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Abstract

This dissertation is concerned with the enhancement of an existing audio acquisi-
tion/reproduction system by both providing more loudspeakers for rendering (virtual
rendering) as well as multiple input audio channels (virtual acquisition). By providing
virtual microphones and virtual loudspeakers, the methods proposed here can transform
a given microphone/loudspeaker setting into a truly immersive environment.
Immersive audio virtual rendering systems can be used to render virtual sound
sources in three-dimensional space around a listener. This is achieved by simulating
the Head-Related Transfer Function (HRTF) amplitude and phase characteristics using
digital filters. In this work we examine certain key signal processing considerations in
spatial sound rendering over headphones and loudspeakers. We address the problem of
crosstalk, inherent in loudspeaker rendering, and examine two methods for implement-
ing crosstalk cancellation and loudspeaker frequency response inversion efficiently. We
demonstrate that it is possible to achieve crosstalk cancellation of 30 dB using both
methods. Our analysis is extended to non-symmetric listening positions and moving
listeners. A method for generating the required crosstalk cancellation filters as the lis-

tener moves is developed based on Low-Rank modeling. Using the Karhunen-Loeve

Xiv



expansion of the crosstalk filters we can interpolate among designed filters to synthesize
new ones, for which HRTF measurements are unavailable.

Multichannel audio offers significant advantages for music reproduction that include
the ability to provide better localization and envelopment, as well as reduced imaging
distortion. Although there are thousands of music recordings available in monophonic or
stereophonic form, only a handful have been recorded using microphone techniques that
would allow subsequent multichannel rendering. Here, we propose virtual acquisition
techniques that are capable of synthesizing the required — for multichannel rendering —
multiple microphone signals from a smaller set of existing audio signals. These synthe-
sized “virtual microphone” signals can be used to produce multichannel recordings that
accurately capture the acoustics of the venue and the microphone setting of an arbitrary
multimicrophone recording. Applications of the proposed system include remastering of
existing monophonic and stereophonic recordings for multichannel rendering, as well as
efficient transmission of multichannel audio over low-bandwidth networks, such as the

current Internet infrastructure.

XV



Chapter 1

An Introduction to Immersive Audio

Virtual Acquisition and Rendering

1.1 Problem Statement

Immersive audio is a new area of audio signal processing, which aims at recreating or
synthesizing realistic but arbitrary acoustical environments, such as conference rooms
and concert halls. There are great benefits from this research for various fields of
the industry including telecommunications (teleconferencing), entertainment (audio re-
production and remastering), computer (human-computer interaction, computer based
teaching), biotechnology (displays for the visually-impaired) and so forth, all of which
are part of the emerging area of multimedia. In the ideal case where a large number of
audio channels and loudspeakers is available, audio immersion can be accomplished by
using the appropriate channel mixing and rendering. An example of such a system is

the 5.1 multichannel audio system or its possible successor, the 10.2 system, currently



Immersive Audio |——— — Immersive Audio
Acquisition System Rendering System

Figure 1.1: An example of immersive audio virtual acquisition and rendering. The two
channels of stereophonic sound are converted into the multiple channels of a virtual
multichannel recording. A multichannel recording is rendered through only two loud-
speakers with the immersive experience unaffected due to the virtual rendering system.

under investigation at the Immersive Audio Laboratory of the University of Southern
California.

This dissertation deals with the scenario when an ezisting audio acquisition and/or
reproduction system is used for audio immersion. An example of such a system is shown
in Fig. 1.1. A given stereophonic recording is enhanced with the immersive audio virtual
acquisition system in order to be rendered through a multichannel rendering system.
Immersive audio virtual rendering can be utilized for rendering a multichannel audio
recording through an existing stereophonic reproduction system. However, the methods
described in this work are derived with the more general scenario in mind, when many
channels and many loudspeakers may be available but a more realistic recreation of a
specific venue is desired. Thus, this work is concerned with two separate procedures,

each one with its own challenges and applications:

e Immersive audio virtual acquisition. In many cases the multiple audio channels
required for multichannel audio rendering do not exist and must be, in some way,

synthesized. More generally, in order to recreate a truly immersive environment



with a given recording, it would be useful to be able to synthesize more chan-
nels than those available; this would allow for a more realistic reproduction of
the sound. This task can be thought of as recording the sound using “virtual
microphones” that synthesize these channels, while preserving the acoustics of the

space.

» Immersive audio virtual rendering, which can be defined as the problem of accu-
rately rendering arbitrary sound sources in space using two or more loudspeakers.
In this work we concentrate on this problem for the case when two loudspeakers
are used, but the methods derived can be easily extended for the general case of
an arbitrary number of loudspeakers. Immersive audio virtual rendering can be

thought of as rendering the sound through “virtual loudspeakers”.

1.2 Dissertation Contribution

In the previous paragraph, a brief statement of the goals of this dissertation was given.
A distinction must be made between the long-term system design goals, that are being
envisioned and were the motivation behind this work, and the specific contributions of
this dissertation towards achieving these goals.

Immersive audio virtual acquisition is envisioned to have the capacity of recreating
an immersive multichannel acoustical experience from existing recordings of music made
with a small number (as small as one) of microphones. However, this is a very general
problem statement; multichannel recordings are being created with a variety of different

objectives in mind. For example, a classical music symphony in a large concert hall can



be recorded with many microphones, that aim to capture different parts of the orchestra
and/or the reverberation in positions far from the orchestra. Depending on the parts of
the orchestra captured, different acoustical results can be obtained. A virtual acquisition
system is expected to be capable of recreating multiple channels from a given recording,
which would suit the objective of a multichannel microphone setting. For the example
described, the objective would be to enhance these certain parts of the orchestra that
are considered important. Although deriving a general method for achieving this result
is desired, our investigation on this subject suggests that different types of instruments
(parts of the orchestra) must be treated in different context, depending on their nature.
This dissertation concentrates on a number of different instrument types (as well as
on a general solution for the virtual microphones dominated by reverberation). The
objective is to provide a specific solution that will, additionally, furnish a framework for
further research, in an unexplored subject such as this one.

The ultimate goal of immersive audio virtual rendering research is a system that
is capable of rendering virtual sound sources at arbitrary positions in space, around a
listener that is possibly moving. This system is expected to render sources in real-time,
possibly as a module of a larger system that aims at recreating a fully virtual experi-
ence (virtual reality). Potential applications of the immersive audio virtual rendering
system are described in the next section. It is clear that there are many difficulties
in designing such a system; mainly since the computational complexity is prohibitive
and/or the theoretical assumptions do not closely approximate the underlying physical

system. This dissertation aims at providing answers at questions regarding the design of



such systems, based on the simplifying (but generalizable) scenario of a two-loudspeaker
setting. Specifically, a solution for a non-moving listener, seated symmetrically between
two loudspeakers, and virtual sound sources at a particular (fixed) angle with respect
to the listener, is initially given. This is a system that has been realized in real-time
with an arbitrary audio input, using two FIR filters and a relatively low-cost hardware
implementation. An extension is also provided that covers the general case of a moving
listener and varying sound sources. This system assumes that accurate real-time track-
ing of the listener position is available. A problem with the design of this system is
its high dependence on specific room acoustics. The performance of a system designed
for a specific environment degrades if the acoustic conditions (the room environment)
change. This is an inherent problem of the HRTF approach, followed in this work as

well as in the majority of the research on this subject.

1.3 Potential Applications of Immersive Audio Virtual Ac-

quisition and Rendering

Fig. 1.1 by no means implies that the systems for virtual acquisition and rendering must
coexist. It rather suggests that the two systems are of complementary nature. Each of

these systems has its own applications and usefulness, as described next.

1.3.1 Immersive Audio Virtual Acquisition

Immersive audio virtual acquisition is capable of synthesizing the multiple channels of

a virtual multichannel recording from a small set of reference channels available in an



existing recording. This is an extremely important application for audio reproduction,
given the sense of realism offered by multichannel audio, and would apparently affect
many different sectors of technology, from entertainment to consumer electronics and
so forth.

As a direct consequence of the immersive audio virtual acquisition system, a system
that resynthesizes the multiple channels of an existing multichannel recording from
only one or two reference channels of this recording can be created, as it will be shown
in later chapters of this work. This is of great importance for applications in which
bandwidth limitations prohibit transmission of multiple audio channels. In such a case,
an alternative would be to transmit only the reference channels and reconstruct the

remaining channels at the receiving end.

1.3.2 Immersive Audio Virtual Rendering

Immersive audio virtual rendering is capable of accurate spatial reproduction of sound
using two loudspeakers or more (as a direct extension). Applications go well beyond the
virtual rendering of multichannel audio. Immersive audio virtual rendering is of impor-
tance to applications where either spatial accuracy is of interest or a two loudspeaker
system is an insurmountable restriction. Such applications are largely dependent on
sound localization relative to visual images and include immersive telepresence; en-
hanced human-computer interaction; augmented and virtual reality for manufacturing
and entertainment; air traffic control, pilot warning, and guidance systems; displays for

the visually- or aurally-impaired; home entertainment; and distance learning.



1.4 Dissertation Organization and Overview

1.4.1 Chapter 2

In Chapter 2, the immersive audio virtual rendering ! problem is examined. Under the
assumption of symmetry of the listener with respect to the two loudspeakers used, a
solution to this problem is given based on adaptive signal processing algorithms. More
specifically, the Least-Mean Squared (LMS, [43]) algorithm is employed and compared
to an efficient Least-Squares based algorithm (FTF, [18]) with regard to the required
number of iterations and their computational complexity. The problem can be divided
in two parts, namely channel equalization and crosstalk cancellation, both important
for other applications of audio engineering as well [76, 75]. Although the solution is
not given separately for each problem, the methods proposed can be readily used for
these two specific problems. This particular problem has been a subject of ongoing
investigation [34, 35, 36, 89, 29, 28, 3, 26]. The solution proposed here has the advantage
of being easily extendable to the non-symmetric scenario (with the details presented in

Chapter 3). The headphone rendering problem is also examined.

1.4.2 Chapter 3

In Chapter 3, the assumption of symmetry in Chapter 2 is relaxed and a generalization

of the methods proposed in Chapter 2 is given. This chapter offers an approach to the

'The terms immersive audio virtual rendering, immersive audio rendering, spatial audio rendering
and virtual loudspeaker rendering are used in the remaining chapters of this dissertation interchange-
ably, having the meaning of rendering virtual sound sources in space, possibly for multichannel audio
applications (but for other applications as well, as described in the previous section), through a pair of
loudspeakers (or headphones when stated).



general problem of immersive audio rendering with two loudspeakers when the listener
1s moving that is very suitable for real-time applications, provided that a mechanism

for tracking the listener’s position exists [39)].

1.4.3 Chapter 4

Chapter 4 serves as an introduction to the remaining part of this work. In this chapter,
a brief review of time-frequency signal analysis and synthesis is given. The definition
here of time-frequency signal analysis/synthesis covers all signal processing methods
that modify in any way the short-term spectral properties of a signal. Thus, in this
chapter a unified view is furnished for the various methods suggested in the subsequent

chapters for the treatment of the short-term spectral properties of audio signals.

1.4.4 Chapter 5

The “virtual microphones” problem is decomposed into a two step procedure. The first
step is multichannel audio resynthesis, which is examined in this chapter. This is the
problem of reconstructing an arbitrary channel of an existing multichannel recording
from any other channel [77, 74]. Here, both recordings are available but the need is
to resynthesize one from the other, the possible application being multichannel audio
transmission under bandwidth restrictions in the communication channel (as in the
Internet for example). In other words, one or two channels are to be transmitted and the
remaining channels to be reconstructed at the receiving end. This is a unique approach

to the multichannel audio transmission problem which additionally, as explained in the



next chapter, forms the basis of a solution to the problem of synthesizing a multichannel

recording from an existing stereophonic (or even monophonic) recording.

1.4.5 Chapter 6

The second step towards achieving a solution for the “virtual microphones” problem
Is to use the methods described in Chapter 5 in order to synthesize a non-existing
recording. In this case, only one or two reference channels are available and the task is
to synthesize all the remaining channels of a virtual multichannel recording. A problem
of system performance criteria clearly arises in this cases and is also treated at this
chapter (73, 59]. This is a novel application in the audio signal processing field. It is
anticipated that the time-frequency framework analyzed in Chapter 4 and applied in

Chapters 5 and 6 can serve as a starting point for further research on the subject.

1.4.6 Chapter 7

Possible directions for future work on the subject of immersive audio virtual acquisition

and rendering are proposed.



Chapter 2

Adaptive Signal Processing Methods for

Immersive Audio Rendering

2.1 Overview

Immersive audio systems can be used to render virtual sound sources in three-dimensional
space around a listener. This is achieved by simulating the head-related transfer func-
tion (HRTF) magnitude and phase characteristics using digital filters. In this chapter
we examine certain key signal processing considerations in spatial sound rendering over
headphones and loudspeakers. We address the problem of crosstalk, inherent in loud-
speaker rendering, and examine two methods for implementing crosstalk cancellation
and loudspeaker frequency response inversion efficiently. We demonstrate that it is
possible to achieve crosstalk cancellation of 30 dB using both methods, but one of the

two (the Fast RLS Transversal Filter method) offers a significant advantage in terms of
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computational efficiency. Our analysis is easily extendable to non-symmetric listening

positions and moving listeners, as it will be shown in Chapter 3.

2.2 Introduction

Sound perception is based on a multiplicity of cues that include level and time differ-
ences, and direction-dependent frequency response effects caused by sound reflection in
the outer ear cumulatively referred to as the head-related transfer function (HRTF). The
outer ear can be modeled as a linear time-invariant system that is fully characterized
by the HRTF in the frequency domain [8].

Using immersive audio techniques it is possible to render virtual sound sources in
three-dimensional space using a set of loudspeakers or headphones (for a review see [56]).
The goal of such systems is to reproduce the same sound pressure level at the listener’s
eardrums that would be present if a real sound source was placed in the location of the
virtual sound source. In order to achieve this, the key characteristics of human sound
localization that are based on the spectral information introduced by the head-related
transfer function must be considered [71, 78, 105, 14].

The spectral information provided by the HRTF can be used to implement a set of
filters that alter non-directional (monaural) sound in the same way as the real HRTF.
Early attempts in this area were based on analytic calculation of the attenuation and
delay caused to the soundfield by the head, assuming a simplified spherical model of
the head [25, 13]. More recent methods are based on the measurement of individual

or averaged HRTF’s for each desired virtual sound source direction [105, 5, 108]. In
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our implementation we use a pair of HRTF’s (one for each ear) that are measured
for each desired virtual source direction using a microphone placed in each ear canal
of a mannequin (KEMAR). The main advantage of measured HRTF’s compared to
analytical models is that this method accounts for the pinnae, diffraction from the
irregular surface of the human head, and reflections from the upper body.

Several practical problems that arise when attempting to implement digital HRTF
filters for immersive audio rendering using headphones or loudspeakers are examined
here. In the case of headphone rendering, undesired frequency-dependent distortion is
introduced to the binaural signal that is due to anomalies in the headphone frequency
response. The inverse filter methods that we present in this chapter can be used to
remove these frequency response distortions from the headphones.

When rendering immersive audio using loudspeakers, direction dependent spectral
information is introduced to the input signal due to the fact that the sound is gener-
ated from a specific direction (the direction of the loudspeakers). In addition, just as
in the headphones case, the loudspeakers generally do not have an ideal flat frequency
response and therefore must be compensated to reduce frequency response distortion.
A key issue in loudspeaker-based immersive audio arises from the fact that each ear
receives sound from both loudspeakers resulting in undesirable acoustic crosstalk. We
examine the relative advantages of two inverse filter methods for crosstalk cancellation
and identify one (the Fast RLS Transversal Filtering method) that is particularly ef-
ficient in terms of computational requirements. Adaptive inverse filters for traditional

stereophonic reproduction have been studied extensively by Nelson et al. [79]. In that



work, the authors examined the general problem of room inversion, but did not specifi-
cally address the problem of HRTF-based rendering. The work presented in this chapter
is an extension into HRTF-based spatial audio rendering in which the ultimate goal is
to achieve real-time filter synthesis for interactive applications.

In this work we refer to monaural sound as non-directional sound. Binaural sound
represents sound that has been recorded with a dummy-head or has been generated
through filtering with the appropriate HRTF's for the left and right ears.

The rest of this chapter is organized as follows. We first formulate the problem
mathematically, in Section 2.3, for both headphone and loudspeaker rendering. The
monaural and binaural input cases are treated separately. In Section 2.4 we propose
two methods that can be used to address the filter inversion problems that arise due
to the non-minimum phase characteristics of the transfer functions involved. Finally,
in Section 2.5 we examine the performance of these two methods by comparing the
generated HRTFE’s to the original measured HRTF’s as well as the achieved level of

crosstalk cancellation.

2.3 Problem Specification: Headphone and Loudspeaker Ren-
dering

Binaural methods attempt to accurately reproduce at each eardrum of the listener the
sound pressure generated by a set of sources and their interactions with the acoustic

environment [9, 40, 70, 107]. Binaural recordings can be made with specially-designed
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probe microphones that are inserted in the listener’s ear canal, or by using a dummy-
head microphone system that is based on average human characteristics. Sound recorded
using binaural methods is then reproduced through headphones that deliver the desired
sound to each ear. Alternatively, a monaural sound source can be filtered with the
HRTF’s for a particular azimuth and elevation angle in order to generate binaural
sound. It was concluded from early experiments that in order to achieve the desired
degree of realism using binaural methods, the required frequency response accuracy of
the transfer function was +£1 dB [29].

When headphones are used for immersive audio rendering, their frequency response
is included in the frequency response of the signal that reaches the eardrums. Ideally,
a filter that inverts the frequency response of the headphones is required so that the
monaural signal will be processed not only with the HRTF’s of the virtual source, but
also with this filter. In the frequency domain, if H, is the frequency response of the
headphones and Hy the HRTF for a specific direction and the left ear (the equations
for the right ear and channel are analogous), the inversion of the headphones’ response
can be accomplished in two ways, depending on whether the input to the designed filter
is monaural or binaural sound. In the monaural input case we design the inverse filter
Hiny, = Hp/Hp. The monaural signal (S) is processed by this filter and then by the
headphones’ transfer function, so the response Ej, at the left eardrum will be

H
Ep = HpHinyS = HPF"S = H.S (2.1)
P

which is exactly the desired response (S is the monaural signal to be spatialized).
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Alternatively, a filter can be designed whose input is the left binaural signal S, that
already contains the required HRTF information (i.e. Sp = HpS). In this case, it is
simply necessary to invert the response of the headphones and so the response of the
designed filter should be

Hipy = — (2.2)

Then, the signal at the left eardrum £y, will be
1
EL = HpHinvSL = HPFSL = HLS (23)
p

A number of methods exist for implementing the filter H;,,. We will discuss two of
these in a later section of this chapter.

Loudspeakers can also be used to render binaural or HRTF-processed monaural
sound. In order, however, to deliver the appropriate binaural sound field to each ear it
is necessary to eliminate the crosstalk that is inherent in all loudspeaker-based systems.
This limitation arises from the fact that while each loudspeaker sends the desired sound
to the same-side (ipsilateral) ear, it also sends undesired sound to the opposite-side
(contralateral) ear.

Crosstalk cancellation can be achieved by eliminating the terms Hgy and Hpp
(Fig. 2.1), so that each loudspeaker is perceived to produce sound only for the cor-
responding ipsilateral ear. Note that the ipsilateral terms (Hrpr, Hrgr) and the con-
tralateral terms (Hgr, Hrgr) are just the HRTF’s associated with the position of the

two loudspeakers with respect to a specified position of the listener’s ears. This implies
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Figure 2.1: Two loudspeaker-based spatial audio rendering system showing the ipsilat-
eral (Hy, and Hgrg) and contralateral (Hrr and Hgy) terms.

that if the position of the listener changes then these terms must also change so as to
correspond to the HRTF’s for the new listener position. One of the key limitations
of crosstalk cancellation systems arises from the fact that any listener movement that
exceeds 75 to 100 mm completely destroys the desired spatial effect. This limitation can
be overcome by tracking of the listener’s head in three-dimensional space. A prototype
system that used a magnetic tracker and adjusted the HRTF filters based on the loca-

tion of the listener was demonstrated by Gardner [35, 36]. A camera-based system that
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does not require that the user to be tethered has been demonstrated for stereophonic
reproduction [58, 57].

Several schemes have been proposed to address crosstalk cancellation. The first such
scheme was proposed by Atal and Schroeder [89] and later another was published by
Damaske and Mellert [29, 28]. A method proposed by Cooper and Bauck modeled the
head as a sphere and then calculated the ipsilateral and contralateral terms [3, 26]. They
showed that under the assumption of left-right symmetry a much simpler shuffler filter
can be used to implement crosstalk cancellation as well as synthesize virtual loudspeakers
in arbitrary positions. Another method by Gardner approximates the effect of the head
with a low-pass filter, a delay and a gain (less than 1) [34].

While these methods have the advantage of low computational cost, the spherical
head approximations can introduce distortions particularly in the perceived timbre of
virtual sound sources behind the listener. Furthermore, the assumption that the loud-
speakers are placed symmetrically with respect to the median plane (i.e. , H g = Hpy,
and Hy; = Hrgr) leads to a solution that uses the diagonalized form of the matrix in-
troduced by the physical system [3, 26]. This solution can only work for a non-moving
listener seated symmetrically to the loudspeakers. Here, we use a different approach
for the analysis that can be easily generalized to the non-symmetric case that arises
when the listener is moving (a generalization considered in Chapter 3). While in our
analysis we present the symmetric case to make the notation simpler and for facilitating
comparison with existing work, the methods that we propose are also valid for the non-

symmetric case. A video-based head-tracking algorithm has been developed in which
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the listener is tracked and the filters are computed in real time in response to changes
in the listener’s position [56, 58, 57]. The motivation behind the methods presented in
this chapter is the ability to achieve real-time performance so that the necessary filters
can be calculated at each listener position.

We can use matrix notation to represent the loudspeaker-ear system gs a two input-
two output system in which the two outputs must be processed simultaneously. In the
frequency domain we define H; as the ipsilateral term, H, as the contralateral term, H,
as the HRTF corresponding to a specific virtual sound source for the left ear, Hp as the
HRTF corresponding to the same virtual sound source for the right ear, and S as the
monaural input sound. Then, in order to accurately recreate a specific sound source in

space, the signals Ey, and Eg at the left and right eardrums respectively should be

- (2.4)

The contralateral and ipsilateral terms from the physical system (the loudspeakers) will

introduce an additional transfer matrix
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In order to deliver the signals in (2.4), given that the physical system results in (2.5),
preprocessing must be performed to the input S. In particular, the required preprocess-
ing introduces the inverse of the matrix associated with the physical system, as shown

below
—1

B H H. || H H, H, 0 S
. (2.6)

ER Hc Hi Hc Hz 0 HR S

[t can be seen that equations (2.4) and (2.6) are essentially the same. Solving (2.6) we

find

E H; H, 1 q H; —H, H; 0 S
Ex H. H, £ 1w .| —H, H 0 Hg S

Ef H 1 -4 o S
=" 7° s e (2.8)
ER ¢ Hi || —% 1 0o |5
assuming that
1
~ 1 (2.9)
H2
1=m

This assumption is based on the fact that the contralateral term is of substantially
less power that the ipsilateral term because of the shadowing caused by the head. The
validity of this assumption was examined by plotting the magnitude and phase of the
term in (2.9) and comparing them with the corresponding magnitude and phase of an

all-pass filter. The term in (2.9) is plotted in Fig. 2.2 for a set of measured HRTF’s. It
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Figure 2.2: Magnitude and phase response of the term (1—(H./H;)?)~! that is extracted
as a common factor from the matrix product that describes the physical system. The
assumption that the term is approximately of all-pass response is valid.

can be seen that, indeed, this term can be considered to be of approximately all-pass
response.

The terms Hy, /H; and Hr/H; in (2.8) correspond to the loudspeaker inversion. That
is, the HRTE’s corresponding to the actual position of the loudspeakers are inverted since
they add spectral information that is not in the binaural signal of the virtual source.

The matrix

corresponds to the crosstalk cancellation. In the approach described here, the crosstalk

cancellation and the inversion of the loudspeakers’ response are closely connected, but



1t is important to note the difference between these two terms. Finally, the signals X,
and X that have to be delivered to the left and right loudspeaker respectively in order

to render the virtual source at the desired location are given by

Xt # &S
= S (2.10)
which can be written as
H, H:.Hgp
b e e .
t (Hﬁ Hi H1 ) 2
Hr H.Hp
Xp=|—/F—= 2.11
5 (Hz’ H; H; 5 sty
This implies that the filters F, and Fr for the left and right channel should be
P Hp HcHpg
Y7 H, T H H
Hr H.Hp
= = 2
Fr o, O H (2.1

The monaural signal S passes through these filters and then each channel is led to the
corresponding loudspeaker.

Similarly to the headphones inversion case described earlier, a filter can be designed
for the case that the input are the binaural signals S; and Sk instead of the monaural

S. In this case, filtering with the pair of HRTF’s H; and Hp is not needed since the
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binaural signals already contain the directional HRTF information. For the binaural

case the matrix

is substituted in (2.7) by the identity matrix.

2.4 Theoretical Analysis

The analysis in the previous sections has shown that inversion of the headphones re-
sponse, crosstalk cancellation, and loudspeaker HRTF inversion, all require the imple-
mentation of preprocessing filters of the type H;n, = H,/H,, in which H, is 1, H;, Hp
or H. and Hy is the headphones response H, or the ipsilateral response H;. There are
a number of methods for implementing the filter H;,,. The most direct method would
be to simply divide the two filters in the frequency domain. However, Hy is in general
a non-minimum phase filter, and thus the filter H;,, designed with this method will
be unstable. A usual solution to this problem is to use cepstrum analysis in order to
design a new filter with the same magnitude as H, but being minimum phase [81]. The
drawback is that information contained in the excess phase is lost.

Here, we propose a different procedure that maintains the HRTF phase information.
The procedure is to find the non-causal but stable impulse response, which also corre-
sponds to H,/H, assuming a different region of convergence for the transfer function,
and then add a delay to make the filter causal. The trade-off and the corresponding

challenge is to make the delay small enough to be imperceptible to the listener while



B | x ) | g, [ 20 e

d(n)

Figure 2.3: Block diagram for the algorithm used to estimate of the inverse filter. The
problem of finding the filter Hj,, such that the mean squared error between y(n) and
d(n) is minimized, is a combination of a system identification problem (with respect to
H;) and inverse modeling problem (with respect to H,) and its solution can be based
on standard adaptive methods.

maintaining low computational cost. We describe below two methods for finding this

non-causal solution.

2.4.1 Least Mean Squares (LMS) Filter Design Method

Based on the previous discussion and taking into consideration the need for adding a
delay in order for the preprocessing filter to be feasible (i.e. causal), we conclude that
the relationship between the filters H,, H, and the preprocessing filter H;,, can be
depicted as in the block diagram shown in Fig. 2.3.

The problem of defining the filter H;y, such that the mean squared error between

y(n) and d(n) is minimized, can be classified as a combination of a system identification
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problem (with respect to H,) and inverse modeling problem (with respect to H,) and
its solution can be based on standard adaptive methods such as the LMS algorithm [43].
More specifically, the taps of the filter H;,, at iteration n can be computed based on

the weight adaptation formula
hiny(n 4+ 1) = hiny(n) + pu(n)e(n) (2.13)

in which,

e(n) = d(n) — R (n)u(n) (2.14)

Lowercase bold notation corresponds to time-domain filters, while filters in the frequency
domain are in uppercase notation. Also, ¥ denotes the Hermitian of a vector. The

desired response d(n) can be found from Fig. 2.3 to be
d(n) = kY (n)w(n - g) (2.15)
The notation u(n) denotes a vector of samples arranged as
u(n) = [ u(n) un-1) -+ un-M+1) (2.16)

where, M is the order of the filter hjn,. This is also true for w(n). The system input
w(n) can be chosen arbitrarily, but a usual practice for system identification problems
is to use white noise as the input. The reason is that white noise has a flat frequency

response so that all frequencies are weighted equally during the adaptation procedure.
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The filter length M, as well as the delay g, can be selected based on the minimization
of the mean squared error. In this work, we used a variation of the LMS (the Normalized
LMS) with a progressive adaptation (decrement) of the step size u that results in faster
convergence as well as smaller misadjustment. The step size p changes at every iteration,

using the update formula

B

p(n) = P T (2.17)

In (2.17) B is a positive constant, usually less than 2, and « is a small positive constant
[43].

The resulting filter from this method is hjp,, which in the frequency domain is equal
to Hy/H,. If the desired output is of the form 1/H,, (in the binaural case), h, can be

chosen to be the impulse sequence. The result in either case is an FIR filter.

2.4.2 Least-Squares Filter Design Method

Referring again to Fig. 2.3, another way of approaching the problem is to minimize the

sum of squared errors e(n) (instead of the mean squared error as in the LMS method)

N | M 2
min Z Z u(n — m)hiny(m) — d(n) (2.18)
h-irw(m) n=»M |m=0

Please note that h,,(m) denotes the m** tap of filter hiny, while hjny(m) corresponds
to the state of the filter h;,, at iteration m. The above equation can be rewritten in

matrix notation as

I’Llin |Hhiny — he||? (2.19)

iny
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in which H is a rectangular Toeplitz matrix that can be easily derived from (2.18). The

solution to (2.19) in the Least-Squares sense is

hin‘u = H+hI (2.20)

in which we denote the pseudoinverse of H as H". In general, (2.19) describes an

overdetermined system for which H in (2.20) can be written as

H' = (H'H)"'HY (2.21)

We denote P = HH which can be viewed as the time-averaged correlation matrix.
The calculation of the pseudoinverse is a computationally demanding operation that is
not suitable for real-time implementations. One way to overcome this problem is by
calculating the pseudoinverse recursively. Specifically, we can calculate the inverse of
P recursively, using the well-known matrix inversion lemma. This method is known as
Recursive Least-Squares (RLS). The advantage of this method is that for most problems
it requires M iterations for convergence, where M is the order of the designed filter. On
the other hand, LMS usually requires a higher number of iterations for convergence. The
number of iterations is a very important issue for real-time implementations, but equally
important is the computational complexity of the algorithm (measured in number of
multiplies and divides for adaptive systems). Here LMS has a great advantage, requiring
only 3M operations per iteration whereas RLS requires M2, This problem of the RLS

algorithm has motivated a lot of research to find efficient implementations with reduced
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Figure 2.4: SER for several choices of delay and filter order, using the LMS method.
The lowest order that gives an SER of 30 dB is 200 with a corresponding optimum delay
of 70 samples.

computational complexity. Here, we implemented the FTF method for RLS proposed
by Cioffi and Kailath [18]. This algorithm requires 7M computations per iteration while
it retains the fast convergence property of the RLS algorithm, thus it is highly suitable
for real-time implementations. The FTFE algorithm decouples the recursive calculation
of the inverse matrix of P into a recursive calculation of three vectors A, B, and C,
which is a procedure that requires fewer computations, since no matrix multiplication
is involved.

In section 2.5 we describe our findings and show that the FTF algorithm has a sig-
nificant advantage over the LMS algorithm in terms of convergence rate while incurring

only a moderate increase in computational complexity.
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2.5 Simulation Results

2.5.1 Loudspeaker Inversion

All of the filters that are of the form H,/H, were designed using both the LMS and
Least-Squares methods. As discussed above, a delay is introduced to the system to
satisfy causality. The coefficients of these FIR filters were designed using Matlab. The
delays and lengths for the filters used were optimized to achieve maximum Signal to
Error power Ratio (SER) in the time domain between the filter Hj,, H, (which we will

call the cascade filter) and H,. In our case, the SER is defined by

N
2 ha(k)
k=1

™M=

(ha(k) = hea(k))?
i

1

in which h., is the impulse response of the cascade filter.

It is important to evaluate the error in the time-domain because a good approxi-
mation is required both in the magnitude and phase responses. Both methods worked
successfully with a number of different measured HRTF’s corresponding to 128 tap
filters. The following simulation results were found using the 0° azimuth and 0° eleva-
tion measured HRTF of length 128 taps, corresponding to the term H,. The HRTF’s
measurements were performed using a KEMAR dummy-head with Etymotic Research
microphones. The playback system consisted of two TMH Corp. loudspeakers placed on
a table so that the center of each loudspeaker was at the same height as the center of the

KEMAR pinnae for on-axis measurements. The loudspeakers spacing was 50 cm and
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Figure 2.5: Impulse response (top), magnitude response (middle) and phase response
(bottom) of the designed filter Hy, using the LMS method.

the center of the KEMAR's head was 50 cm from the center point of the loudspeaker
baffle plane. The room in which the measurements were performed has dimensions 8.5
m (L) x 7.0 m (W) x 3.5m (H) and the reverberation time was measured using the
THX R2 spectrum analyzer and found to be 0.5 seconds from 125 Hz to 4 kHz.

For the monaural input case, an inverse filter of 200 taps was designed, that in-
troduced a delay of 70 samples (1.6 ms at a sampling rate of 44.1 kHz). These were
the optimum values of filter length and delay that gave rise to an SER of better than
30 dB. The tradeoffs in SER, filter length, and delay are shown in Figs. 2.4 and 2.7

for the LMS and Least-Squares (RLS) methods respectively. It is interesting to note
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Figure 2.6: The HRTF generated from the inverse filter using the LMS method is shown
in the upper plot. The measured HRTF (0° azimuth and 0° elevation) is shown in the
middle and the relative error between the two is shown in the bottom plot.

that the optimal choices of filter order and delay are the same for both methods. The
filter order can, of course, be chosen arbitrarily, but we found that for a given order, the
corresponding delay is the same for both methods. The SER in the time domain for this
case was 30.3 dB for the LMS method and 31.5 dB for the Least-Squares method. The
results for the LMS method can be seen in Figs. 2.5 and 2.6. In Fig. 2.5 the resulting
filter H;p, is plotted in both the time and frequency domains. In Fig. 2.6 a comparison
is made between the magnitude of the measured HRTF and the HRTF generated using

our inverse filter. Because the approximation of the two filters is made in the time
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method. As in the LMS case, the lowest order that gives an SER of 30 dB is 200 with
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domain, it was expected that their phase responses would be practically identical. The
same plots are shown in Figs. 2.8 and 2.9 for the Least-Squares case. The required
number of iterations for the two algorithms is in agreement with what was mentioned
in section 2.4. The LMS algorithm required 5000 iterations in order to reach the 30
dB SER criterion, while the Least-Squares method required only 500 iterations for the
same error. This result, along with the relatively small increase in computational re-
quirements of the FTF algorithm, justifies the claim that this method is highly suitable
for a real-time implementation in which the filter parameters are updated in response

to head-tracking information.
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Figure 2.8: Impulse response (top), magnitude response (middle) and phase response
(bottom) of the designed filter H;,, using the Least-Squares method.

It should be noted that for frequencies above 15 kHz, the associated wavelengths
are less than 20 mm. In this range it is practically impossible to accurately place the
listener’s ears in the desired location for which the filters have been designed. For this
reason the degradation of the normalized error above 15 kHz (as seen in Figs. 2.6 and
2.9) is acceptable since listener position errors will dominate.

If inversion of the type 1/H; is required (binaural input), the cascade filter should be
of exactly all-pass response. This case proved to be more demanding than the monaural
input case. In order to get the desired SER of 30 dB in the time domain we had

to increase the filter length to 400 taps (with a corresponding delay of 160 samples).
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Figure 2.9: The HRTF generated from the inverse filter using the Least-Squares method
is shown in the upper plot. The measured HRTF (0° azimuth and 0° elevation) is shown
in the middle and the relative error in the bottom plot.

Alternatively, it is possible to design a filter of the form of H,/H; where H, has an
all-pass response up to 15 kHz. Using this approximation, we were able to achieve the
30 dB requirement in SER with a filter length of 200 taps and a delay of 70 samples.
In listening tests there was no perceptible difference in using this method compared to

the full spectrum all-pass.
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Figure 2.10: The difference in dB between the ipsilateral (H;) and the contralateral
(H.) terms shows the effect of head shadowing with no crosstalk cancellation. In this
set-up the loudspeakers were 50 cm apart and the head was located in the symmetric
(center) position at a distance of 50 cm from the loudspeaker baffle plane.

2.5.2 Crosstalk Cancellation

If we denote in the upper equation of (2.12) the delay introduced by H./H; as d; and
the delay introduced by Hr/H; as da then, in the z-domain, we find that the filter can
be written as

Fy = ﬂz_(dﬁdz) _ &z—dx,@z—dz (2.23)

“ Hi H; H;
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Figure 2.11: Measured HRTF data from the loudspeakers (H; and H.) were used to
simulate the physical system and design a set of filters to eliminate the crosstalk. The
resulting diagonal (solid line) and off-diagonal (dotted line) terms of (2.27) produced
by our simulation using the LMS method are plotted above. The diagonal term is very
close to 1 (0 dB) from 2 kHz to 15 kHz and deviates only slightly in the region below 1
kHz. The off-diagonal term starts at -15 dB and remains below -30 dB from 1 kHz to
15 kHz.

Note that the delay for Hy/H; in (2.23) must be equal to the sum of d; and ds. The
delay introduced by the filter Fz should also be equal to d; + ds. In the time domain

(2.23) becomes

Fio=hii = hei = by

.fr = h“ == h'ci * h,,;z' (224)

in which * denotes convolution.
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In order to design the filter for each channel, each of the three filters hy;,hy and hy;
can be designed separately, and then be combined using (2.24) to obtain the desired
final filter. This method is preferable when Hy, H, and Hp are given in the time domain
(e.g. from a measurement). In this case note that the delay introduced by hy; in f, is
dy +dy while in f. it is dp. A similar argument holds for h,;. This means that the filters
hy; and h;; required for f, will be different from the filters h); and h,; required for £
Although in this case it is possible to take advantage of the equality of these terms,
it should be stressed that in the non-symmetrical case these filters will be different
both in the magnitude and phase domains. The advantage of designing two FIR filters,
one for each channel, is that these filters implement all the required functions of the
-virtual rendering system while their order can be kept at a computationally feasible
level. However, these filters are useful for applications where the virtual sound source
and listener position remain constant. Other possible implementations of our method
can be found at Chapter 3. It is also of interest to note that filter lengths should be
chosen accordingly, since convolution of two filters with lengths [ and p results in a filter
with length [ + p — 1 and in order to subtract two filters they should be of the same
length.

An interesting test of the performance of the methods described is to measure the
crosstalk cancellation that is achieved. That is, when both loudspeakers produce sound,
the sound pressure level at the contralateral ear must be very low compared with the
sound pressure level at the ipsilateral ear. A certain degree of crosstalk cancellation

is achieved even with no filtering due to the head shadowing, particularly at higher
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frequencies (Fig. 2.10). Toole [99, 100] and Walker [103] studied the psychoacoustic
effects of early reflections and found that in order to remain inaudible they must be at
least 15 dB below the direct sound in spectrum level. A successful crosstalk cancellation
scheme should therefore result in at least a 15 dB attenuation of the crosstalk term.
For the symmetric positioning of the listener that we have examined, we saw that
for the binaural input case we can set H;, = Hg = 1 in (2.8) since the virtual source

HRTF’s are already contained in the binaural signal. Then, (2.8) becomes

Ep H;, H 1 =dle L. D St
- ‘ Hy . (2.25)
Er H. H; - 1 0 # Sk

in which ideally £y = Sr, and Egr = Sg. If we define the filters Fj; = 1/H; and

Fy = —H./H?, then (2.25) can be written as

Ep il Hg EFy Fy Sp
_ (2.26)
Er H, H; Fog Fy Sr
which finally becomes
Ep HiFyi + HeFyy HiFei + HeFis St
= (2.27)
Er HiFei+ HFyy HiFy+ HeFy Sr

In order to deliver the desired binaural signal to each ear (i.e. , B = Sp and Er = Sg)

the diagonal terms H;Fj; + H.Fy must be 1 (this would mean that the loudspeaker
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Figure 2.12: Measured HRTF data from the loudspeakers (H; and H.) were used to
simulate the physical system and design a set of filters to eliminate the crosstalk. The
resulting diagonal (solid line) and off-diagonal (dotted line) terms of (2.27) produced by
our simulation using the Least-Squares method are plotted above. The diagonal term
is very close to 1 (0 dB) from 2 kHz to 15 kHz and deviates only slightly in the region
below 1 kHz. The off-diagonal term starts at -15 dB and remains below -30 dB from 1
kHz to 15 kHz.

frequency response inversion has succeeded) and the off-diagonal term H;F,; + H.Fy;
must be 0 (this would mean that the crosstalk cancellation has succeeded).

We designed the filters Fj; and Fy; using both LMS and Least-Squares methods. For
the LMS method, we designed the filter f;; using a length of 349 taps, introducing a
delay of 140 samples and an SER of 44.1 dB. For the filter f_ we designed a filter of
150 taps length, delay of 70 samples and a resulting SER of 31.4 dB with frequency

response H,./H;, and a filter of 200 taps length, delay of 70 samples and SER of 31.6
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dB with frequency response 1/H;, and then convolved their time domain responses.
As mentioned earlier, this procedure is preferable when the HRTF’s are given in the
time domain. We used the measured HRTF data from the loudspeakers (H; and H,)
to simulate the physical system and designed a set of filters to eliminate the crosstalk.
The resulting diagonal and off-diagonal terms produced by our simulation are plotted
in Fig. 2.11, in which the diagonal term is plotted as a solid line and the off-diagonal
term as a dotted line. As can be seen in the plot, the diagonal term is very close to 1 (0
dB) from 2 kHz to 15 kHz and deviates only slightly in the region below 1 kHz. The off-
diagonal term starts at -15 dB and remains below -30 dB from 1 kHz to 15 kHz. For the
Least-Squares method, we designed the filter f; using a length of 349 taps, introducing
a delay of 140 samples and an SER of 44.9 dB. The filter f. was designed using a filter
of 150 taps length, a delay of 70 samples and SER of 31.6 dB with frequency response
H./H;, and a filter of frequency response of 200 taps length, delay of 70 samples and
SER of 33 dB and then convolved their time domain responses. The resulting diagonal
and off-diagonal terms are plotted in Fig. 2.12, in which the diagonal term is plotted as
a solid line and the off-diagonal term as a dotted line. As in the LMS case, the diagonal
term is near 1 (0 dB) in the range of 20 Hz to 15 kHz and the off-diagonal term starts

at -15 dB and remains below -30 dB up to 15 kHz.

2.6 Conclusions

Several theoretical and practical aspects regarding the implementation of immersive

audio rendering were discussed in this chapter. They include inversion of non-minimum
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phase filters and crosstalk cancellation that is an inherent problem in loudspeaker-based
rendering. Two methods were examined to implement a set of filters that can be used
to generate the necessary inverse filters required for rendering virtual sound sources,
namely the Least-Squares and LMS algorithms. Our simulations have shown that both
methods provide good crosstalk cancellation results using various HRTF’s. It should
be noted that there are still some unanswered questions that can only be addressed by
psychoacoustic evaluation. Although mathematical measures such as the SER give an
indication of relative performance among different methods, the final validation should
be performed using the human ear. Such a study would require an anechoic chamber
or equalized room response so that reflections and reverberation frequency alterations
can be minimized. This was not treated in this work (although informal listening tests
proved the validity of our methods) and can be the subject of future work.

One of the main advantages of the FTF implementation of the Least-Squares algo-
rithm is that it is highly suitable for real-time implementations. This is of particular
importance for the case of a moving listener in which a different set of HRTF’s must be

implemented for every listener position.
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Chapter 3

Asymmetry and Real-Time
Considerations for Immersive Audio

Rendering

3.1 Overview

In the previous chapter, it was shown that it is possible to render virtual sound sources
in space using an existing two-loudspeaker audio reproduction system. The solution was
given for a listener symmetrically positioned with respect to the loudspeakers, for ease of
comparison of our methods with previous work. The methods described, however, were
claimed to be easily extendable to the non-symmetric scenario. This chapter shows how
this extension can form a basis for a real-time rendering system with a moving listener,

assuming that accurate localization of the listener’s ears is available [39].
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3.2 Introduction

In implementing a sound virtual rendering system, one is faced with three main chal-
lenges. First the rendering of virtual sound sources using the head-related transfer
functions (HRTFs), second the cancellation of the crosstalk terms that is necessary for
loudspeaker-based rendering, and third the localization of the listener’s ears in order
to dynamically adjust both the HRTF’s and crosstalk cancellation filters as the listener
moves.

For a given sound direction, localization can be accomplished by filtering an audio
signal with the appropriate pair of HRTF’s (one for each ear). This is true, though,
only when using headphones for sound reproduction. When loudspeakers are used, it
is clear that the physical setting introduces cross-terms, since each ear receives sound
from both loudspeakers. These cross-terms need to be canceled, so that we can exert
sufficient control on what reaches each of the listener’s ears, as in the headphones case.
Additionally, the frequency response of the loudspeakers in practice is not flat and needs
to be equalized (this is also true for the response of the headphones). A solution for
these issues was given in Chapter 2 and the extension of these methods will be given
in this chapter, in Section 3.3. In addition, it is attempted in this chapter to form a
solution that is of relatively low computational complexity, in order to design a system
that will be capable of rendering virtual sound sources for a moving listener in real-time.
The approach followed here is described in Section 3.4 and realizes acoustic crosstalk

cancellation based on Karhunen-Loeve expansion of precalculated filters. KLE has the



HLL

Figure 3.1: Two loudspeaker-based spatial audio rendering system showing the ipsilat-
eral (Hpp and Hrp) and contralateral (Hpgr and Hgp) terms for a rotating listener.

additional advantage of permitting interpolation for the purpose of deriving filters for

every listener position from a smaller number of HRTF measurements.
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3.3 Asymmetry Considerations

As explained in Chapter 2, in order to deliver the appropriate binaural sound field to
each ear through loudspeakers, it is necessary to eliminate the crosstalk that is inherent
in all loudspeaker-based systems.

Crosstalk cancellation can be achieved by eliminating the terms Hgy and Hpg
(Fig. 3.1), so that each loudspeaker is perceived to produce sound only for the corre-
sponding ipsilateral ear. Again, the ipsilateral terms (Hrr, Hrr) and the contralateral
terms (Hgrr, Hpr) are the HRTF’s associated with the position of the two loudspeakers
with respect to a specified position of the listener’s ears. This implies that if the position
of the listener changes then these terms must also change in order to correspond to the
HRTF’s for the new listener position.

In our analysis we present the non-symmetric case for a listener placed at the center
between two loudspeakers but being able to do rotational movement! (assuming the
ears of the listener are at the same level as the loudspeakers for simplicity purposes
only). For this case, the ipsilateral and contralateral terms are not equal, however they
still correspond to the HRTF’s of a specific angle. This angle can be found based on
the angle of the loudspeaker placement with respect to the listener and to the angle
of rotation of the listener with respect to the fully symmetric case. If the angle of the
loudspeakers with respect to the median plane is a® referring to the setting as in Fig. 3.1,

in which the listener is seated symmetrically with respect to the two loudspeakers but

'This practically covers the general case of movement along any dimension. This is true since a
non-symmetrical — with respect to the loudspeakers — listener position, can be treated as rotational
movement in a symmetrical setting by applying an appropriate delay and attenuation to the signal that
is rendered by the loudspeaker that is closer to the listener [36].



has rotated 3° clockwise, then the required HRTF’s will be as follows: Hrp will be the
ipsilateral HRTF for the angle (o« — 8 mod 360)° and Hp;, will be the corresponding
contralateral HRTF, while the same is true for H;; and Hy g but for the angle (o + 3
mod 360)° (mod stands for the modulo operation). For the system described, the range
of 3 can be from 0° to 90° for both clockwise and counter-clockwise rotation. For angles
greater than these, front-back confusions will dominate since the listener will not be in
visible contact with the loudspeakers. A solution for this problem is described in [34],
where two additional loudspeakers, opposite to the original ones, are utilized when the
listener rotates more than 90°. |

As in Chapter 2, matrix notation is used to represent the loudspeaker-ear system.
The following analysis corresponds to the frequency domain. We define H; as the
virtual sound source HRTF for the left ear, Hg as the virtual sound source HRTF for
the right ear, Hrr , Hrr, Hry and Hpg as described above, and S as the monaural
input sound. Then the signals E;, and Eg at the left and right eardrums respectively
should, ideally, be equal with the HRTF-processed monaural sound Sy and Sg (the

input to the crosstalk canceling system) and are given by

EL SL HL 0 S

Er Sr 0 Hgl| |S
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The contralateral and ipsilateral terms from the loudspeakers will introduce an addi-

tional transfer matrix
Er Hpr Hpr| | St
= (3.2)
Egr Hrr Hpr| |Sr
Comparing (3.1) and (3.2), it is apparent that the required preprocessing requires in-

version of the physical system matrix

~.

E; Hpr, Hpp| |Hpr Hgr St
= (3.3)
Er Hrr Hgrr| |Hir Hgr Sk
Solving (3.3) we find
Eg Hp;, Hpgyp 1 1 Hrr —Hpgp| |SL (3.4)
- HprH __ Ber H i
Er Hpp Hpg| ~FETLE (1 ﬁﬁiﬁﬁ) -Hrr Hip Sr
which can finally be written as
H 1
o I Y A R (3.5)
N I PO | [ P
assuming that
1
=23 § 3.6
(1_EﬁLf_fui) Ry
Hrr Hpp

As explained in Chapter 2, this assumption is based on the fact that the contralateral
term is of substantially less power than the ipsilateral term because of the shadowing

caused by the head. Finally, the signals X, and Xg that have to be presented to the left
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and right loudspeaker respectively in order to render the virtual source at the desired

location are given by

1 _Hpp 1
XL _ Hpyp Hrp Hpp St (3.7)
_Hir 1 ol
Xr Hrr Hrr Hpr Sk

which can be written as

Hgrr Hpp,
s 1
By = [T et
R ( R HLLSL) o (3.8)

1
Frp = H_};;:
LR
Frr = "i{?
Frr = i
Frr = _.;I_:i' (3.9)

The binaural signals pass through these filters, which should form a lattice structure
as in Fig. 3.2, and then each channel is led to the corresponding loudspeaker. The
delays introduced in this figure are to imply that special care should be taken for the
direct and cross-terms of this diagram to introduce the same amount of delay to the
signals. For example, if all filters of (3.9) are designed with same amount of modeling

delay, then a delay of k samples — equal to the modeling delay in the filter design -
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Figure 3.2: Lattice structure for implementing crosstalk cancellation using the filters
defined in (3.9).

Xr

should be introduced so that the addition in the diagram is meaningful. This structure
has been the immediate result of the assumption that the module under consideration
was designed for the task of crosstalk cancellation exclusively. It was assumed that
filtering with the appropriate HRTF’s of the monaural sound has been implemented
in a prior stage from a different module. If the particular application is such that the
virtual position of the sound source does not vary with time, then the system proposed
in Chapter 2 is more appropriate since the designed FIR filters incorporate the HRTF

information as well.

3.4 Real-Time Considerations

The analysis in the previous section has shown that crosstalk cancellation requires, as
in Chapter 2, the implementation of preprocessing filters of the type Hiy,, = H,./ H,.

In Chapter 2 we introduced two methods that maintain the HRTF phase information.
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Although one of these methods has been chosen because of its advantage of combining
computational efficiency and fast convergence, it is still quite demanding for a real-
time implementation, especially in the case it has to be combined with other modules,
such as head tracking and HRTF modeling. The solution that we present here is based
on precomputing the crosstalk filters for all the possible angles with the methods of
Chapter 2, and then use low-rank modeling for the purpose of data reduction and

position interpolation.

3.4.1 Low-Rank Modeling

We employ the Karhunen-Loeve Expansion (KLE) [43] for the purpose of modeling the
resulting filters in a low-dimensional space and, additionally, for interpolating between
the available listener positions (the listener positions for which the crosstalk filters have
been calculated). For this purpose, each crosstalk filter is treated as a vector of mea-
surements and is denoted by hj, where j ranges from 1 to P and P is the number of
all the crosstalk filters used for all the desired listener rotation angles (4 filters for each
angle as in (3.9)).

In KLE, a vector of measurements can be expanded into an orthonormal basis,
which actually consists of the eigenvectors of the covariance matrix that describes the
measurement process. In the case of multiple vectors that we examine, a possible

procedure [111] is to define a time-averaged covariance matrix such as

P
R= 53 (b = ha) (b — ha)” (3.10)
i=1
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where,

P
1
hay = ﬁ;hj (311)

is the average vector of all the vectors used. Then, the vector h; can be represented as

an expansion of orthonormal vectors as

In (3.12) Q is a matrix whose columns are the eigenvectors of R, and w; are the

corresponding coeflicients, given by
w; = QT (hj — ha) (3.13)

For the listener rotation angles that there do not exist any HRTF measurements and,
therefore, no crosstalk filters can be designed, it is possible to calculate corresponding
coeflicients by linearly interpolating between the two closest angles for which coefficients
can be found by using (3.13). Additionally, low rank modeling of the crosstalk filters is
possible by using only K eigenvectors of R that correspond to the K largest eigenvalues
(K < P). Then Q contains only these K eigenvectors and its dimensions become P
by K instead of P by P. This is especially effective for the case that the remaining
P — K eigenvalues are very close to zero, since the modeling error between the vector
h; and the reconstructed h,; from the low-rank model is analogous to the summation

of the P — K eigenvalues that were considered small. As it will be shown in the next
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Figure 3.3: The 40 largest of the 2000 eigenvalues of the covariance matrix formed from
the designed crosstalk filters. It is clear that a Karhunen-Loeve expansion of these
vectors based on the first 25 eigenvalues of this matrix will involve minimal modeling
error.

paragraph, this is true for the application that we examine and, for the specific filters
designed, only a very small number of eigenvalues were substantially greater than zero.

In section 3.5 we describe our findings by showing simulation results of the perfor-
mance of the filter design method described, comparing the designed filters with the

filters produced by the low-rank modeling method.
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3.5 Simulation Results

This section is concerned with the modeling error of the previously described KLE mod-
eling of the crosstalk filters. The HRTF’s that were used for the results mentioned in
this section were the ones made available by researchers of the Massachusetts Institute
of Technology (MIT) [37]. The reason for this was that measurements were available
every 5° (assuming that the listener’s ears were at the same elevation as the loudspeak-
ers). For a more general application, the given measurements for all different elevation
angles could be used (that is, for the case that the listener’s level with respect to the
loudspeakers is not constant). It is certainly expected that, in most cases, KLE will
offer a substantial improvement in performance, as well as a means for interpolation.

Using these measurements, crosstalk filters were created for a listener rotating 180°
(90° left to 90° right) for every 5°. The idea, then, was to use KLE so that the listener
rotation angles that were not available by measurements could be calculated by means
of interpolation, using the available measurements. Instead of using synthetic HRTF’s
by applying KLE to the available measurements and then designing the required filters
as is the usual case in the existing literature, our approach was different. The filters
for the available angles were designed and then KLE was applied to those filters. This
approach is by far more appropriate for real-time applications than redesigning the
required filters every time that the listener moves.

For the listener positions that were mentioned, two different basis sets were designed
for the two different types of filters that were to be designed using the methods described

in Chapter 2. That is, KLE was applied to filers of the type 1/H; and to filters H./H;
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Figure 3.4: Impulse responses of the designed filter (top) and the KLE-modeled filter
(bottom) for the particular HRTF corresponding to 10° rotation (crosstalk filters of

type 1/H;).

resulting in two different basis sets. The reason for this separation was that filters of the
same type were quite similar in the time domain, which means that a smaller number
of basis vectors would be required for modeling the filters with the least error. The
discussion that follows describes the results obtained for the filters of the type 1/H;.
All the filters that were designed were of 2000 taps length and 700 samples of de-
lay. Thus, the covariance matrix R was of dimension 2000-by-2000. From its 2000
eigenvalues, the largest 40 are shown in Fig. 3.3. It is obvious from this figure that ex-

cept from the largest 25 eigenvalues, all the remaining ones can be considered as being
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Figure 3.5: Normalized error between the magnitude responses of the designed filter
and the KLE-modeled filter that are represented in Fig. 3.4.

approximately zero, resulting in a basis of 25 eigenvectors of 2000 samples each, the
eigenvectors of R that correspond to these 25 eigenvalues. By using these 25 eigenvec-
tors, a very low modeling error was achieved. In Fig. 3.4 one of the filters corresponding
to 10° clockwise rotation is shown (upper plot) with the filter that resulted by using
the low-rank model (bottom plot). The two filters are obviously very close and their
time-domain error (SER) of 45 dB (defined in Chapter 2) verifies this. In Fig. 3.5 their
error in frequency domain is shown (normalized with the desired response). For a wide
range of the frequency band it is obvious that the error is quite acceptable. For the
reasons mentioned in Chapter 2, for frequencies above 15 kHz, the degradation of the

performance is not considered important.
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Figure 3.6: Normalized error between the magnitude responses of the designed filter

and the KLE-modeled filter based on linear interpolation of the KL coefficients of the
crosstalk filters corresponding to the two closest angles.

Finally, an example is given of the modeling error for the case of filter interpolation.
In Fig. 3.6 the normalized error in the frequency domain is depicted between a crosstalk
filter designed for a clockwise rotational angle of 25° and its modeled version based on
linearly interpolating the KL coefficients of the crosstalk filters for angles 20° and 30°,
calculated on a 10° grid. As expected, the error in this case increases significantly, but

still remains at an acceptable level in the most important region, below 10 kHz.



3.6 Conclusions

A method for generating the required crosstalk cancellation filters as the listener moves
was developed based on Low-Rank modeling. Using Karhunen-Loeve expansion we can
interpolate among listener positions from a smaller number of HRTF measurements.
A set of corresponding crosstalk cancellation filters was precomputed for the available
(measured) HRTF angles and then KLE was applied to these filters. This approach
significantly reduces the required computational resources and is more appropriate for
integration in a real-time implementation with head tracking. From our results we
found that the KL expansion allows only a small number of eigenvalues to be retained
with the remaining eigenvalues discarded. The resulting modeled transfer functions are
shown to have an SER in the order of 45 dB compared to the measured data, thus the
improvement in computational performance comes at a very low cost in model accuracy.
In addition, linear interpolation of the KL coefficients of existing filters offers a means
of designing crosstalk filters for positions that measurements are not available, with an

acceptable modeling error.
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Chapter 4

Time-Frequency Analysis and Synthesis

of Audio Signals

4.1 Overview

In this chapter, a brief introduction is given to time-frequency signa; analysis and syn-
thesis. Such methods are very useful for the treatment of non-stationary signals (for
example speech and audio signals), whose spectral properties vary significantly with
time. The most common of such methods is the Short-Time Fourier Transform (STFT),
however, other less commonly known methods will also be described. Bilinear time-
frequency distributions, as such, will be described in more detail. Especially for audio
signal processing, these distributions are advantageous for both analysis and synthesis
[82, 83]. The interest is on discrete-time signals. For the case of bilinear distributions,
the continuous-time case will also be briefly covered, since the definitions of the dis-

crete case can be better understood when they are related with their continuous-time



counterparts. This chapter does not offer a complete coverage of all time-frequency
distributions; it merely attempts to provide a unified treatment of such distributions
with respect to audio signal analysis/synthesis and offer the required background for

the tools used in the subsequent chapters of this work.

4.2 STFT Analysis and Synthesis

The term time-frequency analysis corresponds to many different signal representations
that have a common objective: to give an accurate description of a signal’s time-varying
spectrum. The most commonly used model for achieving such analysis is to divide the
signal in short segments and compute the Fourier transform of each segment, resulting
in a time-frequency representation known as the short-time Fourier transform (STFT).

Consider a signal s(m), then its STFT Fy(n,w) is defined as’

Fs(n,w) = Z s(m)w(n — m)eIm (4.1)

m

where w(m) is a window whose main purpose is to divide the signal in small segments.
It is apparent that when the length of the window is small compared to the length of the
signal, the STFT gives a time-varying analysis of the spectral properties of the signal.
The choice of window is important given the trade-off between resolution in time and
frequency. A detailed analysis of the importance of the window type and length can be
found for example in [85]. STFT analysis is of very low computational complexity since

it involves calculating the DFT (hence the FFT) for relatively small signal segments.

'All summations and integrations in this chapter are from —oco to co unless stated otherwise.
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Synthesis of signals using the STFT involves modifying the STFT (or its magnitude)
at each time point according to some predefined rules. This modification cannot be
arbitrary; in most cases overlapping windows are used in the analysis which restricts
the synthesis part as well. Exact reconstruction after modification is usually not possible
since some restrictions have to be utilized. The Gabor transform [33] offers a means for
exact synthesis from the STFT. The drawback is implementation complexity (due to
use of infinite-length windows) and restriction in the choice of window. Any attempt
to use windows of compact support in the Gabor expansion, results in least-squared
(non-exact) synthesis, analogous to the overlap-add methods described next [32]. A
more popular procedure is to relax the requirement of exact reconstruction. The most
common procedure is to use the Inverse DFT of the modified DFT of each segment and
then combine all the segments using overlap-add techniques (i.e. adding the (windowed)
segments with overlapping of adjacent segments according to the overlapping of the
analysis windows, [41, 84, 2]). The algorithm given in [41] is briefly described. Assuming
that the STFT Fs(n,w) is the result of arbitrary modification of a valid STFT, the
objective is to estimate the signal §(m) whose STFT F;(n,w) is close in some sense to
Fs(n,w). This approximation is the result of the fact that an arbitrary modification of
an STFT does not, in general, result in a valid STFT (i.e. no sequence exists with such

an STFT). Least-squares minimization between the two STFT’s, i.e.,

. 1 [
mglng - /;'rr |Fs(n, w) — Fi(n,w)|? dw (4.2)
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yields

§(m) _ an(n R m)s(n,m)

4.3
Zm wQ(n - TI’L) ( )
where, s(n,m) is the inverse Fourier transform of Fj, that is,
I ;
s(n,m) = — Fy(n,w)e?“™ dw (4.4)
m

-

This overlap-add procedure is apparently very efficient for estimating the desired signal

from its modified STFT.

4.2.1 Models for Analysis/Synthesis of Audio Signals

Modifying the STFT of a signal assumes that specific rules have been defined regarding
the objective of such modification. It is often the case that use of a model for each signal
segment can serve as an intermediate step for defining such rules. Two different models
that are particularly suitable for audio signals are the residual /LP (Linear Predictive)
and sinusoidal models.

The residual/LP model assumes that each segment of the signal can be considered
as stationary. It then applies linear predictive analysis at each segment, modeling the
segment samples as a random autoregressive (AR) process and calculating the coeffi-

cients of this model (linear predictive coefficients, LPC, [43]). The analysis that follows
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refers to samples s (0), - -, s® (M — 1) that form block 7 of signal s(m). Consider the

linear combination of p past samples of the process s (m)

s (m) = zp: a(k)s? (m — k) (4.5)

Assume sgi)(m) is the linear prediction of the process at time m, with prediction error
— 2} _ @
e(m) = s (m) — s;”’(m) (4.6)

The transfer function of the prediction coefficients is given by

_ Bz _ & _
A(z) = Tl 1— ga(k)z : (4.7)

Mean-squared minimization of the error e(n) produces the coefficients a(i). Linear
prediction is a special case of linear optimum filtering thus the principle of orthogonality
holds. Accordingly, minimization of the error is equivalent to the error e(m) being
orthogonal to all the input samples s®(m — 1) from whi(:h the error at time m is

calculated (I will be in the interval [1,p]), i.e.

E {s(i)(m - E)e(m)} =0 (4.8)

E {s(i}(m —-1) [Sm(m) - ia(k)s(i) (m — k)] } = (4.9)

k=1
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]
r(—1) =Y _alk)r(k - 1) (4.10)
k=1

in which r(m) is the autocorrelation function of s()(m) and E{-} denotes the expecta-
tion operator. Finally, since the autocorrelation function is symmetric, we can rewrite

equation (4.10) in matrix form as

oy e e #lo=1y | [l ] L]

M) r0) - rp=2) | | a@) "(2)
= (4.11)

| rp—1) r(p-2) - (0 | |a@ | [k ]

The coefficients a(k) can be found from the above equation by inverting the correlation
matrix R. This can be done very efficiently using the Levinson-Durbin algorithm, which
is a recursive method of solving equation (4.11), based on the special structure of matrix
R.

In effect this is an approximation of the spectrum of the particular segment S ) (w)
by an all-pole minimum-phase transfer function with frequency response G(w) = 2—(1’_0—).
By filtering the segment samples with the inverse of this transfer function, the residual
signal is obtained (thus the model being referred to as the residual/LP model). The
residual signal represents the modeling error between the AR approximation of the
sample sequence and the exact sequence. Then, modifications are possible either on

the LP coefficients or the residual signal, as explained in later chapters of this work.

The advantage of this model is that it allows for high-quality synthesis (important in
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audio signal processing) since the model incorporates the modeling error (the residual),
thus the simplicity of using the model does not come at a cost regarding quality. Note
that the model is used for signal enhancement as opposed to reduction of the signal
information rate (coding), in which case it is often sensible to have a trade-off between
signal quality and model simplicity. It also important to mention that the residual/LP
model can be considered as a special case of STF'T modification. In other words, this
model can be used as an intermediate step following STFT analysis and followed by
STFT synthesis by overlap-add methods.

Sinusoidal models have been used extensively in speech processing for high quality
speech modification [67, 94, 38]. For audio signals, the sinusoidal model of [90] has been
widely known to offer advantages for high-quality modifications. In this approach, the
audio signal is again divided in segments modeled as a sum of a deterministic harmonic
signal (expressed as a summation of R sinusoids) and a stochastic signal, in other words
for block 4

R
s@(m) = Z Ar(m) cos (8,(m)) + e(m) (4.12)

r=1
where Ar(m) is the instantaneous amplitude and 6,(m) is the instantaneous phase of
the r** sinusoid. The error e(m) is the difference between the original signal and its
deterministic harmonic approximation, modeled as filtered white noise. The magnitude
of this filter is estimated by subtracting the magnitude of the deterministic part from
the magnitude of the original signal and is modeled as a piecewise linear function. The
phase is taken to be a random sequence with uniform distribution in the interval [—,x].

Other modules of this algorithm include peak detection in the magnitude domain for
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estimating the harmonics of each segment and peak continuation for estimating the
intra-frame trajectories of the harmonics. This model has been proved to be capable of

modeling high-quality audio signals and has been applied to timbral modifications.

4.3 Bilinear Distributions for Signal Analysis

Bilinear time-frequency distributions include the spectrogram, the Wigner distribution
and many others. A general class of bilinear time-frequency representations is Cohen’s
class [23], which is a method that generates all existing bilinear time-frequency repre-
sentations and allows for the definition of infinite new ones. This class can be obtained
from

Cltw) = /f/ s(u+ %T)S*(”U. + %T)@(H,T}e‘jgt_jmﬂau dudr df (4.13)

in which ¢(8, 7) is called the kernel. A mathematically equivalent expression with (4.13)

offering better insight is

Ot w) = ] R(t, T)e= 7 dr (4.14)
where
B )= /T(t —u,7)s(u+ %T)s*(u — %T) du (4.15)
and
r(t,T) = /qb(e, 7)e~7% dg (4.16)
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In other words, the time-frequency representation in (4.13) is the Fourier transform
of the (time-dependent and time-averaged) autocorrelation of the signal s(t) in (4.14).
This view offers insight in the motivation for using these distributions, however note
that this definition of the time-averaged autocorrelation is slightly different than the
common one, so usually this function is called the generalized local autocorrelation
function. The difference lies in the use of s(t+ F)s(t— %) instead of s(t)s(t—7) and also
in the use of r(¢,7), which is an arbitrary window, the Fourier Transform of the kernel.
The reasons for using this window are many: either for suppressing the cross-terms
that appear in (4.13) (this is briefly explained later), or for defining computationally
efficient representations (i.e. that do not require infinite summations), or for defining
positive distributions (in general, the distributions obtained by (4.13) are not always
positive which is counterintuitive since these transformations are informally viewed as
energy distributions). This latter view is based on the fact that because of (4.14), these
distributions can be considered as a generalization of the power spectrum.

The most important property that leads to new definitions of bilinear transfor-
mations is the improved resolution compared to the spectrogram. Other important
properties of several bilinear distributions can be found in [23]. However, these trans-
formations are computationally expensive and they also produce cross-terms in multi-
component signal analysis because of their bilinear form. The spectrogram, which is
the most frequently used time-frequency transformation, is computationally inexpensive

and does not produce such artifacts. In order to reduce the computational burden of



these bilinear transformations, a window of compact support can be used in the defini-
tion of (4.15) in both t and 7. However, this kind of smoothing comes with a tradeoff
regarding resolution. The particular choice of the kernel ¢(8, 7) = 1, leads to the Wigner

distribution [23, 19], which is defined as
| |
W(t,w) = /s(t-i— 5’1")8 (t— 57‘)8 A9F dr (4.17)
implying that in this case the autocorrelation becomes

R(t,7) = s(t + %T)s*(t - %*r) (4.18)

The Cross-Wigner distribution (CWD), whose usefulness will be made clear later, is the

extension

1 1
W, s, (tw) = /sl(t + 57)33(13 — 57) dr (4.19)

The preceding definitions correspond to deterministic signals. For random signals, the

extension of the power spectrum is the Wigner-Ville distribution (see for example [65])
1 1 —JjwT
W(t,w)= [ R(t+ -2~T,t - é-‘r)e T dr (4.20)
where the autocorrelation of z(t) is defined as

R(t1,t2) = E{z(t1)z*(t2)} (4.21)
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It also of interest, for reasons that will be clear later in this chapter, to describe an
alternate definition of Cohen'’s class. Given a function H(¢;,ts), the Weyl Symbol of H,

Ly is defined as:

1 .
Ly(t,w) = /H(t ot §T,t - —;-'r)eﬂ“’T dr (4.22)

and it is trivial to define the inverse mapping as well (which can be referred to as the

inverse Weyl symbol):

1 t t .
B, = %]LH( 1'; 2 w)edelti=ta) gy, (4.23)

It is obvious that the definition (4.14) can be modified so that every time-frequency
distribution belonging to Cohen’s class can be considered to be the Weyl symbol of a
function H(t1,%2). A change of variables connects the autocorrelation in (4.14) with
this function with the relation:

t1 + tg
2 b}

H(ty,t2) = R( t1 — t2) (4.24)

For the case of the Wigner Distribution, by inspection we have

H(t]_, tg) = I.‘(tl)m*(tz) (425)
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Other distributions belonging to Cohen’s class are for example the Born-Jordan dis-
tribution, the Choi-Williams distribution, the Rihaczek distribution, the spectrogram,

etc. [23]. The Discrete-Time Wigner Distribution (DTWD) is defined in [20] as

W(n,w) =2 Z s(n +m)s*(n — m)e~I2m (4.26)

m

that is, the autocorrelation function now is

R(n,m) = s(n+m)s*(n —m) (4.27)

This definition results in a sampled continuous-time WD. The problem is that the
distribution is m-periodic which means that this definition results in aliasing unless the
signal z(n) is restricted to be halfband (to have non-zero spectrum only for frequencies
inside the interval [—Z, Z]) or oversampled by at least a factor of 2 [10, 22]. In a case of
a real signal, its analytic version can be used since only half of its spectrum is enough

to recover the signal and no aliasing occurs [10].

4.4 Signal Synthesis from Bilinear Distributions

In this chapter, the Wigner distribution (WD) and smoothed versions of the WD will
be examined, serving as a reference on how bilinear transformations can be utilized
for signal synthesis. Signal synthesis is defined as follows. Given an arbitrary function
Ws(t,w), find a signal 3(t) whose distribution W;(t,w) is as close as possible to the

given function. The problem arises from the fact that if the distribution of a signal
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is arbitrarily modified, it no longer corresponds to a valid distribution, so a simple
inversion is not possible. The solution of this problem in all the references given is

based in least-squared minimization, that is
m‘in‘/ [W(t,w) — Ws(t, w)|? dwdt (4.28)
S

The applications of such synthesis algorithms are mainly isolating signals from noise or,
in general from other unwanted components, as well as creating time-frequency filter
banks. Most of the references herein regarding synthesis, give examples explaining where
and how these methods can be applied. A tutorial about time-frequency analysis and
synthesis applications is [45]. Another important reference, describing the relation of
the WD with other time-frequency distributions is [21]. Finally, many of the synthesis
algorithms outlined here along with interesting applications can be found in [44].
Signal synthesis from WD is a subject many different authors have dealt with. Here,
the most important results will be briefly presented. The initial motivation for Wigner
synthesis was given in [97]. This paper describes synthesis from the Ambiguity Function.
The Ambiguity Function (AF) is the two-dimensional Fourier Transform of the Wigner
Distribution and appears in applications of the Doppler radar. In [97], the author solves
the synthesis problem applied to the AF by minimizing the error between the given
(non-valid) and the desired (valid) AF by least-squared minimization by expanding
the AF in an orthonormal basis. This basis is proved to be the (cross) AF of the
orthonormal basis in which the signal itself is expanded. The problem then reduces in

finding the eigenvalues and eigenvectors of the matrix of the expansion coefficients (the
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inner product of the modified AF and the induced basis) and choosing the eigenvector
corresponding to the largest eigenvalue. In reality, this is a result to be expected because,
as a consequence of the definition of the AF (as well as the WD), the matrix containing
the expansion coefficients is a rank-one matrix (considering the WD, this corresponds
to the fact that the autocorrelation (4.18) is a separable function). The problem is also
solved in the discrete-time domain, but more about this case will be discussed in Section
4.4.1.

The application of the above procedure for WD signal synthesis can be found in
(112, 88]. The procedure in [47] is important for gaining insight in the algorithms for
DTWD synthesis. It is well known that the minimization problem in (4.28) can be
transformed in the autocorrelation domain by using the Parseval relation of the Fourier
transform. However, in [47] the problem is transformed in the domain of H(t;,ts). The
reason is that this function, in contrast with the autocorrelation function (as defined in
(4.14)), is hermitian symmetric thus the minimization procedure is equivalent to finding
the eigenvalues of H(t1,t2) (which because of the symmetry property are real and the
corresponding eigensignals are orthonormal) and choosing the eigensignal corresponding

to the largest eigenvalue as the solution. This is an intuitive result since H(t,t3) is a
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separable function. The algorithm is generalized for all bilinear transformations T 2

that are unitary i.e. satisfy the Moyal formula 3

<Tab: Tcd) = (CL, d’)<c: b) (4.29)

This unitarity constraint ascertains that the solution in the inverse Weyl domain is
equivalent to the solution of (4.28). This constraint is dependent on the form of the
kernel and the conditions that the kernel must satisfy can be found in [47]. It is also
of interest to mention that a synthesis procedure has been defined for the Wigner-Ville
distribution in [47]. In this case, the inverse Weyl symbol corresponds to the true
autocorrelation of the signal, and the synthesis problem is solved by restricting this

function to be positive definite (instead of separable as previously).

4.4.1 Discrete-Time Wigner Synthesis

Most of the algorithms described for WD synthesis cannot be readily used for DTWD
synthesis. In DTWD synthesis the induced basis, as defined previously in this chapter,
is never orthonormal and can be orthogonal only for very few choices of the original
basis. This implication prohibits the adaptation of the algorithm in [112] in the discrete-

time domain, as it was pointed out in [55, 106]. It is also true that the inverse Weyl

2T, represents the time-frequency distribution of s(t) and T, represents the cross- time-frequency
distribution of a(t) and b(t) i.e.

Tap(t,w) = /[/ alu + %T)b'(u+ %T)é(&fk"im_jmﬂh dudrdé

*where (z,y) = [ x(t)y"(t) dt and (Tap, Tea) = [[ Tas(t,w)Tiy(t, w) dt dw i.e. inner product relations
for 1-D and 2-D functions
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symbol of the DTWD as defined in (4.23) cannot be defined for discrete-time signals.
A way to overcome this problem is to consider separately even and odd samples of the
signals, as is described in [11]. This is an extremely influential work in the context of
Wigner synthesis, which again solves the problem by minimizing in the least-squared
sense. It is important to mention that the solution of this problem is not unique since if
the signal z(n) is a solution to the problem then it is easy to see that the signal e/®z(n)
with arbitrary ¢ will also be a solution (this is true in general for WD synthesis based
on least-squared minimization). The solution given in [11] also results in a similar
eigenvalue-eigenvector solution as in [97]. The difference here is that, for the reason
stated earlier, the problem is decoupled in odd and even samples of the desired signal,
which has the disadvantage that the phase ambiguity will be a separate factor for even
and odd samples, a more serious issue compared to phase ambiguity regarding the signal
as a whole. A method to overcome this ambiguity under some assumptions is described
in [11]. Another reference regarding the issue of the phase ambiguity is [48].

Two algorithms for DT'WD synthesis that inspired some methods described in Chap-
ter 6 can be found in [12] and [68]. In [68] an algorithm based on the discrete-time CWD
(DTCWD) is given. The algorithm is iterative and is based on the fact that if the ref-
erence signal y(n) is an approximation of the desired signal z(n), then we can use their
CWD as an approximation of the DTWD of z(n). The advantage is that the problem
is decoupled in solving Az = b where A is a known matrix and b a known vector. The
solution to this problem is based on the Singular Value Decomposition (SVD) of A. In

practice, y(n) is not available and this is the reason that the algorithm is iterative: at



each iteration, y(n) is the synthesized z(n) of the previous iteration. In [12], a different
approach of DTCWD synthesis is outlined. Using a reference signal Z(n) as previously,
it is possible to isolate z(n) from a multicomponent signal s(n) under the observation
that the DTCWD of two signals is oscillatory whereas the DT'WD of a signal is relatively
smooth. Under this assumption, taking the DTCWD of Z(n) and s(n) and then choos-
ing the part of the distribution that exhibits non-oscillatory properties will result in an
approximate DTWD of z(n). This distribution can be used as the modified DTWD

that is the input to a DTWD synthesis algorithm as the ones described here.

4.4.2 Smoothed Wigner Synthesis

Smoothed Wigner distributions are obtained by substituting the autocorrelation (4.27)

with

R(n,m) = Z r(n—n',m)s(n’ + m)s*(n' —m) (4.30)

m
where r(n,m) is, as usual, the Fourier transform of the kernel. DTWD synthesis will
be discussed here since the interest is in practical implementation and not theoretical
derivations. Different choices of kernel lead to different distributions, the most well
known being the Choi-Williams distribution [17] (exponential kernel) and the pseudo-
Wigner distribution [20] (finite length window kernel). The former kernel is designed
for suppressing the interference terms, while the latter is a kernel that leads to a less
computationally expensive distribution. Smoothed Wigner distributions require a dif-
ferent approach for synthesis because of the form of (4.30). The minimization procedure

described e.g. by [11] leads now to third-order equations because of the use of the kernel.
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In [54] this problem is solved by applying an iterative procedure inspired by the DTWD
synthesis methods in [11]. The algorithm, called the Quasi Power Algorithm (QPA), is
an iterative application of the Wigner synthesis solution, using at each iteration the sig-
nal calculated at the previous iteration. A slightly modified version of this algorithm is
outlined in [46], where the error minimization is employed only in the region of interest
(cf. [68], where a similar modification is proposed).

Algorithms have been designed for the special case of the pseudo-Winger distribu-
tion. The interested reader should examine [52, 53, 113] in which methods analogous to
the STFT overlap-add procedure in context and complexity are described. There exists

a significant trade-off in these methods between complexity and solution optimality.
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Chapter 5

Multichannel Audio Resynthesis by

Subband-Based Spectral Conversion

5.1 Overview

Multichannel audio offers significant advantages for music reproduction that include
the ability to provide better localization and envelopment, as well as reduced imag-
ing distortion. On the other hand, multichannel audio is one of the most demanding
media types in terms of transmission requirements. A novel architecture was previ-
ously proposed [77], allowing delivery of uncompressed multichannel audio over high-
bandwidth communications networks. In most cases, however, bandwidth limitations
prohibit transmission of multiple audio channels. In such cases, an alternative would
be to transmit only one or two reference channels and recreate the rest of the channels
at the receiving end. In this chapter, we propose a system that is capable of synthe-

sizing the required signals from a smaller set of signals recorded in a particular venue.



These synthesized “virtual” microphone signals can be used to produce multichannel
recordings that accurately capture the acoustics of the particular venue. Applications
of the proposed system include transmission of multichannel audio over the current In-
ternet infrastructure and, as an extension of the methods proposed here, remastering
of existing monophonic and stereophonic recordings for multichannel rendering, a topic

discussed in Chapter 6.

5.2 Introduction

Multichannel audio can enhance the sense of immersion for a group of listeners by re-
producing the sounds that would originate from several directions around the listeners,
thus simulating the way we perceive sound in a real acoustical space. On the other hand,
multichannel audio is one of the most demanding media types in terms of transmission
requirements. A novel architecture allowing delivery of uncompressed multichannel au-
dio over high-bandwidth communications networks was presented in [77]. As suggested
there, for applications in which bandwidth limitations prohibit transmission of multiple
audio channels, an alternative would be to transmit only one or two channels (denoted
as reference channels or recordings in this work, e.g. the left and right signals in a
traditional stereo recording) and reconstruct the remaining channels at the receiving
end. The system proposed in this chapter provides a solution for reconstructing the
channels of a specific recording from the reference channels and is particularly suitable

for live concert hall performances. The proposed method is based on information of
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the acoustics of a specific concert hall and the microphone locations with respect to the
orchestra, information that can be extracted from the specific multichannel recording.

Before proceeding to the description of the method proposed, a brief outline of the
basis of our approach is given. A number of microphones are used to capture sev-
eral characteristics of the venue, resulting in an equal number of stem recordings (or
elements). Fig. 5.1, provides an example of how microphones may be arranged in a
recording venue in a multichannel recording. These recordings are then mixed and
played back through a multichannel audio system that attempts to recreate the spatial
realism of the recording venue. Our objective is to design a system based on available
stem recordings that is able to recreate all of these recordings from the reference chan-
nels at the receiving end of a communications channel (thus, stem recordings are also
referred to as target recordings here). The result would be a significant reduction in
transmission requirements, while enabling mixing at the receiving end. Consequently,
such a system would be suitable for completely resynthesizing any number of channels
in the initial recording (i.e. no information needs to be transmitted about the target
recordings other than the conversion parameters). This is different than what com-
mercial systems accomplish today. In addition, the system proposed in this chapter
is a structured representation of multichannel audio that lends itself to other possible
applications such as multichannel audio synthesis which is briefly described later in this
section. By examining the acoustical characteristics of the various stem recordings, the

distinction of microphones is made into reverberant and spot microphones.
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Spot microphones are microphones that are placed close to the sound source (e.g. G
in Fig. 5.1). These microphones introduce a very challenging situation. Because the
source of sound is not a point source but rather distributed such as in an orchestra, the
recordings of these microphones depend largely on the instruments that are near the
microphone and not so much on the acoustics of the hall. Synthesizing the recordings of
these microphones, therefore, involves enhancing certain instruments and diminishing
others, which in most cases overlap both in the time and frequency domains. The
algorithm described here that focuses on this problem is based on spectral conversion
(SC). The special case of percussive drum-like sounds is separately examined since these
sounds are of impulsive nature and cannot be addressed by spectral conversion methods.
These sounds are of particular interest however, since they greatly affect our perception
of proximity to the orchestra.

Reverberant microphones are the microphones placed far from the sound source,
for example C and D in Fig. 5.1. These microphones are treated separately as one
category because they mainly capture reverberant information (that can be reproduced
by the surround channels in a multichannel playback system). The recordings captured
by these microphones can be synthesized by filtering the reference recordings through
linear time-invariant (LTI) filters, designed using the methods that will be described
in later sections of this chapter. Existing reverberation methods use a combination of
comb and all-pass filters to effectively add reverberation to the existing monophonic or
stereophonic signal. Our objective is to estimate the appropriate filters that capture the

concert hall acoustical properties from a given set of stem microphone recordings. We
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Figure 5.1: An example of how microphones may be arranged in a recording venue for a
multichannel recording. In the virtual microphone resynthesis algorithm, microphones
A and B are the main reference pair from which the remaining microphone signals
can be derived. Virtual microphones C and D capture the hall reverberation, while
virtual microphones E and F capture the reflections from the orchestra stage. Virtual
microphone G can be used to capture individual instruments such as the tympani. These
signals can then be mixed and played back through a multichannel audio system that
recreates the spatial realism of a large hall.

describe an algorithm that is based on a spectral estimation approach and is particularly
suitable for generating such filters for large venues with long reverberation times. Ideally,
the resulting filter implements the spectral modification induced by the hall acoustics.

We have obtained such stem microphone recordings from two orchestra halls in the
USA by placing microphones at various locations throughout the hall. By recording a

performance with a total of sixteen microphones we then designed a system that recreates
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these recordings (thus named virtual microphone recordings) from the main microphone
pair. It should be noted that the methods proposed here intend to provide a solution
for the problem of resynthesizing ezisting multichannel recordings from a smaller subset
of these recordings. The problem of completely synthesizing multichannel recordings
from stereophonic (or monophonic) recordings, thus greatly augmenting the listening
experience, is not addressed here. The synthesis problem is a topic of related research to
be discussed in the next chapter. However, it is important to distinguish the cases where
these two problems (synthesis and resynthesis) differ. For reverberant microphones,
since the result of our method is a group of LTI filters, both problems are addressed
at the same time. The filters designed are capable of recreating the acoustic properties
of the venue where the specific recordings took place. If these filters are applied to
an arbitrary (non-reverberant) recording, the resulting signal will contain the venue
characteristics at the particular microphone location. In such manner, it is possible
to completely synthesize reverberant stem recordings and synthesize a multichannel
recording. In contrast, this will not be possible for the stem microphone methods. As it
will be clear later, the algorithms described here are based on the specific recordings that
are available. The result is a group of spectral conversion functions that are designed by
estimating the unknown parameters based on training data that are available from the
target recordings. These functions cannot be applied to an arbitrary signal and produce
meaningful results. This is an important issue when addressing the synthesis problem

and will be the topic of Chapter 6.
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The remainder of this chapter is organized as follows. In Section 5.3 the spot micro-
phone resynthesis problem is addressed. Spectral conversion methods are described and
applied to the problem in different subbands of the audio signal. The special case of per-
cussive sounds is also examined. In Section 5.4 the reverberant microphone resynthesis
problem is examined. The issue of defining an objective measure of the method’s perfor-
mance arises which is addressed by defining a normalized mutual information measure.
Finally, a brief discussion of the results is given in Section 5.5 and possible directions

for future research on the subject are proposed.

5.3 Spot Microphone Resynthesis

5.3.1 Spectral Conversion

The goal is to modify the short-term spectral properties of the reference audio signal
in order to recreate the desired one. The short-term spectral properties are extracted
by using a short sliding window with overlapping (resulting in a sequence of signal
segments or frames). Each frame is modeled as an autoregressive (AR) filter excited
by a residual signal. The AR filter coeflicients are found by means of linear predictive
analysis (LPC, [43]) and the residual signal is the result of inverse filtering the audio
signal of the current frame by the AR filter. The LP coefficients are modified in a way
to be described later in this section and the residual is filtered with the designed AR
filter to produce the desired signal of the current frame. Finally, the desired response

is synthesized from the designed frames using overlap-add techniques [41].
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In order to obtain the desired response for each frame, an algorithm is required for
converting the LP coefficients into the desired ones. Although the target coefficients
in the application examined can be found by applying the same residual/LP analysis
described (assuming that the reference and target waveforms are time-aligned), our
intention is to design a mapping function based on the reference and target responses
whose parameters will remain constant. The result will be a significant reduction of
information as the target response can be reconstructed using the reference signal and
this function.

Such a mapping function can be designed by following the approach of voice con-
version algorithms [1, 95, 50]. The objective of voice conversion is to modify a speech
waveform so that the context remains as is but appears to be spoken by a specific (tar-
get) speaker. Although the application is completely different, the approach followed
is very suitable for our problem. In voice conversion pitch and time-scaling need to
be considered, while in the application examined here this is not necessary. This is
true since the reference and target waveforms come from the same excitation recorded
with different microphones and the need is not to modify but to enhance the reference
waveform. However, in both cases, there is the need to modify the short-term spectral
properties of the waveform. The method to do that is briefly described next.

Assuming that a sequence [z1x3 . . . ] of reference spectral vectors (e.g. line spectral
frequencies (LSE’s), cepstral coefficients, etc. ) is given, as well as the corresponding
sequence of target spectral vectors [y Y5 ...Y,| (training data from the reference and

target recordings respectively), a function F(:) can be designed which, when applied
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to vector xy, produces a vector close in some sense to vector y,. Many algorithms
have been described for designing this function (see [1, 95, 50, 4] and the references
therein). Here the algorithms based on vector quantization (VQ, [1]) and Gaussian

mixture models (GMM, [95, 50]) were implemented and compared.

Spectral Conversion based on VQ

Under this approach, the spectral vectors of the reference and target signals (training
data) are vector quantized using the well-known modified K-means clustering algorithm
(see for example [85] for details). Then, a histogram is created indicating the correspon-
dences between the reference and target centroids. Finally, the function F is defined as
the linear combination of the target centroids using the designed histogram as a weight-
ing function. It is important to mention that in this case the spectral vectors were
chosen to be the cepstral coefficients so that the distance measure used in clustering is

the truncated cepstral distance.

Spectral Conversion based on GMM’s

In this case, the assumption made is that the sequence of spectral vectors x is a
realization of a random vector @ with a probability density function (pdf) that can be
modeled as a mixture of M multivariate Gaussian pdf’s. Thus, the pdf of =, g(x), can

be written as

M
g(x) =Y plwi)N (z; pf, =F) (5.1)
=1
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where, NV (x;p,X) is the normal multivariate distribution with mean vector p and
covariance matrix ¥ and p(w;) is the prior probability of class w;. The parameters of
the GMM, i.e. the mean vectors, covariance matrices and priors, can be estimated using
the expectation maximization (EM) algorithm [87].

As already mentioned, the function F is designed so that the spectral vectors y,
and F(xy) are close in some sense. In [95], the function F is designed such that the

error

=) llyp — F (zx)lI? (5.2)
k=1

is minimized. Since this method is based on least-squares estimation, it will be denoted
as the LSE method. This problem becomes possible to solve under the constraint that

F is piecewise linear, i.e.

M
F (@) = Y pleilar) [vi+ T2 (y — pf) (5.3)

=]

where the conditional probability that a given vector x; belongs to class w;, p(w;|zy)

can be computed by applying Bayes’ theorem

pwi) N (zg; pf, BF°)

p(wilzk) = (5.4)
S it p(w; )N (zk; 2, ZF)
The unknown parameters (v; and I';, ¢ = 1,..., M) can be found by minimizing (5.2)

which reduces to solving a typical least-squares equation.
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A different solution for function F results when a different function than (5.2) is
minimized [50]. Assuming that = and y are jointly Gaussian for each class w;, then, in

mean-squared sense, the optimal choice for the function F is

Flzr) = E(ylz) (5.5)
M
= > pluilmy) [ + SFEET (@ — )

i=1

where E(-) denotes the expectation operator and the conditional probabilities p(w;|x;)
are given again from (5.4). If the source and target vectors are concatenated, creating a
new sequence of vectors zj, that are the realizations of the random vector z = [z yT]7
(where T denotes transposition), then all the required parameters in the above equations

can be found by estimating the GMM parameters of z. Then,

DD Vit I

1

2 = ;= (5.6)
zF BW r

Once again, these parameters are estimated by the EM algorithm. Since this method
estimates the desired function based on the joint density of @ and y, it will be referred

to as the Joint Density Estimation (JDE) method.

5.3.2 Subband Processing

Audio signals contain information over a larger bandwidth than speech signals. The
sampling rate for audio signals is usually 44.1 or 48 kHz compared to 16 kHz for speech.

Moreover, since high acoustical quality for audio is essential, it is important to consider
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the entire spectrum in detail. For these reasons, the decision to follow an analysis in
subbands seems natural. Instead of warping the frequency spectrum using the Bark
scale as is usual in speech analysis, the frequency spectrum was divided in subbands
and each one was treated separately under the analysis presented in the previous sec-
tion. Perfect reconstruction filter banks, based on wavelets [93], provide a solution with
acceptable computational complexity as well as the appropriate, for audio signals, oc-
tave frequency division. The choice of filter bank was not a subject of investigation but
steep transition from passband to stopband is desirable. The reason is that the short-
term spectral envelope is modified separately for each band thus frequency overlapping

between adjacent subbands would result in a distorted synthesized signal.

5.3.3 Transient Sounds Consideration

The spectral conversion methods described earlier will not produce the desired result
in all cases. Transient sounds cannot be adequately processed by altering their spec-
tral envelope and must be examined separately. An example of an analysis/synthesis
model that treats transient sounds separately and is very suitable as an alternative
to the subband-based residual/LP model that we employed, is described in [62]. It is
suitable since it also models the audio signal in different bands, in each one as a sinu-
soidal /residual model [67, 90]. The sinusoidal parameters can be treated in the same
manner as the LP coefficients during spectral conversion [16]. We are currently con-
sidering this model for improving the produced sound quality of our system. However,
no structured model is proposed in [62] for transient sounds. In the remainder of this

section, the special case of percussive sounds is addressed.
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The case of percussive drum-like sounds is considered of particular importance. It is
usual in multichannel recordings to place a microphone close to the tympani as drum-like
sounds are considered perceptually important in recreating the acoustical environment
of the recording venue. For percussive sounds, a similar model to the residual/LP
model described here can be used [61] (see also [96, 64, 60]), but for the enhancement
purposes investigated here, the emphasis is given to the residual instead of the LP
parameters. The idea is to extract the residual of an instance of the particular percussive
instrument from the recording of the microphone that captures this instrument and then
recreate this channel from the reference channel by simply substituting the residual of
all instances of this instrument with the extracted residual. As explained in [61], this
residual corresponds to the interaction between the exciter and the resonating body
of the instrument and lasts until the structure reaches a steady vibration. This signal
characterizes the attack part of the sound and is independent of the frequencies and
amplitudes of the harmonics of the produced sound (after the instrument has reached
a steady vibration). Thus, it can be used for synthesizing different sounds by using
an appropriate all-pole filter. This method proved to be quite successful and further
details are given in the next section. The drawback of this approach is that a robust
algorithm is required for identifying the particular instrument instances in the reference
recording. A possible improvement of the proposed method would be to extract all
instances of the instrument from the target response and use some clustering technique
for choosing the residual that is more appropriate in the resynthesis stage. The reason

is that the residual/LP model introduces modeling error which is larger in the spectral
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Band | Frequency (kHz) | LPC GMM
Nr. Low | High | Order | Centroids
1 0.0000 | 0.1723 4 4
2 0.1723 | 0.3446 4 4
3 0.3446 | 0.6891 8 8
4 0.6891 1.3782 16 16
2 1.3782 | 2.7563 32 16
6 2.7563 5.5125 32 16
7 5.5125 | 11.0250 32 16
8 11.0250 | 22.0500 32 16

Table 5.1: Parameters for the chorus microphone resynthesis example.

valleys of the AR spectrum; thus, better results would be obtained by using a residual
which corresponds to an AR filter as close as possible to the resynthesis AR filter.
However, this approach would again require robustly identifying all the instances of the

instrument.

5.3.4 Resynthesis Performance

The three spectral conversion methods outlined in Section 5.3.1 were implemented and
tested using a multichannel recording which we obtained as described in Section 5.2
of this chapter. The objective was to recreate the channel that mainly captured the
chorus of the orchestra (residual processing for percussive sound resynthesis is also
included). Acoustically, the primary emphasis was on the male and female voices. At
the same time, it was clear that some instruments, inaudible in the target recording but
particularly audible in the reference recording, needed to be attenuated. A database of
about 10,000 spectral vectors for each spectral band was created so that only parts of

the recording where the chorus is present are used, with the choice of spectral vectors
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SC Ceps. Distance | Centroids
Method | Train | Test | per Band

LSE 0.6451 | 0.7144 | Table 5.1

JDE | 0.6629 | 0.7445 | Table 5.1
vQ | 1.2903 | 1.3338 | 1024

Table 5.2: Normalized distances for LSE-, JDE- and VQ-based methods.

being the cepstral coefficients. Parts of the chorus recording were selected so that
there were no segments of silence included. Results were evaluated through informal
listening tests and through objective performance criteria. The spectral conversion
methods were found to provide promising enhancement results. Formal listening tests
are currently underway and will be available in the near future. For this work, objective
test results were performed, which manifest that the spectral conversion methods can
be used successfully for the enhancement purposes investigated here. The experimental
conditions are given in Table 5.1. The number of octave bands used was 8, a choice that
gives particular emphasis on the frequency band 0-5 kHz and at the same time does not
impose excessive computational demands. The frequency range 0-5 kHz is particularly
important for the specific case of chorus recording resynthesis since this is the frequency
range where the human voice is mostly concentrated. For producing better results, the
entire frequency range 0-20 kHz must be considered. The order of the LPC filter varied
depending on the frequency detail of each band and for the same reason the number of
centroids for each band was different.

In Table 5.2, the average quadratic cepstral distance (averaged over all vectors and
all 8 bands) is given for each method, for the training data as well as for the data

used for testing (9 sec. of music from the same recording). The cepstral distance is
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normalized with the average quadratic distance between the reference and the target
waveforms (i.e. without any conversion of the LPC parameters). The improvement is
large for both the GMM-based algorithms, with the LSE algorithm being slightly better,
for both the training and testing data. The VQ-based algorithm, in contrast, produced
a deterioration in performance which was audible as well. This can be explained based
on the fact that the GMM-based methods result in a conversion function which is con-
tinuous with respect to the spectral vectors. The V(Q-based method, on the other hand,
produces audible artifacts introduced by spectral discontinuities because the conversion
is based on a limited number of existing spectral vectors. This is the reason why a large
number of centroids was used for the VQ-based algorithm as seen in Table 5.2 compared
to the number of centroids used for the GMM-based algorithms. However, the results
were still unacceptable both from the objective and subjective perspectives.

The algorithm described in Section 5.3.3 considering the special case of percussive
sound resynthesis was tested as well. Fig. 5.2 shows the time-frequency evolution of a
tympani instance using the Choi-Williams distribution [17], a distribution that achieves
the high resolution needed in such cases of impulsive signal nature. Fig. 5.2 clearly
demonstrates the improvement in drum-like sound resynthesis. The impulsiveness of
the signal at around samples 60-80 is observed in the desired response and verified in
the synthesized waveform. The attack part is clearly enhanced, significantly adding
naturalness in the audio signal, as our informal listening tests clearly demonstrated.

The methods described in this section can be used for synthesizing recordings of

microphones that are placed close to the orchestra. Of importance in this case were the

90



T T T T T T T T T
<300 )?L E
T \ﬁ,@ == KL {5
g AVl A\ ] . =y
3 200F iR i e - =
@ L. 23 - -
D =t o
o
@ 100+ .
w

1 1 1 1 1 1 1 1 Il

20 40 60 80 100 120 140 160 180 200

Time (Samples)

= 300 —— - —
= e Sy
E" 200 - £ = Ea —
Q
3
o
2 100 = -
w

1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

Time (Samples)

T T T T T T T T T
—~ 300} (2 : i
N i s =
& - Rl (O o
> Xl .
G200 0 !
% — R i
2 100 T i ek
w

1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

Time (Samples)

Figure 5.2: Choi-Williams distribution of the desired (top), reference (middle) and
resynthesized (bottom) waveforms at the time points during a tympani strike (samples
60-80). This high resolution time-frequency analysis is necessary for understanding the
evolution of the audio signal spectrum and identifying the correct approach for signal
synthesis. The impulsiveness of the signal is observed in the desired response and verified
in the resynthesized waveform.

short-term spectral properties of the audio signals. Thus, linear time-invariant filters
were not suitable and the time-frequency properties of the waveforms had to be exploited
in order to obtain a solution. In the next section, we focus on microphones placed far
from the orchestra and thus contain mainly reverberant signals. As we demonstrate,
the desired waveforms can be synthesized by taking advantage of the long-term spectral

properties of the reference and the desired signals.
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5.4 Reverberant Microphone Resynthesis

The problem of resynthesizing a virtual microphone signal from a signal recorded at a
different position in the room can be described as follows. Given two processes s; and
s9, determine the optimal filter H that can be applied to s; (the reference microphone
signal) so that the resulting process s§ (the virtual microphone signal) is as close as
possible to s3. The optimality of the resulting filter H is based on how “close” s is
to sp. For the case of audio signals, the distance between these two processes must
be measured in a way that is psychoacoustically valid. We can treat this as a typical
system identification problem. However, there are several unique aspects that need to
be considered, the most important being that the physical system is characterized by
a long impulse response. For a typical large symphony hall the reverberation time is
approximately 2 sec., which would require a filter of more than 96000 taps to describe

the reverberation process (for a typical sampling rate of 48 kHz).

5.4.1 IIR Filter Design

There are several possible approaches to the problem. One is to use classical estima-
tion theoretic techniques such as least-squares or Wiener filtering based algorithms to
estimate the hall environment with a long finite-duration impulse response (FIR) or
infinite-duration impulse response (IIR) filter. Adaptive algorithms such as LMS [43]
can provide an acceptable solution in such system identification problems while least-

squares methods suffer prohibitive computational demands. For LMS the limitation lies



in the fact that the input and the output are non-stationary signals making its con-
vergence quite slow. In addition, the required length of the filter is very large so such
algorithms would prove to be inefficient for this problem. Although it is possible to
prewhiten the input of the adaptive algorithm (see for example [43, 66] and references
therein), so that convergence is improved, these algorithms still did not prove to be
efficient for this problem.

An alternative to the aforementioned methods for treating system identification
problems, is to use spectral estimation techniques based on the cross-spectrum [63].
These methods are divided into parametric and non-parametric. Non-parametric meth-
ods, based on averaging techniques such as the averaged periodogram (Welch spectral
estimate) (7, 24, 104] are considered more appropriate for the case of long observations
and for non-stationary conditions since no model is assumed for the observed data (a
different approach based on the cross-spectrum which, instead of averaging, solves an
overdetermined system of equations can be found in [91]). After the frequency response
of the filter is estimated, an IIR filter can be designed based on that response. The
advantage of this approach is that IIR filters are a more natural choice of modeling the
physical system under consideration and can be expected to be very efficient in approx-
imating the spectral properties of the recording venue. In addition an IIR filter would
implement the desired frequency response with a significantly lower order compared to
an FIR filter. Caution must, of course, be taken in order to ensure the stability of the

filters.
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To summarize, if we could define a power spectral density S, (w) for signal s; and
Ss,(w) for signal sg, then it would be possible to design filter H(w) that can be applied
to process s; resulting in process s5, which is intended to be an estimate of sp. The
filter H(w) can be estimated by means of spectral estimation techniques. Furthermore,
if S;,(w) is modeled by an all-pole approximation |1/Ap;|? and Ss,(w) similarly as
|1/Ap2|? then H = Ap;/Aps, if H is restricted to be the minimum phase spectral factor
of |H(w)|?. This results in a stable IIR filter that can be designed efficiently but is
minimum phase. The analysis that follows provides the details for designing H.

The estimation of H(w) is based on computing the cross-spectrum Sg,s, of signals
sp and s; and the auto spectrum S, of signal s;. It is true that if these signals were

stationary then

Ssys, (W) = H(w)Ss, (w) (5.7)

The difficulties arising in the design of filter H are due to the non-stationary nature
of audio signals. This issue can be partly addressed if the signals are divided into
segments short enough that can be considered of approximately stationary nature. It
must be noted, however, that these segments must be large enough so that they can be
considered long compared to the length of the impulse response that must be estimated,
in order to avoid edge effects (as explained in [98], where a similar procedure is followed

for the case of blind deconvolution for audio signal restoration).
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For interval ¢, composed from M (real) samples Sgi)(O), _— s(li)(ﬂffu 1), the empirical

transfer function estimate (ETFE, [63]) is computed as

o (1)
AW @) = 2 ) (58)
51 (‘U)
where
_ M-1 _
SP(w) = " s (n)edom (5.9)
n=0

is the Fourier transform of the segment samples. This cannot be considered an accurate
estimate of H(w) though, since the filter H®(w) will be valid only for frequencies
corresponding to the harmonics of segment ¢ (under the valid assumption of quasi-
periodic nature of the audio signal for each segment). An intuitive procedure would
be to obtain the estimate of the spectral properties of the recording venue H (w) by
averaging all the estimates available. Since the ETFE is the result of frequency division,
it is apparent that in frequencies where S5, (w) is close to zero, the ETFE would become
unstable, so a more robust procedure would be to estimate H using a weighted average

of the K segments available [63], i.e.

> 8D (W) HO (W)
SES B0 (w)

Hw) = (5.10)

A sensible choice of weights would be

B9 (w) = 18P (w)[? (5.11)
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It can be easily shown that estimating H under this approach is equivalent to esti-
mating the auto-spectrum of s; and the cross-spectrum of s and s using the Cooley-
Tukey spectral estimate [24] (in essence Welch spectral estimation with rectangular
windowing of the data and no overlapping). In other words, defining the power spec-

trum estimate under the Cooley-Tukey procedure as

K-1

ST w) = = > 150(w)P (5.12)

i=0

where S(w) is defined as previously, and a similar expression for the cross-spectrum

K-
ST (w) Z S (w) 5" (w) (5.13)
then, it holds that
N SCT (w)
H(w)= 2221~ 5.14
@)= serw) (5-14)

which is analogous to (5.7). Thus, for a stationary signal, the averaging of the estimated
filters is justifiable. A window can additionally be used to further smooth the spectra.

The method described is meaningful for the special case of audio signals, despite their
non-stationarity. It is well known that the averaged periodogram provides a smoothed
version of the periodogram. Considering that it is true even for non-stationary (but of

finite length) signals that

S2(w) S} (w) = H(w)|S1(w)? (5.15)
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then averaging in essence smoothes the frequency response of H. This is justifiable
since it is true that a non-smoothed H will contain details that are of no acoustical
significance. Further smoothing can yield a lower order IIR filter, by taking advantage
of AR modeling. Considering signal s;, the inverse Fourier transform of its power
spectrum S, (w) derived as described earlier will yield the sequence 7, (m). If this
sequence is viewed as the autocorrelation of s; and samples 74, (0),-- , 7, (p + 1) are
inserted in the Wiener-Hopf equations for linear prediction (with the AR order p being

significantly smaller than the number of samples of each block M, for smoothing the

spectra)
[ ® @ o =D | [ | [ra@ ]
re (1) ra©) o ra@—2) | | ap(2) 7o, (2)
- (5.16)
E rs: (P - 1) T.5‘1 (p_ 2) U TS} (0) J L a’le(p) J L ’r-‘-"'l(p) ]

then, the coefficients ap (i) result in an approximation of Ss, (w) (omitting the constant

gain term which is not of importance in this case)

1 2
SS} ((.U) = Ap]_((&)) (017)
where
p .
Api(w) =1+ ap(l)e (5.18)
=1
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A similar expression holds for Ss,(w). S5, and S, can be computed as in (5.12). Using
the fact that

Sso(w) = |H(w)[*Ss, (w) (5.19)

and restricting H to be minimum phase, we find from the spectral factorization of (5.19)

a solution for H is

H(w) = (5.20)

Filter H can be designed very efficiently even for very large filter orders following this
method since equation (5.16) can be solved using the Levinson-Durbin recursion. This
filter will be IIR and stable.

A problem with the aforementioned design method is that the filter H is restricted to
be of minimum phase. It is of interest to mention that in our experiments the minimum
phase assumption proved to be perceptually acceptable. This can be possibly attributed
to the fact that if the minimum phase filter H captures a significant part of the hall
reverberation, then the listener’s ear will be less sensitive to the phase distortion [86]. It
is not possible, however, to generalize this observation and the performance of this last
step in the filter design will possibly vary depending on the particular characteristics of

the venue captured in the multichannel recording.

5.4.2 Mutual Information as a Spectral Distortion Measure

As previously mentioned, we need to apply the above procedure in blocks of data of the
two processes 81 and sz. In our experiments, we chose signal block lengths of 100,000

samples (long blocks of data are required due to the long the reverberation time of
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the hall as explained earlier). We then experimented with various orders of filters Ap1
and Apz. As expected, relatively high orders were required to reproduce so from s;
with an acceptable error between s (the resynthesized process) and sy (the target
recording). The performance was assessed through blind A/B/X listening evaluation.
An order of 10,000 coefficients for both the numerator and denominator of H resulted
in an error between the original and resynthesized signals that was not detectable by
listeners. We also evaluated the performance of the filter by resynthesizing blocks from
a part of the signal other than the one that was used for designing the filter. Again, the
A/B/X evaluation showed that for orders higher than 10,000 the resynthesized signal was
indistinguishable from the original. Although such high order filters are impractical for
real-time applications, the performance of our method is an indication that the model is
valid and therefore motivating us to further investigate filter optimization. This method
can be used for off-line applications such as remastering of old recordings. A real-time
version was also implemented using the Lake DSP Huron digital audio convolution
workstation. With this system we are able to resynthesize 12 virtual microphone stem
recordings from a monophonic or stereophonic compact disc (CD) in real time.

To obtain an objective measure of the performance it is necessary to derive a math-
ematical measure of the distance between the resynthesized and the original processes.
The difficulty in defining such a measure is that it must also be psychoacoustically
valid. This problem has been addressed in speech processing where measures such as
the log spectral distance and the Itakura-Saito distance are used [49]. In our case, we

need to compare the spectral characteristics of long sequences with spectra that contain
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Figure 5.3: Normalized error between original and resynthesized microphone signals as
a function of frequency.

a large number of peaks and dips that are narrow enough to be imperceptible to the
human ear. In other words, the focus is on the long-term spectral properties of the
audio signals, while spectral distortion measures have been developed for comparing
the short-term spectral properties of signals. To overcome comparison inaccuracies that
would be mathematical rather than psychoacoustical in nature, we chose to perform
1/3 octave smoothing [72] and compare the resulting smoothed spectral cues. The re-
sults are shown in Fig. 5.3 in which we compare the spectra of the original (measured)
microphone signal and the resynthesized signal. The two spectra are practically in-

distinguishable below 10 kHz. Although the error increases at higher frequencies, the
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listening evaluations show that this is not perceptually significant. One problem that
was encountered while comparing the 1/3 octave smoothed spectra was the fact that
the average error was not reduced with increasing filter order as rapidly as the results
of the listening tests suggested. To address this inconsistency we experimented with
various distortion measures.

These measures included the RMS log spectral distance, the truncated cepstral dis-
tance, and the Itakura distance (for a description of all these measures see for example
[85]). The results, however, were still not in line with what the listening evaluations
indicated. This led us to a measure that is commonly used in pattern comparison and
is known as the mutual information (see for example [27]). By definition, the mutual
information of two random variables X and Y with joint probability density function
(pdf) p(z,y) and marginal pdf’s p(z) and p(y) is the relative entropy between the joint

distribution and the product distribution, i.e.

Y) = 2,y log-Eil)
I(X;Y) ;%p( )1 Jevpmpr (5.21)
It is easy to prove that
I(X;Y) = H(X)-HX|Y) (5.22)
= H(Y)-H(Y|X) (5:28)
and also
I(X;Y)=H(X)+ H(Y) - H(X,Y) (5.24)
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where H(X) is the entropy of X

H(X)==)_ p(z)logp(z (5.25)
TEX

similarly, H(Y") is the entropy of Y. H(X|Y') is the conditional entropy defined as

HX|Y) = > p)H(X|Y =y) (5.26)
yeY
= => p() Y _ plaly) logp(zly) (5.27)
yey TEX

while H(X,Y") is the joint entropy defined as

HX,Y)==)_" plz,y)logp(z,y) (5.28)

TEX yeY

The mutual information is always positive. Since our interest is in comparing two vectors
X and Y with Y being the desired response, it is useful to use a modified definition
for the mutual information, the Normalized Mutual Information (NMI) Iy(X;Y") which

can be defined as

In(X;Y) = H(Y);(I;)(YIX) (5.29)
_I(X;Y) _
= HY) (5.30)
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Figure 5.4: Normalized Mutual Information between original and resynthesized micro-
phone signals as a function of filter order.

This version of the mutual information is mentioned in [27, p. 47] and has been applied
in many applications as an optimization measure (e.g. radar remote sensing applications
(101]). Obviously,

0<In(X;Y) <1

The NMI obtains its minimum value when X and Y are statistically independent and
its maximum values when X =Y. The NMI does not constitute a metric since it lacks
symmetry. On the other hand, the NMI is invariant to amplitude differences [92], which

is a very important property especially for comparing audio waveforms.
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The spectra of the original and the resynthesized responses were compared using
the NMI for various filter orders and the results are depicted in Fig. 5.4. The NMI
increases with filter order both when considering the raw spectra, as well as when we
used the spectra that were smoothed using AR modeling (spectral envelope by all-pole
modeling with Linear Predictive coeflicients). We believe that the NMI calculated using
the smoothed spectra is the measure that closely approximates the results we achieved
from the listening tests. As can be seen from the figure, the NMI for a filter order of
20,000 is 0.9386 (i.e., close to unity which corresponds to indistinguishable similarity)
for the LPC spectra while the NMI for the same order but for the raw spectra is
0.5124. Furthermore, the fact that both the raw and smoothed NMI measures increase
monotonically in the same fashion indicates that the smoothing is valid since it only
reduces the “distance” between the two waveforms in a proportionate way for all the
resynthesized waveforms (order 0 in the diagram corresponds to no filtering — it is the

distance between the original and the reference waveforms).

5.5 Conclusions

Multichannel audio resynthesis is a new and important application that allows transmis-
sion of only one or two channels of multichannel audio and resynthesis of the remaining
channels at the receiving end. It offers the advantage that the stem microphone record-
ings can be resynthesized at the receiving end, which makes this system suitable for
many professional applications and, at the same time, poses no restrictions on the num-

ber of channels of the initial multichannel recording. The distinction was made of the
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methods employed, depending on the location of the “virtual” microphones, namely
spot and reverberant microphones. Reverberant microphones are those that are placed
at some distance from the sound source (e.g. the orchestra) and therefore, contain more
reverberation. On the other hand, spot microphones are located close to individual
sources (e.g., near a particular musical instrument). This is a completely different
problem because placing such microphones near individual sources with varying spec-
tral characteristics results in signals whose frequency content will depend highly on the
microphone positions.

Spot microphones were treated separately by applying spectral conversion tech-
niques for altering the short-term spectral properties of the reference audio signals.
Spectral conversion algorithms that have been used successfully for voice conversion
can be adopted for the task of multichannel audio resynthesis quite favorably. Three of
the most common spectral conversion methods have been compared and our objective
results, in accordance with our informal listening tests, have indicated that GMM-based
spectral conversion can produce extremely successful results. Residual signal enhance-
ment was also found to be essential for the special case of percussive sound resynthesis.

For the reverberant microphone recordings, we have described a method for resynthe-
sizing the desired audio signals, based on spectral estimation techniques. The emphasis
in this case is on the long-term spectral properties of the signals since the reverberation
process is considered to be long in duration (e.g. 2 seconds for large concert halls). An

IR filtering solution was proposed for addressing the long reverberation-time problem,
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with associated long impulse responses for the filters to be designed. The issue of objec-
tively estimating the performance of our methods arose, which was treated by proposing
the normalized mutual information as a measure of spectral distance that was found
to be very suitable for comparing the long-term spectral properties of audio signals.
It should be noted that the IIR filters designed are of high order thus not suitable for

real-time applications.
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Chapter 6

Maximum Likelihood Parameter
Adaptation for Multichannel Audio

Synthesis

6.1 Overview

Multichannel audio can immerse a group of listeners in a seamless aural environment.
Previously, we proposed a system capable of synthesizing the multiple channels of a
virtual multichannel recording from a smaller set of reference recordings. This problem
was termed multichannel audio resynthesis and the application was to reduce the exces-
sive transmission requirements of multichannel audio. In this chapter, we address the
more general problem of multichannel audio synthesis, i.e. how to completely synthesize
a multichannel audio recording from a specific stereophonic or monophonic recording,

which would significantly enhance the recording’s acoustic impression. We approach
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this problem by extending the model employed for the resynthesis problem. This is
accomplished by adapting the resynthesis conversion parameters to the statistical prop-
erties of the recording that we wish to enhance. This parameter adaptation is similar
to the task adaptation employed in speech recognition, when a specific model is applied
to a different environment (speaker, language or channel). One particular approach to
this problem is shown here to be quite advantageous towards solving the multichannel

audio synthesis problem as well.

6.2 Introduction

The advantages of multichannel audio over conventional stereophonic sound are well-
known and have been mentioned repeatedly in this work. However, several key issues
must be addressed. Multichannel audio imposes excessive requirements to the transmis-
sion medium. A system we proposed in the previous chapter, attempted to address this
issue by offering the alternative to synthesize the multiple channels of a multichannel
recording from a smaller set of signals (denoted as reference channels or recordings in
this work, e.g. the left and right channels in a traditional stereophonic recording). The
solution, termed multichannel audio resynthesis, focused on the problem of enhancing
a concert hall recording and divided the problem in two different parts, depending on
the characteristics of the recording to be synthesized. The approach followed is next
briefly reviewed, since in this chapter these methods are extended to address the syn-
thesis problem. Given the microphone recordings from several locations in a venue

(stem recordings, see Fig. 5.1 for an example of how microphones may be arranged in
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a recording venue for a multichannel recording), our objective was to design a system
that can resynthesize these recordings from the reference recordings. For this reason,
stem recordings are also referred to as target recordings in this work. As explained
in Chapter 5, we have obtained such stem microphone recordings from two orchestra
halls in the USA by placing microphones at various locations throughout the hall. By
recording a performance with a total of sixteen microphones, we then designed a system
that recreates these recordings (thus named virtual microphone recordings) from the
main microphone pair. These resynthesized stem recordings are then mixed in order
to produce the final multichannel audio recording. The distinction of the recordings is
made depending on the location of the microphone in the venue, thus resulting in two
different categories, namely reverberant and spot microphone recordings.

Reverberant microphones are the microphones placed far from the sound source, for
example C and D in Fig. 5.1. These microphones are treated separately as one category
because they mainly capture reverberant information (that can be reproduced by the
surround channels in a multichannel playback system). For simulating recordings of
such microphones, infinite impulse response (IIR) filters were designed from existing
multichannel recordings made in a particular concert hall [73]. Our objective was to
estimate the appropriate filters that capture the concert hall acoustical properties from
a given set of stem microphone recordings. These IIR filters were shown in Chapter 5

to be capable of recreating the acoustical properties of the venue at specific locations.
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Spot microphones are microphones that are placed close to the sound source (e.g. G
in Fig. 5.1). Synthesizing the recordings of these microphones, therefore, involves en-
hancing certain instruments and diminishing others, which in most cases overlap both
in the time and frequency domains. The algorithm described in the previous chapter
and in [74], focuses on this problem and is based on spectral conversion.

In this chapter, we address the more general problem of multichannel audio synthesis.
The goal is to convert existing stereophonic or monophonic recordings into multichan-
nel. The significance of this application is evident since, although there are consumer
media that allow the delivery of multiple channels of audio, only a limited set of mul-
tichannel music recordings have been made to-date. The same approach is followed
as in the resynthesis problem. Based on existing multichannel recordings, we decide
which microphone locations must be synthesized. For reverberant microphones, the fil-
ters designed for the resynthesis problem can be readily applied to arbitrary recordings.
Their time-invariant nature offers the advantage that these filters can be applied to any
recording although having been designed based on a specific recording. In contrast, the
time-varying nature of the methods designed for spot microphone resynthesis, prohibits
us from applying them in an arbitrary recording. This is the problem that we address
here.

The block diagram of Fig. 6.1 can serve as a guide to the methods examined in this
chapter. The part of the diagram to the left of the dotted line corresponds to an existing
multimicrophone recording. Multichannel audio resynthesis allows us to reconstruct

the stem recordings (target channels) from the reference channel. The part of the
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diagram to the right of the dotted line, corresponds to multichannel audio synthesis,
which is used to fully synthesize stem recordings from the reference channel of a stereo
recording. Our approach is to take advantage of the resynthesis parameters that have
been derived based on an existing target channel. In order to achieve that, the stereo and
multimicrophone recordings are related with the GMM constrained estimation method
that is analyzed later in this chapter. The adaptation assumption is also needed that
relates the (unavailable) target response of the stereo recording with the target response
of the multimicrophone recording.

The remainder of this chapter is organized as follows. In Section 6.3 spot microphone
resynthesis is revisited, since it is an inherent part of the synthesis problem. Here, the
implementation of the GMM-based algorithms of the previous chapter is examined.
More specifically, the focus is on the diagonal implementation of the LSE and JDE
algorithms, 7.e. when all conversion matrices are restricted to be diagonal. Diagonal
implementations are of significance when combined with model adaptation techniques
for addressing the synthesis problem, as explained later in this chapter. In Section
6.4, we test the effectiveness of diagonal conversion as compared with full conversion
(i.e. with no structural restrictions) that was examined in Chapter 5. Model adaptation
schemes are discussed in Section 6.5, and the performance of these methods is examined
in Section 6.6. Finally, a brief discussion of the results is given in Section 6.7 and possible

directions for future research are proposed.
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Multimicrophone Recording Stereo Recording

Reference channel Reference channel
GMM Constrained
Estimation
Resynthesis
Adaptation
Assumption

Target channel Target channel

Figure 6.1: Block diagram outlining multichannel audio resynthesis and synthesis.
Resynthesis corresponds to existing multichannel audio recordings while synthesis cor-
responds to stereo recordings. The objective of resynthesis is to recreate the multiple
channels of the recording (target channels) from a smaller set of reference channels.
The objective of synthesis is to completely synthesize target channels from one or two
reference channels, thus converting the stereo recording for multichannel rendering.
Resynthesis parameters can be used for the synthesis task, by adapting them through
GMM constrained estimation and the adaptation assumption explained in the text.

6.3 Spot Microphone Resynthesis Revisited

6.3.1 Spectral Conversion

As explained in Chapter 5, the objective of spot microphone resnythesis is to modify
the short-term spectral properties of the reference audio signal in order to recreate the

desired signal. By analyzing these recordings with the residual/LP model, we obtain a
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sequence [ . .. €, of reference spectral vectors (e.g. line spectral frequencies (LSF’s),
cepstral coefficients, etc.), as well as the corresponding sequence of target spectral vec-
tors [y,Ys ..y, (training data from the reference and target recordings respectively).
It was then that it is possible to design a function F(-), which, when applied to vector
xy, produces a vector close in some sense to vector y,. GMM-based algorithms, namely
the LSE and JDE methods, were found to favorably perform this task. These methods
are now briefly reviewed for the convenience of the reader, since they form the basis
for successfully addressing the synthesis task as well. In the following two sections, we
examine some implementation issues of these algorithms, which are implicitly related
with their application to multichannel audio synthesis. The synthesis problem is then

addressed in Sections 6.5 and 6.6.

Spectral Conversion based on GMM’s

The conversion function F is designed so that the spectral vectors y, and F(z}) are

close in some sense. In the LSE case [95], the function F is designed such that the error

n
=" llye = F (i)l (6.1)
k=1
is minimized. For LSE, F is assumed to be piecewise linear, i.e.

M
F(@r) = Y pleslee) [0+ T3 (g - piF)] (6.2)

i=1
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where the conditional probability that a given vector x; belongs to class w;, p(w;i|zy)

can be computed by applying Bayes’ theorem

plwi)N (zp; pf, )
3L p(wi)N (y; p, )

p(wilzy) = (6.3)

The parameters of the GMM, i.e. the mean vectors, covariance matrices and priors,
can be estimated using the expectation maximization (EM) algorithm. The remaining
unknown parameters (v; and I';, ¢ = 1,..., M) can be found by minimizing (6.1) which
reduces to solving a typical least-squares equation.

For the JDE method [50], it is assumed that @ and y are jointly Gaussian for each

class w;. Then, in mean-squared sense, the optimal choice for the function F is

Flzk) = E(ylxk) (6.4)

M
= > plwilzk) [ Y DERE (o — Nf)]
i=1

where E(-) denotes the expectation operator and the conditional probabilities p(w;|z;)

are given again from (6.3). In essence, the JDE method assumes a GMM for the

random vector z = [z y”]7, where the random vector z corresponds to the sequence

of concatenated vectors, z = [zTy”]?. The parameters of the GMM of z are

1

B = = (6:5)
B =¥ w

Once again, these parameters are estimated by the EM algorithm.
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6.3.2 Diagonal Implementation

The GMM-based LSE spectral conversion algorithm can be implemented with the co-
variance matrix having no structural restrictions or restricted to be diagonal [95], de-
noted as full and diagonal conversion respectively. Full conversion is of prohibitive
computational complexity when combined with the adaptation algorithm for the Syn-
thesis problem examined in the second part of this chapter. As explained in [31, 30],
the adaptation methods described are less computationally demanding when applied
to GMM’s with diagonal covariance matrices. Thus, it was apparent that it would be
more efficient to combine these methods with the di‘agonal conversion algorithm of [95]
for LSE and the diagonal conversion for JDE implemented in this chapter, as explained
next.

It is important to note that the covariance matrix for the JDE method cannot be
diagonal because this method is based on the cross-covariance of & and y which is
found from (6.5). This will be zero if the covariance of z is diagonal. In order to obtain
the same structure as in the diagonal LSE conversion, we must restrict the matrices
EF, B, ¥, and ¥ in (6.5) to be diagonal. For achieving this restriction, we
slightly modified the EM algorithm, with the most noteworthy modification being that
of obtaining the inverse of £ by taking advantage of its structure. It is very easy to

show [69], that the inverse of 37* will be

»27 = (6.6)
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where

A = (zF-zpspsr)”

= =7 o s¥opEee
B = —AZ?SV = _zm='nwc
C = (z?—zg"’zgm”zf’)_l

1

= W s SEARYRW (6.7)

In the above equations, all matrices, thus their products, sums, and differences are
diagonal, so the inversions will be of very low computational demands. Based on this

structure for the inverse of 37, the joint pdf of  and y can be written as

exp (—3 (27 Az + yTCy + 22"By))

Ty = 6.8
s CrR Iz i

K being the dimensionality of @, and the determinant of 7 equals
27| = =¥ - 2¥ s 5| (6.9)

6.3.3 Subband Processing

For the reasons explained in the previous chapter, the spectral conversion algorithms
were implemented independently in different subbands. This is also the case for the

synthesis algorithms, as explained in Section 6.6.
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Band | Frequency (kHz) | LPC | Mixtures
Nr. Low | High | Order [ Full | Diag
1 0.0000 | 0.1723 4 4 8
2 0.1723 | 0.3446 4 4 3
3 0.3446 | 0.6891 8 8 16
4 0.6891 | 1.3782 16 16 32
) 1.3782 | 2.7563 32 16 64
6 2.7563 | 5.5125 32 16 64
i 5.5125 | 11.0250 32 16 64
3 11.0250 | 22.0500 32 16 64

Table 6.1: Parameters for the chorus microphone resynthesis example (full and diag-
onal conversion).

6.3.4 Transient Sounds Consideration

Transient sounds resynthesis was considered in the previous chapter. Please note that
for the synthesis case the methods described must be modified, since no exact desired
response (thus excitation signal) will be available. In Section 6.6.2 of this chapter,

transient sound synthesis for percussive drum-like sounds is considered.

6.4 Diagonal Resynthesis Performance

The two GMM spectral conversion methods outlined in Section 6.3.1 (LSE and JDE)
were implemented and tested using a multichannel recording, in the same manner as
in Section 5.3.4 of the previous chapter. The results for full conversion are repeated
here for reference, since the objective is to test the performance of diagonal conversion
compared to full conversion. Informal listening tests were conducted to validate the
objective performance criteria. Diagonal and full conversion were found to produce

comparable results. The experimental conditions are given in Table 6.1.
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SC Covari- | Ceps. Distance | Centroids
Method | ance | Train | Test | per Band

ILSE Full 0.6451 | 0.7144 | Table 6.1
Diag | 0.5918 | 0.7460 | Table 6.1
IDE Full | 0.6629 | 0.7445 | Table 6.1
Diag | 0.6524 | 0.7508 | Table 6.1

Table 6.2: Normalized distances for LSE- and JDE-based methods, for full and diagonal
conversion.

In Table 6.2, the average quadratic cepstral distance (averaged over all vectors and
all 8 bands) is given for each method, for the training data as well as for the data used
for testing (9 sec. of music from the same recording, the same data used in Section
5.3.4). The two cases tested were the JDE and LSE spectral conversion algorithms with
full and diagonal covariance matrices, as explained in Section 6.3.2. The difference lies
in the fact that in the second case, the covariance matrix for all Gaussians is restricted
to be diagonal. This restriction provides a more efficient conversion algorithm in terms
of computational requirements, but at the same time requires more GMM components
for producing comparable results with full conversion. This is evident from Table 6.2.
However, diagonal conversion greatly simplifies the synthesis implementation and, con-
sequently, will be the method chosen for this task.

The algorithms described in this section can be used for resynthesizing recordings of
microphones that are placed close to the orchestra. For this case, the desired responses
(stem recordings) are available and are required in order to derive the conversion func-
tions. In the synthesis problem, the desired responses are not available. In the next

section, we attempt to address this lack of training data by adapting the parameters
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derived for the resynthesis problem, based on the derived statistics of the available ref-
erence recording of the synthesis problem. As we demonstrate, the desired waveforms
can be synthesized by taking advantage of techniques developed for speech recognition

parameter adaptation.

6.5 ML Constrained Adaptation

The above approach offers a possible solution to the issue of multichannel audio trans-
mission by allowing transmission of only one or two reference channels along with the
filters that can subsequently be used to recreate the remaining channels at the receiv-
ing end (virtual microphone resynthesis). Here, we are interested to address the issue
of virtual microphone synthesis, i.e., applying these filters to arbitrary monophonic or
stereophonic recordings in order to enhance particular instrument types and completely
synthesize a multichannel recording. This step requires an algorithm that generalizes
these filters. In the synthesis case, no training target data will be available so some
assumptions must be explicitly made about the target recording. Our approach is to
derive a transformation between the reference recording used in the training step of
the resynthesis algorithm and the reference recording to be used for the synthesis al-
gorithm, that in some way represents the statistical correspondence between these two
recordings. We then assume that the same transformation holds for the two corre-
sponding target recordings and practically test this hypothesis. Techniques for deriving
such transformations have been successfully applied in the task of speaker adaptation

for speech recognition. In this work we applied the maximum-likelihood constrained
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adaptation method [31, 30], which offers the advantage of a simple probabilistic linear
transformation leading to a mathematically tractable solution for the synthesis problem.

As in the resynthesis case, we obtain a sequence of spectral vectors from the reference
channel of an available multimicrophone recording. These vectors are considered as
realizations of a random vector @, which is modeled with a GMM as in (5.1). From the
reference channel of the stereo recording we also obtain a sequence of spectral vectors,
considered as realizations of random vector = . In this manner, we also obtain random
vector y from the desired response of the multimicrophone recording, and we denote
as y' the random vector that corresponds to the (not available) desired response of the
stereo recording. Instead of applying a GMM for z’, we attempt to relate the random
variables ' and x, the motivation being to derive a transformation that relates y' with
y. We assume that the target random vector =’ is related to reference random vector

x by a probabilistic linear transformation

( Az + by with probability P(A1|w;)

, Asx + by with probability p(\g|w;)
z = (6.10)

| Anvx + by with probability p(Ay|w;)

This equation corresponds to the GMM constrained estimation that relates ' with @ in
the block diagram of Fig. 6.1. In the above equation, A; denotes a K x K dimensional

matrix (K is the number of components of vector z), and bj is a vector of the same



dimension with @. Each of the component transformations j is related with a specific

Gaussian 7 of  with probability p(A;j|w;) which satisfy the constraint

N

> plwi) =1, i=1,...,M (6.11)
j=1

where M is the number of Gaussians of the GMM that corresponds to the reference

vector sequence x. Clearly,
g(@ |wi, Aj) = N(a'; Ajuf + by, A;5FAT) (6.12)

resulting in the pdf of z’

M N

5@) =D plwi)pNlw)N (z'; Ajuf + bj, A;SEAT) (6.13)
=1 5=1

which is a GMM of M x N mixtures. The matrices A, the vectors b; and the conditional
probabilities p(w;) and p(};|w;) can be estimated using maximum likelihood estimation
techniques. The EM algorithm can be applied to this case in a similar manner to
estimating the parameters of a GMM from observed data. In essence, it is a linearly
constrained maximum-likelihood estimation of the GMM parameters.

The purpose of adopting the transformation (6.10) is to use it in order to obtain a
target training sequence for the synthesis problem. The assumption is that this function
represents the statistical correspondence between the two available recordings. It is
then justifiable to apply the same function to the target recording of the multichannel

recording to obtain a reference recording for the synthesis problem. The synthesis
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problem then can be simply solved if the conversion methods mentioned in the previous
section are employed. In other words, the assumption made is that the target vector y’

for the synthesis problem can be obtained from the available target vector y by

[ Ay + by with probability p(A;|w;)

Aoy + by with probability p(As|w;)
Y =9 (6.14)

| Any +by with probability p(An|w;)

This equation corresponds to the adaptation assumption that relates y' with y in the
block diagram of Fig. 6.1.

It is now possible to derive the conversion function for the synthesis problem, based
entirely on the parameters derived during the resynthesis stage that correspond to a
completely different recording. A solution is provided for adapting the parameters
of both the JDE and LSE resynthesis methods. This derived conversion function for
synthesis will allow the synthesis of the target response from the reference channel of

the stereo recording as depicted in Fig. 6.1

6.5.1 LSE Parameter Adaptation

Since it is not clear what parameters v; and T'; represent, we follow the analysis of
[95], where the form of the conversion function proposed is explained by examining the

limit-case of a single class GMM for x (i.e. a Gaussian distribution). In that case, and



assuming the source and target vectors are jointly Gaussian, the optimal conversion

function in mean-squared sense will be

Flzr) = E(ylzy) (6.15)
= !+ IS (g — pd)

= v+I2=" (zr — %)
where E(-) denotes the expectation operator. So, in the limit-case, it holds that
v= W, F'=2F (6.16)
We also examine the simple case where (6.10) and (6.14) become
' =Az+b y =Ay+b (6.17)
Since under these conditions
U = A+ b, g = A +b (6.18)

and

)

57— Ax®AT, BT — ARWAT (6.19)
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it is then apparent that the parameters v and ' for the conversion function for the

synthesis case will be

v =Av+b, I = ATAT (6.20)

The conversion function for the limit-case becomes

Flzy) = Eyley) (6.21)

= y +2yx 2:::1: (m;c_pl:c)

= Av+b+Ars='A-1 (m; - Ap® - b)

By analogy then, it is justifiable to conclude that the conversion function for synthesis

will be
M N
ZZp (wilzy)p(A, g, wi) {A v + b; +
i=1 j=1
AjPiE?_lAfl (:B;c = Ajp.ix = bJ) ] (622)
where
o) = pwi) Zf' 1P(\jlwi)g (@) |wi, Aj) (6.23)
(2 ket 7 .
S SN plwi)p(Aj|wi)g (@ lwi, Aj)
and
' Adlw; -y
P(Ajlzy, wi) = POl (@i Ay) (6.24)

Zj:lp(’\_?lwt)g(mklwh 3)



and g(z |w;, A;) is given from (6.12). Thus, all the parameters of the conversion function
(6.22) are known from the resynthesis stage of the algorithm and the GMM constrained

estimation step.

6.5.2 JDE Parameter Adaptation

Given the linearity of the transformations (6.10) and (6.14) and the fact that for a
particular class w;, = and y will be jointly Gaussian,  and y will also be jointly

Gaussian for a particular class w; and Aj. Thus,

7 ’ 4 Lt P oped ’ i
By [hwi ) = # +ZVT I (o —uf)

I

Al + b + Ajzgr‘”zgw‘lAgl

(Ik —Ajpi — bj) (6.25)
since
5e7 = A,BFAT, 5V = ASFAT (6.26)
and
pi = Ajpf +b, p? = A;u? +b; (6.27)

It is also true that under the above analysis, the pdf of 3" will be

M N
=Y > plw)p(N\lwi) N (y's Ajp! + bj, A;SPAT) (6.28)
i=1 j=1
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Band | LPC | GMM Components

Nr. | Order | Classes | M-1 | M-2 | M-3 [ M-4
1 4 4 1 2 2 4
2 4 4 1 2 2 4
3 8 8 1 2 4 8
4 16 16 1 2 8 16
5 32 16 i 2 8 16
6 32 16 1 2 8 16
7 32 16 1 2 8 16
8 32 16 1 v 8 16

Table 6.3: Parameters for the chorus microphone synthesis example (diagonal conver-
sion).

Finally, the conversion function for synthesis will be

Flz) = E(ylzy) (6.29)

M N ’
- Zzp(wilmk)p()\jlmk,wi) [Aj,u,l«.’ + b, +
i=1 j=1

ASEEFT AT (ml —Ajui — bj) ]

where p(wila:;c) and p()\j|a::c,w,;) are given from (6.23) and (6.24) respectively, and
g(a’ lwi, Aj) is given from (6.12). Again, all the parameters of the conversion function
(6.29) are known from the resynthesis stage of the algorithm and the GMM constrained
estimation step. It is of interest to note that the conversion function derived for the
JDE synthesis problem is optimal in mean-squared sense while the conversion function

for LSE synthesis is not optimal in any sense.
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6.6 Synthesis Results

6.6.1 Adaptation Performance

The experimental conditions for the synthesis example (spectral conversion followed by
parameter adaptation) are given in Table 6.3. Given that the methods for spectral con-
version as well as for model adaptation were originally developed for speech signals, the
decision to follow an analysis in subbands seemed natural. The number of GMM com-
ponents for the synthesis problem is smaller than those of the resynthesis problem due
to the increased computational requirements of the described algorithm for adaptation
(diagonal conversion is applied for the synthesis problem as explained in Section 6.3.2).

In Tables 6.4 and 6.5, the average quadratic cepstral distance for the synthesis ex-
ample is given, for the LSE and JDE methods respectively. The objective was to test
the performance of the adaptation method for two different cases. The first case was
when the GMM parameters correspond to a database obtained from a recording of
similar nature with the recording that is attempted to be synthesized. Referring to
the chorus example, the GMM parameters are derived as explained in the resynthesis
algorithm, by applying the conversion method to a multichannel recording for which
the chorus microphone (desired response) is available. If these parameters are applied
to another recording of similar nature (e.g. both of classical music) the error is quite
large as it appears in the second column of Tables 6.4 and 6.5 (denoted as “Same”),
in the row denoted as “None” (i.e. no adaptation). It should be noted that the error
is measured exactly as in the resynthesis case. In other words, the desired response

is available for the synthesis case as well but only for measuring the error and not for
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Adaptation | Ceps. Distance | Components
Method Same | Other per Band

None 0.9454 | 1.3777 Table 6.3
M-1 1.1227 | 1.1482 Table 6.3
M-2 1.0034 | 1.1348 Table 6.3
M-3 0.8794 | 1.0995 Table 6.3
M-4 0.8589 | 1.0728 Table 6.3

Table 6.4: Normalized distances for LSE method without adaptation (“None”) and with
several components adaptation (M-1 to M-4) for diagonal conversion.

estimating the conversion parameters. Because of limited availability of such multi-
microphone orchestra recordings, the similarity of recordings was simulated by using
only a small portion of the available training database (about 5%) for obtaining the
GMM parameters. For testing we used the same recordings that were used for testing
in the resynthesis example. The results in the second column of Tables 6.4 and 6.5
show a significant improvement in performance by increasing the number of compo-
nent transformations. It is interesting to note, however, the performance degradation
for small numbers of component transformations (more evident for LSE synthesis cases
M-1 and M-2). This can be possibly attributed to the fact that the GMM parameters
were obtained from the same recording thus, even with such a small database, they
can be expected to capture some of the variability of the cepstral coefficients. On the
other hand, adaptation is based on the assumption of the same transformation for the
reference and target recordings, which becomes very restrictive for such a small number
of transformations. The fact that larger numbers of transformation components yield
significant reduction of the error, validate the methods derived here and support the

assumptions that were made in the previous section.



Adaptation | Ceps. Distance | Components
Method Same | Other per Band

None 0.9900 | 1.2792 Table 6.3
M-1 0.9938 | 1.2341 Table 6.3
M-2 0.9303 | 1.1865 Table 6.3
M-3 0.9011 | 1.1615 Table 6.3
M-4 0.8786 | 1.1019 Table 6.3

Table 6.5: Normalized distances for JDE method without adaptation (“None”) and
several components adaptation (M-1 to M-4) for diagonal conversion.

The second case examined was when the GMM parameters corresponded to a database
obtained from a recording completely different from the recording that is attempted to
be synthesized. For this case, we utilized a multimicrophone recording which we ob-
tained from a live modern music performance as explained in Section 6.2. The GMM
parameters were derived from a database constructed from this recording, again the
focus being on the vocals of the music. These GMM parameters were applied to the
chorus testing recording of the previous examples and the results are given in the third
column of Tables 6.4 and 6.5 (denoted as “Other”). An improvement in performance
is apparent by increasing the number of transformation components, however this case
proved to be, as expected, more demanding. The results show that adaptation is very
promising for the synthesis problem, but must be applied to a database that corresponds

to recordings of nature as diverse as possible.

6.6.2 Percussive Sound Synthesis

In Section 5.3.3, percussive drum-like sounds were considered as an example of transient

sounds, which cannot be adequately addressed with the spectral conversion resynthesis
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methods examined. It is of interest to consider possible methods to manipulate such
sounds for the synthesis case as well. In this section, we examine this special case from
the synthesis perspective, showing how time-frequency distributions can provide a pos-
sible alternative in r;ome cases. The method described for percussive sound resynthesis
must be modified for the case of synthesis, where the exact excitation signal is not avail-
able. One possible solution to this problem is to use the excitation signal of the same
type of instrument obtained from another recording and modify it so as to provide an
acoustically closer result to the desired. Here we examine the use of the Wigner distri-
bution (WD) to this problem. A brief introduction is given for both Wigner analysis
and synthesis as well as the application of these methods to the problem under consid-
eration here. More information regarding time-frequency distributions can be found in
Chapter 4. Here we state the most important results of that chapter for reference.

The Discrete-Time Wigner Distribution (DTWD) is defined in [20] as

W(n,w)=2 > s(n+m)s*(n—m)e>m (6.30)

m=—0od

and a similar definition exists for the discrete-time cross-Wigner distribution (DTCWD).
For real signals, their analytic version can be used to avoid aliasing [10]. Smoothed
Wigner distributions are obtained by using some type of window (or kernel) in (6.30).
Different choices of kernel lead to different distributions, the most well known being the
Choi-Williams distribution [17] (exponential kernel), which was designed for suppressing
the interference terms. The importance of the Wigner distribution in audio signal

analysis and its smoothed versions (especially the Choi-Williams distribution) lies in
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Figure 6.2: Choi-Williams distribution of the desired (top), reference (middle) and
synthesized (bottom) waveforms at the time points during a tympani strike (samples
35-55).

their improved resolution compared to the spectrogram [23]. This is obvious in Fig. 5.2
and Fig. 6.2, where the distribution around a time point of a tympani strike is plotted
(contour plots) along with the respective intervals of the reference and the synthesized
waveforms. As mentioned in the resynthesis example, the objective is to recreate the
impulsiveness which is apparent in the desired signal and absent from the reference
signal.

Signal synthesis from the Wigner distribution is a subject that has been exten-

sively examined in the literature and is defined as follows. Given an arbitrary function
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Ws(n,w), find a signal $(n) whose distribution W3(n,w) is as close as possible to the
given function. The problem arises from the fact that if the distribution of a signal is
arbitrarily modified, it no longer corresponds to a valid distribution, so a simple inver-
sion is not possible. The solution of this problem in the references given is based in

least-squared minimization, that is

m

mgin i/ |Ws(n,w) — Wi(n,w)|? dw (6.31)

n=—oc0" "

A way to solve the WD synthesis problem is to consider even and odd samples of the
signals separately, as described in [11]. This method was applied here in order to solve
the percussive sound synthesis problem. The approach that was followed was to improve
the excitation signal that was derived as explained in percussive sound resynthesis, from
a recording that contained a similar type of instrument alone. Instead of using this
excitation signal along with the AR filter extracted from the reference waveform, a
synthesized excitation signal was derived by DTWD synthesis. The algorithm followed
was to approximate the DTWD of the desired excitation signal with the DTCWD of
the two excitation signals available (the excitation of the instrument recording and of
the reference recording). Then, the desired excitation signal was derived from this
distribution according to the methods of DTWD synthesis described (e.g. as in [11]).

This method is similar to the one of [68].



6.7 Conclusions

We termed as multichannel audio resynthesis the task of recreating the multiple mi-
crophone recordings of an existing multichannel audio recording, from a smaller set
of reference signals. Our motivation was to provide a scheme that allows for efficient
transmission of multichannel audio through low-bandwidth networks. At the same time,
the resynthesis problem arises as a first step towards solving the multichannel audio
synthesis problem. Multichannel audio synthesis is the more complex task of com-
pletely synthesizing these multiple microphone recordings from an existing monophonic
or stereophonic recording, thus making it available for multichannel rendering.

In this chapter, we applied spectral conversion and adaptation techniques, originally
developed for speech synthesis and recognition, to the multichannel audio synthesis
problem. The approach was to adapt the GMM parameters developed for the resyn-
thesis problem (where the desired response is available for training the model) to the
synthesis problem (no available desired response) by assuming that the reference and
target recordings are related with a number of probabilistic linear transformations. The
results we obtained were quite promising. Further research is needed in order to vali-
date our methods by employing subjective evaluation tests in addition to the objective
measures (cepstral distance) that were utilized here. It is also of interest to verify the
validity of our assumption, that a more diverse collection of recordings would result in
easily generalizable GMM parameters. A large number of multimicrophone recordings
of various types of music performances is required in this case, which is far from trivial

to acquire.
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It should be noted the methods described in this chapter will not yield acceptable
results for all types of sounds. Transient sounds in general cannot be adequately pro-
cessed by simply modifying their short-term spectral envelope. The special case of
percussive drum-like sounds was examined because of their acoustical significance and
because models for these sounds are available. More work is also needed in this area for
identifying other types of sounds which these methods cannot adequately address and
possible alternative solutions for these cases.

Finally, other algorithms developed for task adaptation for speech recognition should
be examined for the multichannel audio synthesis problem. The algorithm that was ex-
amined here, while advantageous due to the simple probabilistic linear model it assumes
for relating the two different data sets, has the disadvantage of increased computational

complexity.
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Chapter 7

Future Research Directions

As mentioned repeatedly in this dissertation, the objective of this work is twofold: vir-
tual rendering of sound using a stereophonic audio reproduction system and virtual
synthesis of multichannel audio from a stereophonic audio recording. A complete solu-
tion of the first problem has been detailed in Chapters 2 and 3. The problem of virtual
synthesis has been treated in Chapters 5 and 6. The cases covered are those of reverber-
ant and spot microphone synthesis and resynthesis. The last step for spot microphones,
i.e. proceeding from resynthesis to synthesis, proved to be the most challenging, as one
would expect. The fact that the desired response is not available for the synthesis prob-
lem introduced, as we explained in Chapter 6, a restriction regarding the extent of the
applicability of the parameter adaptation methods to different types of recordings. A
question that arises from the same perspective is that of evaluating the performance of
the system, since no desired result is available for comparison. The next two sections

intend to provide an outline of a possible answer to those questions.
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7.1 Data-Driven Approach for Virtual Microphone Signal

Synthesis

For multichannel audio synthesis, the desired signal will not be available in the design
of the conversion function, in contrast to multichannel audio resynthesis. An approach
for overcoming this fundamental restriction was to adapt the conversion parameters,
derived during the resynthesis stage, to the recording that is to be enhanced with the
synthesis algorithm. In Chapter 6, it was shown that the performance of this approach
is limited by the statistical proximity of the two recordings: the parameters derived
based on a modern music multimicrophone recording cannot be adapted to synthesize a
multichannel classical music recording. This is a point where future work on the subject
can focus. It is expected that a diverse collection of multimicrophone recordings for
training the GMM models of the resynthesis algorithms will provide better adaptation
results. However, a related issue is how these recordings should be combined in order
to achieve the best possible performance. Some possible answers to this question are
suggested next.

When the number of the multimicrophone recordings in the training dataset is large,
it will be difficult to associate the stereo recording to be enhanced with only one of
the available recordings. One solution might be to use existing methods that relate a
given recording with a large collection of available recordings based on their statistical
properties. For example, a method described in [6], results in different probabilities,
each one corresponding to the “distance” of a specific recording and a recording in the

database. For the synthesis problem, these probabilities could then weight the different
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conversion parameters for each of the recordings in the training data set, resulting in
a new conversion function that will, hopefully, take advantage of the diversity of the
collection of recordings in our database.

Based on the description of the previous paragraph, the following model is proposed
for multichannel audio synthesis. Given, at a particular time frame, spectral vector xy,

a conversion function G can be heuristically chosen as

Q
Glzi) = Y b:iFi(wmk) (7.1
i=1

where @ is the number of multimicrophone recordings in the training dataset, each
one related with the stereo reference recording with inversely proportionate distance b;
(e.g. as in [6]), and F; is the spectral conversion function as defined in Chapter 5 and
Chapter 6, for the i** recording. This method in essence uses a weighted average of
the @ available conversion parameters, after these are adapted to the stereo recording.
The alternative to this approach would be to combine all of the recordings during the
training phase. In other words, the GMM conversion parameters would be derived
based on the cepstral vectors from all the recordings. The conversion function from
these parameters could be viewed as a generalized conversion function. It is expected
however that this method would produce inferior results compared to the method of
(7.1), since it does not take into account the statistical correspondence between the
stereo recording and the available multimicrophone recordings, and in effect, weighs all

of the available recordings equally.
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The performance of the synthesis algorithm described in the previous paragraph,
as well as in the previous chapter, can be practically evaluated by means of objective
performance tests, such as those described in this work. It is equally important, however,
to test whether the designed conversion functions for performing the resynthesis and
synthesis tasks will be applicable to recordings of different nature and to several different
types of instruments. Subjective evaluation tests can be utilized for this task, if an
available desired response is given. This can be accomplished by applying the conversion
algorithms to existing multichannel recordings treated as conventional recordings. In
other words, the available desired responses of these recordings will not be used during
the training phase of the algorithms. Practically, the restriction that such recordings are
currently limited exists, so these tests cannot be considered exhaustive. The listening
tests that are explained in more detail in Section 7.2 can be adapted for the case when

the desired response is not available, in a manner to be explained.

7.1.1 Quality Improvement by Sinusoidal Audio Signal Models

The model that was utilized for the spectral conversion methods of Chapter 5 and
Chapter 6 was the residual/LP model, which is explained in Chapter 4. Speech signal
modification methods have been developed based on this model as well as sinusoidal
models, with the latter performing better in terms of acoustical quality. For audio
signals, the sinusoidal model described in Chapter 4 has been successfully used mainly
for time-scale modifications of audio signals [90]. An interesting topic would be to test
the performance of this model in the resynthesis and synthesis algorithms of this work

compared to the residual/LP model already implemented. It is possible to use the exact
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methods of spectral conversion for the two models, since algorithms exist for estimating
the cepstral coefficients from the sinusoidal model [15] as well as using the two models
interchangeably [110]. The objective measures (cepstral distance) and the subjective
tests (described in the next section) will reveal the more appropriate of the two models

for multichannel audio resynthesis and consequently for the synthesis problem as well.

7.2 Performance Evaluation

The performance of the methods proposed can be evaluated under objective tests as well
as subjective tests (listening tests). Objective tests include, for example the cepstral
distance, the normalized mutual information, etc. The lack of availability of a diverse
training database for the spectral conversion methods proposed in this work can be
addressed by using specially designed listening tests that will provide a suggestion as to
whether — and to what extent — the conversion functions trained on a specific recording
can be used in different recordings as well. In addition, listening tests are useful for
evaluating the resynthesis methods performance. Two methods are proposed to achieve
such performance evaluation.

The design of the listening tests is very important for obtaining a meaningful out-
come. For the synthesis and resynthesis methods (spot microphones), the experiments
should involve judging their performance for enhancing various musical instruments,
including the case of percussive sounds. The synthesis and resynthesis methods for
reverberant microphones should be evaluated as well. The procedure suggested is

based on listening tests performed for the evaluation of speech synthesis and conversion
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[50, 51, 1, 109, 110, 94, 102, 80, 42], since there are great similarities in the motivation

and objective of these methods with the ones proposed in this work.

7.2.1 ABX Listening Tests

These tests can provide an evaluation of each of the proposed methods separately. The
listeners are presented with a large number of groups of three waveforms, A,B and finally
X, and asked whether X is perceptually closer to A or B. These waveforms can be short
segments of three different audio recordings (about 30 sec., so that there is enough time
for the listener to establish a firm opinion but at the same time they must be short so that
we can choose many segments of different context). A and B should be chosen from the
target and reference recordings (with balanced choice, i.e. there must be no preference
in the order these recordings are presented). It should be noted that waveforms A and
B will be obtained from the original recordings using the residual/LP analysis/synthesis
system (excluding the reverberant microphone methods that are not based on any model
assumption). This modification will provide a performance evaluation of the proposed
approach compared to the best achievable outcome possible under the restriction of
the particular analysis/synthesis model. There must also be a balanced choice in the
testing of the methods for the various different cases examined (various instruments,
spot and reverberant synthesis and resynthesis). For the synthesis and resynthesis
methods evaluation, it is expected that the desired response will be available, meaning
that the testing waveforms will belong to multichannel recordings, so that the tests for
both procedures will be similar. The only difference will be that for the resynthesis case,

the conversion will be based on the exact desired response, while for the synthesis case
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this will not hold. It is also possible for the waveforms A and/or B to be chosen from
a different recording than the one corresponding to X, in order to depict an example of
the perceptually desired response of the methods. This will be the case when the desired
response is not available as in the synthesis problem. Since the interest is on enhancing
the recording and not exactly synthesizing the desired respomse, it is important to
test whether a method results in a recording that moves towards the desired direction
(e.g. enhances the voices in the reference recording as opposed to exactly synthesizing the
chorus microphone recording). The perceptual preference test of the following section
is very useful for achieving such an evaluation.

The listening tests are expected to demonstrate the amount of degradation (if any)
due to this important difference between the two procedures. Spectral conversion meth-
ods are expected to be affected by the lack of training data. It is also interesting to
test whether there will be any noticeable degradation of performance in the case of
reverberant sound synthesis compared to the resynthesis, which could be attributed to
the fact that the filter design for this case was based on the recording that took place
in a specific concert hall. These filters can be applied in an arbitrary recording, given
their time-invariant nature, however, they are dependent on the specific hall acoustics
which might differ significantly compared to the characteristics of the venue where the

testing recording occurred.

7.2.2 Perceptual Preference Tests

In this case, the listeners are presented with two recordings, one corresponding to the

conventional stereophonic recording and the other corresponding to the multichannel
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synthesis enhanced version of the same recording. The listeners are asked to choose the
best recording between the two, based on the criterion of which was more pleasant in
listening. Again different parts of many recordings should be presented with a balanced
choice regarding the order of presentation. The objective of this test is to demonstrate
whether the methods proposed here provide a truly enhanced version of the conventional

recording and how significant, perceptually, this enhancement appears.
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