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I. INTRODUCTION

The problem addressed in this paper is minimum
variance adaptive sensor array processing subject to
limitations on the dimension of the adaptive processor.
Advances in technology have made it possible for
undersea, space-segment and airborne platforms
to support arrays composed of many elements for
communications, sonar, and radar systems. However,
the computational complexity requirements of such
sensor arrays, coupled with the desire or requirement
for space-time processing, may prohibit full adaptivity.
A new technique for rank reduction based upon
a cross-spectral performance index is introduced.

It is shown that this method results in a lower
minimum mean-square error (MMSE) than the
principal components method of rank reduction.

An example using the popular minimum variance,
distortionless response (MVDR) adaptive array is
provided which demonstrates that the cross-spectral
metric outperforms the largest eigenvalue criterion
and may provide excellent performance even when the
rank of the processor is reduced beyond the dimension
of the noise subspace eigenstructure.

Il. MINIMUM VARIANCE SENSOR ARRAY
PROCESSING

The minimum variance adaptive array [1] may
be implemented in a partitioned form termed a
generalized sidelobe canceller (GSC) [2, 3], as shown
in Fig. 1. To simplify the discussion in this work, we
assume that the propagating signals are narrowband,
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Fig. 1. Full-rank GSC-MVDR processor.

zero-mean wide-sense stationary random processes
which impinge on a signal aligned, K-sensor, GSC
array. The GSC is implemented by partitioning the
received data with filters w, and W,. The conventional
beamforming filter w,. is a vector which enforces

the look-direction constraint. For a single MVDR
constraint, this X x 1 beamforming filter takes the
form w. = (1/K)1, where 1 represents a vector whose
elements are all unity. The desired signal is blocked
from the adaptive processor through the signal blocking
matrix W,, which in general is of dimension N x K
where N < K. For example, in the single linear
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constraint case, N = K — 1. The full row rank matrix
W, is composed of rows a; such that a;1 = 0 for
i=1.,2....K.

The K x 1-dimensional received signal vector
present on the antenna elements at time k is denoted
by x(k) and the associated K x K received input data
covariance matrix is denoted by R, = E[x(k)x” (k)].
The N-dimensional noise subspace data vector x,(k),
the scalar beamformed output d(k), and the scalar
beamformed noise estimator y,(k) are given by

x5(k) = Wx(k)
d(k) = wix(k) ‘ (1
y:(k) = wHx,(k)

where w is the N-dimensional weight vector. Finally,
the array output is

y(k) = (W — wHWo)x(k). ()

Evidently, the mean-square error of the processor is
given by the mean-square value of y(k).

The GSC array in Fig. 1 converges to the
discrete-time Wiener—Hopf solution given by

w=R;'r 4 3)

where the observation data covariance matrix is
expressed as

R;, = E[x,(k)x] (k)] = W,R, W @

and the cross-correlation vector between the noise
subspace data vector and the beamformer output is
given by

Iya = E[x,(k)d" (k)] = W,R;w.. (&)

The MMSE, denoted by P, is found by substituting
(3) into (2) and evaluating the mean-square value of
y(k):

P =E[ly®)|*] = 07 — ;4R 'Txa (6)

where o2 = w/ R, W, is the variance of the
conventional beamformer output.

The observation data covariance matrix R, is
expressed next in terms of its eigenvectors and
eigenvalues by

R;, = UAU" @)
where U is a unitary N x N matrix composed of the
eigenvectors {v;}¥ | and A is the diagonal matrix
of associated eigenvalues {A;}/,. In terms of the
principal coordinates of the problem, we define
the process p(k) = U¥x,(k). A normal component
covariance matrix R,, cross-correlation vector rpq, and
Wiener filter wy are defined now as follows:

R, = E[p(k)p" (k)] = U¥R, U= A
rpd = E[p(k)d* (k)] = Ufreq ®)

wy = R;'rpe = Ufw.
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Fig. 2. Full-rank GSC-MVDR processor in principal coordinates.

The GSC in these normal coordinates, depicted in
Fig. 2, is equivalent to the GSC in Fig. 1 in terms of
its steady-state characteristics. The array output of the
GSC in normal coordinates is given by

y = (W — wlUAW,)x(k) = (w¥ — wHW,)x(k).
)
Note that the MMSE,

—_ gl -1 -
P=g;- _rgd’Rp Tpd = Ug == l‘dex'lrde

£

(10)

is conserved by any unitary transformation, including
that realized by the operator U.

lll.  PARTIALLY ADAPTIVE PROCESSING

The problem of reducing the degrees of freedom
for an array processor involves selecting a subset or
some combination of the elements to be adaptively
weighted. For notational purposes, we let the space
spanned by the columns of the fully adaptive array
covariance matrix be denoted by C, implying that
the observation covariance matrices R;, and R, are
of dimension N x N and the vectors Txd, Fpd, W,
and wy are N x 1-dimensional vectors. The partially
adaptive GSC shown in Fig. 3 utilizes an N x M
transformation operator #/, in place of U in Fig. 2,
to form the M-dimensional reduced-rank observation

data vector
z(k) = U x,(k) (11)

where M < N. The associated M x M reduced-rank
covariance matrix is given by

R, =U R U. (12)

The data vector z(k) is then processed by the
reduced-rank weight vector wy;, which is of
dimension M x 1. It is the selection of the rank
reducing operator I{ which serves as the present topic
of interest.

The most popular technique for subspace selection
is based on the principal components method
[4-6]. This method determines the singular value
decomposition of the N x N-dimensional covariance
matrix R;, and selects the M largest eigenvectors
(those corresponding to the largest eigenvalues) to
form the M-dimensional eigen-subspace ¥ c CV in
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Fig. 3. Reduced-rank GSC-MVDR processor.

which the adaptive processor operates. However,

this technique does not directly consider the MMSE
performance measure, which is a function of not only
the space spanned by the noise covariance matrix

but also of the cross-correlation between the desired
signal and the noise process. It is noted that Byerly
[7] discovered that the eigenvectors corresponding to
the largest eigenvalues were not necessarily the best
selection, but there was no derivation provided and
the approach obtained herein provides a more general
solution.

Following Scharf [8, ch. 8], we examine the
problem of reducing the rank of the Wiener filter. In
Fig. 3, the rank reducing N x M transformation matrix
U is composed of some M columns from U which are
to be selected. The operator U is constrained therefore
to be a subset of M of the N possible eigenvectors
of R,,. This particular constraint allows a direct
comparison with the principal component technique,
which chooses the rank reducing transform to be
composed of those M eigenvectors corresponding
to the largest M eigenvalues. Thus, the particular
problem at hand is to choose the subspace spanned
by a set of M eigenvectors out of the N available such
that the resulting M-dimensional Wiener filter yields
the lowest MMSE out of all (§;) possible combinations
of eigenvectors.

Now denote the reduced-rank processor output by
¥r(k) and the reduced-rank noise estimator by y;, (k).
This is illustrated in Fig. 3. A study of Figs. 2 and 3
suggest that the reduced-rank processor output can be
expressed as

yrk) =11 wiU# —whuH) [y(k) ] .
x;(k)

Denote the weight error vector between the full-rank
weight vector and its reduced-rank version by

13)

e =Uwy —Uwy. (14)

The mean-square value of the reduced-rank processor
output y,(k) in this notation is computed to be

E[ly,(k)[*1 = P +e"Rye (15j

where P is the full-rank MMSE and P + e”R, e is the
reduced-rank MMSE. It is now desired to choose the
rank reducing operator I/ in such a manner that wyy
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minimizes the additional mean-square error incurred
by rank reduction, namely the scalar term e R, e in
(15). Define the N x M index matrix J such that its
N rows are composed of M orthonormal unit vectors
and N-M null vectors in the order corresponding to
the selection of the M columns of U retained to form
the rank reducing operator /. Then the additional
mean-square error incurred by rank reduction is
minimized as follows:

min[e R, €]

= min[(WjRY2 — wi RI/2JH)

x (R} *wy

- IR 2wpp)). (16)

Then evidently the best solution for (16) is to
choose I such that JR; sz is the best low rank
approximation to the vector R” s

The Wiener—Hopf relauonshlp for the full-rank

case,
RyWy =rp (17)

implies that

RLIZWN - R;uzrpd s A-l,foer:d
o Vf"rx,d &
VA

H
Uz rx’d

18
.| )

Vﬁrx,d
| ad

Thus, in order to make the vector JR” 2WM be the
best low rank approximation to the vector Ry *wy,

it is necessary to rank order the terms in (18) by their
magnitude. With this ranking of the eigenvectors of U,
the index matrix J takes the form

[}

where I is the M x M identity matrix and 0 is the
(N — M) x M null matrix. Then the rank reducing
operator U is selected by choosing those M
eigenvectors which correspond with the largest M
values of the sequence of nonnegative terms

2
v,?"rxsd
VA

fori=1,2,...N. With this selection, the columns

of the reduced-rank covariance matrix R, span the
M-dimensional cross-spectral subspace Q C CV to
provide the lowest MMSE of any M -dimensional
subspace which is spanned by M of the N columns
of U. It is noted that this solution is similar to the
singular value decomposition (SVD) technique
described in [8, ch. 8.4]). Also it is of interest physically

(19)
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that the term in (19) measures the cross-spectral
energy projected along the ith eigenvector.

Hence the reduced-rank Wiener filter in the
subspace (2 is given by

wi = UHIRLU U a = AU,y (20)

where Ay is the diagonal matrix composed of the
M eigenvalues corresponding to the eigenvectors
which form U. Clearly, the subspace 2 spanned by
the eigenvectors corresponding with the M largest
values of the cross-spectral metric is not the same as
the subspace ¥ which is spanned by the eigenvectors
corresponding with the M largest eigenvalues. This
means that the Wiener filter in the cross-spectral
subspace Q2 yields a lower MMSE than the Wiener
filter in the subspace ¥.

To demonstrate that the cross-spectral metric
is optimal for each rank M < N, consider the
decomposition of the MMSE performed by the
full-rank matrix of eigenvectors U. The full-rank
MMSE is given by

P =0}~ R rp = 0F — rH UA'Ury g

N zHw g2
o |U i Yx,d 1 21
=0; '2;'"75““‘ 21)
Finally, a comparison of (19) and (21) demonstrate
that the selection of the subspace which provides the
largest cross-spectral contribution also results in the

lowest MMSE as a function of the rank of the Wiener
filter.

IV. EXAMPLE

We now examine the performance of the fully
adaptive GSC, the partially adaptive eigen-subspace
GSC, and the partially adaptive cross-spectral
subspace GSC processors. For the purpose of this
analysis, five narrowband interference signals and
one narrowband desired signal impinge a linear
array consisting of 16 elements with half-wavelength
spacing. The linear constraint imposed is a 0 dB gain
at broadside. The dimension of the fully adaptive
processor is N = 15. To evaluate the performance
of the subspace selection techniques, the dimension
of the adaptive processor is reduced to M = 2. The
dimension of the noise subspace eigenstructure is
5, which is supposedly the lower bound for rank
reduction [4, 5].

The signal environment consists of a desired
signal (D) which arrives broadside (0°) with an input
signal-to-noise ratio (SNR;,) of 0 dB and five
jammers. Jammer 1 (J1) has a direction of arrival
(DOA) of —61° and SNR;, = 40 dB, the second
jammer (J2) has a DOA of —30° and SNR;, =
43.5 dB, the third (J3) has a DOA of —10° with
SNR;, = 34 dB, the fourth (J4) has a DOA of 10°
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Fig. 4. Array power gain patterns as function of direction of
arrival are shown for quiescent response and three 16-sensor GSC
realizations using the optimal Wiener-Hopf weight vector for
each. (a) Conventional beamformer pattern. (b) Fully adaptive
15-weight GSC. (c) Partially adaptive 2-weight eigen-subspace
GSC. (d) Partially adaptive 2-weight cross-spectral subspace CSC.

with SNR;, = 38 dB, and the fifth jammer (J5) has
a DOA of 22° and SNR;, = 40 dB.

It is important to note that the jammers J1,

J2, and J5 all fall within nulls of the conventional
beamformer pattern, as shown in Fig. 4(a). These
constitute the most powerful sources of interference
impinging the array. It is expected therefore that the
eigen-subspace processor will assign its two degrees
of freedom to cancel jammers which would normally
be attenuated anyway. It is seen soon that this is the
case, and that the cross-spectral metric corrects this
deficiency. It is emphasized that in this example,
there are only two eigenbeams required to cancel

the interference. The only difference between the
eigen-subspace and the cross-spectral subspace is the
choice of the two eigenvectors out of the set of 15
available.

The fully adaptive GSC with fifteen weights
provides an MMSE of —11.1 dB. The corresponding
array pattern with the optimal 15-dimensional weight
vector is provided in Fig. 4(b). It can be seen that all
jammers are nulled and that the desired signal receives
the expected O dB gain.

The eigen-subspace GSC provides an MMSE of
—2.8 dB, representing a loss of 8.3 dB in performance
due to a reduction in the degrees of freedom from
fifteen to two adaptive weights. The corresponding
array pattern with the optimal 2-dimensional weight
vector in the eigen-subspace is depicted in Fig. 4(c).
It can be seen that the weaker jammers, J3 and J4,
are not attenuated. The selection of the eigen-
subspace, whose basis vectors are composed of the
largest principal axes of CV, yields a subspace in
which the weight vector cannot affect the two
jammers which most greatly determine the array
performance.
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The poor performance of the Wiener filter in
the subspace based on the largest eigenvectors is
now contrasted to the performance obtained in the
cross-spectral subspace. The cross-spectral subspace
GSC provides an MMSE of —10.75 dB, indicating
that the performance loss incurred in reducing the
degrees of freedom from fifteen weights to two is
only 0.35 dB. The array pattern constructed with the
2-dimensional cross-spectral subspace optimal weight
vector is shown in Fig. 4(d). There is no loss in
sidelobe performance, and all jammers are attenuated.

V.  CONCLUSIONS

A cross-spectral metric for subspace selection
in partially adaptive array processing is derived and
a proof is provided to show that this metric is the
optimal performance measure to use in deciding
which eigenvectors to keep for rank reduction. Also
it is demonstrated that an MVDR array, operating in
the subspace selected by the cross-spectral subspace
estimator, exceeds the performance realized by
operation in the subspace which is based upon the
principal components method. The cross-spectral
subspace provides better performance than the
eigen-subspace when the conventional beamformer
pattern provides any attenuation of the interference.
A narrowband example and analysis are provided on
the assumption of exact signal knowledge, although
estimated statistics also may be utilized in conjunction
with an adaptive algorithm.
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