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Abstract

In this report we present a tutorial on fuzzy measures, the Choquet Fuzzy integral (CFI)
and the Sugeno Fuzzy Integral(SFI). We also provide applications of these integrals using
heuristic and numerical examples. Finally, we provide practical applications in pattern

classification and reservoir management.



Chapter 1
Introduction

The fuzzy integral is a non-linear approach to combine multiple sources of uncertain informa-
tion (e.g., in pattern recognition applications, where results from multiple classifiers will be
combined). The function being integrated provides a confidence value for each information
source for a particular hypothesis, and the integral is evaluated over the set of information
sources. The Choquet (and Sugeno) fuzzy integral is a specific type of fuzzy integral which
combines information from multiple sources by taking into account subjective evaluation of

the worth of each of the sources.



Chapter 2
Fuzzy Measures

The fuzzy integral relies on the concept of a fuzzy measure which in turn is a generalization
of the concept of a probability measure. Consider a finite universal set X = {z1,...,2,}

which can be interpreted in a number of ways, e.g.

e X is a set of expert judgments concerned with decision making.

e X is a set of attributes or features. Each element of X is used to calculate a degree of
membership for an object u € U with respect to a class w € €.

e X is a set of classifier outputs. This is different from the previous interpretation in
that the classifier outputs can be represented as confidence levels for associating an

object with a particular class.

Let P(X) be the power set of X. A fuzzy measure over the set X is the set function

g: P(X) = [0,1] (2.1)

such that

L g)=0,9(X)=1
2. If A,B C P(X) and A C B, then g(A) < g(B).

Usually g(A) is viewed as the importance or power of an individual source or subset of
sources (A) within the set X.

Another way of interpreting fuzzy measures is by considering the effect of the contribution
of an element to a union or subset of elements. The contribution or added value of element
X; in union A is defined by g(A U X;) — g(A).



According to Sugeno [7], a fuzzy measure g (AU B), which specifies the importance of
the union of disjoint subsets A and B, cannot be completely ascertained from the component
measures g(A) and g(B). Consequently, he introduced A - fuzzy measures (also called “Sugeno

measures”) which satisfy the additional property, that:
9r (AU B) = gA(A) + 9A(B) + Aga(A)gr(B) , A > -1 (22)

for all A,B c X with AN B = (. Sugeno fuzzy measures are typically denoted as g,;
however, since they have found widespread use in applications (especially those involving
fuzzy integrals), it has become common practice to denote them just as g. In this report, g
and g, are used interchangeably.

The following are important properties of fuzzy measures:

1. If A = 0, then the fuzzy measure g, becomes a probability measure in that g (AU B) =
g(A) + g(B). If A < 0, then g, shows sub-additivity in that g (AU B) < g(A) + g(B)
and if A > 0, then g, shows super-additivity in that g (AU B) > g(A4) + g(B).

2. Let X be a finite set of information sources X = {z1,...,x,} and let g§ = gx({z:}).
The values g1, g3, ..., g% are called fuzzy densities® and represent the importance of the

individual information sources.

3. Let
A =4t wnyagp E X (2.3)

We can then form a sequence of nested sets Ay, ..., A,, starting from A; = {z;}, and
subsequently adding in elements xs, ...,2,, one at a time (note that A, = X and
Ap = 0). The measure g(A;) is calculated from the following recursive formula which
can be derived from (2.2) (see Section A.1):

9(A) =g(AinU{z}) =g +g(Ais1) + Ad'g (Aim1) for 1 <i<n (2.4)

where g(A;) = g' and g(4,) = g(X).

4. Given the fuzzy densities for a set of sources X, it is important to determine the
measures of the elements of the power set P(X). This is essential in many applications

and, as we explain next, can be done by using the A - fuzzy measure. Let A; =

!They are called “fuzzy” because g, g3, ..., g% are the values of the membership function of the fuzzy set
g defined on X.



{z1, ..., 2;} € X. According to (2.4) we can write (see Section A.2)

n—1 n

o) = Y AT 3 e @9
3=1 J=1 k=j+1
; 1
g(4,) = {H (1 + Agt) = 1] (X) ; A#0 (2.6)
TiEA

The value of A can then be found by solving the equation
9(4n) =g(X) =1 (2.7)

From (2.6) and (2.7), this is equivalent to solving the following equation for A:

7

A 1=]] 1+ ") (2.8)

=1

Hence, if we know the fuzzy densities g*, 7 = 1,--- ,n, we can construct the \ - fuzzy

measure. We first solve (2.8) for A, and then compute the g(A4;)’s using (2.4).

5. For a fixed set of densities {g'}, 0 < ¢g* < 1, there exists a unique A € (—1,00) where
A # 0 which satisfies (2.8).

6. Let A; be defined according to (2.3). For densities {¢'}, 0 < ¢g* < 1, we have (see
Section A.3)
0<g(A) <1V (2.9)

with equality when i =0 and i = n , i.e,, g(Ag) = 0 and g(4,) = 1.

Estimating the individual fuzzy densities, {g', 9%, ...,¢"}, is an important problem in all
applications. The behavior of fuzzy integrals (both the Choquet and the Sugeno) is heav-
ily dependent on the choice of these fuzzy densities. In some applications it is possible
to estimate these densities from training data [10]. For example, in a pattern recognition
application where the output of different classifiers are fused, the densities could be the per-
formance of the individual classifiers. Liang et al. [6] used a genetic algorithm to determine

the fuzzy densities from training data.



Chapter 3

The Choquet Fuzzy Integral

Let h be a measurable function
h: X —[0,1] (3.1)

The Choquet fuzzy integral (CFI) defined below is the integral of h with respect to a fuzzy
measure g,. Note that in (3.1), X could be a set of classifier outputs and h(z) could be
the soft output of the classifier (the confidence or evidence grade of the classifier) denoting
that an input sample is from a particular class. In general, X = {x1,...,2,} is a set of
information sources and h(x;) is the confidence grade of source ¢ that a particular hypothesis
is true. A A-fuzzy measure provides the importance of each subset of sources X for this
hypothesis evaluation.

To begin, we provide a definition of a fuzzy integral. Given a class of functions F' C

{h: X — R} and a class of fuzzy measures m C M, a functional
I:Fxm—R (3.2)

is a fuzzy integral [2]. Consider a specific function h associated with fuzzy density g. Then,
we can define a fuzzy integral as
h,g — 1(h, g) (3.3)

There are a number of families of fuzzy integrals in terms of the underlying fuzzy mea-
sures that have been described in the literature. We are particularly interested in the Choquet
Fuzzy Integral (CFI) which is a nonlinear functional defined over measurable sets that com-
bines multiple sources of uncertain information. It provides a computational scheme for

aggregating information.



The CFI of h over X with respect to a fuzzy measure g, is defined as
E4(h) = / hog= ZJ Y[R (z:) — h(zi41)] (3.4)

where h(z;) > h(zs) > -+ > h(z,) and h(zn41) = 0. Set A is as defined in (2.3); i.e.
A = {1, v} K, q( ») = g(X), and g(Ag) = 0. The CFI can also be expressed as
(see Section A.4)

Byt = [ hog =" hia:) o (4) =9 (Ai) (5)

If the function h is reordered such that h(z;) < h(zs) < -+ < h(z,), then the CFI has the
following form (see Section A.5) :

By = [ hog =30 (X = (4] (w) = h(zica) (59)
= Zg (Zas BipgisveesBa) [Telme) — Bilmii)] (3.7)

All three forms of the CFI are identical. See Sections A.4 and A.5 to see how one form leads
to another.
In comparison with probability theory, the CFI corresponds to the concept of expectation,
and it has found extensive use in combining feature and algorithm confidence values [4].
Important properties of the CFI are (See Appendix B for their proofs):

1. The CFI is a monotonically increasing function with respect to h(z) [2].
2. For all h, g € [0, 1], the range of the CFI is

hain < Eg(h) < hmax (3.8)

where gy = min (h(xy), h(z2), ..., h(z,)) and hmax = max (h(z1), h(z2), ..., k(z,)).
The CFTI attains its lower bound when gi = 0 for all i and it attains its upper bound

when ¢4 =1 for all i.

3. If h(z;) = c for all ¢, where 0 < ¢ < 1, then

/Xhogzc (3.9)



. If hy(z;) < he(x;) for all 4, then
Ey(hy) = / hiog < / hyog= Eg(h'Z) (3.10)
X %

. IfBeX,Ce X and B C C, then

/hogﬁ/hog (S 1L)
B c

. If the A-fuzzy measure gy is a probabily measure, i.e. 3, ¢4 = 1 and A = 0, the CFI
becomes a weighted average. In the special case where all the fuzzy density values
are equal, the CFI is equivalent to the arithmetic mean. This corresponds to the case
where g = 1/n.

I gi = 0 for some j, then

By = [ hog= 3 hw)l(A) ~ g (A (3.12)
/ i=1,ij

This property shows that the CFI values are determined only by the input sources that

have non-zero densities.



Chapter 4

Generic Applications of the Choquet
Fuzzy Integral

The CFI aggregates the elements of the source information set X according to a specified
criterion, while incorporating the relative importance of each of the elements. In this sec-
tion, we present the CFI for some simple “textbook” applications so as to foster a better

understanding of the integral and gain insight into why it works in aggregation.

A Worker Productivity

Consider the example of productivity’ in a workshop. Let X = {zy,...,z,} be a set of
workers. Suppose that each worker z; works h(z;) hours a day from the opening hour.
Without loss of generality, the function that defines the number of work hours for each
worker is ordered such that h(z;) < h(22) < --- < h(z,), where worker z; works the least
amount of time and worker x, works the most; thus, for ¢ > 2, h(z;) — h(z;—1) > 0.

The fuzzy measure is defined as the number of products made by the workers in one
hour, with the implicit assumption that the productivity of the workers remains constant
throughout the day; hence, g(z;) denotes the number of products made by worker z; in one
hour, and g is a measure of productivity. A group of workers A C X produces the amount
g(A) in one hour. A product can be made either by one worker or by a group of workers.
Hence, the number of products produced by 2 or more workers working together is larger
than the sum of the products produced by each individual worker, if he were working alone.

Next we show that the CFI can be used to find the total number of products produced
by all the workers in one work day. The working hours of all the workers are aggregated in

1This example has been paraphrased from [7].



the following way. First, the whole group X with n workers works h(z;) hours. Next, the
group X — {z,} = {@2,23,...,2,} works h(zs) — h(x;) hours as the worker z; is no longer
at work. Then, the group X — {z1, 22} = {@3,24,...,2,} works h(z3) — h(zz) hours, and
so on. Lastly, one worker z,, works for h(z,) — h(2,-,) hours. Since group A produces the
amount g(A) in one hour, the total number of products produced by all workers in one day

can be expressed as:

h(zy)g(X)

+

[h(22) — h(z1)] g (X — {21})
+  [h(z3) — h(z2)] g (X — {@1,22}) +- -
+ [ ‘Ln) - h(ﬂ:n—l)]g ({wﬂ})

[k (z;) — b (zi-1)] g ({@i, Tig1, ..., Tn}) where h(zo) =0

—~
—

1
n

™

i=1

=

= [h. (.’L'i) —h (3’:1‘_1)} q (X - Ai—l) where A,_' = {331, veey ."L'i} aﬂdA() = {@}

1

E,(h) (4.1)

[

This example shows that (4.1) fits the definition of the CFI in (3.6), and demonstrates the
aggregation logic behind the CFI.

B A Collection of Rare Books

Consider a particularly rare book? that comes in two volumes. The first and second volumes
are denoted by z; and z,, respectively. The fuzzy measure is defined as the price of the two
volumes. The price of the first volume is given by g ({z}), the price of the second volume
by g ({z»}) and the price of the complete set by g ({x1,z2}). The complete set is considered
to be more valuable than the combination of the two volumes; hence, this fuzzy measure

becomes a A—fuzzy measure since

g ({z1,22}) > g ({1}) + g ({22}) (4.2)

A certain person sells h (1) copies of the first volume and h (z2) copies of the second volume.
Without loss of generality we can assume that h (x;) < h (23). The number of complete book
sets (both volumes) sold is (z1). The number of copies of the second volume sold separately

2This example has been paraphrased from [7].



is h(z2) — h(z;). The total amount of money the seller gets is
h(21) g ({1, 22}) + [h (22) — R (z1)] 2 (2) (4.3)

This expression is also similar to (3.6) and is another example of combining measurable

functions with respect to densities using the CFIL.

C Multiple Judges of a Sporting Event

A numerical example that demonstrates the calculations of the CFI, is presented next; it is
adapted from [5].

Table 4.1: Scores for the participant « from the five judges

Unordered Ordered
Judge (z;) [ Score (h (x;)) | Expertise (g (x;)) || Judge (2}) | Score (h (x})) | Expertise (g (z}))
1 0.5 0.8 2 0.7 0.5
2 0.7 0.5 4 0.6 0.7
3 0.2 0.4 5 0.6 0.7
4 0.6 0.7 1 0.5 0.8
5 0.6 0.7 3 0.2 04
Let the set X = {1,...,25} represent five judges at a sporting event. Assume that the

participant u has obtained the scores shown in Table 4.1 from the n = 5 judges. Experts rate
the judges’ expertise, and their ratings are also shown in the table. A rating of 1 indicates
that the judge is an expert while a rating of zero indicates a totally unknowledgeable judge
(naturally a judge with a rating of zero would not be considered for aggregation). The
expertise of the judges can be considered to be the densities g, of the A—fuzzy measure. The
judges’ scores need to be aggregated so as to determine the final score for the participant;
hence, the scores become the values of the function h aggregated in the CFL

Given the fuzzy densities g* of the set X, A has to be computed using (2.8). Solving
this equation with the density set [0.8,0.5,0.4,0.7,0.7], we get a unique root > —1 which is
A = —0.9943. Next, the fuzzy measures of the power set can be determined by using (2.4).

The aggregate score is computed using the CFI by first ordering the scores and the
corresponding densities such that the scores are in decreasing order. Prior to ordering, the
scores are assigned as h(z;) = 0.5, h(zs) = 0.7, ..., h(xs) = 0.6. Let X' be the ordered set

10



so that h(z}) > h(zh) > - -+ > h(z;,). Then,

0.5,0.7,0.2,0.6,0.6] — [0.7,0.6,0.6,0.5,0.2] (scores) (4.4)
0.8,0.5,0.4,0.7,0.7] — [0.5,0.7,0.7,0.8,0.4] (densities) (4.5)
After ordering, the scores are assigned (see Table 4.1) as h(x}) = 0.7, h(z}) = 0.6, - - -, h(z§) =

0.2 and the corresponding densities are g (z}) = 0.5, g(z}) = 0.7, ..., g (z5) = 0.4. The new
arrangement of the judges (set X’) according to the re-ordering, is X' = {1, 2}, 23, ¢, 25} =
{29, 24.75, 71,23}, Let A; = {z}, ..., z}}. The fuzzy measures for all A;,i = 1,...,n are

computed recursively according to (2.4), as:

g(Ar) = 0.5
g(As) = 0.7 + 0.5 — 0.9943(0.7)0.5 = 0.8520
9(As) = 0.7 + 0.8520 — 0.9943(0.7)0.8520 = 0.9590 (4.6)
g(Ay) = 0.8 + 0.9590 — 0.9943(0.8)0.9590 = 0.9962

g(As) = 0.4+ 0.9962 — 0.9943(0.4)0.9962 = 1.0
Since n = 5, g(As) = g(X) = 1.0. The CFI can now be computed using (3.4) as:

E,(h) = (0.7 — 0.6)0.5
+(0.6 — 0.6)0.8520
+(0.6 — 0.5)0.9590

(4.7)
+(0.5 — 0.2)0.9962
+(0.2 = 0)1.0
=0.64

According to the CFI, the aggregated score of participant u is 0.64.

In this example we cannot use the arithmetic average as a tool for aggregation of the
judges’ scores because the sum of the densities Zle g (z;) = 3.10 > 1. In order to compute
the weighted average, we have to normalize the densities as

g (i)
E?:l g (z:)

The scores and the normalized weights are given in Table 4.2. The weighted average of the

(4.8)

Ww; =

judges’ scores can now be computed as

11



Table 4.2: Scores for participant u from the five judges and their corresponding weights

Judge (z;) | Score (h(z;)) | Normalized Expertise (w;)
1 0.5 0.26
2 0.7 0.16
3 0.2 0.13
4 0.6 0.225
5 0.6 0.225

5

W,(h) = 3~ h(z;) w; = 0.5(0.26) + 0.7(0.16) + 0.2(0.13) + 0.6(0.225) + 0.6(0.225) = 0.538

i=1

(4.9)
If the normalized weights were to be considered as a A-fuzzy measure, then A = 0 and hence
the CFI reduces to the weighted average (see Property 6 in Chapter 3).

The aggregated result of the CFI is higher than that of the weighted average because it
takes into account the increased value or in this case the increased expertise of two or more
judges who agree on a particular score. This has occurred because of the computation of the
A-fuzzy densities for subsets of the set of judges X.

12



Chapter 5
The Sugeno Fuzzy Integral

Let h be a measurable function 2 : X — [0, 1], one that is ordered such that h(z) > h(z2) >
coo > h(z,). Let 4; = {z1, ..., 7;} € X where X = {,...,%,}, a finite set. The A;’s form
a sequence of nested sets Ay, ..., A,, starting from A, = {z;}, and then subsequently adding
elements o to z,, one at a time to get A, = X, as mentioned earlier in property 3 in
Chapter 2. Let g* = g\({z:}) be the fuzzy densities of the set X. The Sugeno fuzzy integral
(SFI) with respect to a fuzzy measure g is given by [9]:

Fy(h) = [yhog = sup, {t(o,g(Ha))} (5.1)

where H, is the a-cut of h and ¢ is a f-norm.

The a-cut of a fuzzy set A on U is the set Ay = {u|u € U, pa(u) > o} where pa(u) is the
membership function of A. In our case the a-cut of h is the set H, = {u|u € X, h(u) > a}.
In Sugeno’s original formula, the t-norm used was the minimum. In order to use (5.1), the
t-norm should follow the distributive law under the supremum operator [4]. Examples of
such ¢-norms are minimum, product, bounded difference, and drastic product.

Since X is finite, h has at most n different a-cuts ranging from Hy = X to Hpeighi()-
The latter only contains the element(s) that reach the maximum level of the function h.
Since h(z;,) > h(zs) = -+ > h(z,) and A; = {z1,...,z;} C X, each A; C X is the h(z;)-cut

of h; thus, (5.1) can be expressed as

Fo(h) = /Yhog = max {t(h(z;),9(A4;))} (5.2)

=m0

which is computationally simpler than (5.1). In Fig 5.1 the h(z;)"*-cut of h is shown. This
is the set {z, ..., z;} which we have defined to be A;. In applications of the SFI to pattern

recognition the t-norm most commonly used is the minimum; hence, the most common form

13



h(v)

A

h ['\-I'I\'.I\ ] =

a=hx]

Sl
A 4
-

X X;

Figure 5.1: Plot of h(z) versus z. Note that the a-cut shown in this figure is the set A;.
This is also the h(z;)"'-cut. The continuous curve is for purposes of illustration only, i.e., it
actually consists of lines connecting discrete values of h(z;) for z = {z,...,z,}.

of the SFI is given by
R = [ hog=\/[hiz)) A (4) (53)
1\’ j

where the values of g(A;) are determined recursively according to (2.4). Figure 5.2 provides
a graphical interpretation of the SFI, which attempts to find the best consensus between the
function value and the importance attribute. This is where the SFI fundamentally differs
from the CFI. While the CFI quantitatively weights the function by the jump in the fuzzy
measure, the SFI associates each function value with the corresponding importance measure.

Consider the worker-productivity problem in Section 4.A. The SFI finds the best con-
sensus between the number of work hours and productivity whereas the CFI computes the
improvement in productivity weighted by the number of hours. Clearly, the CFI makes more
heuristic sense in this quantitative framework.

Next, consider the numerical example in Section 4.C where judges scored partipants at
a sporting event. Recall that participant v has obtained the scores shown in Table 4.1
from the 5 judges; densities g, of the A—fuzzy measure are given in (4.6), and the fuzzy
measures denote the expertise of the judges. The scores obtained for participant u can
now be aggregated as follows using the SFI so as to produce a final score. The scores are
again reordered so that h(z]) > h(zh) > -+ > h(z},) where X' = {a},zh.25, 2}, 25} =

14



\

el A il
Figure 5.2: Graphical illustration of the calculation of the SFI

{9, z4.75, 71, 23} is the reordered set of judges as in (4.4), and the corresponding densities
are also reordered as in (4.5). Using the defnision of the SFI in (5.3) and the computed
values of the g(A;) in (4.6) we find:

F,(h) = max[min (0.7,0.5),min (0.6,0.8520),- -

min (0.6,0.9590) , min (0.5,0.9962) , min (0.2, 1)]
max [0.5, 0.6, 0.6, 0.5, 0.2]
= 0.6

We see that the aggregated value of the scores Fy(h), according to the stated fuzzy measure
g using the SFI is 0.6. The SFI computes the highest score that most judges agreed upon
corresponding to their expertise.

In general, the CFI is used when the problem framework involves quantitative measures
and the SFI is used when qualitative measures (e.g., expertise, accuracy, talent etc) define
the importance attribute. An application where quantitative measures are the densities, and
hence the CFI is used, is described in Section 6.C.

15



The Generalized Sugeno Fuzzy Integral (GSFI) is an extended version of the SFI that is
formed when each h(z;) is not a real value in [0, 1] but is a fuzzy number within the universal
set [0,1] and was presented by Auephanwiriyakul, et al. [1]. In the case of the numerical
example just presented, if the judges had scored the participants qualitatively (e.g., good,
excellent), then the scores would themselves be fuzzy. In this case the GSFI would be used
to aggregate the scores. The output of the GSFI is a type-1 fuzzy set.

16



Chapter 6
Pattern Recognition Applications

In this section, we apply the CFI to pattern classification. Because of the versatility of the
fuzzy integral, it can potentially be applied in multiple stages in the pattern classification
problem. The CFI can first be used to combine classifier outputs from multiple feature sets,
thereby improving the decision making ability of the classifier. Then, the CFI can be used
to combine classifier outputs from different classifiers, (each having different performance
levels), so as to improve overall probability of classification.

A Feature Aggregation by Decision Fusion

Let z; denote a set of features, and let X = {x,2s,...,2,}. Each x; is characteristic of an
object M that has to be classified into a set of predefined classes C' = {cy,...,cn}. Each
z; is a different set of features which could potentially be generated by different feature
extraction algorithms, e.g. in face recognition, z; could be the quadrant energies of the
Fourier transform of the image M and z, could be the set of spatial or temporal frequencies
in the image M. Since there is inherent uncertainty in the pattern classification problem,
there is normally no set of features that can precisely distinguish one object from another;
thus, these feature sets are considered as evidence of characteristics which aid in identifying
and classifying the object. Each of these feature sets would have a degree of importance in
identification of object M, since usually all the feature sets do not carry equal importance
in classifying the object. This notion of importance translates directly into a fuzzy measure.

There are many algorithms that have been described in the classification literature [3]
(e.g. perceptrons, K-means, Bayesian classifiers, etc.) which can be used to classify the
object M using one or more of the feature sets in X. Consider only one of these algorithms
and let hy : X — [0,1] be the output of that classifier, i.e. hy(x;) is the evaluation of
the object M for class ¢ (k = 1, ...,m) using the feature set z; (i = 1, ...,n). A single
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Feature Aggregation for Class-7

Classifier

B lxs )

% : Classifier i
g(x,) = CFI M : >

output decision
level for Class-i

h(x,)
X, ——Pppl Classifier

Figure 6.1: Block diagram representation of feature aggregation using decision fusion for
class-t

classification algorithm can be trained using the different feature sets z; (i = 1, ...,n), so

that hy(z;) is the output of the classifier trained on the "

feature set. hy(z;) ranges from
zero to one. An output of hy(z;) = 1 indicates absolute certainty that the object M is in
class ¢y, whereas an output of hg(z;) = 0 indicates absolute certainty that the object M is
not in class ¢;. The objective is to combine the classifier outputs hi(z;) for all the feature
sets z; (i = 1,...,n) to obtain a decision level for the class ¢;. Fig 6.1 shows a block diagram
illustrating feature aggregation for a particular class. Note that the classifier algorithms for
the n classifier are the same, but the effects of different input feature vectors are integrated
using the CFL

The degree of importance g* associated with each feature set x; denotes the importance
of that feature set in the classification problem and must be ascertained prior to fusion.
The ¢'’s are the fuzzy densities for the feature sets and can be specified by an expert or
generated from training data. For a given classification algorithm the g*’s can be chosen
to be the performance of the classifier for each of the z;’s for a particular class c;. If the
probability of classification error using training data for a feature set z; is P(z;), then the
fuzzy density g* = P(z;). Since we are considering only A-fuzzy densities in this report, A
can be calculated using (2.8) and then the complete fuzzy measure g, can be constructed.
Using (3.4) (3.5) or (3.6), the CFI can then be computed.
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Figure 6.2: Block diagram of the decision strategy of the fused classifier

The CFI can be computed for each class ¢, k = 1,...,m. If a decision needs to be made
at this point, the class ¢, with the largest integral value is chosen as the one most similar
to the object M. See Fig 6.2 for an illustration on how a decision could be made using the
classifier outputs. In the figure, by represents the outputs of the classifiers for class k. The
decision box essentially computes the maximum of all the hy’s.

The set of CFI outputs can also be considered as partial evaluations and submitted as
input to a higher level of recognition [10, 4]. This is explained next.

B Multisource Integration (or Multiclassifier Combining)

The CFI can be used to combine decisions from different information sources which could be
decisions from different classifiers, and each of these classifiers could have a different degree of
importance. Application of the CFI provides decisions supporting or rejecting the existence
of the object under consideration in the class set C.

Under certain conditions, some classifiers may produce more reliable decisions than oth-
ers, in which case we can integrate the decisions of the classifiers with respect to their relative
importance to produce a more reliable decision, e.g. In [10], Tahani and Keller used the CFI
to aggregate decisions from different image classifiers while maintaining a degree of flexibility
so as to incorporate the specific attributes of the decision-maker.

Suppose there are p classifiers Y = {y1,¥2,...,¥,} which make decisions about an object
M which has to be classified into a set of predefined classes C' = {ci,...,¢n}. Using the
output of the decision box h; in Section A, or a good feature extraction algorithm, these
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Figure 6.3: Block diagram representaion of multiclassifier fusion for Class-1

classifiers generate evaluations of the object M for each class ¢, based on the degree of
similarity between the object M and the class ¢,. The outputs of these classifiers are then
combined at a higher level to produce a final evaluation of the object M for each class. See
Fig 6.3 for an illustration of Multiclassifier fusion. Note that the input feature set {X} is the
same for all the different classifier algorithms and the CFI is used to fuse classifier outputs
based on classifier performance. Each of these classifiers has varying levels of reliability and
performance; hence, each classifier has a different degree of importance in the recognition
of the classes. The concept of “importance or reliability” associated with each classifier
translates into the fuzzy density of that classifier and these densities are generated from
training data. If the probability of classification error using training data for classifier y; is
Q(y;), then the fuzzy density for classifier y; is g* = Q(y;). For a given class ¢, there are p
fuzzy densities gi,i = 1, ..., p, one for each classifier, and p outputs hi(y;). The decisions
hi(y;) are then integrated with respect to the fuzzy densities gj over the classifier set Y.
This is done for each class, resulting in a final confidence level for each class ¢;. To make a
final decision the class ¢, with the highest confidence level is chosen (see Fig 6.2).

It has been shown [4] that the classification rates obtained by using the CFI are signifi-
cantly higher than those obtained by using just the individual classifiers.

As explained above and in the previous section, the CFI can potentially be used at
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different stages in the pattern classification problem, e.g. combination of feature information,
combination of sensor-based information, and fusion of classifier decisions. The core problem
in using the CFI is in effectively estimating the densities. This is application specific and some
methods have been proposed in the literature for applications like handwritten character
classification, landmine detection, image segmentation, etc. A specific example of classifier
fusion where the densities are generated from the training samples is described in the next

section.

C CFI Applied to a Binary Classification Problem

Wu and Mendel [11] studied the binary classification problem of identifying tracked versus
wheeled vehicles from acoustic data that was available for different runs which were seg-
mented into data blocks from which features were extracted. The magnitudes of the second
through 12th harmonics of each prototype (data block) were used as features. Because of
the inherent uncertainties in the data, type-1 and type-2 fuzzy sets were used to model the
uncertainties in the feature set.

Type-1 Fuzzy Logic - Rule Based Classifier (FL-RBC) and interval type-2 FL-RBC were
designed and used for classification. In the type-1 FL-RBC, nine rules were used for the
tracked versus wheeled classification problem, one for each of the nine kinds of vehicles for
which measured data was available.

Let X = {z1,2s,...,211} be the feature set extracted from the data. The antecedents
in each of the [ (I = 1,...,9) rules, F} (k=1,...,11) (one for each feature) were modeled as
type-1 fuzzy sets with membership functions (MF’s) ppi(2x), and the consequents q' were
modeled as crisp numbers. Given an extracted feature vector X' = [21,...,z],], the type-1
FL-RBC modeled each ), as a type-1 fuzzy set X; and computed the firing degree f {(2') for
each rule. The rules were then combined through defuzzification to obtain a crisp output
y(z'). The decision about the feature vector X' depended on the sign of y(2'). If y(z2') was
positive then z' was classified as a tracked vehicle, and if y(z') was negative then a2’ was
classified as a wheeled vehicle.

In the interval type-2 FL-RBC, the rule structure was the same as that of the type-
1 FL-RBC, but the antecedents ﬁlf (k = 1,...,11) and the feature sets were modeled as
interval type-2 fuzzy sets. The consequent ¢' was still modeled as a crisp number. Given
an extracted feature vector X' = [/, ..., z},], the FLS modeled each z}, as an interval type-2
fuzzy set X, and computed the upper and lower firing degrees, TI(:E’)and f(m’), for each rule.
The rules were combined through type reduction to obtain a type-reduced set [y(z'), y,(2")).
Finally, the type-2 FL-RBC defuzzified the type-reduced set to get a crisp output y(z') =
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[yi(z') +y.(2')] /2. As in the case of the type-1 FL-RBC, the decision on the extracted
feature vector X’ depended on the sign of y(z'), where if y(z') was positive then 2’ was
classified as a tracked vehicle, and if y(z') was negative then 2’ was classified as a wheeled
vehicle.

A leave-one-out design was performed. It consisted of 88 designs (i.e., classifiers) for the
type-1 and the type-2 classifiers. The parameters of all classifiers were optimized using the
training data and a steepest descent algorithm. After training, the performance of the L
classifier was characterized by its false alarm rate (FAR), pr. Given a new input feature
vector X' = [z}, ...,2},], both the type-1 and type-2 FL-RBCs generated outputs y(X') for
each of their 88 classifier designs.

The CFI could be used to combine all 88 outputs of the type-1 and type-2 classifiers
with respect to their corresponding FARs. The 88 classifier designs become the finite set of
classifiers Y that are described in Sections A and B. The numerical outputs of the classifier
designs are the functions hi(X) (k = 1,...,88) for a given set of input feature vectors X,
and the fuzzy densities g* correspond to the performance of each classifier design. If the
probability of classification error using training data for for design y is Q(yx), then the
fuzzy density for classifier ;. is ¢¥ = Q(yx) The outputs of the individual classifier designs
could be combined using the CFI as in (3.4), and a final output y(X’) could be obtained
which could then be thresholded to make a final decision as to whether the input feature set

X' corresponds to a wheeled or a tracked vehicle.
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Chapter 7
Petroleum Reservoir Management

A petroleum reservoir is a dynamical system which produces observable output signals that
are affected by external stimuli. The reservoir is a dynamical structure of many variables
which can be observed (e.g., fluid rates) and that respond to the action of variable injection
rates (and other inputs), and measurable and unmeasurable disturbances. Well fluid-rate-
control has been related to optimization of fluid displacements in porous media [8]. There
is a need to develop effective control schemes that will control the hardware especially for
smart wells.

Here we examine a simple problem and demonstrate the application of the CFI to aid in
decision fusion so as to provide better control inputs to the hardware. Consider the injector-
producer model in a reservoir. The measurable outputs in a reservoir are the oil rate g,, the
water rate ¢, and the gas rate g,. It has been shown [8] that the reservoir pressure p and the
well flowing pressure are linearly related to the oil, water and gas flow rates. The objective
is to determine an optimal water injection-rate w;,; so as to meet target output fluid rates.

This can be done in the following ways:

1. Since the reservoir pressure also depends on the water injection-rate, an adaptive math-
ematical reservoir model can be built to control the water injection-rate w;,; so as to
achieve set-point target flow-rates [¢o,sp, Guw,sp; Gg,sp); hence, one control output is ob-

tained by mathematical reservoir modeling.

2. An empirical model can be built to control the water injection-rate w;,;. This method
depends only on the sensor outputs from the reservoir and does not take into account
the mathematical modeling of the reservoir; however, the model takes advantage of
measured data to estimate wj,;; hence, another control output can be obtained by

empirical modeling.
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Figure 7.1: Representation of the injection-production problem

3. Experts in oilficld management can analyze the data and determine water injection-
rates so as to attain set point targets for reservoir pressure and fluid rates; hence, a

third control output comes from ezpert opinion.

The CFI could be used to combine these outputs so as to determine an aggregated optimal
water injection rate w;,; (Fig. 7.1). The assignment of fuzzy measures (densities) or impor-
tance of each method, g', ¢° ¢°, remains an open research problem. These densities could
be obtained from field data or measured outputs of fluid flow fluctuations in response to
changes in input for each of the methods. They need to be estimated once for a particular
method, however, if the algorithms for computing control outputs change, then the densities
need to be re-evaluated. Having determined the fuzzy densities ¢ and the outputs h' = w},;,
the A - fuzzy measures could be determined by using (2.8), and the CFI could then be used

according to (3.4) to obtain the final optimal water flow injection rate wiy;.
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Chapter 8
Conclusions

In this report, we presented a tutorial on fuzzy measures and the CFI and the SF1. Generic
applications and numerical examples were given to illustrate the use of the CFI and the SFL.
Finally, applications of the CFI to pattern classification and reservoir management problems

were proposed.



Appendix A

Derivation of Some of the Properties of

Fuzzy Measures

A.1 Derivation of (2.4)

We know from (2.2) and (2.3) that for a A-fuzzy measure

g(A)=g({z}) =4 (A1)
g(43) = g({z1,22}) = g ({z1} U {z2}) = ¢* + ¢° + Ag'? (A.2)
g9 (A3) = g ({21, 72, 23}) = g ({1, 22} U {23}) = g (A2) + ¢° + Ag’g (As) (A.3)

From (A.1), (A.2), and (A.3) and extrapolating to n, we find

g (An) =g (An—l U {:En}) = gn +g (An—l) + )\gng (An—l) (A4)

Note that g (A4,) = g(X) =1, and g (Ap) = 0 = 0 (by definition); therefore, we can state in
general that

g(A) =g(Ai U {z;}) = g +g(Ai)+Ag'g(Aiy) for1<i<n (A.5)
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A.2 Derivation of (2.6)

Eqn (A.2) can be written as

2
= 9 +Ag'g?
j=1
Multiplying and dividing by A and then adding and subtracting 1 we get

1
g(4;) = (X) [1+Ag" + Ag® + A2g'g® — 1]

= G) [ﬁ (14 Ag*) - 1]

Similarly, for g (As3), substituting (A.9) in (A.3), we see that

For n =k , we assume that

9(Ax) = (%) [f[ (1+Ag') - 1]

=1

Now, for n = k + 1, we have (according to (A.5))

g (Arg1) = ¢ + g (A) + Ag" g (Ax)
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(A.12)
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(A.14)

(A.15)



i=1 i=1

_ G) [ﬁ (1+Ag) — 1] g gt (G) [ﬁ (1+Ag') - 1]) (A.16)

- ((%) lﬁ (14 Ag) — 1D (1+ Agh*!) + g (A.17)

i=1

- (%) rﬁ (14 X9%) - 1] - G) (1+ Ag"1) + g**! (A.18)

=1

i=1

- G) [ﬁ (1+Ag)) - 1} (A.19)

From (A.9) , (A.14), (A.19) and the induction hypothesis, we conclude that

g(A,) = [H (1+Ag') — 1] G) A0 (A.20)

i=1

A.3 Derivation of (2.9)

From the defnition of the fuzzy measure (see (2.1)) and (2.7), we have 0 < ¢* < 1 and
g(X) = g(A,) = 1. From (2.4), we get

oy _9(4)—g'
9(Ain) = 0t g (A.21)
When 7 = n, (A.21) becomes
(Ap_y) = k=pt (A.22)
i A TS ) ;

Since A > —1, 0 < g(A,—;) < 1 and consequently 0 < g(A,—2) < 1 [by substituting ¢ = n—1
into (A.21)]. Similarly, 0 < g(4;) < 1 Vi. Equality is obtained when i = 1, i.e., g(4,) = 1
[by (2.7)].

A.4 Derivation of (3.5)

Expand (3.4) for k — 1 and % as follows:
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Eg(h) = -+ 4 g (A1) [h (z-1) — h (zi)] + 9 (Ax) [2 (@) — B (@p2)] + - (A.23)
Collect terms with h(xz).) as the common factor, to obtain
Eg(h) = -+ + h(zr-1) 9 (Ax-1) + h(2i) [g (Ak) = 9 (Ae-1)] + b (2r41) [=9 (Ar)] -~ (A-24)

which when summed leads to (3.5).

A.5 Derivations of (3.6) and (3.7)

Let Z = {z1,...,2,} such that z; = T, 22 = Tn-1, ..., 2, = 1. Because h(z1) < h(zg) <
. < h(xy), it follows that h(z;) > h(z2) > -+ > h(z,). This one-to-one correspondence
between X and Z can be specified by the relation z; = 2, ;11 . Replacing x by z in (3.7),

we find

= Z 9 ({tnmiits Zatiy o s 21}) [B (i) = F [Bn_ina)] (A.25)

Letting j =n —i+ 1, and B; = {2, ..., z;}, (A.25) can be expressed as:
=Y 9z 215 s 21}) [ (25) = B (2j11)] (A.26)

—Zg ) () = h(z341)] (A.27)

which is in exactly the form of (3.4). This proves that (3.7) is a form that is equivalent
to the CFI in (3.4). Finally (3.7) is equivalent to (3.6) because X = {zy,9,...,2,} and
AL‘ = {Il,.’l,'g, Vin ,ZEi} and S0, Q(X = {Ai_[}) = g(.’lﬁi,iUH_l, ...,IL‘-,L).
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Appendix B

Proofs of the Properties of the CFI

B.1 Property 1
Let us take the partial derivative of CFI in (3.5) with respect to h(z;) for any ¢, i.e.

OE,(h)
Oh(z;)

Using (2.4) to expand g(A;), (B.1) can be expressed as

= g(A;) — g(Ai-1) (B.1)

OE,(h)

Oh(z;)
Because ' > 0, 0 < g(A;) <1 and A > —1, the expression g* (1 + Ag(A;—1)) = 0, which
proves that the CFI is a monotonically increasing function with respect to h(z).

=g' + A\g'g(Aim1) = ' (1 + Mg (Ainy)) (B.2)

B.2 Property 2

When ¢ = 1 forall i = 1,2, ...,n, then g(4;) = 1 for all i = 1,2, ..., n (from (2.7) and
(2.4)); therefore, the CFI becomes (using (3.5))

B, (h) = Zh 9 (A1) - g (A)] = h(a) (8.3
since g(Ap) = 0. Because h(z;) > h(zs) > -+ = h(z,), it follows that
h(z,) = max (h(z1), h(zs), ..., h(z,)) (B.4)

When ¢¢ = 0 for all 4, then, g(A,) = 1, g(A;) = 0 for all i # n (from (2.7) and (2.4)). The
CFI then becomes (using (3.5))
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By(h) = 3" (e lg (A) — 9 (A)] = h () (B.5)
i=1
Because h(z;) > h(zy) > -+ > h(z,), it follows that

h(zy) = min (h(z1); b(22),. - o5 B(2n)) (B.6)

When 0 < ¢' < 1 for all i, then g(4,) = 1, and 0 < g(4;) < 1 for all i. Since the
maximum value of h(z;) is obtained only when all the density values are one, in all other
cases Ey(h) < Tmayx. Similarly, Ty, < Ej, since the minimum value is obtained only when all

the densities equal zero.

B.3 Property 3

Using (3.4), g(A,) = 1,and h(z,+1) = 0, we have

Ey(h) : Z g (A;) [h(z:) — R (zis1)] = g (An) h(zn) = h(zn) = ¢ (B.7)

since all the other terms vanish because the h terms cancel as ¢ ranges from 1 to n.

B.4 Property 4

In (3.5), let a; = g (4;) — g (Ai—1) for all . In (3.10) g is the same for both %, and hy; hence,

/ hiog=E,(h) = Z hy (z;) [g (A;) — g (Aicy)] = ha (z1) @y + By (22) ag + -+ - + by (2) g
T =

& oy (g Vg - hg () o Bl f Bo i (B.3)
X

since hy(z;) < ho(z;) for all <.

B.5 Property 5

Let ¢i(i = 1, ...n) be the fuzzy densities of the universal set X, B = {z), ..., 7} C X,
C ={z1, ..., T} and [ < m < n. Then using (3.4), we see that
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m

/Ch og= Zg (Ag) [l (z:) = b (zi41))]

i=1

m

=" g(A) [h () = h(@ir)] + D (A [h (@) = b (i)

= [ hog+ Z g (A) [h(z:) = h(zis1)] 2 ]Bh. og (B.9)

because g(A;) > 0 and h(z;) — h(xi1) > 0.

B.6 Property 6
Given that
g(A) =1=) ¢ +f() (B.10)
j=1
where f()) is a function of A as in (2.5), and )_;_, ¢’ = 1, we see that A = 0 for this equation

to be satisfied. In this case, the g(A;)’s become additive measures, i.e., g(A4;) = Z;zlgj,
and the CFI in (3.4) simplifies to (refer to (2.5)):

Ey(h) =" h(z)[g(A) — g (A =D () {Z g - igj] (B.11)
i=1 i=1

=1 i=1

= Zh (z;) ¢* (B.12)

which is a weighted average. In the specific case when the densities all equal 1/n, (B.12)

simplifies further to:

E,(h) = % > h(z) (B.13)
i=1

which is the arithmetic mean.

B.7 Property 7

If ¢ = 0, then according to (2.4)
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g(A;) = g7 + g(Aj-1) + Ag’g(A;1) = g(A;1) (B.14)

In this case, (3.5) becomes

Eg(h)=zn(wf) [9(A) —g(Ais)] = D @) [9(A:) — g (Ain)] (B.15)

i=1,i#j

since the g(A;) terms cancel out when i = j.
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