclidean norm. The error €., 5 is orthogonal to the column
space of X.

III. THE REDUCED-RANK LS PROBLEM
The SVD of the data matrix X is obtained next as follows:

X =Usv# (3)

where
U L x N orthonormal matrix of left singular vectors
§ N x N diagonal matrix of singular values
V N x N orthonormal matrix of right singular vectors of X
(e.g., see [9]).

1053-587X/97810.00 ©® 1997 IEEE
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The matrix V contains the eigenvectors of R: = vAvH =

VS?VH  where A = S? is the corresponding matrix of eigenvalues
whose diagonal elements are denoted {Ax. 1 < k < N}. Note that
the column vectors {uix. 1 < k < N} of U form the orthonormal
singular basis of R.;. In the reduced-rank problem, we wish to select
a number M < N of these column vectors so that the mean-square
error, which is given by the Euclidean norm of ¢, is minimized.
This minimization is equivalent to maximizing the norm of the
approximation y = Xwys. Denote the Euclidean norm of y by
E,= vy, Then, it is easily verified that the contributions to E), in
the N dimensions of the data space can be quantified as follows:

E,= wf_qR,ng =R rs = rde.\_IVHr,d. 4
Next, introduce the transformed cross-correlation vector
p= VH Trd (5)

with elements {px. 1 <k < N'} so that one obtains

E—ii—ie (6)
v = T L

Clearly, an optimal low-rank basis should consist of those eigenvec-
tors that correspond to large §;.. If the norm in (4) is considered to be
the total energy of the approximation y, then £ in (6) is a measure of
the energy projected along the kth basis vector of the space spanned
by the columns of R.,. Thus, it is natural to call & the cross-spectral
energy or metric. The rank-M subspace selected by choosing the set
of M basis vectors that correspond to the M largest values of 8y is
termed the cross-spectral subspace. To verify that a minimization of
the error term in (1) is equivalent to a maximization of the Euclidean

GSC form sensor armray processor

TABLE 1
SIGNAL GEOMETRY
SIGNAL (| DOA | SNR;, 1
desired 0° 0dB

jammer 1 || —61° | 40dB

jammer 2 || —30° | 44 dB

jammer 3 || —10° | 34dB

jammer 4 10° 38 dB

jammer 5 || 22° | 40dB
norm E, in (4), note that

f§56L5=0§—Ey=0§"29k (7

k=1

where 63 = d”d. Thus, the choice of those eigenvectors that

correspond to the maximum values of #; minimize the-mean-squared

error as a function of rank. It is noted that the values 8 correspomu—

to the signal subspace eigenvalues for 1 < k < D so that the weight
solution is unique and the cross-spectral subspace is stable [1].

IV. GEOMETRICAL INTERPRETATION
The Euclidean norm E, in (4) may be alternatively expressed in
terms of the SVD in (3), i.e.,
E,=d"uufa. (8)

Now, introduce the normalized data vector d = (d”d)_md. and
rewrite (8) as follows:

E, =o3d uuta. (9)
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Note that cos 9 = d  uy is simply the cosine of the angle between
the data vector d and the basis us. Thus, the norm of y is given by

N

E, :a;’;Z{cos Ix)? (10)
k=1

which expresses the fact that one wants to select only those basis

vectors for the low-rank approximation that are closest to the data in
terms of the angles between the basis vectors and the data vector.

V. EXAMPLE

An example is considered now of both overmodeling and com-
pression using the application of minimum variance distortionless
response (MVDR) beamforming in a narrowband signal environment.
Extensions to the wideband case can be accomplished by an appli-
cation of the results presented herein as well. In this example, it is
assumed that there is only one target signal present and that the array
is signal-aligned in the desired-signal look direction.

Such an MVDR sensor array may be realized in a partitioned form,
which is termed a generalized sidelobe canceler (GSC) [10]. [11],
as depicted in Fig. 1 for an array composed of A sensor elements.
The conventional beam forming matrix W. = (1/L")1 enforces the
look-direction constraint. The look-direction signal is blocked from
the adaptive processor by means of a signal blocking matrix W,
which, in general, is of dimension N x K, where N' < K. For the
single linear constraint case of interest, one takes N = K — 1. Thus,
the full row-rank matrix W, is composed of V' rows a; such that
a;l=0fori=1.2---.N.

Next, the L -dimensional signal vector received by the antenna
elements at time k is denoted by x(k), and the conventional beam
former signal is d(k) = W x(k). The noise subspace data vector
of dimension .\ is x. (k) = W,x(k). The full-rank adaptive weight
vector w is also of dimension .\, and the array output is given by

Reduced-rank GSC form sensor array processor.

y(k) = (W — wHW,)x(k), which serves as the error signal for
the GSC processor.

For the sensor array processing application, the cross-spectral
metric takes a very intuitive form. Any conventional beamformer
attenuates the signals coming from other than the look direction. This
tapering of the quiescent response has an impact on the performance
of the GSC. The upper branch of the GSC results in an output d(k),
which is composed of the beamformed signal plus interference. The
goal of the lower branch is to estimate the interference presentin d(k)
at the output of the adaptive weighting network. The Wiener-Hopf
solution is a vector w that designates to the location of minimum
mean-square error (MMSE) in the noise subspace. A strong interfer-
ence source that is attenuated by the quiescent tapering clearly has a
reduced effect in the determination of the subspace that contains the
location of the MMSE. However, this interference also passes through
the signal blocking matrix and results in a large eigenvector in the
noise subspace. If this interference signal is completely attenuated by
W, then this large eigenvector is orthogonal to the cross-correlation
vector. A weaker interference source may be less attenuated by
the conventional beam former tapering, and as a consequence, the
eigensubspace technique disregards the corresponding eigenvector in
the noise subspace. The exclusion of the basis vector corresponding
to the weaker interference source will yield a greater loss in the
MMSE than the gain that is realized through the inclusion of the
larger eigenvector. That is, the subspace selected by the inclusion
of the strongest eigenvector is further away from the location that
provides the optimal MMSE unless all noise subspace eigenvectors
are retained.

Consider a linear array with 16 sensors spaced at a half wavelength.
The signal environment is composed of one desired signal and the
five jammers described in Table I. The full-rank Wiener filter is of
dimension 15 x 1, and we reduce the rank to 2 x 1 in order to
compare the performance of the eigensubspace and cross-spectral
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Array power gain as a function of direction of arrival are shown for four 16-sensor narrowband GSC realizations using the optimal Wiener-Hopf

weight vector for each. (a) Fully adaptive 15-weight GSC. (b) Panially adaptive 2-weight eigenspace GSC. (c) Paruially adaptive 2-weight cross-spectral
subspace GSC using the eigenvector basis. (d) Partially adaptive 2-weight cross-spectral subspace GSC using the DCT basis.

subspace processors using both the eigenvectors and the columns of
the DCT matrix as basis vectors for the noise subspace. In the case
of the cross-spectral metric approximation using the DCT basis, the
ith eigenvalue is estimated by the power in the ith DCT frequency
bin. The reduced-rank GSC is depicted in Fig. 2, where the matrix
T is composed of two 15 x 1 basis vectors to be selected.

Fig. 3(a) presents the full-rank Wiener solution for this signal
environment, where the rank of the Wiener filter is N = 15. The
full-rank MMSE is —11.1 dB, and all jammers are attenuated.

We now reduce the rank of the Wiener filter to M = 2, which is
less than the dimension of the noise subspace eigenstructure. Fig. 3(b)
demonstrates that the rank 2 Wiener filter in the subspace formed
by the eigenvectors corresponding to the largest two eigenvalues is
not capable of attenuating two of the intereference signals J3 and
Js. The MMSE in the eigensubspace is —2.8 dB, reflecting a loss
of 8.3 dB. The rank 2 Wiener filter in the cross-spectral subspace
with an eigenvector basis, which corresponds with the pattern pro-
vided in Fig. 3(c), successfully attenuates all jammers and obtains
an MMSE of —10.6 dB. Thus, by simply choosing two different

eigenvectors—those selected by the cross-spectral metric—the loss
of performance in reducing the rank of the Wiener filter from 15
to 2 is only 0.5 dB. Fig. 3(d) presents the pattern corresponding
with the rank 2 Wiener filter in the subspace selected by the cross-
spectral metric relative to the DCT basis vectors. The jammers are
all attenuated, and the resuiting MMSE is —11.05 dB. Thus, for
this example, the rank 2 DCT cross-spectral Wiener filter obtains an
MMSE within 0.05 dB of the optimal full-rank Wiener filter and does
not require an eigendecomposition.

To demonstrate that the performance of the Wiener solution in
the cross-spectral subspace is an upper bound for that of the Wiener
solution in the eigensubspace, Fig. 4 presents the MMSE as a function
of the Wiener filter rank. From Fig. 4, it is clear that the GSC
Wiener filter operating in the eigensubspace requires five coefficients
to obtain performance close to that realized by the full-rank solution.
This is expected since five is the number of narrowband interferers.
Conversely, the Wiener filter in the cross-spectral subspace with an
eigenvector basis roughly obtains the full-rank solution with about
three to four coefficients. This same level of performance is reached
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Fig. 4. MMSE as a function of rank for the GSC form sensor array processor.

by a two-coefficient filter in the cross-spectral subspace with a
DCT basis. The MMSE performance for the cross-spectral GSC is
acceptable at all lower dimensions, obtaining an MMSE loss greater
than 0.51 dB only when the weight vector dimension is reduced to
unity. The performance of the eigensubspace GSC degrades rapidly
for all weight vectors of dimension less than 3.

V1. CONCLUSIONS

A cross-spectral metric is derived directly in the data space for
reduced-rank adaptive filtering. This metric chooses an optimal lower
dimensional subspace as a function of the basis representation for
the full-rank space. It is also demonstrated that the steady-state
solution in the subspace chosen by the cross-spectral metric provides
an upper bound for that solution found in the space spanned by
the eigenvectors that correspond with the largest eigenvalues of the
full-rank correlation matrix.
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