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Abstract

In this thesis, we describe the effects of both inter-page interference (IPI) and inter-
symbol interference (ISI) in volumetric (3D) page-oriented optical data storage
(PODS) systems, and present a detailed mathematical model for 3D PODS systems.
Based on this model, we describe the equalization and detection techniques that
overcome both IPI and ISI in the readout system. This detection scheme is extremely
useful for future high data capacity page-oriented storage systems, where the IPI
effect is severe. For different application requirements, our proposed methods can be
operated flexibly in both batch and recursive modes. In our simulation results, our

detection method shows consistent improvements over conventional methods.

In addition, we propose multi-level data signaling on 3D PODS to enhance the data
density further. Our detection algorithm also yields significant improvements on
multi-level 3D PODS systems. Therefore, it is advantageous to apply our detection
method for increasing the storage density in future storage systems. We also propose
a variable thresholding detection method with improved performance. It overcomes
the IST and IPI effects simultaneously by using knowledge of the interference from
surrounding neighbors and changing the threshold locally. Hence, it provides a low

complexity detection method for the readout system.

To further reduce the complexity, we examine the implementation of least square

equalization and variable threshold methods using finite precision arithmetic. In a

XV



bit-error-rate comparison, we show that the fixed-point variable threshold method
achieves similar results as the floating-point version but only using one seventh of the
bits. Therefore, a potential saving of the storage and complexity is achieved by using

finite precision arithmetic.

Last, we investigate 3D PODS systems with pixel misregistration. Using our least
square equalization and variable threshold methods, we have significant improvement
when the amount of misalignment is 10% of the pixel pitch or less. These simulation

results show the robustness and feasibility of our detection methods.
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Chapter 1 Introduction

In this chapter, we discuss the limitations of current data storage systems and the
objective of the work in this thesis. A summary of the contributions of this thesis is

also provided here.
1.1 Motivation and Objective

In modern multimedia applications, the amount of data generated grows dramatically.
Since this enormous amount of data needs to be stored and transmitted, there are
many challenges for both storage and transmission media. Conventional two
dimensional (planar) data storage systems, such as magnetic hard drive, compact disc
(CD), digital versatile disc (DVD), and blu-ray disc (BD), manage to satisfy this
requirement. However, the evidence shows that the storage densities of these planar
data storage systems (particularly magnetic storage) are approaching the theoretical
limit [31]. As demands on data storage systems keep increasing, volumetric (3D)
page-oriented optical data storage (PODS) systems offer potentially larger capacity,
faster access time, and higher data transfer rates. In general, the 3D PODS can
provide extremely high data transfer rate (over 1 Gbits/sec) and massive data storage
capacity (over 1 Tbits/cm3) [14][44]. Therefore, 3D PODS systems are a promising

candidate for next generation data storage systems.

One advantage of the 3D PODS over conventional planar data storage systems is the

high data transfer rate that is achieved by the parallel readout mechanism. In the 3D



PODS, the data is recorded/read out as a sequence of 2D data pages as compared to
the one dimensional sequential mechanism in planar systems. Although researchers
are working on mutli-channel readout for conventional data storage systems (such as
the 9 track DVD-ROM system developed by Philips [9]), the number of readout

channels is still much less than that of the 3D PODS.

Another advantage of 3D PODS over planar data storage systems is the data storage
capacity. Because the third dimension is utilized, 3D PODS can maximize the data
packing density within a storage volume. Therefore, 3D PODS can also be treated as
a multi-layered extension of conventional planar storage systems. As the bit density
of multi-layered data storage increases, both inter-symbol interference (ISI) and inter-
page interference (IPI) increase as well. To maintain the reliability of 3D PODS, it is

a challenging issue to mitigate the ISI and IPI effects.

The goal of this research is to overcome the effects of ISI and IPI in 3D PODS
systems. To achieve this goal, we develop a detailed optical and electronic model of
3D PODS systems. With the model, we can determine effects of ISI and IPL. Finally,
we apply 3D estimation and detection based on least square equalization and variable
threshold methods to overcome effects of ISI and IPI simultaneously. We analyze the
performance of our proposed methods in terms of BER and other system parameters.
For a complete analysis, we consider systems using rectangular coordinates as well as

hexagonal coordinates.



To further increase the system capacity, we investigate multi-level 3D PODS systems
and describe how our methods produce satisfactory results in the presence of ISI and
IPI. To reduce overall system complexity, we apply finite precision arithmetic in our
detection methods, and demonstrate that they have performance comparable to the

floating point algorithm.

In actual optical data storage systems, mechanical misalignment error is an influential
parameter in system performance. We describe methods to overcome this problem

using digital signal processing and an extension of an algorithms.

1.2 Organization

The organization of this thesis is shown in Figure 1.1. The relevant background
knowledge is introduced in Chapter 2. Here we present a concise review of general
data storage systems. Several important related works are also discussed in this

chapter.

In Chapter 3, page-oriented optical data storage (PODS) systems are introduced.
The readout subsystem of PODS is of special importance and analyzed in detail. In
addition, the three-dimensional page-oriented data storage (3D PODS) system model
is examined. We focus on 3D PODS systems that use two-photon absorption
technology and an incoherent imaging recording and readout model. In particular, we
scrutinize the effect of focusing error on the readout optics. This forms the basis for

inter-page interference analysis. The readout light intensity distribution is also



included in our system model for completeness. All these analyses are derived from

mathematical models and they provide the foundation for the detection algorithms in

the remaining chapters.
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Figure 1.1. Thesis organization.

The least square equalization algorithm for 3D PODS is introduced in Chapter 4.
There are two modes of operation associated with it, i.e. the Batch mode and the
Recursive mode. Both of these two modes are described in detail. In addition, the

time complexity of the algorithm is also investigated in this chapter.

In Chapter 5, the estimation and detection results are presented. The simulation
parameters from actual experimental systems are listed for reference. The

simulations are executed under different situations and the results are shown as a



function of different variables. In these simulations, our detection algorithm shows

consistently better results than conventional algorithms.

Some extensions of 3D PODS are discussed in Chapter 6. We explore multi-level
data storage techniques for 3D PODS. This method potentially enhances the data
packing density. We compare two different methods to achieve multi-level data

storage and give simulation results.

In Chapter 7, we propose a novel detection algorithm called the variable threshold
method. By evaluating the interference from surrounding neighbors, this method
varies the threshold for each pixel. It is an extension of the conventional fixed
threshold method and can reduce the effects of both inter-symbol interference and

inter-page interference simultaneously.

The least square equalization and variable threshold methods using finite precision
arithmetic are discussed in Chapter 8. From the simulation, the fixed-point arithmetic
achieves comparable performance to the floating-point arithmetic. Therefore, our
methods are capable of operating with low complexity and limited local processor

storage.

In Chapter 9, we consider 3D PODS systems with pixel misregistration problems.
Using the least square equalization and variable threshold methods, the errors
resulting from misalignment are reduced significantly when the misregistration is

10% or less of the detector pixel pitch.



Conclusions are given in Chapter 10. We also discuss several possible future studies
including multi-wavelength readout, which adds another dimension of freedom to

increase the data capacity.

1.3 Contribution

The contributions of this thesis to general optical data storage systems are

summarized in the following topics.

(1) Mathematical Models for Three-Dimensional Page-Oriented Data Storage
Systems. We investigate inter-page interference in 3D PODS and formulate the
mathematical model. This model can be applied to either coherent or incoherent
data storage systems. We derive this model to have a better understanding of

inter-page interference effects.

(2) Least Square Equalization Detection for Three-Dimensional Page-Oriented Data
Storage Systems[15][18]. Based on our 3D PODS model, we propose the least
square equalization algorithm. In our simulation results, it achieves significant
improvement over the conventional thresholding method. It has two modes of
operation and is suitable for different readout formats and complexity

requirements.

(3) Multi-Level Data Storage System for 3D PODS. To further increase the data

packing density, we employ the third spatial dimension in 3D PODS systems and



analyze possible ways to achieve multi-level data storage. The simulation results

suggest that one method is preferable over the other under certain situations.

(4) Variable Threshold Detection for Three-Dimensional Page-Oriented Data Storage
Systems. By using the knowledge of the readout point-spread function (PSF), we
compute the interference from surrounding neighbors and modify the threshold at

each pixel. It shows superior results than the conventional fixed threshold method.

(5) Implementation of Least Square Equalization and Variable Threshold Method
with Fixed-Point Arithmetic. In order to reduce the complexity, we develop
methods for performing the signal processing using finite precision arithmetic.
The simulation results suggest that potential saving of bits is attainable with only

minor effects on the system performance.

(6) Improvement of 3D PODS System with Pixel Misregistration. The detected
signals are degraded when mechanical misalignment occurs. With small amounts
of misregistration, our method can provide a performance improvement. It also
shows the robustness of the least square equalization and variable threshold

methods in the presence of pixel misregistration phenomena.

(7) Complete and Detailed Simulations Based on 3D PODS System with Rectangular
and Hexagonal Coordinates. In the 3D PODS system, the coordinate system is
used to describe the distribution of data pixels. Two most common choices are

rectangular and hexagonal coordinates. We perform complete simulations of our



algorithms on 3D PODS systems using both these coordinates and discuss their

relative advantages and disadvantages.



Chapter 2 Background

In this chapter, a brief introduction of general data storage systems is presented. It
provides the background knowledge for this thesis. In addition, several important

works related to page-oriented data storage (PODS) systems are also discussed.

2.1 Data Storage Systems

There are three major parts to the general data storage system; namely the channel
en/decoder, the modulation en/decoder, and the recording/readout subsystem. The
following figure shows these three components and the data flow.

A B
Data input Channel

encoder

Modulation
encoder

Recording
subsystem

Digital Digital Analog

Storage

medium

A’ B’
Channel
decoder

Modulation
decoder

Readout | Noise
subsystem

Data output

Digital Digital Analog

Figure 2.1. Block diagram of the general data storage system.

The above block diagram describes all kinds of digital data storage systems in which

information is stored and retrieved in a digital format. Such systems include



magnetic tape, magnetic floppy and hard drives, and optical systems such as CD-
ROM, DVD, etc. The upper half of the diagram is the data recording part. The raw
digital data is input sequentially into the channel encoder, which inserts extra bits into
the raw data stream. These redundant bits are used for error detection and error
correction when retrieving the data. Therefore, the channel encoder gives the ability

to detect and correct some errors that occur elsewhere in the system.

The recording/readout subsystem provides the analog input and output to/from the
analog storage medium. Noise (measurement error) is an inherent part of the
recording and readout process. Hence, the modulation encoder is applied to process
the data to match the physical characteristics of the recording/readout subsystem. To
maximize the storage capacity, the physical bit packing density of the data storage
system is generally made as large as possible. In this situation, the inter-symbol
interference (ISI) becomes a limiting factor for the reliability of data retrieving. To
compensate for ISI, the modulation encoder maps the input digital data with
algorithms that attempt to minimize the effective ISI. With proper design, the
modulation codes can improve system robustness without compromising too much

storage capacity.

The recording subsystem writes the digital data from the modulation encoder output
onto the storage medium in analog form. Therefore, it acts as a digital-to-analog
converter. There are several types of storage media, such as magnetic, mechanical

and optical media [45]. The data might be recorded onto a 1D, 2D or 3D medium in a
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serial stream (1 dimension) or in parallel with several streams. The data retrieving
process is in the bottom part of the block diagram. The stored data is retrieved
through the readout subsystem and transformed into digital form. Hence, the function
of the readout subsystem is just opposite to the recording subsystem, and as an
analog-to-digital converter. —Besides the data format conversion, the readout
subsystem must reliably recover the data in the presence of noise and ISI. A good
readout subsystem will give reliable output with moderate complexity. The output
from readout subsystem goes into the modulation decoder. The decoder uses the
same mapping table as the encoder side with opposite direction of mapping. Hence, it

converts the data back to its original form with minimum error.

The data input to the channel decoder typically has a bit-error-rate (BER) of 107 to
10~ and the channel decoder further reduces the BER to 107'? or better by correcting
errors. There are many error control coding algorithms that have this capability [24].
Some of them use off-the-shelf chips, and implement codes such as the Reed-
Solomon code, that is widely used in many data storage systems. These error control
coding algorithms can decrease the BER from 10~ to 10°. Some examples are
shown in Figure 2.2 [37]. This figure shows the output BER (vertical axis) as a
function of the input BER (horizontal axis) for Reed-Solomon codes with different

parameters.
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Figure 2.2. Capabilities of Reed-Solomon code.

The BER between the channel encoder and decoder is the actual BER that the end
user will encounter. This error rate after the channel en/decoder is called residual

error rate while the raw error rate refers to the error rate from the storage medium.

In addition to the BER, the transfer rate is another important parameter for any data
storage system. Both the recording and retrieving transfer rates are usually specified.
Depending on different applications, the data transfer rate must satisfy the application
requirements. For example, real-time applications need to have a constant average
transfer rate. To increase the data transfer rate, parallel readout is preferable over

sequential readout. In a parallel readout scheme, the data is recorded or retrieved

12



through more than one channel. As an example, Philips has described the design of
an experimental DVD-ROM drive with parallel readout of up to 9 tracks
simultaneously [9]. On the other hand, page-oriented data storage (PODS) systems
use two dimensional data pages for parallel recording/retrieval, therefore, they can

dramatically increase the data transfer rate.

Another important characteristic of data storage systems is the data capacity. Since
the storage system includes modulation coding and channel coding, the data capacity
refers to the net capacity which can be used by the user. These coding algorithms
will put some overhead or redundancy on the data and increase the overall data
volume. The code rate is defined as the ratio of the useful data to the overall data
volume after applying the coding algorithms. Therefore, the net capacity of data

storage system depends on the code rates of the modulation code and channel code.

With advances in technology, the basic physical storage capacity has been increasing.
To measure it, one often uses areal density, also called bit density, which is the
amount of data that can be stored in a given area of a two dimensional disk. It is
usually expressed in bits per square inch (BPSI). New data storage systems have
been doubling this value every nine months [41]. In the magnetic data storage, this
density almost approaches the theoretical limit [31]. For this reason, two-photon
PODS and holographic data storage systems are attractive techniques for achieving
higher data densities, because they potentially utilize all three dimensions (the volume)

of the available recording material for storage.
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2.2 Other Related Work

There are several different technologies used in page oriented data storage (PODS)
systems, including holographic storage systems [14][16][23][33][31][31][34],
spectral hole burning storage systems [8][22][25][35][38], and two-photon data
storage systems [10][17][26][29][44]. The advantage of page oriented data storage
(PODS) systems over traditional data storage systems is the utilization of three
dimensional volumetric media with parallel recording/retrieving channels. Therefore,
it potentially increases the data capacity but also increases the data transfer rate.
However, as the data packing density increases, the PODS system also suffer from

noise, inter-symbol interference (ISI), and inter-page interference (IPI).

The simple binary threshold mechanism is typically used in PODS systems as shown
in the previous section. Some researchers have proposed other detection and
equalization techniques to alleviate those unwanted effects. For 2D ISI and noise
effects, a linear equalizer structure was suggested to approximate an inverse filter to
the ISI characteristics [5][6]. It makes use of the low pass nature of the 2D ISI
channel and eliminates it with inverse filtering. Another linear minimum mean-
squared-error equalization method is introduced for the holographic data storage
system [19][42]. It uses equalization followed by the threshold decision to retrieve
the data within one data page. In the experiment results, they show that the error rate
is higher on the periphery than that on the center of the data page. In stead of doing

equalization on the data retrieving side, a recording side inverse filtering is proposed

14



[2]. It exploits a priori knowledge of the 2D ISI and pre-distorts the data before
recording. Meanwhile, other researchers focus on modulation coding schemes to

improve the BER performance of holographic data storage system [3][13][21][43].

There are still others engaged in enhancing other parameters of the PODS. For
increasing the capacity, a multilevel two dimensional optical storage system is present,

which uses different pit sizes within the hexagonal coordinate [11].

Although there are many studies on mitigating 2D ISI effects, none of them considers
3D IPI. Since the demand for capacity keeps increasing, 3D IPI will be an important
factor when packing data closely into three dimensions. Therefore, this work
addresses the ISI and IPI issues simultaneously. This gives the readout subsystem the
ability to handle the applications with extremely high packing density. In addition,
we also consider the possibility of multilevel signaling in PODS. This can be
considered as another degree of freedom that may further improve the bit density and

storage capacity in the future.
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Chapter 3 Three-Dimensional Page-Oriented Data Storage

(3D PODS) System Model

We describe a detailed 3D PODS system model in this chapter. In this novel model,
we include both the inter-symbol interference (ISI) and inter-page interference (IPI)
effects. A special emphasis is on the readout system of 3D PODS. Based on its
system configuration, we derived the three dimensional incoherent point spread
function (PSF) for the readout system model. It contains the 2D PSF with and
without focusing error, which are expressed mathematically according to optics

theory.
3.1 Page-Oriented Optical Data Storage (PODS) Systems

Page-Oriented Optical Data Storage (PODS) Systems consists of two parts, the
recording subsystem and the readout subsystem. Figure 3.1 shows the recording

subsystem.

16



Information Beam

Spatial Light Modulator (SLM) i
or Page Composer Optical System Page-Oriented Optical Data Storage Systems

Figure 3.1. Recording subsystem of PODS.

In the recording subsystem, a spatial light modulator (SLM) or so-called page
composer is used to convert electrical data signals into spatially modulated coherent
or incoherent optical signals [12]. Essentially, the SLM modulates the spatial light
distribution of absorption or phase shift according to the electrical driving signal that
represents the data. Because of the fast temporal response, SLM devices are widely
used in optical signal processing field. After processing with the SLM, the desired
image pattern is written onto a photo-sensitive material which records the pattern
through the optical lens system. The recorded data forms a two dimensional array of
data marks called data pages on these photo-sensitive materials. These data pages are
stored sequentially on a rotating disk for access in the PODS system. During the
recording process, only the data page to be stored is excited by the addressing beam

[10][26].

The readout subsystem is shown in Figure 3.2.

17



Page-Oriented Optica Data Storage Systems Optical Readout System Detector Array

Figure 3.2. Readout subsystem of PODS.

Once the data is stored in the 3D PODS, the readout subsystem retrieves the data.
The readout subsystem consists of an optical readout lens and the detector array. To
retrieve the data, the data page is accessed from the rotating disk and illuminated by
the readout beam. For systems using two-photon materials and technology [26], this
illuminated data page generates a fluorescence pattern that is imaged by the optical
readout lens onto the two dimensional detector arrays. Since the non-illuminated data
pages are effectively transparent, only the fluorescent mark pixels (1 bit) on the
illuminated data page are sensed by the detector cells. The data page and the 2D
detector array are aligned such that each detector cell corresponds to an individual

data mark. Hence, the data is retrieved in parallel with high throughput.
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3.2 New Readout System Model

To analyze the readout subsystem, we represent it by the block diagram of Figure 3.3.
For simplicity, we assume that the inter-page interference is due to one neighbor page
on both sides of a given page being read. If the inter-page interference is severe, i.e.
more pages interfere with the data page in focus, we can include them in a similar

way. Hence, the 3D mathematical model of the readout subsystem is shown in Figure

3.3.
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Figure 3.3. The 3D mathematical model for the readout subsystem of PODS.

In the above mathematical model, (x,y) denotes the 2D continuous signal whereas [i,/]
denotes the 2D discrete signal, i.e. x and y are continuous values and i and j are

discrete values. Here a, (x, y) represents the data on the data page that is in focus.
The interference terms are shown as a,_,(x,) and a,.,(x,), which represent the

data page in front and in the back of the page in focus, respectively. The weights

7,7, and 7, denote the relative light intensity from the corresponding data pages.
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These weights are nonnegative and are normalized such that y, + ¥, + 7, =1. Here
h,(x,y), h,(x,y) and 7(x, y) are the point spread functions (PSFs) corresponding to

different data pages in the readout subsystem.

These point spread functions are derived in Sections 3.5.1 and 3.5.2, and are functions
of the object distance in front of the lens [12]. For the same object distance, we can
use the same point spread function to represent it. Since we assume equal spacing
between data pages in PODS, we use these three point spread functions for the entire
readout process. At the detector plane, each detector collects (integrates) the

incoming light and generates corresponding intensity levels.

While we assume an incoherent system here, such as two-photon system, we can
easily apply it to coherent systems (holographic systems etc.) as well. The ideal point
spread function of the diffraction-limited image system is modeled mathematically in
Sections 3.5.1. When there is a focusing error, the point spread function will vary
correspondingly. It is mathematically equivalent to convolving an out-of-focus term
with the diffraction-limited point spread function. The details of the out-of-focus PSF
are discussed in Section 3.4. For simplicity, we assume that the magnification factor
of the optical readout system is one. Since the out-of-focus distance is relatively
small compared to the focal distance, it is a reasonable assumption. In addition, when
the focusing error is large, the inter-page interference becomes negligible and will be

ignored.
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In the readout system, the detector collects the incident photons and produces a signal
proportional to the intensity and the detector area. For an incoherent system, we use
integration to model it mathematically. The integration area is the active field of the

detector. Assuming a detector pixel having unit x and y dimensions, the detector

integration in one dimension extends from —% to & 5 where & is a linear fill

factor of a detector ranging from 0 to 1 [28]. The fill factor defines the light-
gathering area of a detector. For instance, a detector with fill factor of 0.8 has an
imaging array in which 20% of each pixel's area is insensitive to incident light. The
detector also serves as a spatial sampling device, hence, its output signal with discrete

index values is

I’k[l' J*‘VJ'*‘V a,_ 1(«’5 y ®h (x y)dxdy+ _“W ¥ ak(x,y)@)hz(x,y)dxdy

[yy] b/ cy;/z
234 153 - B.1)
T -84 _%Ysam(x,y)@hs(X,y)dxdy+vk[z,J]

where § is the linear fill factor, ® denotes the 2D convolution operator and v, [7, /]

is 2D additive noise. Because the integration and convolution are linear operators, we
can further combine the terms in the received signal once we have the linear

relationship between those point-spread functions. In reality, the data recorded on the

storage medium is in analog form. Ideally, the recorded data mark a, (x, y) is a delta

function with a weight of either zero or one. If the size of the data mark is small

compared to the extent of the point spread function, we can model the data marks as
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delta functions, and combine them with the point-spread functions to carry out the 2D

discrete convolution in the above equation giving

M N 140
a1 3 3 ali-m -l [k
+¥; Z Z ak[z —m, j— n]_r#y M/k (x y)dxdy . (3.2)
+7; Z Z ak-t-l —m,j— n]_[J _[H/h (x ¥ d-’Cdy‘*‘vk[l J]

where a,_, [i, il, a[i,j] and a,,, [i, j] are binary-valued discrete index versions of

their counterparts and M and N are the horizontal and vertical extent of the point

spread function.

The two dimensional noise in the readout system is represented as vk[ ]] This noise

represents photon (Poisson) noise, electronic (thermal) noise and other noise sources
such as background light. In this study, we use additive white Gaussian noise
(AWGN) to model them. More accurate and detailed noise models can also be used

for particular types of storage systems [40].

The simplest readout detection system uses a binary threshold decision mechanism.
The threshold value T is pre-selected and fixed for the whole readout process. Given

the detector output signal 7[i, /], the output of the threshold device is

a i, j]= {0’ Ad NS (33)

L if nli,f]>T
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We want the output of the readout subsystem d,[i, j] to be as close to the data stored
on the medium a, [i, j] as possible. The discrepancy between them is the error. For

the data stored in a binary format, this error is calculated as bit error. Therefore, the
performance of the readout subsystem can be judged by the bit error rate (BER) it
generates. We propose a novel readout subsystem to combat both the inter-symbol
interference and inter-page interference simultaneously and provide a significant BER

improvement over traditional readout systems.
3.3 Optical System Configuration

Our three-dimensional page-oriented data storage (3D PODS) system model is shown
in Figure 3.4. The 2D pages of stored binary data are accessed sequentially from a
rotating disk by means of a narrow readout beam that ideally illuminates only one
page (Data Page 2) as shown. The fluorescence pattern from Data Page 2 located in
the object plane at z, in front of the lens is imaged to a diffraction-limited spot array

at the in-focus image plane located at z; behind the lens. Here a 2D detector array

measures the output for further processing by a modulation decoder.

23



Readout Beam

Image Plane

Blur
Spot

Figure 3.4. Optical system configuration for 3D PODS.

If an object plane is placed at a distance z, # z, , the image of a point object is out of
focus. If z, > z,, we write z, =z, +6,, while if z, <z,, we write z, =z, —J,. Note
that p is the fixed inter-page spacing in the page-oriented optical memory. We note

that a point object in an out of focus plane produces a blur spot of diameter d at the
image plane. From geometrical optics [39], we have the system setup shown in

Figure 3.5.
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Figure 3.5. Optical system setup for determining blur spots in the image plane.

where W is the lens diameter
[ is the angle subtended by the blur spot
fis the focal length of the lens
The planes located at distance &, and &, in front and in back of the focus point
respectively are chosen to produce the same size of blur spot on the image plane. The

distances z, and z, satisfy the lens law, i.e.

1,11 64
Zi Za f
and from geometrical relationships we have
o 9, Z5 (3.5)

@ +6)8 (@,—-6)B 2w
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which we solve for

22
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Hence, &, is smaller than &,. When the lens diameter 217 is large compared to z,8,
where f is the angle subtended by the blur spot, the values of J,, §, and p are
approximately the same and the object plane at z, falls approximately halfway
between two out-of-focus planes located as shown to the left and right of z,. We

assume that the system parameters and the diameter d of the blur spot satisfy these

conditions.

3.4 Coordinate Systems

There are many different coordinate systems that describe the distribution of data
points (pixels) in optical data storage systems. The most common is the rectangular
(Cartesian) coordinate system. We also consider the hexagonal coordinate system
and analyze and perform simulations based on both. Other coordinate systems are
possible but may be more difficult to implement because of their more irregular

nature.
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The most conventional coordinate system is the rectangular grid system, consisting of
aligned vertical and horizontal grids. The data pixels and the detector arrays are lined
up on these grids to facilitate the data readout process. In this work, we assume that
the coordinates are normalized such that the center of each detector is located at
integer coordinates and the origin of the coordinates is positioned on the center

detector as shown in Figure 3.6.
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Figure 3.6. Rectangular coordinate system of detectors.

Because most image detectors are made in a rectangular coordinate grid, this is the

first system to be analyzed.

We also examine the hexagonal coordinate system in detail as shown in Figure 3.7.

Similar to the rectangular coordinate system, the hexagonal coordinate system also
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consists of aligned vertical and horizontal grids. However, there is a relative

displacement between even numbered rows and odd numbered rows.

Figure 3.7. Hexagonal coordinate system of detectors.

Although we use circular detectors with a unit diameter in this example, the detector
shape can be a circle or hexagon. The advantage of the hexagonal coordinate system

over the rectangular coordinate system is the aerial density. From the above figure,
the pitch between the centers of two detector rows is \[% compared to the unit

detector pitch of the rectangular coordinate system. Therefore, the aerial density is

%@ =1.1547 times that of the aerial density of the rectangular coordinate system.

Thus, using the hexagonal coordinate system provides about 15% or more capacity
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over its rectangular counterpart. In addition, the six closest surrounding neighbors are
all equidistant in the hexagonal coordinate system. Therefore, the hexagonal
coordinate system may be more suitable for optical systems with circular symmetry,

such as readout systems with a circular aperture.

3.5 Three Dimensional Incoherent Point Spread Function

We model the effects of ISI and IPI as a set of discrete weights located in a three-
dimensional block surrounding the center data point (pixel) to be estimated. As an
example, we assume the ISI and IPI are negligible at distances far from the center and

limit the effects of the PSF to a finite 3 x 3 x 3 volume as shown in the figure below.

3D Point Spread Function

0.010.03 (0.01

?/3 X 10.03| 0.8 |0.03

0.01]0.03 (0.01

0.003 0.02(0.003

7/2 X |0.02| 0.9|0.02
0.003 0.02

0.01 |0.03 |0.01
}/1 X lo.03|0.8 |0.03

0.01]0.03 |0.01

Figure 3.8. Example of space-limited 3D point spread function.
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Therefore, for any mark pixel, it will generate limited range ISI to the neighbors. For

the above example, the ISI effect is shown in the following figure.

data page 4-1

Figure 3.9. Example of ISI effect.

3.5.1 Incoherent Point Spread Function Without Focusing Error

From Section 3.1, we know that the detector readout intensity is the sum of light from
many statistically independent fluorescent elements in the 3D PODS, and can be
modeled as an incoherent imaging system. The incoherent point spread function
(PSF) is determined by the aperture of the imaging system. Some examples of the

diffraction-limited incoherent PSF are shown below, while the PSF with focusing
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error is introduced in the next section. For an imaging system with square aperture,
the incoherent PSF is
L oofx
hy(x,y)= ?smc S , (3.8)

b,’b,

5

where by is inversely proportional to the width of the aperture.

The factor %2 in front of the PSF is used to normalize the integral of the PSF over

5

all values of (x,y) of the PSF to one. In an incoherent imaging system, this integral is
proportional to the total energy in the PSF for a § function input. Several PSFs with
different b, values are shown in Figure 3.10. As the b, value increases, the width of
the main lobe also increases. Therefore, more energy is extended to the neighbors

and the ISI effect worsens.
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Figure 3.10. The sinc® PSF along the x-axis with various values of b;.

Using the Rayleigh resolution criterion, two points are said to be “just resolved” when
the minimum of one PSF is located at the first maximum of its closest neighbor PSF
[12]. Hence, for the incoherent sinc® PSF used in Eq. (3.8), the Rayleigh resolution
criterion is equivalent to b=1. For b, values larger than 1, the two PSFs are closer
than the Rayleigh resolution criterion. The Rayleigh resolution limit is shown in

Figure 3.11.
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Figure 3.11. The sinc? PSF corresponding to the Rayleigh resolution criterion.

For a readout system with a circular aperture of the, the incoherent PSF is

2
1 | J,Q2rx*+y* /b,
mb;| x> +y? /b,

hy(x,y)= (3.9)

Equation (3.9) is also called the jinc function for its resemblance to the sinc function.

Similar to the rectangular case, the factor %rbz is used to normalize the volume of

the PSF to one. Because this PSF is circularly symmetric, the hexagonal coordinate
detector system is usually used with it. Several PSFs with different b, values are

shown in Figure 3.12.
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Figure 3.12. The J; PSF along the x-axis for various values of b.

As before, the Rayleigh criterion is defined as the first zero of PSF falling on the
maximum of the neighbor’s PSF. In this case, the corresponding b, value of Rayleigh
criterion is 1.6398, which is calculated by using a numerical solution. An example of

Rayleigh resolution limit is shown in Figure 3.13.
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Figure 3.13. The J; PSF corresponding to the Rayleigh resolution criterion.

Comparing the Rayleigh resolution examples for sinc® and J; PSF shows that the

relative height of the sidelobe of J] PSF is smaller than that of the sinc’ PSF. Based
on numerical integration, the percentage of main lobe energy to the overall energy for
the sinc® PSF is 93.42%, while this percentage for the J; PSF is 97.93% in the
Rayleigh resolution limit. Therefore, the energy is slightly more concentrated for the
J? PSF than that for the sinc® PSF. In other words, the IS effect of the J; PSF may

be slightly less, and may be is advantageous when choosing the aperture of the

readout system.
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3.5.2 Incoherent Point Spread Function With Focusing Error

For a simple focusing error, the OTF of the system in Figure 3.4 with a square

aperture of size 2wx 2w in the pupil plane is

Sy Sy)= A(-IX—JA(LJ X sinc[gw”' ( Jx J[l = I |Hsinolﬁ%(i}[l —MH
2f,) \2f, A\2f N 2f, 2 \2£ )\ 2f

(3.10)

where

W, =_—(i—lj(2W)2, (3.11)
2\z =z

z; is the distance from the aperture to the image plane, z, is the distance from the

aperture to the object plane, and f, = ,i‘zi . By varying the object plane distance z,,

i

we get the cross section graph of the PSF as a function of ,, shown in Figure 3.14.

m
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Figure 3.14. Cross section of different out-of-focus PSF as a function of W,,.

In addition, we can see the out-of-focus effects from the optical transfer function

(OTF), which is the Fourier transform of the PSF. For different 7, values, we plot

the cross section of OTF in Figure 3.15.
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Figure 3.15. Cross section of different out-of-focus OTF as a function of W,,.

In general, the incoherent point spread function (PSF) of the system with focusing

error is given by

a0 (x,y)w-l{sin{?% [;7)[1 Lol ]HST [ 5 ][1 s m

(3.12)

where 7, (x,y) is the diffraction-limited incoherent PSF of the system, ® denotes

convolution, and the other parameters are the same as described above [12].
Although Eqgs. (3.10) and (3.12) are derived assuming a square pupil aperture,
similar results are obtained for apertures with different shapes. Thus Eqs. (3.10) and
(3.12) are effectively linear filters applied to the aberration-free PSF. Representing

Eq. (3.12) in matrix form, it becomes
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H,, . =PH, (3.13)

defocus

where the matrix P represents the second term on the right hand side of Eq. (3.12).

3.6 Readout Light Intensity Distribution

As shown in Figure 3.4, the finite width of the readout beam is intended to illuminate
only Data Page 2, but may partially excite a response in adjacent pages 1 and 3,
producing unwanted out-of-focus interfering signals at the image plane. Again, we
set the p as the fixed inter-page spacing in the page-oriented optical memory. We
assume the intensity of the readout light beam has a Gaussian distribution profile as
shown in Figure 3.16, and note that the Gaussian readout light distribution may excite
the adjacent Data Pages 1 and 3. We call the excitation of these two unwanted data
pages interfering light. Here, we express the proportion of the interfering light
intensity from Data Pages 1 and 3 to the overall incident light intensity by the inter-

page interference coefficients as y, and y,, respectively, whose value between 0 and

1 models the degree of IPL.
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Figure 3.16. Readout light intensity distribution profile.

The measured signal at the image plane is

I = 71D et + 72Dus + 73D socus®s +V 5 (3.14)
where a,, a, and a, are lexicographically ordered vectors representing the 2D
binary data on the three data pages, v is a 2D measurement noise vector, and D ;.
and D, are lexicographically ordered measurement matrices derived from impulse
response matrices H,, and H ., . Here we use the matrix-vector multiplication to

represent the convolution. Considering a linear time-invariant system with impulse

response A(n), input x(n), and output y(n) as shown in Figure 3.17.
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X(n n
Figure 3.17. Linear time-invariant system.

In the convolution notation, the input-output relationship is

y(n)=h(n)® x(n).

The matrix-vector representation of the above equation is

y =Hx,

where

x(0))
x(1)

X=x2)|,
x(3)

y(0)
y(1)
Y=|»2)|,
¥(3)

and

(3.15)

(3.16)

(3.17)

(3.18)
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h(0)
h(l)
H=|h(2)
h(3)

0 0 0
hO) 0 0
h(1) h0) 0

h(2) k(1) h(0)
h(3) h(2) K1)

(3.19)

The matrix H is called the convolution matrix and has the structure of a Toeplitz

matrix. In each column of the matrix H, the entries are the sampled impulse response

of the system separated by one sample delay. Similarly, we represent the two

dimensional convolution in matrix-vector multiplication.

First, we write the two

dimensional n xn data page into one dimensional vector a; with lexicographically

order of size n*> x1 as

Assuming the two dimensional impulse responses

we rewrite them into vector forms as

ade ] vIR(] JO
Uwnod |

aded ®le( Jo
Uum|od pug

a3e vieq Jo
uwnjod p,¢

A “ .

(3.20)

H, and H,,,, are of size mxm,
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5
d= < =2 ¢
=g
:
L J, (3.21)

where each block is zero padded to the size of (n+m—1)x1 and vector d is of size

(n+m—=1)* x1. Similar to the convolution matrix in Eq. (3.19), we use the vector d

to form the lexicographically ordered measurement matrix as

, (3.22)

O O A
- O /O
R O O

where the size of matrix D is (n+m—1)* xn*. In each column of matrix D, it is one

sample delay to the column on the left. Therefore, it is also a Toeplitz matrix. The
receiving signal vector r and the measurement noise vector v in Eq. (3.19) are similar

to the one dimensional data page vector a; as
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aded meQ
PaAIdY JO
Uwngod |

a3eq meq
PaAIIIY JO
UUM[03 pug

adeq eieq
PaAladay jo
uwnjod p,¢

y 13 (3.23)

and

\
H
J

95100 Az 3
uwnjos |

asiou 4z Jo
UUm|od pg

asiou (Jg Jo
ULIN|OD g

(3.24)

both with size of (n+m—1)" x1,

We normalize the received signal versus the incident light intensity. Therefore, we

have

h+r.tys=L (3.25)
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From Figure 3.16, assuming that the illumination beam has a symmetrical profile, we

assume that y, =y, and use a single variable y to represent them. Therefore, we

have y, =1-2y . Then,

r= mdejbml.\' (al + a3)+ (1 - 27)Dd1a2 +v, (326)

and Eq. (3.14) are our basic measurement models in this work.
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Chapter 4 Least Square Equalization for 3D Page-Oriented

Data Storage Systems

Here we describe a general least square equalization method based on the imaging
model of Egs. (3.14) and (3.26). The method is an equalization procedure that uses
information about the inter-page interference coefficient and threshold detection
following estimation. From Eq. (3.26), each measured page contains data from one
directly illuminated page and two partially illuminated pages. We make use of all

these data to get the estimates.

We modify Eq. (3.26) to include a general page index k in the received signal to

obtain

r =M s (ak—l +a,, )"' (1-2y)D a, +v,. (4.1)

We write three consecutive received data pages in a matrix form as

Ao
Ly YsDuoors V2P 71D defocus 0 0 A4 Via
r, |= 0 73D defocus Y Da V1D segorus 0 ap |+ Ve |
Ly 0 0 YDusps 7 Pa 7 1D defocus || Bk Vi1
a5

(4.2)
where ru1, i, i are the received signals at clock times k+1, &, and 4-1 containing

measurements of data page a;. Here ai. is the data page just before data page ai.,
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and az is the data page just after data page a+;. We summarize Eq.

(4.2) as

r=Da+y, (4.3)
4 A

where r = [rk+1 . I, ][ , 4= [ak+2 ey A A 3k-2]T » ¥= [vk+1 A\ Vk—l]
and D is the matrix in Eq. (4.2). Here and in the following sections, bold

lowercase letters with an underbar denote a vector which is a combination of other

vectors.

The least square equalization [27] algorithm operates in a batch or recursive mode.
Both of these two different modes will lead to the same results given the same set of

measurements.
4.1 Batch Mode Operation

We have the least square estimator of the pages as

a=D'r, (4.4)

where

é = [5k+z §k+l ﬁk ﬁk—] ﬁk—-z ]T (4.5)
and D" is the pseudoinverse of matrix D. We only need 4, as the estimate of Data

Page a;. In this model, the matrix D is fixed for every data page and every clock time.

Hence we only need to calculate it once for the entire readout process and save
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computation. Because it is a linear operation on the received signals, we represent the
least square estimator as

A, =0r, . 00 + 08 (4.6)
where matrices C;, C> and C; are derived from D*. For the underdetermined matrix

D, we can write the pseudoinverse matrix D" as

D' =p"(DD'J". 4.7)

Since we only need part of the estimate vector a in Eq. (4.4) to get the estimate a,,

we do not need to calculate the whole pseudoinverse matrix D*. The complete

pseudoinverse matrix is

¥ 3Ddr.j’0cu.slP 73D defors P
73D tepoers P+ 7, D 'Y V3D toeus N+ V2 Dy P
D" = % 73D sgocus + V2 D@+ YDuous ¥ V3D tepocus@ + 72Dy A+ 71D o P
73Dl + 71D gofocis® 72 Da @+ 7D s A
L Y lqufcx'u:r Y lDrfq,"acus(I) (4.8)
73D dgtocus T’
73D tefocss @+ 72Dy T
73D tgocus ¥ + 72D P + Filk sl
V2D + 71D s P
Y lDrlcfocus‘P ]
where
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A= (}’2D41)6 i (}’1 D ofocus T (}’cher + (7 1D defocus )4 (Yde! )2 + (7 IDM,M)G
—4yy 3Dz’efar:wr ()’sz )4 —2F 13 Y Schfncus ()’chﬂ )2 + (}'2Ddf )4 (?’ 3Ddefacm)2
#5727 2D e (72D ) 42772 D s = 277D s (2D
(DS (D s )+ 277D s + (/3D ets

b= _}’lDdefom- (}’2])4;)3 - (?’1Dd¢ﬁ;cus )372])& - (7’21)41 )3 73Ddejam —7.Dy (73Ddcfocus )3 )
(4.10)

I'= (?’1Ddefocus)2(}’z])d1)2 F ylySDZefomm (}/ZDa’I)Z = 7:373D3eﬁmus & (7’de1 )Z (}’3Dduﬁmu.c)l
- yly:D:’efocus

; (4.9)

4.11)

V= _(71Ddeﬁ;cus7’def + 7D 073D sotocas )2 * ((VIDMUM-)Z + (?’2])4: )2 + (73Ddefocu.« )2)2 »(4.12)

and

A = _?/f}/fD;efocus + ((}’IDdejocm)z + (72]):!.' )2 + (},BDdcﬁ)cu.\' )Z)Z i (413)

Therefore, we have

1

C[ = Z ]-]/3Ddefoc'usr + ydel(D + }’iDdefacusLP]! (414)
1

C,= -A—b/JDdefocmq) +7, DA+ }/IDdLjncm(D]’ (4.15)
1

C3 = K[}/SDdcfocusLP + yzDa‘Iq) + }/lDdL'fOCuSF]' (4'16)

Using this estimator, we use all the received signals that contain the measurements of
the desired data page. Thus, there is a delay of at least the inter-page arrival time
before the estimate is produced. However, assumed that files occupy several

sequential data pages, so that if a; is read, then a;.; and a;+; are probably also read. In
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such case, the batch mode least square equalization performs estimation as soon as
the measurement received. This estimator is the same as the inverse filter used for

image restoration in image processing applications.
4.2 Recursive Mode Operation

The recursive least square estimator generates a sequence of estimates based on a
partial set of received signals. Based on the batch mode operation, we derive a
recursive formula for our data retrieval system. In this mode, we do not need to wait
for all the received signals, i.e. I+, I's Fr1 to estimate the data page a;. First, if we

only receive signal ry.;, Eq. (4.1) becomes

rfc-l = [0 0 yiDdefacus }/2D:ﬂ ledefocus] ak F Vk—] . (417)

We write the above equation in compact form as r,_, =d! a+v,_, where

0

0

d =7 3qu/'acu5
72Dy
71D defocus |

(4.18)

-

and

T
ﬂz[amz Ay A A, ak—Z] . (4.19)
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We add a subscript to the estimated a variable to denote the sequence of
measurements that are received. This subscript is called a recursive loop index.
Hence, our least square estimate at loop index 1 is

a,=d[a’a 'y, (4.20)

When the second received signal r; comes in, the recursive least square estimator is

a, =2, +d,P, [l'k -dgéll, (4.21)
and
P, =[p"+dlq,[", (4.22)
where
P =[a’q,]", (4.23)
and
# & §
}/SDdefacus
d, = 7,D,; | (4.24)
}/IDdefocus
L 0 _

Finally, when the third received signal ry; arrives, we have the final estimate a, as

4, =a, +d,P, [ T _d;.f_‘z]a (4.25)

and

P, =[p;' +dld,[", (4.26)

where

i



g lDdefﬂms
7. Dy
d; =| 71D soeus
0
0

(4.27)

In general, the recursive least square estimator at loop index / is

ér = [I —d,P[d;r] é.’—l +d!PIrk+f—2 (4.28)

and

P, =[P +d’q,]" (4.29)
and d, is the corresponding transposed row vector of the matrix D. The recursive

mode estimate for a data page ay is the same as that from the batch mode given all
relevant observations ri+1, I Ir). However, in recursive mode operation, the
estimate is updated based on the previous estimate and the new received signal in
each recursive loop. The estimate result is improved in each recursive loop. Thus the
recursive mode results are increasingly accurate as additional signals are received. In
addition, the matrices Py, P,, P; and d;, d,, d; are all fixed through the readout

process. We can pre-calculate them and save computation.
4.3 Time Complexity Analysis
4.3.1 Batch Mode Estimation

Any data page a; with size nxn can be formed into a lexicographically ordered

vector with size n*> x1. If we truncate the two dimensional point spread function into
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an mxm mask, we represent the two dimensional convolution of the data page with

the point spread function by a matrix multiplication of the form as

1 = D socus (ak—] +a,, )’*‘ (1 = 27)Ddrak + Vg, (4.30)

where D and D, are lexicographically ordered measurement matrices derived

defocus

from impulse response matrices with size (n+m—1)* xn>. Therefore, the received

signal ry is a vector of size (n+m—1)*>x1. The general form of least square batch

mode estimation 1s

i, =Cr. +Cr, +Cyr, .. (4.31)
The matrices C;, C, and Cs are of size n” x (n+m —1)* respectively. Hence, to get
the estimate of each data page, we need 3 x n® x (n+m —1)* operations. For any size

of the PSF mask, the time complexity has the upper bound denoted as O(n*) ~ 3n*.

From Egs. (4.14) through (4.16), the matrices C,, C; and C; consist of linear

combinations of matrices D and D, , which are lexicographically ordered

defocus
impulse response matrices. Since the central part of the two dimensional impulse
response contains significant amount of energy than the rest, it is often truncated into

an mxm mask. Therefore, matrices D, and D, only have limited entries with

nonzero values, and the linear combinations of them also possess this property.

From the least square batch mode estimation shown in Eq. (4.31), the effective

equalization processing window is the extent of the truncated PSF mask. To estimate
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any given data mark in the data page, the complexity is proportional to the extent of

the ISI window size m, which is much smaller than the data page size n. Thus the

asymptotic time complexity is Q(n®).
4.3.2 Recursive Mode Estimation

The general form of least square recursive mode estimation from Eq. (4.28) is

a = [I_letd.T] i, +dPr,,. (4.32)
although in each recursive loop, the matrix P, also needs to be updated using the

equation

P, =[P +d’a,[". (4.33)
Because these matrices d, are derived from the fixed matrix D, the matrix P, is also
fixed in each iteration step and can be computed in advance. Therefore, the term
d,P, and d] , with size 5n° x (n+m— 1)* and (n+m—1)* x 5n® respectively, can be
pre-computed. With the estimated result &, of size 5n” x1 and the received signal r,
of size (n+m—1)"x1, we need roughly 2x5n” x(n+m—1)’ operations in each
iteration step. Assuming using estimates with three data pages, the upper bound of
time complexity for the same estimation result as the batch mode is 10n* operations,
denoted as O(n*).

Since the estimation of any given data mark is done within a finite equalization

window similar to the batch mode operation, the asymptotic complexity of the
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recursive mode operation is also Q(n’). In the batch mode operation, all the

received signals are processed in one shot to reach the estimation. However, in the
recursive mode operation, only one received signal is used in each iteration loop to
update the estimation. In Eq. (4.32), the first term on the right hand side can be seen
as an overhead term associated with the update process. Thus, in comparison, the
recursive mode generally needs slightly more operations than the batch mode to get

the same estimation result.
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Chapter 5 Estimation and Detection Results

In this chapter we present experimental results based on the algorithms described in
Chapter 4. We use the bit-error-rate (BER) and the signal-to-noise (SNR) ratio as
performance measures for comparison of various systems. The simulations are

carried out on both rectangular and hexagonal coordinate systems.
5.1 Experimental Parameters and Simulation Procedure

The physical parameters used in the simulation are adopted from an actual
experimental system made by Call/Recall Inc.[4]. Their two photon multilayer disk

has 400 layers. The related parameters are listed in Table 5.1.

Square aperture size 4 mm x 4 mm
Focal length 8 mm
Readout wavelength 635 nm

Pixel separation on the data page | 10 pm

Data page separation 30 ym
Focusing error parameter W, 0.0934 pm
Table 5.1. System parameters used in simulations

The data page size in our simulations is 100x100 pixels. These data pages are filled

with randomly generated Os and 1s with equal probability. For each different
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simulation setting, we create at least 10° data pages and average the error statistics
over all pages in order to have reliable BER and SNR comparisons. The diffraction-
limited incoherent point spread function used in the rectangular array detectors from
Eq.(3.8) is

h,(x, ) =izsinc2[i,lJ, .1)

b; b, b,

where b, represents the degree of inter-symbol interference. When the value of b; is
large, the pixel blur at the detector becomes worse and it degrades the system
performance. Similarly, we use the diffraction-limited incoherent point spread

function from Eq.(3.9) in the hexagonal array detectors as

(5.2)

2
1 | J.Qrx*+y*/b
ha’!(xay)= [ I( 4 c] .

zbl | Jx*+y /b,
The b, parameter controls the degree of ISI in the hexagonal array system as b; does

in the rectangular array system. Therefore, we also call the by and b, parameters as

the blur factors of the PSF.

In addition to the ISI, the inter-page interference (IPI) further corrupts the received
signal. From Eq. (3.14), we use the y, and y, parameters to represent the degree of

inter-page interference. The values of these parameters range from 0 to 1. We

assume that IPI from pages before and after the page of interest is the same, so the y,

and y, parameters specifying the degree of IPI are the same.
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The performance of the readout system is affected significantly by both ISI and IPL.
The remainder of this section describes the choice of blur factors and the
normalization procedure used in the simulations. We compare the effects of ISI for
rectangular and hexagonal coordinate systems. The blur factors b, and b, are chosen
such that the ISI effect ranges from low to severe with both coordinate systems. The

PSFs with different blur factors are shown in Figure 5.1.

Detector Array Detector Array

(a) (b)

Figure 5.1.PSFs with different blur factors in (a) rectangular (b) hexagonal coordinates.

In Figure 5.1, the center detector array element is labeled with 0. For a fair
comparison between two coordinate systems, we define the ratio of received energy
integrated over the center detector array element to the total energy of the PSF

(describe in Chapter 3) computed by integrating over all values of (x,y) as
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[[psF

Ez(m‘iiffic%. (53)

all(x,y)
Using the definition of PSF as given in Egs. (5.1) and (5.2), we have already

normalized these two functions, so that

PSF=1. (5.4)
J

all (x,y)
Therefore, the received energy ratio in Eq. (5.3) for the rectangular coordinate system

is

1 . X
Eo= ” -—zsmcz[g—,%— xdy , (5.5)

center detector element "~ 5 s s

and for the hexagonal coordinate system is

2

1 | J,Q2ax*+y* /b

EhEx = J-J. ﬂbgl 1( 772 X Ziﬂb C:| dxdy (5.6)
e x“+y° /b,

center detector element
For all comparison of rectangular and hexagonal coordinates, we choose blur factors

bs and b, that yield the same ratio of received energy, i.e. Erect=Fhex, and pair the

results. Table 5.2 lists the blur factors that we use in our simulations.
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Degree of ISI | Rectangular Hexagonal Received
coordinate b; | coordinate b, | energy ratio £
Moderate ISI 1 1.7609 62.66%
Moderate ISI 1.2 2.0606 50.85%
Moderate ISI 1.4 2.3620 41.62%
Severe ISI 1.5 2.5235 37.55%
Severe ISI 2 3.3055 24.11%
Severe ISI 2.5 4.1328 16.30%
Table 5.2. Comparison of blur factors for rectangular and hexagonal
coordinates.

From Egs. (3.25) and (5.4), the received signal intensity is normalized such that the
overall received intensity from three mark pixels at a particular detector element in

three successive pages is 1, i.e., the sum of the three gamma variables is one, and

71 [ [raus (5 9 )by + 7, [ e, ety + 7 [ [ (v 9)elidy =1, (5.7)

as shown in Figure 5.2.
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Mark pixels Detector
Data Pages #1
Data Pages #2 7/ 1
Data Pages #3 }/ 2
£
Figure 5.2. Normalization of the received signal intensity

Figure 5.3 through Figure 5.6 show the influence of ISI and IPI on the histograms of
the received signal intensity. We eliminate the additive noise in these figures so that
we can focus on the effects of ISI and IPI. We collect the received data at the
detectors from systems with four different degrees of ISI and two different degrees of

IPIL.

“1”

From the histogram figures, we notice that the horizontal extents of “0” bits and
bits increase rapidly as the blur factor increases. When these two histograms overlap
each other, we cannot guarantee an error-free data retrieval based on a simple
thresholding method. Generally, if the overlap area is large, the readout system has a

higher error rate at the output.

Comparing the histograms of received signals on rectangular and hexagonal

coordinate systems, the signal intensity distribution of rectangular system tends to be
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slightly more compact than that of the hexagonal system under similar ISI and IPI
effects. In other words, the received signal intensity of the rectangular system forms
a narrower peak in the histogram plot compared to that of the hexagonal system.
Therefore, we expect that the system performance degrades more with the hexagonal

system if a simple thresholding detection method is employed.
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From the histograms in Figure 5.3 through Figure 5.6, it is clear that only when b,=1

and y, =y, =0.1, can we achieve perfect detection using a simple thresholding

method in the rectangular coordinate system. In all other cases, we need to use other
detection methods to recover the data. Both ISI and IPI have a strong influence on

the system performance.

Two-photon storage systems also have noise (measurement error). The noise may be
due to electronic at the detector plane (thermal noise) and Poisson noise due to the
statistics of the received photons. For simplicity in our initial study, we model the

noise as additive white Gaussian noise (AWGN) with probability density function

[1][36]
f. (v): \[2:[? exp(— (vz_o_’?)z ] , —00 <V <0 (5.8)

where m and o® are mean and variance, respectively. Other more detailed noise

models can be used in the future.

From the simulation results shown in the following sections, the least square
equalization method outperforms the simple fixed threshold method in most situations.
When the inter-symbol interference and inter-page interference are dominant in the
3D Page-Oriented Data Storage System, our method provides a feasible and practical

solution.
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5.2 BER Performance with Different Inter-Page Interference

In this section, we compare the bit error rate performance versus different ¥ values

which represents the degree of inter-page interference. From the results, our method

provides significant improvement over the conventional method.

Figure 5.7 through Figure 5.14 show the results of the linear minimum mean-square
error equalization [30][20] and detection algorithm described in Chapter 4. The
simulation results for a rectangular coordinate system are shown in Figure 5.7
through Figure 5.10, and the results for hexagonal coordinate systems are shown in
Figure 5.11 through Figure 5.14. The equalization algorithm estimates data pages
under different conditions of ISI and additive noise based on information about the
inter-page interference coefficient and uses threshold detection following estimation.
In the rectangular coordinate system, the parameter b; in Eq.(5.1) controls the degree
of inter-symbol interference produced by the incoherent point spread function. When
b1, it corresponds to moderate ISI. If b~=1.5, we consider it as severe ISL
Similarly, the b, controls the ISI effect generated by the PSF in Eq. (5.2) and we

consider it as moderate ISI for =2 and severe ISI for .=2.6.

Making the assumption of a symmetrical readout light profile, we use only one

parameter ¥ = y, = y, to control the degree of inter-page interference as in Eq. (3.26).
As mentioned in Chapter 3, the value of » is normalized to range between 0 and 1.

As y increases, a larger portion of the readout light partially excites the adjacent
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pages, which in turn produces out-of-focus interfering signals at the detector plane.

Therefore, the received signal is corrupted by inter-page interference.

We model the detector noise as additive white Gaussian noise (AWGN), whose mean
and variance are zero and o, respectively. The noise variance o’ is another
controlled parameter corresponding to the effects of noise. With the combination of

the above three parameters, we can examine our method based on different situations.

The bottom curve in Figure 5.7 through Figure 5.14 shows the consistently better bit-
error-rate (BER) performance of the algorithm on the vertical axis as a function of the
IPI interference coefficient y (horizontal axis) compared to the unequalized result
shown as the top curve. Although the least square equalization has similar
performance on the rectangular and hexagonal coordinate systems, it achieves slightly
better improvement on the hexagonal coordinate over the rectangular coordinate

especially with severe ISI and additive noise.
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BER

BER versus interfering light for b_=1 and noise ¢=0.02

t| —— Direct detection

)
/
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02
Interfering light proportion 2

0.25

0.3 0.35

Figure 5.7. Least square equalization results for moderate ISI (b;=1) and moderate

noise (0 =0.02) on rectangular array detectors.

BER versus interfering light for b_=1 and noise 5=0.05

—=— Direct detection

i
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Interfering light proportion y 1

0.25 03 0.35

Figure 5.8. Least square equalization results for moderate ISI (b;=1) and severe

noise (o =0.05) on rectangular array detectors.
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BER versus interfering light for b_=1.5 and noise ¢=0.02

—— Direct detection
—— Least square estimation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Interfering light proportion v,

Figure 5.9. Least square equalization results for severe ISI (bs=1.5) and moderate

noise (o =0.02) on rectangular array detectors.
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Interfering light proportion v,

Figure 5.10. Least square equalization results for severe ISI (b;=1.5) and severe

noise (o =0.05) on rectangular array detectors.
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BER versus interfering light for bc=1 .7 and noise ¢=0.02

Hl —— Direct detection
—— Least square estimation

BER

i i
0 0.05 01 0.15 02 0.25 0.3 0.35
Interfering light proportion 7

Figure 5.11. Least square equalization results for moderate ISI (b.=1.76) and

moderate noise (o =0.02) on hexagonal array detectors.
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Interfering light proportion y,

Figure 5.12. Least square equalization results for moderate ISI (b.=1.76) and severe

noise (o =0.05) on hexagonal array detectors.
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BER versus interfering light for b =2.5 and noise 5=0.02

H ——— Direct,detection i
[| — Least square estimation [
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Interfering light proportion 1

Figure 5.13. Least square equalization results for severe ISI (b,=2.52) and moderate

noise (o =0.02) on hexagonal array detectors.
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Figure 5.14. Least square equalization results for severe ISI (5,~2.52) and severe

noise (o =0.05) on hexagonal array detectors.
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5.3 BER Performance with Different Signal-to-Noise Ratio

In communication systems, a common performance index is the Signal-to-Noise ratio
(SNR). We define SNR as

var(r)

’
0_,2

SNR =

(5.9)

where var(r) is the signal variance and & is the variance of the AWGN. Figure 5.15
shows the results, in which the vertical axis is the bit-error rate (BER) while the

horizontal axis is the SNR expressed in decibels (dB), where dB is defined as

(SNR),, =10log,, SNR . (5.10)

The curves represent BER as a function of SNR under different degrees of inter-page

interference.

We performed the simulations on both the rectangular and hexagonal coordinate

systems and plot the results on Figure 5.15 and Figure 5.16 respectively.
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on rectangular array detectors.
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In Figure 5.15 and Figure 5.16, the legend (y,,7,,7,) next to each plotted symbol

denotes different degrees of inter-page interference. From Chapter 4, we know that

7, and ¥, represent unwanted partially excited light from the adjacent pages. When
either of them is large compared to y,, it is considered as severe inter-page
interference. Therefore, the bottom curve in the figure where y, = 7, =0 is the case

when IPI is absent. It is clear from the figure that our method performs well in all
situations. When the IPI is worse, the performance gap between our method and the
fixed threshold method is smaller. In this situation, all the received signals are

corrupted by the IPI and it is hard to recover the data from those signals.

Comparing the system performance between rectangular and hexagonal coordinate
systems with similar degrees of ISI, we realize that the least square equalization
achieves better improvement in the hexagonal system over that in the rectangular
system. The performance improvement with increasing SNR in the hexagonal system
is slightly better than that for the rectangular system. When IPI and noise effects
dominate, the least square equalization provides a significant improvement that is

especially useful for the hexagonal coordinate system.
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Chapter 6 Extension of 3D Page-Oriented Optical Data

Storage Systems

In this chapter, we explore the feasibility of using a multi-level (non-binary) format
for data storage to further enhance the capacity. We apply least-square equalization

methods to process the data and present some preliminary simulation results.

6.1 Multi-level Data Storage Systems

One technique to increase the data storage capacity of a system is to increase the
number of signal levels encoded within a given spatial area (pixel) of the storage
medium. For example, if we can reliably detect four stored levels rather than the

usual two, we can encode log, 4 =2 bits per pixel instead of one bit per pixel.

In a multi-level data storage system, there are at least two ways to encode multi-level
signals. One is space encoding and the other is amplitude encoding. We concatenate

these encoding schemes and form the multi-level encoder as shown in Figure 6.1.

= [ -
NNN—— Multi-level encoder ------ - ;
: Lt
M-ary ! Space ,| Amplitude ! N
symbols i | encoder encoder | ! VA
space factor: g amplitude levels: N
data page
Figure 6.1. Block diagram of the multi-level encoder.
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We normalize the pitch between regular size pixels in the x and y dimensions. For the
system with space encoding, we define a one-dimensional spatial scale factor # that
determines the size of pixels and detectors. To encode more bits than the regular
pixel size system in the same unit area, we choose the value of B to be less than 1,
i.e. 0< B <1. For S =1, the pixel pitch is the same size as the regular size detectors.
The amplitude encoder encodes the signals into N different intensity levels to be
recorded on the data pages. We assume that these N amplitude levels are equally

probable and are spaced over the interval [0, 1]. Hence, the adjacent amplitude levels

are separated by %N _ 1) ‘

To use multi-amplitude encoding efficiently, we choose N such that N =2*, where
each pixel conveys k bits of information. In the planar data storage system, the bit
packing density is defined as

Number of bits

Bit packing density = -
Unit area

6.1)

The multi-level encoder keeps the same pixel spatial packing density from the input
to the output for consistency. Therefore, for the storage of M-ary symbols, the bit
packing density is

log, N

: 6.2
5 (6.2)

Bit packing density = log, M =

Then we have
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M=N*", (6.3)
Using the simplest multi-level system with four levels (A=4) as an example, we have
two different choices to achieve the same data capacity. The first choice is to use
detectors with a pixel pitch of the same size, but with four different amplitude values
(N=4). The other choice is to use smaller detectors and pixel pitch with binary
amplitude values (N=2) as before. In Figure 6.2, a cross-section of the point spread

function along with two different detector sizes is shown. The point spread function

1 . X
hy(x,y) = = sinc> (E’ le (6.4)

used in the rectangular coordinate system is shown at the top of the figure. The top
detector array (regular detector) is the same unit diameter and unit pixel array defined

in Chapter 2. The lower detector array (small detector) is a fraction (8 ) of the unit

diameter and unit pixel array compared to the regular detector where 0 < # <1. For

M amplitude levels in the regular detector system, the S value is %/T—M as
08,

calculated from Eq. (6.3) in the small detector system to achieve the same data

packing density.

As the controlling parameter b, increases, the main lobe width of the point spread
function increases as well. This severe inter-symbol interference will have more

effect on the small detector than the regular detector. However, in the small detector,
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we only need to distinguish two levels of data amplitude. On the other hand, in the

regular detector, we need to identify more levels of data amplitude.

17 ;
0.9
0.8

Level 1
Level 2
Level 3
Level 4

06 ,,,,,,,,,,,,,,,, .............. B ................ ______________ ,
0.5 ‘ ‘ : : :
0.4
0-3 y ' i V i
02 ot N
0-1 : ! H ' )

l<- 1 ->\ Regular Detector

00000

]<-ﬂ->| Small Detector

Figure 6.2. Comparison between regular detector size and small detector size.

In Figure 6.2, the amplitude levels are separated equally by %N—l)’ where N=4.

We choose amplitude values as 1, y, y , and 0. For these amplitude values, we
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will have trouble determining the data if the center pixel suffers from interference
with one sixth of its energy. Therefore, the noise margin is % in four levels. On the
contrary, when we use two levels in the small detector scaled down by V2 , this

problem exists only if half of the energy is added or subtracted from the center pixel.

The example is shown in Figure 6.3.

171 Noise = T
}margin =1/6
Noise —
2/31 margin =112
1/3+
0l 0L
Amplitude levels Amplitude levels
of regular size of small size
detector detector
Figure 6.3. Comparison of noise margin between regular size detector and

small size detector.

There are three different sources which cause the error in determining the amplitude
levels. One is additive noise. It includes all the noise that is incurred by the readout
system and is usually modeled as zero-mean white noise. Thus the effect of the white

noise is both additive and subtractive.

The second source is the interference generated by the point spread function of the

readout system. Depending on the situation, the interference can be either additive or
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subtractive. In an extreme case, when there is some extra energy infused by the
surrounding mark pixels to the central space pixel and it exceeds the noise margin, an
error occurs. Since this interference increases the received signal energy, it is
classified as additive interference. There is another error possibility when the energy
spreads out and makes the received signal below the noise margin. Therefore, it is

the subtractive interference. Two extreme cases of errors are shown in Figure 6.4.

Space pixel ~ Mark pixel

Figure 6.4. Two extreme cases of additive and subtractive interference.

Although the noise and interference can be additive or subtractive, there are two
situations in which they do not affect the readout system. For pixels having a
maximum amplitude value, additive noise or interference will not introduce errors
since the amplitude saturated. On the contrary, no erroneous results will be made if
subtractive noise or interference is applied to pixels having a minimum amplitude
value. Except these two situations, multi-amplitude signals are limited by the noise

margin and prone to both additive and subtractive noise and interference.
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In general, for multi-amplitude data storage systems with equally spaced N-levels, the

noise margin is

Noise margin = (6.5)

1
2N -1)
Given the noise margin, we can define the conditions when errors occur in multilevel
amplitude systems for detector of any size. We then compare the performance
between multi-level systems with regular detectors and binary systems with small

detectors.

In the absence of noise and inter-page interference, we can compare various
amplitude encoding methods using calculation or simulation. However, since there
are many different data patterns to be considered, an analytical procedure to find the
decision point is tedious, and is a complicated function of system parameters such as
the PSF size and the type of coordinate systems. Instead, we use simulation method
to reach the results. To have a fair comparison, we compare two systems based on
the same packing density as in Eq. (6.1). The results shown in Table 6.1 are obtained

from systems with rectangular coordinates.
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Maximum b&; value
without error

Four amplitude levels with regular detector 0.8894

Binary amplitude levels with small detector 0.9581
scaled downto | of the regular detector
Ji -

Table 6.1. Comparison between multi-amplitude level and binary level

systems with rectangular coordinates.

From the results, it suggests that the system using small detectors with binary levels is
more resistant to interference than the system with regular detectors. Not only is the
noise margin larger, but also the signal is degraded by either additive or subtractive
interference and noise. Since the pixels in the small detector system are either
maximum or minimum amplitude level, they only suffer from either subtractive or
additive interference. In contrast, there are two levels in the regular detector system
that are not at maximum or minimum amplitude level. They are affected by both the
subtractive and additive interferences. Therefore, we would expect that the system
with multi-amplitude levels and regular size detectors performs worse in most

situations.

6.2 Noise Effects and Simulation

In practice, the readout system is never noise-free. Therefore, we include additive
white Gaussian noise in the simulation. For simplicity, we consider the system with
four levels using regular detector and the system with two levels using a small

detector. We examine the system performance in both rectangular and hexagonal
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coordinate systems. The results are shown in Figure 6.5 through Figure 6.8 as a

function of different degrees of interference represented by the blur factor.
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Figure 6.5. Comparisons of rectangular coordinate multi-level systems with

moderate AWGN (o = 0.03) and without IPI effect (y, = 0).
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Figure 6.6. Comparisons of rectangular coordinate multi-level systems with severe

AWGN (o = 0.05) and without IPI effect (3, =0).
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BER versus b, for noise STD=0.03 y,=0 and small pitch size=0,70711
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Figure 6.7. Comparisons of hexagonal coordinate multi-level systems with

moderate AWGN (o = 0.03) and without IPI effect (3, =0).

BER versus b_ for noise STD=0.05y,=0 and small pitch size=0.70711

0

10 e I v T r——
—=— Direct detection -
=== Least square estimation with regular hexagonal detector| -
—— Least square estimation with small hexagonal detect

............................................

10

g 10°
m
-3
10
L — i | i i i i \
17 18 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
b.: value

Figure 6.8. Comparisons of hexagonal coordinate multi-level systems with severe

AWGN (o =0.05) and without IPI effect (y, = 0).
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From the simulation results, we notice that the system with four levels and regular
detectors performs badly due to the noise. On the other hand, the system with two
levels and small detectors is relatively robust, even with noise. One explanation for
this is that the additive noise has a greater effect on the pixel amplitude and the

system with smaller noise margin degrades significantly.

However, when the value of b is high, the four level system outperforms the two
level system in the rectangular coordinate system, since the influence of the
interference produced by PSF is more severe than that of the noise. The PSF
becomes wider and extends the interference to obscures more detectors. Hence, the
small detector system receives more interference and the system performance
deteriorates. Nevertheless, similar situations do not happen in the hexagonal

coordinate system.

It should be noted that the above simulations assume that the inter-page interference

is absent, i.e. y, =y, =0. However, we will show that our least square equalization

method still works even with IPI effects in the last section of this chapter.

6.3 Preliminary Simulation Results for Multi-Level Data Storage Systems

In this section, we apply our least square equalization method to the multi-level
system with the presence of the inter-page interference. We use the Golay code to
encode the amplitude levels and calculate the bit-error-rate [7]. The encoding scheme

is shown in Table 6.2.

88



Level Golay code
1 10
2 00
3 01
4 11
Table 6.2. Example of Golay codes for four amplitude level system.

With the Golay code, the number of error bits is 1 when the received signal is
detected erroneously as one of its neighboring levels. The number of error bits is 2 if
the signal is detected as a signal two levels away from its correct value. Therefore,
using Golay code is a fair way to compare systems with different number of levels
using bit-error-rate. We apply our least square equalization method to the two level
system as well as the four level system. The results with different degree of IPI are
shown in Figure 6.9 through Figure 6.12 for both rectangular and hexagonal
coordinate systems. According to Table 5.2, the blur factors are chosen such that the
PSF produces comparable interference in both systems. Since we select blur factors
that exceed the Rayleigh resolution limit, the interference is considered to be

moderate.
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BER versus interfering light for b_=1 and noise =0.02

—— Direct detection
—— Least square estimation

BER

i i i
0.1 0.15 0.2 025 03 0.35
Interfering light proportion 7y

Figure 6.9. Least square equalization result for rectangular coordinates 2 levels

regular detector system with moderate ISI (b,=1) and moderate noise (0' = 0.02).

BER versus Interferring Light for b_=1, noise c=0.02 and levels=4

10

—— Direct‘Detection i
—— Least Squared Estimalion

10

BER

10*

i i i i f i
0.05 01 0.156 0.2 0.25 0.3 0.35
Interfering light proportion %

10

Figure 6.10. Least square equalization result for rectangular coordinates 4 levels

regular detector system with moderate ISI (b,=1) and moderate noise (0‘ = 0402).
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BER versus interfering light for b_=1.7 and noise =0.02

—— Dlrect'detection
—— Least square estimation

10° i i j
0 0.05 01 0.15 0.2 0.25 0.3 0.35
Interfering light proportion v,

Figure 6.11.Least square equalization result for hexagonal coordinates 2 levels regular

detector system with moderate ISI (b,~1.76) and moderate noise (a = 0.02).

BER versus Interferring Light for b==1 .76, noise 6=0.02 and levels=4

—w— Direct [detection

BER

10° i i i
0 0.05 0.1 0.15 0.2 0.25 03 0.35

Interfering ight proportion 7,

Figure 6.12. Least square equalization result for hexagonal coordinates 4 levels regular

detector system with moderate ISI (b,=1.76) and moderate noise (o = 0.02).
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In the above figures, the bit-error-rates of both systems are plotted as a function of the
inter-page interference (the horizontal axis). The bottom curves show that our
method can provide consistent better results for multi-level system with different

degree of IPL.
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Chapter 7 Variable Threshold Method

In this chapter we describe a new method to determine dynamically the threshold of
each pixel under ISI and IPI effects. The advantage of this method over the
conventional binary threshold method is that it counteracts both the ISI and IPI
effects and adjusts the threshold locally. The low computational complexity of this

method is especially useful for 3D PODS systems.

7.1 Fixed Threshold Method

In traditional data storage systems, signal detection using a fixed threshold is widely
used because of its simplicity. The fixed threshold mechanism is employed in the

readout system shown in Figure 7.1.

Detection result
I, . of data page 4,
_— Fixed threshold |——

Figure 7.1. Diagram of fixed threshold detection.

Here we use the notation as in Eq. (4.1), with r; denoting the received signal and ay
denoting the data page at time index k. The fixed threshold provides a simple and
reliable way to distinguish the received mark signals from received space signals. For
the binary signaling data storage system, the fixed threshold is set according to the

histogram of received signal intensity shown in Figure 7.2.
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Figure 7.2. Histogram of received signal intensity for b=1 and y, =0.1.

Figure 7.2 shows an example of setting the fixed threshold. The solid line represents
“0” (space) bits and the dashed line represents “1”” (mark) bits. The received signal

intensity is sampled from a noise-free system with =1 and y, =0.1, hence this
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system only suffers moderate ISI and IPI effects. Since the received mark intensity
and space intensity each occupies a defined region on the horizontal axis of the
histogram, and the “0” and “1” bits are assumed equally probable, the fixed threshold
is set at halfway between their limits. For received signal intensities smaller than the
threshold, it classifies the data as a space or “0”, otherwise it classifies the data as a

mark or “1” as described by

5k[i,j]={0’ i li. /1< (7.1)

L ifrlij]>T°

where T'is the threshold. The error occurs when a,[i, /] differs from 4,]i, j].

The region between the largest received space signal and the threshold or the smallest
received mark signal and the threshold is called the noise margin. If the additive
noise level is lower than the noise margin, the fixed threshold method can still detect
the signal correctly. On the other hand, if the additive noise level is larger than the

noise margin, the fixed threshold method is highly likely to fail.

The value of the noise margin is determined by ISI and IPI effects. When these
effects become worse, the noise margin is reduced to zero. At this point, the
histograms of received mark signals and that of received space signals overlap each
other. Therefore, the fixed threshold method generates erroneous results even under

noise free conditions.
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In 3D page-oriented data storage systems, the ISI or IPI effects cause the fixed
threshold method to generate unreliable detection results. Hence, we must resort to
other detection methods to overcome both the ISI and IPI effects in high density and

capacity page-oriented data storage systems.
7.2 Variable Threshold Method

From the 3D page-oriented data storage system model introduced in Chapter 3, we
analyze the components of received signals. There are three major components: the
direct measurement, the interference from the neighbors and the additive noise. By
identifying these three components, we apply the variable threshold method to

improve the system performance.

We rewrite the detector output signal 74[7,/] from Eq. (3.1) as

ANIE jﬂyryﬂak (% 2)® Iy (x, y Jdxdy + IW ey, (5,9)® hy (v, )y

3 5] ‘V%
J+‘7 +‘7 ,
i i-%4 /ysam(x J’)®h (x y)dxdy-i—vk[ J]

(7.2)
where & is the linear fill factor, and ® denotes the discrete 2D convolution operator.
For simplicity, we assume the fill factor is 1 and the extent of each PSF is

[—M ~M,~N~N ] Then we express all the signals in discrete spatial indices and

represent the discrete 2D convolution operator as
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nlijl= li iak-t[m,nlhl[f—m,j-nlmz S aylmon] toi-m, j - n]

m=—-M n=- m=-M n=-N
M N
+7; Z Zakn[ma h [i—m,j—n]+vk[i,j]
m=-M n==N
(7.3)
We then rewrite Eq. (7.3) as
M N
”k[isj]: ?’zak[isj] h2[0’0]+}/l Z Zak—l[m’n] hl[i"m,j“”]
m=-=M n=-N
+7, Z Zakmn] hyli—m, j—n]+y, z Zak+l[mn Ji—m, j—n].
m_—Mirrn:.;}}i{t,J} -M n=—N
+vk[iaj]
(7.4)

By looking at the detector output signal r[7,j] above, we identify the three major
components of the received signal. The first term on the right hand side of Eq. (7.4)
is the direct measurement. It contains partial information about the data that we want
to retrieve. The last term on the right hand side of Eq. (7.4) is the additive noise. The
remaining three terms on the right hand side constitute interference from the

neighbors.

The direct measurement is the signal intensity produced by the data stored on the
medium after the retrieving process. In that process, the signal energy tends to be
spread out in space by the readout subsystem and only part of the signal energy is
received by the detector. Hence, we call it the direct measurement. For a space pixel

or the “0” bit, the direct measurement is always zero.
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The second element is the interference signal generated from the neighbors. It has
two components: ISI and IPI. As we mentioned in the previous chapter, ISI and IPI
effects always exist in the readout subsystem and cause the interference between
pixels. The interference produced from the surrounding neighbors within the same
data page is referred to as the ISI, while the interference from other adjacent data

pages is the IPI. From Eq. (7.4), the IST s

M N
ISI=y, Z Zak[m,n] hy[i—m, j—n], (7.5)
m=—M n=-N

frnt=li. i}

and the IPI is

M N M N
IPI=y, Z Zak_l[m,n] h, [i—m,j—n]+ s Z Za,m [m,n] hS[i—m,j—n].
m=—M n=-N m==M n==N
(7.6)
The last element in the received signal in Eq. (7.4) is the additive noise. It accounts

for all measurement errors incurred during the readout process. Therefore, the

additive noise can be analyzed using statistical methods.

The variable threshold method uses equalization to get an estimate of the bit value in
the neighborhood of a[7,/], and then estimate their contribution to ISI and IPI. This
information is used to vary the decision threshold at each a[7,j]. Thus, the variable
threshold method attempts to reduce the interference from the surrounding neighbors

in three dimensions and produce more reliable detection results.
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A block diagram of the variable threshold method is shown in Figure 7.3.

Detection result
r, Vary the of data page 4,
threshold for —
each pixel
T %
(X T 1] a,
—_— Add up all the
Fi ~
[, 5 5] | Leastsquare | @k | Galeuiate e interference from the
equalization ~ AR HiSE i —"lsurrounding neighbors
— . :
L8 AR A JENTTOUREING TiGigibors for each pixel

Figure 7.3. Block diagram of variable threshold method.

Here r; is the received signal and ay is the data page at time index k as before. Least
square equalization is used first to provide an estimate of the data. Then, using
knowledge of the 3D point spread function we introduced in Chapter 3, we adjust the
threshold value. Since the interference comes from all three dimensions, we need
estimates not only from within the current data page a; , but also from the adjacent
data pages a,; in front of and az+; in back of a;. Therefore, the least square
equalization performs the following calculations as Eq. (4.6).
a_ =Cr,+Cr,_ +Cyr,_,

i, =0, +C.r, +Cr, (7.7)
a,,=Cr,,+Cr, +Cir,

where matrices C;, C, and C; are derived from the pseudoinverse matrix D as in

Egs. (4.14) (4.15) (4.16).

Based on these estimated pixel values, we calculate their interference contribution to

the neighbors. The extent of the interference contribution to the neighbors for one
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data mark is the extent of the PSF, i.e. [—M ~M~-N~N ] Therefore, only the
neighbors within [-M ~M,-N~N | are calculated for their interference

contribution. We assume that the received signal of one data pixel is not affected by
the surrounding neighbors outside that range. Hence the estimate of the interference

contribution for each pixel is calculated from

M N N
iiil=n S Salmalhli-mi-nler, 3 Salnnl hli-mj-nl
m=-=M n==-N m=_M{’:n_,n}N={i,j} ,
+7; Z Zakn[mn l_mJ j""]
m=-M n=-N

(7.8)
where f;[7,7] is the interference contribution estimate for pixel at location [i,/]. Finally,
we add up all the interference contributions from neighbors in three dimensions and
determine the threshold value for each pixel. For the binary signaling system, i.e.

ax[ij]=1 or a4[i,j]=0, the direct measurement is

t_'fak[i,j]=0
raalis b [00]{ il ot (7.9)

We set the threshold value at halfway between the space received signal and the mark
received signal similar to the fixed threshold method. Therefore, the threshold value

for the binary signaling system is set to be

AMIE “”[ 1l . (7.10)
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Since the interference contribution fi[ij] is different for each pixel, the threshold

value Ty[i,j] varies for each pixel.

From Egs. (7.4) through (7.6), there are three major elements in the received signal.
In effect, we subtract an estimate of the interference from the surrounding pixels, only
two other components are left in the received signal. The threshold is determined by
the direct measurement part. The direct measurement of a mark pixel is calculated
based on a priori knowledge of the 3D point spread function. Because the direct
measurement of space pixels is always zero, we set the threshold value at the

midpoint between the smallest mark direct measurement and zero.

During detection, the threshold value changes for each pixel because the interference
from the surroundings is different for each. This method removes the estimated
interference from all the surrounding neighbors of a pixel in three dimensions, and
adjusts the local decision threshold. Based on this point of view, we can treat the
variable threshold method as a variant to the fixed threshold method. Its strength is to

reduce both the ISI and IPI effects using an algorithm with low complexity.

7.3 Simulation Results

We performed the simulation using both rectangular grid detectors and hexagonal
grid detectors. The simulation results based on rectangular array detectors are shown
in Figure 7.4 to Figure 7.11, while the results of hexagonal array detectors are shown

in Figure 7.12 to Figure 7.19. These figures are given in order of increasing ISI effect.
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Every four figures have the same amount of additive noise. We choose four different
PSF parameters b, and b, such that the corresponding ISI effect on the pair of b; and

b. are approximately the same.

For comparison, we show the simulation results with and without the variable
threshold method. From these figures, it shows that the variable threshold method
improves the system performance especially when the ISI effect is dominant. The
variable threshold method has similar improvement on both rectangular and
hexagonal coordinate systems. However, the improvement on the rectangular array

system is slightly more than that on the hexagonal array system.

We divide the IPI effects into three categories: low IPI (y, =0~ 0.1), moderate IPI
(7,=0.1~0.2) and high IPI (y, =0.2~0.3). The variable threshold method works

well in the region of low IPI and moderate IPI. When the IPI or the noise effects are
severe, this method degrades because least square equalization cannot provide a
reliable estimate of the data page. Therefore, this imperfect estimate causes
erroneous calculation of the interference contribution, and affects the selection of the
threshold value. In practical situations, the system would not be used under these
conditions. In most cases, the variable threshold method benefits the system
performance by gaining one-half to one order of magnitude improvement in the bit

error rate (BER).
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BER versus interfering light for b =1.2 and Noise o=0.03

"= Direct detection
{| — Least-square equalization
-o—- Variable threshold detection |-

BER

i i i i i
0.05 0.1 0.15 0.2 0.25 03 0.35
Interfering light proportion 7,

Figure 7.4. Variable threshold detection results for moderate ISI (b,=1.2) and

moderate noise (o =0.03) on rectangular detector arrays.

BER versus interfering light for ba=1 4 and Noise 5=0.03

T—— Direct detection
| — Least-square equalization -
|| —e— Variable threshold detection |.

4 i | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Interfering light proportion y,

Figure 7.5. Variable threshold detection results for moderate ISI (b,=1.4) and

moderate noise (o =0.03) on rectangular detector arrays.
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BER versus interfering light for b =1.6 and Noise 0=0.03

H —w— Direct detection
[| — Least-square equalization
{ ~e— Variable threshold detection

i i i i i
0.05 0.1 0.15 0.2 0.25 03 0.35
Interfering light proportion 7

Figure 7.6. Variable threshold detection results for severe ISI (b=1.6) and

moderate noise (o =0.03) on rectangular detector arrays.

BER versus interfering light for b_=1.8 and Noise =0.03

{—— Direct defection
|| —— Least-square equalization
~a- Variable threshold detection

P

i i i i
0 0.05 0.1 0.15 0.2 0.25 03 0.35
Interfering light proportion 7,

Figure 7.7. Variable threshold detection results for severe ISI (b=1.8) and

moderate noise (o =0.03) on rectangular detector arrays.
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BER versus interfering light for b=1 .2 and Noise ¢=0.05

H"—— Direct detection
H —— Least-square equalization
|| —e— Variable threshold detection |....

o i i i i i
Ty 0.05 0.1 0.15 02 0.25 03 0.35
Interfering light proportion y,
Figure 7.8. Variable threshold detection results for moderate ISI (bs=1.2) and
severe noise (o =0.05) on rectangular detector arrays.
BER versus interfering light for b =1.4 and Noise 5=0.05
10°

H = Dite-c!Ldeléction
—— Least-square equalization
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i i i i i
0 0.05 0.1 0.15 02 0.25 03 0.35
Interfering light proportion v,

Figure 7.9. Variable threshold detection results for moderate ISI (b,=1.4) and

severe noise (o =0.05) on rectangular detector arrays.
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BER versus interfering light for b =1.6 and Noise 5=0.05

T

10

r —=— Direct detection
H —— Least-square equalization
—a— Variable threshold detection

BER

10'3 | i i i i
0 0.05 0.1 0.15 0.2 0.25 03 0.35

Interfering light proportion v,

Figure 7.10. Variable threshold detection results for severe ISI (b,=1.6) and

severe noise (o =0.05) on rectangular detector arrays.

BER versus interfering light for b3=1.8 and Noise ¢=0.05

10

—e— Direct detection
 —— Least-square equalization
H —e— Variable threshold detection

i i i i
0 0.05 01 0.15 0.2 0.25 0.3 0.35
Interfering light proportion 2

Figure 7.11. Variable threshold detection results for severe ISI (b,=1.8) and

severe noise ( o =0.05) on rectangular detector arrays.
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BER versus interfering light for b =2 and Noise o=0.03

— Direct’datec!ion
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—e— Variable threshold detection |-
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Figure 7.12. Variable threshold detection results for moderate ISI (5.=2.06) and

moderate noise (o =0.03) on hexagonal detector arrays.

BER versus interfering light for bc=2.3 and Noise ¢=0.03

—=— Direct detection ‘
—— Least-square equalization
.| —e— Variable threshold detection

i
0.15
Interfering light proportion 7,

Figure 7.13. Variable threshold detection results for moderate ISI (b.=2.36) and

moderate noise (o =0.03) on hexagonal detector arrays.
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BER versus interfering light for b =2.7 and Noise =0.03

3 —=— Direct detection
i} —— Least-square equalization
—o— Variable threshold detection

= a i i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Interfering light proportion v,

Figure 7.14. Variable threshold detection results for severe ISI (b.=2.69) and

moderate noise (o =0.03) on hexagonal detector arrays.

BER versus interfering light for b =3 and Noise 0=0.03

.| —— Direct detection
—— |east-square equalization
~s— Varlable thresheld detection |,

0 0.05 0.1 0.15 0.2 0.25 03 0.35
Interfering light proportion 7,

Figure 7.15. Variable threshold detection results for severe ISI (.=3) and

moderate noise ( o =0.03) on hexagonal detector arrays.
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BER versus interfering light for b_=2 and Noise ¢=0.05

i —e— Direct detection
[| —— Least-square equalization
—e— Variable threshold detection |-

BER
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0 0.05 0.1 0.15 02 025 03 0.35
Interfering light proportion 7,
Figure 7.16. Variable threshold detection results for moderate ISI (b.=2.06) and
severe noise (o =0.05) on hexagonal detector arrays.
BER versus interfering light for b =2.3 and Noise 0=0.05
10° m

e Direct‘cietectiun . o e r—
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0 0.05 01 0.15 0.2 0.25 03
Interfering light proportion v,

Figure 7.17. Variable threshold detection results for moderate ISI (b,~2.36) and

severe noise (o =0.05) on hexagonal detector arrays.
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BER versus interfering light for b:=2.? and Noise =0.05
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Figure 7.18. Variable threshold detection results for severe ISI (b.=2.69) and

severe noise (o =0.05) on hexagonal detector arrays.

BER versus interfering light for b_=3 and Noise 5=0.05
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Figure 7.19. Variable threshold detection results for moderate ISI (b,=3) and

severe noise ( o =0.05) on hexagonal detector arrays.
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Chapter 8 Implementation of Least Square Equalization and

Variable Threshold Method with Fixed-Point Arithmetic

From the results of the previous chapters, the least square equalization and variable
threshold methods exhibit significant improvement over the simple fixed threshold
method. These results assume that these algorithms are performed in floating-point
with double precision arithmetic (64-bit). In this chapter, we explore the effects of
finite precision arithmetic on least square equalization and variable threshold method
algorithms. We explore the trade-off between system performance and simplifying

the computation hardware using lower precision arithmetic.
8.1 Floating-Point Arithmetic

In most programming languages, it is common to use floating-point numbers with
double-precision or single-precision to represent data. According to the IEEE 754
standard, there are three parts of the floating-point representation: sign, exponent, and
fraction. The difference between double-precision and single-precision is the number
of bits assigned to the exponent and fraction parts as shown in Table 8.1 and Figure

8.l
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Single-precision | Double-precision
bit allocation bit allocation
Sign 1 bit 1 bit
(0 = positive, 1 = negative)
Exponent 8 bits 11 bits
(biased by 127) | (biased by 1023)
Fraction 23 bits 52 bits

Table 8.1. Bit assignment of double-precision and single-precision floating point

arithmetic.

Double-precision

L] | |
63 62 5251 0

v B o TEO
Sign Exponent Fraction

Single-precision

L l |
3130 2322 0
I\ J N —

Sign Exponent Fraction

Figure 8.1. Bit allocation of double-precision and single-precision floating point

arithmetic.

The numbering scheme is in ascending order starting from the least significant bit

with number 0 to the most significant bit. The number it represents has the form

+1.f %25, (8.1)

where fis the fraction part and £ is the exponent part.
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The advantage of floating point representation is larger dynamic range compared to
fixed-point arithmetic as described in the next section. The corresponding ranges for

double-precision and single-precision representations are shown in Table 8.2.

Single-precision | Double-precision

Minimum absolute numbers | 1.17549x107*® 2.22507 x107%

Maximum absolute numbers | 3.40282 %10 1.79769 x10°*®

Table 8.2. Dynamic range of double-precision and single-precision floating point

arithmetic.

Although the floating-point representation provides larger dynamic range, it also
requires larger memory usage and more computing power. Hence, the hardware that
supports floating-point computation usually costs more than the fixed-point
counterpart. To reduce system costs, it is desirable to employ fixed-point algorithms

if system performance is not sacrificed.

8.2 Fixed-Point Arithmetic

When implementing algorithms in digital hardware, we usually use fixed-point data
types to save hardware cost and memory requirement. In terms of hardware, both the
fixed-point and floating-point data consist of a series of bits (1’s and 0’s). The
application or software interprets the representation of these bit sequences. The bit

sequence of general fixed-point numbers is shown in Figure 8.2.
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Fixed-point
LI [T Tl lTTTIT]

MSB LSB
Sign Binar)[ ;;oint Fraction .
Figure 8.2. Bit allocation of fixed-point numbers.

The MSB denotes the most significant bit or the highest bit, whereas the LSB denotes
the least significant bit or the lowest bit. The location of the binary point determines
how this fixed-point value is represented. The part to the right of the binary point is
the fractional part of the number. Therefore, for a word length of n bits, moving the
binary point toward the LSB will reduce the number of bits used in fractional part but
increases the absolute value of the number it can represent. For example, a fixed-
point number with word length #, 1 bit for signed bit, and m bits for the fractional part,

has the range shown in Figure 8.3.

_ 2n~m—1 {l) 2nfm—l _ 2-m
| |
! Negative numbers ' Positive numbers '
Figure 8.3. Numeric range of fixed-point numbers with word length n.

Here we use the two’s complement representation that has a unique bit sequence for
zero. Therefore, the number of positive and negative numbers are unequal. Since the
range of numbers is limited, overflow will occur if the number to be represented
exceeds the range. When overflow occurs, the number is truncated and represented

by the closest available number in the given representation.
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Because of quantization, the horizontal line shown in Figure 8.3 does not represent all
the numbers within that range. Due to the limited precision, numbers on that
horizontal line are quantized to a set of fixed-point values. The precision is the
difference between successive numbers that can be expressed in fixed-point data

format. The value of precision is equal to the value of least significant bit.

If any number produced from calculation does not equal exactly the expressible fixed-
point numbers, a rounding quantization method is used and the precision is lost.
There are three major rounding methods: round, floor, and ceiling. The round method
uses the closest representable fixed-point number. On the contrary, the floor and
ceiling methods round to the closest number in the direction of negative and positive

infinity, respectively.

Because of the rounding operation, the error stems from the difference between the
actual number and the representable number. When the round method is used, the
maximum error is half the precision. However, the floor and ceiling methods produce
twice the maximum error of the round method. Hence, the round method is the most

frequently used among all three rounding methods.

Since the position of the binary point determines the value of the least significant bit,
it in turn determines the precision. Hence, the binary point provides a trade off
between range and precision. Moving the binary point toward the MSB increases the
precision at the cost of reducing range, and vice versa. Some examples of range and

precision for various fixed-point formats are shown in Table 8.3.
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Fixed-point data format Range Precision
(word length, fraction bits)

8, 2) -32~31.75 0.25

(8, 3) -16~15.875 0.125
8,4) -8~7.9375 0.0625
(8,5) -4~3.96875 0.03125
9, 3) -32~31.875 0.125

9, 4) -16~15.9375 0.0625

9, 5) -8~7.96875 0.03125
(2, 6) -4~3.984375 0.015625
(10, 6) -8~7.984375 0.015625
(11,7) -8~7.9921875 0.0078125
(12, 8) -8~7.99609375 0.00390625

Table 8.3. Examples of range and precision for various fixed-point formats.

Even with the same word length, the range and precision vary considerably for
different choices of data formats. Therefore, we should choose the best data format

based on the statistical characteristics of the actual data.

8.3 Fixed-Point Arithmetic Implementation

8.3.1 Least Square Equalization with Fixed-Point Arithmetic

In the least square equalization method, the data detection is done after an

equalization step given by

(8.2)

182>
Il

=

"+
™=
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where a is the estimate of the data, D" is the pseudo inverse matrix, and r is the
received signal. In the fixed-point arithmetic implementation, the number of bits used
to represent data is constant through the algorithm. Since the received signal is
normalized such that the intensity value is within (0, 1), we allocate all the bits to
express the fractional part. Therefore, the binary point is at the leftmost location in

the fixed-point representation.

In fixed-point least square equalization, we quantize the pseudo inverse matrix D* in
Eq. (8.2) into fixed-point numbers and perform the processing in fixed-point
arithmetic. Matrix D" is obtained by inverting the PSF matrices as in Eq. (4.7).
Although the numerical values in the PSF matrices are in the range (0, 1), the values
in the pseudo inverse matrix are significantly different. Most of these values fall
within the range —8~+8 but there are also some small values around 0 whose

absolute value is on the order of 10, Therefore, the choice between range and

precision is crucial to the system performance.

In the simulation results, we notice that the quantization of the pseudo inverse matrix
is a critical factor in the fixed-point implementation. Since the location of the binary
point determines the trade off between range and precision, it is an important
parameter in the quantization process. We use combinations of different numbers of
bits and binary point locations to see the impact on the system performance as

compared to the results using the floating-point algorithm.
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8.3.2 Variable Threshold Method with Fixed-Point Arithmetic

Using the estimation results from least square equalization, the variable threshold
method significantly improves the readout system performance. Hence, we
implement the variable threshold method using fixed-point arithmetic to examine the
balance point between system performance and computation complexity. The block

diagram of the fixed-point variable threshold method is shown in Figure 8.4.

Detection result
r, Vary the of data page 4,
threshold for —
each pixel
r 5
LS /S a
: . Add up all the
1 Fixed-point A Calculate the :
[rk Tt r_.k'z] Least square E}"‘“ interference from |, tnterfer;n - frc;n;;he
&, r. 0 Jf| eueliaton a,,, |surrounding neighbors| ~ [FUTOUNEINg NegnborS
k+2 Ykt Dk for each pixel

Figure 8.4. Block diagram of fixed-point variable threshold method.

The estimation of the data is provided by the fixed-point least square equalization.
Since we use the same number of bits to represent data through the algorithm, the
number of bits used in least square equalization and variable threshold detection is the
same. However, due to different ranges of the numeric values, the location of the
binary point is different in them. In the variable threshold method, the threshold is
determined as in Eq. (7.4) by identifying interference components in the received
signal as

72l [0,0]

I;:[i5j]=T+ﬁ[i:j]a (8.3)
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where f;[i,j] is the interference contribution estimate for pixel at location [7,], and

h1[0,0] is the center pixel PSF of the data page in focus.

To calculate the interference components, we convolve the estimated data with the
3D PSF. Since the algorithm is implemented in fixed-point arithmetic, the numeric
value of 3D PSF is represented in the fixed-point format. In Eq. (5.4), the PSF is
normalized such that the summation of all the entries is 1. Therefore, we conclude
that the numerical values of PSF are in the range (0, 1). By using the similar
quantization method for the received signal, we assign all the bits to express the

fractional part of the PSF entries.

In the simulation, the quantization of least square equalization dominates the system
performance over the quantization of the PSF. Since the least square equalization is
used to provide estimation of the data, the reliability of the variable threshold method
depends largely on the accuracy of the data estimation. Therefore, we focus on

tuning the quantization parameters for the least square equalization.

8.4 Simulation Results

8.4.1 Fixed-Point Least Square Equalization Simulation Results

The simulation results for least square equalization with and without fixed-point
arithmetic are shown in Figure 8.5 through Figure 8.26 for various fixed-point data
formats. In Figure 8.5 through Figure 8.15, a rectangular array of detectors with a

sinc point spread function (Eq. (3.8)) is assumed, while a hexagonal array of detectors
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with a jinc point spread function (Eq. (3.9)) is used in Figure 8.16 through Figure
8.26. The rectangular and hexagonal blur parameters b; and b, respectively have been
chosen to have equal ISI contribution for both coordinate systems. In Figure 8.5
through Figure 8.8, we compare fixed-point arithmetic with 8-bit word length to
double-precision (64-bit) floating-point arithmetic on rectangular coordinates.
Among these results, it is obvious that the (8, 4) fixed-point format achieves better
performance than other fixed-point formats. Similar circumstances exist for

hexagonal coordinates, as shown in Figure 8.16 through Figure 8.19.

From Table 8.3, the range of the (8, 4) fixed-point format is -8~7.9375, which just
covers most of the numerical values in the pseudo inverse matrix. Although (8, 2)
and (8, 3) formats cover a range even wider than that of (8, 4), they sacrifice precision

and hence yield poor results.

Comparing Figure 8.9 through Figure 8.12 and Figure 8.20 through Figure 8.23, we
notice that the (9, 5) fixed-point is the best format for 9-bit word length. It has almost
the same range (-8~7.96875) as the (8, 4) format but with two times finer precision.
From the simulation results of (9, 5) and (8, 4), the increasing precision not only
improves the detection, but also reduces the instability caused by the quantization

CITor.

Based on these results, we test the addition of bits to increase the precision while
keeping a suitable range to cover the pseudo inverse matrix entries. In Figure 8.13

through Figure 8.15 and Figure 8.24 through Figure 8.26, we compare three fixed-
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point formats with similar range and increasing precision. The simulation results
confirm our earlier conclusion that increasing precision improves performance and
stability. The results of the (12, 8) fixed-point format show very similar bit-error-
rates to double-precision floating-point arithmetic on the rectangular coordinate

system.

Since the (12, 8) fixed-point format only uses less than one fifth of the bits in 64-bit
floating-point arithmetic, it exhibits a significant advantage over fixed-point
arithmetic. With least square equalization implemented in fixed-point arithmetic, it
saves considerable memory space, has better execution speed and reduces the

hardware costs.

With the hexagonal coordinate, the fixed-point simulation results approaches the
floating-point results with 10-bit and greater length fixed-point formats. It is also
more robust against quantization errors than the rectangular coordinate system. A
possible reason for this is that there are fewer surrounding neighbors that contribute
to the interference in hexagonal coordinates. Therefore, hexagonal coordinates have

an advantage for fixed point applications with a limited number of bits.

121



BER

.Direct detection
----- Least square estimation with fixed-point

i""| —— Least square estimation with floating-point | |
5 i i I I I 1
L 0 0.05 0.1 0.15 02 0.25 0.3 0.35
Interfering light proportion i
(a)
i BER versus interfering light for bs=1.5, noise o=0.05 and bit format=(8,2)
10 e

107

x
(VU S SURIY WS S SRR SOOI
o
10?
_______________________ —+— Direct detection
------ Least square estimation with fixed-point
i i — Least square estimation with floating-point
= 1 i | T T 1
13 0 0.05 0.1 0.15 0.2 0.25 03 0.35
Interfering light proportion 7,
Figure 8.5. Fixed-point (8, 2) least square equalization simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise 5=0.02 and bit format=(8,3)
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Figure 8.6. Fixed-point (8, 3) least square equalization simulation results on

rectangular coordinates with b¢=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(8,4)
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Figure 8.7. Fixed-point (8, 4) least square equalization simulation results on

rectangular coordinates with ,=1.5 and noise (a) o =0.02 (b) o =0.05.
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Figure 8.8. Fixed-point (8, 5) least square equalization simulation results on

rectangular coordinates with b:=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise o=0.02 and bit format=(9,3)
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Figure 8.9. Fixed-point (9, 3) least square equalization simulation results on

rectangular coordinates with 5=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise =0.02 and bit format=(9,4)
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Figure 8.10. Fixed-point (9, 4) least square equalization simulation results on

rectangular coordinates with b;=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise o=0.02 and bit format=(9,5)
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Figure 8.11. Fixed-point (9, 5) least square equalization simulation results on

rectangular coordinates with b=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(9,6)

BER

—e— Direct detection
----- Least square estimation with fixed-point |
—— Least square estimation with floating-point

i | 1 1 1
0 0.05 0.1 0.15 02 0.25 0.3 0.35
Interfering light proportion v,

(a)

BER versus interfering light for bs=1.5, noise c=0.05 and bit format=(9,6)

BER

| ——Directdetection
----- Least square estimation with fixed-point
—— Least square estimation with floating-point
I I i}

3 i i
W 0.05 0.1 0.16 02 0.25 0.3 0.35
Interfering light proportion i
(b)
Figure 8.12. Fixed-point (9, 6) least square equalization simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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Figure 8.13. Fixed-point (10, 6) least square equalization simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise o=0.02 and bit format=(11,7)
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Figure 8.14. Fixed-point (11, 7) least square equalization simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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Figure 8.16. Fixed-point (8, 2) least square equalization simulation results on

hexagonal coordinates with 5.=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise 5=0.02 and bit format=(8,3)

:ti] —e— Direct detection

R Least square estimation with fixed-point

| —— Least square estimation with floating-paint |
I 1 I

0.35

i i
L 0 0.05 0.1 0.15 0.2 0.25 03
Interfering light proportion y !
(a)
" BER versus interfering light for bc=2.5, noise 5=0.05 and bit format=(8,3)
10 =

Lt}

10°

T T TTIT1T

T

BER

107

__| = Direct detection

----- Least square estimation with fixed-point

—— Least square estimation with floating-point
I I

Figure 8.17.

hexagonal coordinates with 5.=2.52 and noise (a) o =0.02 (b) o =0.05.

T
0.15 0.2
Interfering light proportion Y

(b)

0.25 0.3

0.35

Fixed-point (8, 3) least square equalization simulation results on

134



BER versus interfering light for be=2.5, noise =0.02 and bit format=(8,4)
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Figure 8.18. Fixed-point (8, 4) least square equalization simulation results on

hexagonal coordinates with 5,=2.52 and noise (a) o =0.02 (b) o =0.05.
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Figure 8.19. Fixed-point (8, 5) least square equalization simulation results on

hexagonal coordinates with 5,~2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for be=2.5, noise 5=0.02 and bit format=(9,3)
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Figure 8.20. Fixed-point (9, 3) least square equalization simulation results on

hexagonal coordinates with 5.=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise ¢=0.02 and bit format=(9,4)
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Figure 8.21. Fixed-point (9, 4) least square equalization simulation results on

hexagonal coordinates with b,=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise ¢=0.02 and bit format=(9,5)
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Figure 8.22. Fixed-point (9, 5) least square equalization simulation results on

hexagonal coordinates with 5.=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise ¢=0.02 and bit format=(9,6)
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Figure 8.23. Fixed-point (9, 6) least square equalization simulation results on

hexagonal coordinates with 5=2.52 and noise (a) o =0.02 (b) o =0.05.

140



i BER versus interfering light for bc=2.5, noise =0.02 and bit format=(10,6)
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Figure 8.24. Fixed-point (10, 6) least square equalization simulation results on

hexagonal coordinates with 5,=2.52 and noise (a) o =0.02 (b) o =0.05.
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Figure 8.25. Fixed-point (11, 7) least square equalization simulation results on

hexagonal coordinates with 5.=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise ¢=0.02 and bit format=(12,8)
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Figure 8.26. Fixed-point (12, 8) least square equalization simulation results on

hexagonal coordinates with 5,=2.52 and noise (a) o =0.02 (b) o =0.05.
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8.4.2 Fixed-Point Variable Threshold Method Simulation Results

The simulation results for the fixed-point variable threshold method are shown in
Figure 8.27 through Figure 8.36 for both rectangular and hexagonal coordinates.
Since the quantization of least square equalization is the critical factor for the system
performance, we use it as the controlled parameter in our simulations. From the
fixed-point least square equalization simulation, we discover the best quantization
parameters for the pseudo inverse matrix. We use those known parameters in the
quantization process, which enables the least square equalization to generate reliable

estimates.

In the simulation results of fixed-point formats (11, 7) and (12, 8), the fixed-point
variable threshold method performs almost equally well as the floating-point
counterpart. Therefore, using 11-bit fixed-point arithmetic for the variable threshold
method is sufficient in terms of bit-error-rate performance. Since the 11-bit fixed-
point arithmetic only uses about one sixth of the bits of the 64-bit floating-point

arithmetic, it shows a significant saving in memory and computational complexity.

From the simulation results with rectangular coordinates, the (9, 5) fixed-point
variable threshold method shows improvement over the 64-bit floating-point least
square equalization. In the hexagonal coordinate simulation results, there is an
improvement for variable threshold processing over ordinary least square processing
even with the (8,4) fixed-point format. Hence, we conclude that the variable

threshold method improves the BER almost under all circumstances. Even with the
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limited 9-bit fixed-point arithmetic, the variable threshold method achieves better

performance than the 64-bit floating-point least square equalization.

Comparing the results in rectangular and hexagonal coordinates, we notice that the
system with hexagonal coordinates is more robust to quantization error than the
system with rectangular coordinates as shown in the fixed-point least square
equalization. Therefore, the hexagonal coordinate grid has potential to implement
fixed-point algorithm with fewer bits. This translates into reduced memory

requirements and hardware complexity.
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BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(8,4)
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Figure 8.27.  Fixed-point (8, 4) variable threshold method simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(9,5)
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Figure 8.28.  Fixed-point (9, 5) variable threshold method simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(10,6)
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Figure 8.29. Fixed-point (10, 6) variable threshold method simulation results on

rectangular coordinates with b=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(11,7)
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Figure 8.30.  Fixed-point (11, 7) variable threshold method simulation results on

rectangular coordinates with b,=1.5 and noise (a) o =0.02 (b) o =0.05.
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i BER versus interfering light for bs=1.5, noise ¢=0.02 and bit format=(12,8)
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Figure 8.31.  Fixed-point (12, 8) variable threshold method simulation results on

rectangular coordinates with b;=1.5 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for be=2.5, noise ¢=0.02 and bit format=(8,4)
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Figure 8.32.  Fixed-point (8, 4) variable threshold method simulation results on

hexagonal coordinates with b.=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise 5=0.02 and bit format=(9,5)
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Figure 8.33.  Fixed-point (9, 5) variable threshold method simulation results on

hexagonal coordinates with b.=2.52 and noise (a) o =0.02 (b) o =0.05.

152



0 BER versus interfering light for bc=2.5, noise ¢=0.02 and bit format=(10,6)
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Figure 8.34.  Fixed-point (10, 6) variable threshold method simulation results on

hexagonal coordinates with 5,=2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise s=0.02 and bit format=(11,7)
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Figure 8.35.  Fixed-point (11, 7) variable threshold method simulation results on

hexagonal coordinates with 5.~2.52 and noise (a) o =0.02 (b) o =0.05.
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BER versus interfering light for bc=2.5, noise ¢=0.02 and bit format=(12,8)
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Figure 8.36.  Fixed-point (12, 8) variable threshold method simulation results on

hexagonal coordinates with 5.=2.52 and noise (a) o =0.02 (b) o =0.05.
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Chapter 9 Pixel Misregistration in Three-Dimensional Page-

Oriented Data Storage (3D PODS) System

9.1 Pixel Misregistration

In the readout system of the 3D PODS, any relative horizontal or vertical movement
between the data page and the detector causes pixel misregistration. In previous
chapters, we assume the readout system is perfectly aligned and that no any pixel
misregistration exists. However, when pixel misregistration occurs, the received
signal at the detector plane is partially lost. In addition, unwanted interference from
surrounding neighbors further degrades the received signal. Therefore, pixel

misregistration often causes severe signal degradation and erroneous data retrieval.

Fgeadout Beam

Image Plane

m x shift

Figure 9.1. Pixel misregistration in 3D page-oriented data storage system.
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Figure 9.1 shows the pixel misregistration in 3D page-oriented data storage system
with both horizontal (x direction) and vertical (y direction) shift. The readout image
of the image plane is simulated in Figure 9.2 for comparison. The image on right
hand side in Figure 9.2 shows shift in both x and y directions. From Figure 9.2, we
notice that most of the received signal lands outside the designated detector cell. In
this case, the conventional fixed threshold method has difficulties in retrieving data

and yields a high error rate.

Detector without Detector with
pixel misregistration pixel misregistration

Figure 9.2. Comparison of detector plane images with and without pixel

misregistration.

In this chapter, we apply least square equalization and variable threshold method to
3D PODS systems with pixel misregistration. In our method, we use knowledge of
the PSF and the (x,y) shift to formulate a new imaging model matrix. Then we
substitute the new imaging model for the convolution matrix H in Eq. (3.19).
However, due to the shift in pixels, matrix H loses symmetry property. We use this

asymmetry matrix H directly in existing algorithm. Using this new PSF matrix, our
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estimation methods are able to compensate for the misregistration effects and recover

the data.

9.2 Simulation Results

Figure 9.3 to Figure 9.7 show the simulation results of 3D PODS system using both
least square equalization and variable threshold methods. The amount of shift is
assumed equal in x and y and is expressed as a percentage of the unit spacing between
detector cells. We show the results of different amounts of shift from 10% to 50%.
Since all the detector cells are identical and located in a periodic array, any
misregistration larger than 50% is the same as a misregistration of less than 50%

relative to the closest cell.

From the simulation results, our methods show a significant improvement when the
amount of shift is below 30%. Any practical system will be carefully designed and
calibrated, so that the amount of misregistration shift is generally less than 30%. Our
method reduces the effective misregistration to a much smaller amount, and further

improves the system reliability in the presence of pixel misregistration.

Comparing the bit error rates of least square equalization and variable threshold
methods, we notice that the variable threshold method performs well when the
amount of misregistration is small. For larger amounts of shift, the least square
equalization cannot provide a good data estimation for the variable threshold method,

and it makes incorrect decisions based on erroneous information.
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BER versus interfering light for bs=1.5 noise o=0.03 and misalignment (x,y)=(0.1,0.1)
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Figure 9.3. Pixel misregistration simulation results on rectangular coordinates with

bs=1.5, shift (x,y)=(0.1,0.1) and noise (a) o =0.03 (b) o =0.05.
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BER versus interfering light for b’=1.5 noise o=0.03 and misalignment (x,y)=(0.2,0.2)
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Figure 9.4. Pixel misregistration simulation results on rectangular coordinates with

b~=1.5, shift (x,y)=(0.2,0.2) and noise (a) o =0.03 (b) o =0.05.
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BER versus interfering light for b =1.5 noise ¢=0.03 and misalignment (x.y)=(0.3,0.3)
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Figure 9.5. Pixel misregistration simulation results on rectangular coordinates with

bs=1.5, shift (x,y)=(0.3,0.3) and noise (a) o=0.03 (b) o =0.05.
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BER versus interfering light for b_=1.5 noise 0=0.03 and misalignment (x.y)=(0.4,0.4)
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Figure 9.6. Pixel misregistration simulation results on rectangular coordinates with

bs=1.5, shift (x,y)=(0.4,0.4) and noise (a) o =0.03 (b) o =0.05.
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BER versus interfering ight for b_=1.5 noise =0.03 and misalignment (x.y}=(0.5,0.5)
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Figure 9.7. Pixel misregistration simulation results on rectangular coordinates with

b=1.5, shift (x,y)=(0.5,0.5) and noise (a) o=0.03 (b) & =0.05.
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Chapter 10 Summary, Future Work and Conclusions

10.1 Conclusions and Discussions

We have presented an application of least square equalization and variable threshold
detection to three-dimensional page-oriented data storage (3D PODS) systems in
order to improve the bit-error rate (BER) in the presence of ISI and IPI. We also
described additional details of detection and noise reduction techniques that improve
the performance of future multi-layer optical data storage systems with very high
storage density. In Chapter 3, a detailed 3D PODS system mathematical model is
introduced. We investigated inter-symbol interference (ISI) as well as inter-page
interference (IPI) on multi-layer data storage systems. Based on an optical model, the
effect of focusing error in the readout subsystem was examined. We also described
the readout light intensity distribution for completeness. The novelty of this model is
that it integrates the ISI and IPI effects of 3D PODS. In conventional PODS analyses,
only the two-dimensional ISI is considered, and the IST and IPI effects of 3D PODS
with high data packing density are ignored. In the 3D PODS, the distance between
data layers is shortened to increase the data packing density. Therefore, when the
layer spacing is reduced, the effect of IPI cannot be neglected and must be taken into

consideration with the effect of ISI.

With the 3D PODS model, we proposed a least square equalization detection

algorithm for 3D PODS. Due to the inherent IST and IPI of 3D PODS, our algorithm
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can extend the accuracy of recorded data in the presence of these unwanted effects
and the noise. Although we demonstrated least square equalization with three
adjacent pages in an IPI model, it can be adapted easily to more general IPI effects.
For different computational requirements, we described two modes of operation for
least square equalization, i.e. the batch mode and the recursive mode. In batch mode
operation, the data page is recovered when all the received signals containing that
data page are available. On the other hand, some of the data page can be recovered
when only part of these received signals are available in recursive mode operation.
These two modes of operation give sufficient flexibility to our algorithm for different
applications. It is also interesting to note that both of these operations generate the

same detection results when given all the received signals.

In Chapter 5, we showed estimation and detection results based on our proposed
algorithms. In the simulation, we used the physical parameters typical of an actual
system. To have a fair comparison, we performed the simulations under different
experimental settings. In the result figures, our detection algorithm achieved
consistently better improvement than the conventional binary thresholding method. It
is clear that the conventional thresholding method is not suitable for 3D PODS with

both ISI and IPI effects.

Furthermore, it should be emphasized that while our least square equalization
algorithm performs well in 3D PODS, it can also be used to recover the data with ISI

effects only. In planar data storage systems, IPI effects are not present. Our proposed

165



algorithm can be employed in this situation with reduced complexity, i.e. reduced

dimensionality in the matrix calculation.

To further enhance the data packing density, we introduced a multi-level data storage
procedure in Chapter 6. It increases the number of signal levels encoded in the pixel,
thus it can increase the amount of stored data without enlarging the area of the
medium. Hence the data packing density is boosted by several times. However,
multi-level system is more sensitive to additive noise at the detector plane. We

evaluate two ways to achieve multi-level storage and compare their performance.

Based on the knowledge of the readout point-spread function, we proposed a variable
threshold method in Chapter 7. The novelty of this detection method is that estimates
the interference from surrounding neighbors and varies the threshold for each pixel.
In this algorithm, the least square equalization is used to provide data estimation in
computing the interference. The simulation results shows significant improvement

over conventional fixed threshold method.

In Chapter 4 through Chapter 7, we assumed that the signal processing algorithms are
implemented using floating-point DSPs with 32 bits of data (24 bits for the mantissa
and 8 bits for the exponent). When the algorithm is implemented in hardware, it is
important to know the effect of finite precision arithmetic. We analyzed our
algorithms using the finite precision arithmetic in Chapter 8. We compared the
performance with the use of fixed-point arithmetic and floating-point arithmetic. The

fixed-point DSPs have better computing speed (higher MIPS rating) and cost less
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than the floating-point DSPs. The tradeoff between the two techniques is an
important design issue. This factor determines balance points between the system
performance, computational complexity, and cost. From the simulation results, the
fixed-point arithmetic uses only less than one sixth of the bits in 64-bit floating-point

arithmetic with minor effects on the system performance.

In Chapter 9, we examined the effect of misalignment in the readout system and
applied our algorithms to compensate it. Due to the pixel misregistration, the
received signal is partially lost and with more unwanted interference. Our least
square equalization and variable threshold detection methods successfully improve

the performance with small amounts of misregistration.

Because we carefully examine ISI and IPI effects in our 3D PODS model, we have a
basis for future research. With these mathematical models, one can try new
algorithms and compare the performance. As the demand of data packing density
keeps increasing, there will be increasing research on 3D PODS systems. Hence this

thesis serves as pioneering work in this field.

10.2 Future Work

Because of their faster data transfer rate and higher data capacity, 3D PODS systems
are a potential system for next generation data storage. Since 3D PODS systems are

still in the early stages of development, there are still many possible areas of

167



improvement. The work described in this thesis should be useful for many future

research possibilities. We list some interesting topics in this section.

10.2.1 Encoding Schemes for Multi-Level Data Storage Systems

We discussed two techniques for multi-level PODS data encoding. We plan to study
the benefit of using different encoding schemes on multi-level systems. In one-
dimensional communication systems, it is common and well developed to use multi-
level encoding. Because of the two-dimension nature of 3D PODS, these encoding

schemes must be modified before they can be applied.

10.2.2 Multi-Wavelength Readout Systems

In certain recording media, the readout data pattern is a function of the wavelength of
the readout laser. For extremely high data packing densities, we can use different
readout wavelengths in the same storage medium. Hence, we treat this multi-
wavelength as another dimension to increase the data capacity. This topic is another

solution to increase the capacity of future data storage systems.
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