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1.1 Signal Processing in Waterflood ManLgement

Currently (as of the 4" quarter, 2011), crude oil is the most important form l)f energy
y

our world relies on. An International Energy Agency (¥EA) study shows that th& world’s

current oil demand amounts to approximately 88.3 million barrels per day (mb/d) (see Fig.

1.1). This number has risen about 2% compared to 2010 and will continue to grow in 2012,

Workl Oil Demand (mb/d)
o0 T
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Figure 1.1 World Oil Demand from 2009 to 2011.
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Figure 1.2 Mechanism of Secondary Recovery Stage
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For completeness, this| dissertation reviews how one can modify and extend Liu and
Mendel’s work to resolve several practical issues that emerged when their original technique
was applied to process real field data, namely: 1) Some of the estimated IPR values turned

out to be negative; 2) There exists no explicit guideline [for selecting possibly contributing

injectors for a producer-centric model; and, 3) The sum of the IPR values between an
injector and all of its influenced producers can sometimes be greater than one, which is
physically impossible, because this implies that the injec‘or is contributing more water than

the total amount it has injected. 'J

As mentioned at the| beginning of this chapter, the performance of all signal-

processing-based approaches to detect IPR values are dependent on the quality and

|

frequency of the measured injection and production rates. Unfortunately, in practice, the

production rates (well-test data) are only measured once every eight to ten days on average,
which is significantly lower than the measuring frequenc¢y required by EKF approaches to
provide reliable outcomes. This is where a reliable interpolation method comes into play, to
help accurately reconstruct missing production rates, and thus allow the system to avoid
certain highly negative impacts that such under-sampled data could bring about.

We have developed a reliable interpolation technique called an Iterative Extended
Kalman Filter and Smoother| (IEKFS) that dynamically interpolates missing data between
two available measurements k; and k,. The missing production rate at each time|point is
modeled as a state variable |that is forward-estimated from k; to k, by the EKF (using
measurements up to k), and is then backward-estimated by the Extended Kalman Smoother

(EKS) (using the measurement at k,). This process is carried out iteratively back and forth

between k; and k, until accurate estimates of missing data are recovered. It will be shown, by
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proposed, and have been summarized by Yildirim et al. [204] as follows: 1) standard median
filter [59, 177], which replaces the center pixel of a filtering window with the median value
of all pixels in that window, has good performance in terms of noise removal, but it also
blurs image details like thin lines even at low noise levels; 2) modified versions of the
median filter, e.g., weighted land center-weighted median filters [96, 205, 206], which give
more weights to certain pixels in the filtering window, gain improved performance| in terms
of preserving image details |at the cost of reduced noise removal capability; 3) impulse
detectors, which aim at deciding whether the center pixel of the filtering window has been
corrupted by noise or not, e.g., [4, 15, 29, 30, 33, 34, 35, 48, 53, 61, 90, 148, 159, 166, 172,

182, 201, 208, 211, 231]; 4) |other mean-filter-based approaches [3, 71, 113] that exhibited

good performance, but at the| price of high computational expenses; and, 5) many different
approaches based on soft computing methodologies [14,(36, 133, 154, 156, 157, 179, 204,
210], along with a number of nonlinear filters [99, 150, 155, 167, 184, 196, 209] that
integrate the desired features of some of the aforementioned filters.

MGIN often occurs when an already corrupted image is transmitted over a noisy
communication channel [61, 146], and, is modeled by first adding AWGN and then impulse
noise into the images. The study of MGIN removal is considered to be more general and
challenging than that of pure] AWGN or impulse noise removal; therefore, relatively fewer
works have been published in this area, e.g., 1) Ma et al. developed a Structure-Adaptive
Hybrid Vector Filter (SAHVF) [115] that employs a quad-tree decomposition to assess
activities in different regions of the image, in order to choose a noise removal filter among a
set of ad hoc approaches such as Peer Group Filter (PGF) [89], Adaptive Nearest Neighbor

Filter (ANNF) [147], and Structure Weighted Average Filter (SWAF); 2) Garnett et al. [61]
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at this systematic approach enables highly corrupted images in

performance. We will show t

a MGIN environment to achieve much better visual and quantitative results than any other

existing method.

\
[
1.3 Forest-Fire-Size Prediction 4

\
1

This next application is about predicting forest-fllre-size. A forest fire differs from
|

other fires by its extensive size, the speed at which it can spread out from its origin%l source,

its potential to change direction unexpectedly, and its a{yility to jump gaps such TS roads,

rivers and fire breaks, which altogether make its preventlbn, detection and suppression very
i

difficult. Most forest fires have significant negative impacts on the ecosystem and human

society, causing losses of forest, lives and infrastructures; and, despite increasing human

|
efforts, large amount of forests still burn down each year worldwide, e.g., the sta‘{istics of
forest fires in the United States from 1960 to 2009 are depicted in Fig. 1.3. 1

\

is essential to successful fire suppression, can be based on

automatic data collected by jsatellites and infrared/smoke scanners. Many different data-

Early detection, whic

mining techniques have been| proposed to analyze these data and extract expert knowledge

for fire/smoke detection [76, 171, 178] and false alarm reduction [3]; however, there are high
|

operational and maintenance| costs and localization del#ys associated with satellites and

scanners. |

On the other hand, spatial and meteorological data provided by local weather stations

are often real-time, economical and constantly available; therefore, researchers have started

ct expert systems for fire si}ze prediction [41, 58]. An accurate

|
[

to employ such data to constr
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Figure 1.3 Statistics of forest fir
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prediction of burnt forest arg
and deploy resources and n
relatively small fires and unde

Cortez and Morais [41
data-mining techniques desi
included a Naive Average Pre
of the fire sizes in the training
size to be zero, a Multiple R
Random Forests approach [1
Machine (SVM) approach [6¢
namely, Root Mean Squared E

Based on 30 Monte-C:
number of 300 tests), their a

approach could actually outp

| ;
es in the United States from 1960 to 2009: (a) Total number of fires

f forests burnt each year. ‘

as can enable fire-fighting |agencies to appropriately| allocate

nan-power, which will help avoid wasteful overreaction to

made the first attempt to study the performances of different

gned for forest-fire-size prediction. Their comparative tests
\

dictor that always predicts the fire size to be the average value

r-reaction to large ones.

o data set, a Naive Zero Predictor that always predicts the fire

egression approach [31], a Decision Trees approach [153], a

2], a Neural Network appﬁoach [16], and a Supp())"t Vector

)]. They used two different measures for evaluation purposes,
i
vrror (RMSE) and Mean Ab;folute Deviation (MAD). |

arlo simulations each with a ten-fold cross-validation (a total

verage results showed that ‘the only case where a non-Naive

erform the Naive Zero or Average Predictor (only by a very
|
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arrow margin) is when the SYM was used, but then only with respect to MAD. Under other
circumstances, either Naive Zero or Average Predictor works much better.

Comment: It has long been a debateable issue [60]|as to whether such Naive imethods
should be used in comparative studies; because, even though they may produce smaller
errors in terms of measures like RMSE and MAD, the mutual information [47] between their
estimated and the actual measurements is always zero, which means that absolutely no
information regarding the actual measurements can be inferred from these methods. Because
other authors have used Naive methods as benchmark techniques, we will also include them
in this chapter.m

Recently, Fowler et al. [58] proposed an Evolved Type-1 (T1) FLS which significantly
improved prediction performance in terms of RMSE measure; however, in terms of MAD
measure, this approach produced the second worst results among all techniques.

In nature, forest fires o¢ccur much more frequently than people normally think|[see Fig.
1(a)]. The sizes of over 99% |of the fires are distributed within a certain range, and we call

such fires regular events (we don't mean to minimize the significance of these fires by

calling them regular events; their sizes could still be very extensive; it is only a means to
distinguish them from the concept of extreme events defined later.). The news media usually
only cover less than 1% of the fires that are the most devastating and disastrous, and we call
such fires extreme events. Note that not only are the extreme events greatly different|from all
regular events, they are also \very far away from each other. In other words, the extreme
events are also quite unique.

For this application, we propose a Mixture FLS tlﬁat distinguishes between the two

kinds of events, and uses them separately to obtain two sets of rules: 1) a fixed number of

13




rules modeled by S-IT2 FSs, and tuned also by the QPSO algorithm using an adequate
amount of regular events; and 2) rules modeled by T1 FSs, where one rule is specifically

designed for each extreme event.

1.4 Computing Uncertainty Measures for Type-2 Fuzzy Sets

Previously, five uncertainty measures have previously been defined for Interval Type-
2 Fuzzy Sets (IT2 FSs), namely centroid, cardinality, fuzziness, variance and skewness.
Based on a recently developed a-plane representation for a general T2 FS, this thesis
generalize these definitions to such T2 FSs and, more importantly, derive a unified strategy
for computing all different juncertainty measures with |low complexity. The uncertainty
measures of T2 FSs with different shaped Footprints of \Uncertainty and different kinds of
secondary membership functions (MFs) are computed and are given as examples.
Observations and summaries are made for these examples, and a Summary  Interval
Uncertainty Measure for a |general T2 FS is proposed to simplify the interpretations.
Comparative studies of uncertainty measures for Quasi-Type-2 (QT2), IT2 and T2 FSs are
also performed to examine the feasibility of approximating T2 FSs using QT2 or even IT2
FSs.

Since centroid is probably the most important kind of uncertainty measures in practice,
this thesis also studies ways }to boost its computation efficiency. Note that Karnik-Mendel
(KM) or the Enhanced Karnik-Mendel (EKM) algorithms are used for computing the
centroid of each a-plane, whose iterative features can be time-consuming, especially when

the algorithms have to be repeated for many a - planes. So we proposes a new method

14
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named Centroid Flow (CF) algorithm to compute the centroid of A without having to apply

KM/EKM algorithms for every a — plane. Extensive simulations have shown that the CF

algorithm can reduce the computation time by 75% to 80% and 50% to 75% compared to

KM and EKM algorithms,| respectively, and still maintains satisfactory computation

accuracy for various T2 FSs when the primary variable x and a - plane are discretized finely

enough.

1.5 Thesis Outline

This dissertation is organized as follows: Chapter 2 introduces the parametric models

that can be used to characterize the subsurface reservoir; reviews the general EKF strategy

developed to estimate numerjcal IPR values; extends the technique by incorporating linear

constraints, as done by Simon et al. [163, 164, 165] and Yang and Blasch [202], which, for

the first time, allows all of the producer-centric models to be grouped together; demonstrates,

by using simulation data, the negative impacts of not having data sampled frequently enough;

and, finally, presents the technical details of the IEKFS interpolation algorithm and its power

in improving the accuracy of the estimated IPR values.

Chapter 3 presents an| overview of the NS-IT2 FLS, the detailed structure of its

building blocks, namely, neurofuzzy filters, and how the training image set can be generated;

introduces the QPSO algorithm that can be used to search for the “optimal” set of design

parameters for each neurofuzzy filter; briefly reviews the BM3D DCT and contrast scaling

NS-IT2

filters, that bring about additi

system; and, demonstrates the

onal enhancements to the ﬂ

improved performance of o

verall performance of the

ur proposed method by co

mparing
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Chapter 2 Robust Interpolation based }‘m an Iterated Ext
Kalman Filter and Smoother

This chapter focuses on an interwell connectiviq‘( detection system, for w
advanced interpolation technique is developed. We first
can be used to characterize the subsurface reservoir, th

numerical interwell connectiyity values in practice, and

technique. We then go on to

demonstrate its power in imp

2.1 Introduction

Albertoni and Lake [6]
is characterized by a contin
injection rates) into an output
modeled the reservoir by a R
whereas Yousef et al. modele
two parameters, 4 and T,
respectively. In their meth
quantitatively measured in ter
in the CM. The parameters off
Linear Regression (MLR).

approaches: 1) the parameters

oving the accuracy of our sy

and Youself et al. [207] mo

uous impulse response an

ods, the Injector-Produce

resent the technical details

signal (i.e., production rates
esistive Model (RM) charac
d the reservoir by a Capacitance Model (CM) charact

which quantify the interw

ms of the model parameters

these two models are estim

There

are assumed to be stationary

review the parametric mo
e general strategy to esti

certain advanced extensio

are certain limitat

ended

hich our
dels that
mate the
ns of the
thm, and

of the interpolation algori

stem.

deled the reservoir as a system that

d converts the input signal (i.e.,

. Specifically, Albertoni a‘md Lake

terized by a collection oflweights,

rized by

ell connectivity and dissipation,

r-Relationship (IPR) values are

, namely, weights in the RM and t

ated by the same method, Multiple

ions associated with these two

during the estimation proFess, 1.e.,
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constant over the window during which the data are analyzed; therefore, whenever changes
occur in the IPR values, the analysis has to be repeated for the new situation, which may not
be very practical, because the reservoir is dynamic and no change-detection has been
developed for these techniques; 2) the CM model is relatively complex; and although it is
only characterized by two parameters, one has to determine the primary production and
bottom hole pressure impact in order to use the model.

To overcome these difficulties, Liu and Mendel [110] propose to use a two parameter
Auto-Regressive (AR) model (also referred to as Liu-Mendel Model in this dissertation) to
characterize the impulse response between a single injeﬁtor and a single producer, and the
area under the impulse response can be viewed as a measure of the IPR. This nonlinear
model can be analyzed by an Extended Kalman Filter| to dynamically estimate| the IPR
values.

However, a problem emerged as the EKF was tested using real oilfield data, that is,
some estimated IPRs become negative during the estimation process. This is largely due to

the overwhelming noises in the measured well rates. Although this problem can be resolved,

in a relatively straightforward manner, by applying a modified SVM to estimate the square-
root of the IPR values so that their squared values are guaranteed to be non-negative, there
exists another problem that does not have such an easy fix: Some injector-centric sums
[Injector-centric sum (ICS) is the sum of IPRs between|an injector and all of its| affected
producers, whereas producer-centric sum (PCS) is the sum of IPRs between a producer and
all of its contributing injectors] of the estimated IPRs can become greater than one, which
means such injectors appear |to be contributing more water to producers than the amount
injected, which is physically |impossible. It turns out that both problems can be addressed

simultaneously if constraints ¢an be imposed during the EKF processing.
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Simon, et al [163-165] and Yang and Blasch [202] have shown how to in¢orporate
linear and nonlinear constraints into the structure of a Kalman filter. Based on their works,
this dissertation shows how to develop another modified SVM that allows linear inequality
constraints to be imposed, and then generalizes the linearly constrained Kalman filter to a
linearly constrained EKF using this new SVM.

It is intuitive that the |performances of such signal-processing-based techniques are
dependent on the quality and frequency of the measured injection and production rates.
However, in practice, the production rates (well-test data) are only measured once every
eight to ten days on average; this is significantly lower than the measuring frequency
required by these approaches to provide reliable IPR estimations. In this chapter, we first use
hypothetical data to show that, if we directly use such low frequency data, it will take a very
long time (usually two to three years) for our approach to|reach correct results. In real field,
the simplest and often-used interpolation (data conditioning) method is the Zero-Order Hold
approach, namely, to carry on the previously available measurement all the way until a new
measurement becomes available. Unfortunately, it also can be shown, using the hypothetical
data, that the production rates interpolated by zero-order hold method will cause all the
estimated IPR values to converge to one same average va{ue. To avoid these highly negative
impacts, a more reliable interpolation method that can help us accurately reconstruct missing
production rates is required.

As the core element of| this chapter, we propose an Iterated Extended Kalman Filter
and Smoother (IEKFS) approach to dynamically interpolate the missing data between two
available measurements. The missing production rate at each time point is modeled as a state

variable; and, it is forward-estimated by the EKF |based on previously available
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measurements, and is also backward-estimated by the Extended Kalman Smoother (EKS)
based on the available measurements after it; this process is carried out iteratively until good
quality data has been obtained. We will show that, assuming only one measurement every
eight to ten days, the production rates interpolated by the IEKFS approach allow our
technique to obtain almost equivalent results as if we were having one measurement every
day. Such interpolated data can also be utilized by other signal-processing-based techniques

and help enhance their performances.

2.2 Liu-Mendel Model and an Extended Kalman Filter

2.2.1 Reservoir Model

In this dissertation, the reservoir is modeled as a collection of continuous-time
impulse responses that convert injection rates into a production rate. A producer-centric
reservoir model with one producer and N independently contributing injectors and is
depicted in Fig. 2.1, where i\(?), ix(1),..., ix(), ny(f), na(2), ..., ny(t) and i, 1 (1), im2(0),.- s Lun(2)
are the actual injection rates|that flow into the reservoir, the corresponding injection rate
measurement noise, and the measured injection rates, respectively; p(1), n,(t) and p,(t) are
the actual production rate, the corresponding production rate measurement noise, and the
measured production rate, respectively; pj(t) G = 1,..., N) represents the amount of
production rate in p(r) caused by the ;" injector ; and, f(r,k;) are scale functions which
decides how much of the injection rate of the /" injector flows towards the producer, where

Jrjk;) can be viewed as a linear or non-linear scalar function of the distance, rj,|and the
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¥z
HZ)=—"——F5 2-2
@@=t (2-2)
where @ = e~%T and y = baT are two parameters that| determine the model and T is the
sampling period. The total production rate at a specific producer is the sum of the individual

production rates contributed by injectors that influence this producer, namely (assuming

there are N contributing injectors):

N N Ny f(r.k)z™
P(2)=) Pi(z =ZHj(Z)f(rj,kj)l,(Z)=:>_,2,’—Ji—(r’—%1,(z) (2-3)
= = o (-o;27)

where P(z), Pf(z) and [i(z) are the Z transforms of the total production rate,| p(k), the
production rate contributed by the j injector, pf(k), and the injection rate of the ;"

contributing injector, i;(k), respectively.
From (2-2), the subsystem between the producer and its /" contributing injector can be

modeled as (j = 1,2, ...,N):
(1,2 P =7,f (k)2 (2) (2-4)

which, when transformed back into time domain, is:
ik + D20, pj (k) + ) pik =D =y, f (r;.k,)i; (k) (2-5)

Liu and Mendel [110]| defined the numerical IPR value as the area under the sampled
impulse response of each injector-producer pair, and showed that it can be calculated as

(j=1,2,..,N)
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where, in general, f [*] and h
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2x, (k) (1 + x5, (k)%

m,j

What distinguishes ou

in (2-15), h[*] is linear, and ¢

where

[*] are nonlinear functions o
ero-mean white noises for th

] is linearized about X (k|k),

Lk),k]+F [£(k k), k]x[x(

'(k) is a 4Nx 4N Jacobian

tate equation in (2-15):

A 0 0
F, = "4 E
’ : : 0
0 0 A,

4x, (k)x;, (k) — 4x3, (k)
4% (k)1 + x5, (k))x, (k

r SVM in (2-15) from the n

an be expressed as:

yk+1)=Hx(k+1)+n, (k

f the state vector, and n,(k
e state and measurement
i.e.,

k)—X(k k)] +n, (k)

matrix, the explicit forms

0 0
0 0
0 1

x5 (k) +

. —xiy (k) 2x3,(K
m,j

~

nore general SVM in (2-1

+1)

) and n(k)

equations,

(2-17)

of which

(2-18)

(2-19)

~

6) is that,

(2-20)
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H=[000 01000100 01 (2-21)

is a 1xX4N vector.

The EKF has two stages, Predictor and Corrector)and is summarized as follows:

1. Initialize the EKF with X(0]0), P(0]0), Oy and r;.

2. Predictor (k=0, 1,...):

E(k+11k)=f[ 2k 1k),k] (2-22)
P(k+11k)=F, [f(klk),k]P(k|k)F;[£(k|k),k]+Qk (2-23)

3. Corrector (k=0, 1,...):
Rk+11k+1)=R(k+11k)+K(k+D)x[yk+1)— HE(k +11k)] (2-24)
R 62
P(k !—1|k+1)=[1—K(k+1)H]P(k+llk) (2-26)

2.2.6 Real Data Processing

The real data used in our study is from a section of an oil field. Most of the injectors
in this section have two completions; and because the injection rates of different completions
for the same injector are separate, each completion is treated independently, i.e., each

completion is treated as an independent “injector” in our SVM. The total number of
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producers in this field is denoted by Np and the total number of injector completions is

denoted by N;; and the well names have been removed and re-labeled.

The data starts from Jan. 1st, 2005, which is labeled as day 1 in our figures, and ends

rates are

on Jul. 31st, 2008, which is labeled as day 1308. Both injection and production

well-test data. The sampling rate of injection rate is one measurement per day and the

sampling rate of production| rate is, on average, one measurement every eight to| ten days.

For days when production
available data point all the
Order Hold method is the

approach in practice. Althoy

rates were not available,
way until the next availab
simplest and one of the

gh later we are going to pr

we used the value from
le data point. This so-cal
most often used data-int

opose a complex data-inte

the last

led Zero-

erpolation

erpolation

method, for the purpose of explaining the framework of|our estimation strategy, we assume

the Zero-Order-Held production rates meet our process requirements.

Our strategy for procgssing the entire section has|/been to apply our producer-centric

EKF to each producer separately. We choose a producer labeled as P-130 to give an example

of this process.

A very important first step is to choose an initial set of injectors that are possibly

contributing to the producer.|A relatively simple and commonly used way for doing this is to

use expert knowledge provided by petroleum engineers that are familiar with this field. For

this section, it is known that there are parallel fractures along each well that align 45° to NE.

It is believed that injectors located along this fracture alignment are more likely to contribute

to a producer. Knowing this, one strategy for choosing the injectors that contribute to a

producer is to draw an ellipge centered about the producer whose major axis is along the

fracture alignment, and to [assume the injectors inside the ellipse are influencing that
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130's local area and 46 initial completions included in its
b) the 17 completions that remadined after the elimination pr¢

Figure 2.2 When s = 1, (a) P-
centric model; and (

producer. Additional expert|knowledge was provided about the size of the ellipse, i.e., in

e ellipse should be 700 feet long and its minor axis should 500

general the major axis of th

feet long. Because these lengths are subjective, they may vary from producer to producer;

hence, a strategy for choosing an optimal ellipse size is presented in Section 2.2.7.

We began by using a 700’ x 500’ ellipse for a producer. Completions inside this

ellipse are included in our EKF model. To give the reader a clearer picture of this, P-130 and

injectors inside the ellipse are depicted in Fig. 2.2(a) by circle and triangles, respectively.

Note that the upper and lgwer triangles at the same location represent short and long

completion of an injector, regpectively. And there are 46 completions in this model.

After applying our EKF to this single producer-46 completions model, we obtained

the IPR curves that are depicted in Fig. 2.3(a).

46 completions is not a small number, so it is very likely that some of these

completions may be irrelevant to P-130. Observe, from Fig. 2.3(a), that there are many IPR

curves that only have very small values. We assumed, therefore, that the completions that

have very low IPR values dojnot influence P-130 and should be eliminated from the model.
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More specifically, we
(i.e., days 1278 ~ day1308) t

completion was kept in the

threshold; otherwise, that completion was eliminated fron

Our strategy for choos

| IPR

Figure 2.3 When s = 1, (a) IPR
(solid lines) and the ¢

IPR

ing a good threshold is depe

computed the mean of the II

model only if its IPR valu

% IPR

R values for the most rec

for each completion and compared it with a chosen thr

n the model.

ndent on the number of co

e was greater than or eqt

curves for the 46 initial comp
zlimination threshold (dotted lin

"% IPR

etions; and (b) normalized I
1e).
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T

g g e

S

ent month
eshold. A
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mpletions

PR curves
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200 200 300 %o (b)m 006 0 Ee
Figure 2.4 When s = I, (a) IPR ¢urves for the 17 remaining completions after the elimination process;
and (b) normalized IPR curves (solid lines) and the elimination threshold (dotted line).
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inside the ellipse, and was inspired by the fact that an existing common, simple and practical
way for deciding the impadts of injectors in water-flood management is to assign equal
weights to them. For example, if N injectors are thought to be impacting a producer, then one
assumes each of them has an impact weight of 1/N. We modified this by using p/N as the
threshold, where we found, by trial and error, that 80% of 1/N does a good job as a threshold.

The IPR curves in Fig| 2.3(a) are in absolute values, but, to use a percentage threshold

they need to be normalized. This is done by dividing each IPR curve by the sum of all the

IPR curves. These IPR curves in percentages are depicted in Fig. 2.3(b). Also shown on that

figure is the 80%/N = 1.74% threshold line (dotted) when N = 46. ‘

After eliminating all of the completions, the /PRs of which fell below 1.74%, only 17
completions were left. The remaining completions and eliminated completions are depicted
in Fig. 2.2(b) by regular size triangles and smaller triangles, respectively.
Our EKF was then redapplied to this single producer, but for only the 17 r‘bmaining
completions. The resulting IRR values are depicted in Fig. 2.4. Observe that, althmi‘lgh some
\
portion of the three lowest IFR curves are still below the|threshold, we are only considering
the mean IPRs of the most recent month, which occurs at| the right-end of the data, jand none
of the mean IPR values for that month fall below this threshold. Consequently, none of the

17 injectors were eliminated, and therefore, our processing for P-130 is completed. If,

perchance, some of the 17 injectors had been eliminated, we would have then repeated this

procedure until a situation was reached where no more of the injectors are eliminated.
i

During such an iteration pracess, the threshold would be kept at 80%/N, where N is the
initial number of injectors, in this case, 46. N is not chasen to be the surviving m;lmber of

injectors because the resulting threshold would become $o large that it is possiblé‘ that too

|
many injectors would be eliminated. ;
|
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and the planned injection raf

month’s production rates, da

{
{
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where H is the same as in (2
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Some summaries of the monthly errors are given in Table 2.1. It contains

error summaries for different values of a scalar paramet

to determine the size of the
case corresponds to the row |

The monthly forecasti

the average daily prediction errors for each month, and th
eight-month period, have been computed. Additional

which is the ratio of the average daily prediction error Jo the average daily produ

ellipse for establishing the

n Table 2.1 for which s = 1.

ng began on day 1045 and ¢
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that the measurement-noise
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which is a very good value.

barrels
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L
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, s
0 00 150 1200
(b

L
1250 Wdays

production

all average

nd

1* month month 3" month 4" month 5" month 6" month 7" month 8" month average|  EPR
§=1.0( 7.3067 16.259 66977 34464 34588 23.108| 75.625 19.180 34.688 10.23%
§=0.9| 3.7455 15506 38.292 26.247 38.229  22.287| 43.321 13.253 28779 8.49%
§=0.8| 7.2293 15273 33.060 16.235 43.111 13.786| 47.965 13.034 26.583| 7.84%

=0.7| 4.4729 14.829 26.305 17.878 43.224 14.721| 35270 13.643 13268 3.91%

§=0.6| 5.8975 14.161 26.647 18.717 43360 14.663| 51.121 20.796 13.234  3.90%
S§=0.5] 9.7345 16.310  26.735 18.209 48.188 10.872| 56.535 11.865 13.833 4.08%
2.2.8 Optimization of Initial Set of Injectors

An issue that plays a very critical role in our EKF processing is how to choose a set of
initial injectors for the producer-centric model. Although it has been previously mentioned

that an ellipse with 700 feet
of injectors, in general, an d
producers. If the ellipse is tog
beginning. On the other han
injectors. Such injectors may

they can affect the threshold ¢

najor axis and 500 feet mino
ptimal size for the ellipse 1
small, one would miss som
d, if the ellipse is too larg
significantly bias the first

climination process that has

r axis is used to select the
may be very different for
e influential injectors from
e it could include many
round of EKF processing

been described above.

initial set

different

1 the very

rrelevant

because
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Inspired by techniques used in standard optimization problems, and the history

matching results described above, our strategy for finding an optimal ellipse size|(for each

producer) was to use the average daily prediction error as an objective function and to

minimize it with respect to ¢llipse size. To do this, we used an ellipse with 700 feet major

axis and 500 feet minor axig as a standard ellipse and then scaled its major and minor axes

by the same scalar, s; hence, as different s values are used one obtains ellipses of different

sizes.

In theory, s should be discretized very finely and also range from a small enough

value to a large enough valpe so that the minimized point of the objective function is its

global minimum. Unfortunately, using too many values of s is computationally very costly;

hence, in this study we chosg s = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We have observed that when s

= 1.0 (which is the case discussed above) the ellipse is already large enough and usually

includes more than 20 injectors, and (as we will see below), when s = 0.5 the ellipse only

includes a few neighboring Injectors. Additionally, we observed, after several tests, that s

does not have to be discretized very finely, e.g., when s ¢changes from 0.95 to 0.9 the ellipse

ectors from the s = 0.95 elli .9 ellipse.

only shrinks a little and no in,
EKF processing for d

described above for s = 1.

Summaries of the prediction

Table 2.1. Observe that the @

the optimal ellipse used to ¢

major- and 0.6 X 500 = 300

ifferent values of s procee

errors for s = {0.5, 0.6, 0
bjective function is minimi
hoose the initial injector se

feet minor axis.

Results for s = 0.9, 0.6 an

pse are left out of the s =0
ds in exactly the same m
d 0.5 are given in Figs.
7, 0.8, 0.9, 1.0} are also
zed when s = 0.6. Thus, fi

is one with 0.6 X 700 =

\anner as
2.7-2.15.
given in
or P-130,

420 feet
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2.2.9 Producer Centric to Injector Centric C

In above sections, we

centric model. Of course, this procedure has to be appl
section (or in the entire field, if such data are available
then be summarized in a table, which in our case has N
(injectors). A small portion of this table is depicted in T4
table are for those injectors that have survived our EKE

are for the remaining injectors. This table allows one

presented a complete proce
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onversion

dure to process only one
ied to every producer in
The IPR results of doing

» rows (producers) and N

producer-
the entire
o this can
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ble 2.2. The non-zero values in this
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Figure 2.8 When s = 0.9, (a)|/PR curves for the 10 remaining completions after the elimination
process; and (b) normalized /PR curves (solid lines) and elimination threshold (dotted line).
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Table 2.2 Upper left portion of
(rows) and N, injectors| (column)

injector 1-344 (see

@

N

\ P16

(b)

Figure 2.16 Graphical representations of the normalized IPR |values for (a) injector 1-322; and (b)

Table 2.3).

the (un-normalized) IPR table for the entire section of Np producers

I-1 1-2 I-3 1-4 1-5 I-6 1-7 1-8 1-9 1-10
P-1 | 0.0211 0 0.157]1 0 0 0 0.0692 0 0 0
P-2 0 0 0 0 0 0 0 0 0 0
P-3 0 0 0 0 0 0 0 0 0 0
P-4 0 0 0 0 0 0 0 0 0 0
P-5 0 0 0 0 0 0 0 0 0 0
P-6 | 0.0683 0 0 0 0 0 0 0 0 0
P-7 0 0 0 0 0 0 0.0339 0 0 0
P-8 0 0 0 0 0 0 0 0 0 0
P-9 0 0 0 0 0.1429 0 0 0.1334 0 0
P-10 | 0.0946 0 0 0.0852 0 0 0.1477 0 0 0
P-11 | 0.1062 0 0 0.0782 0 0 0 0 0 0
P-12 | 0.0678 0 0 0.0541 0 0 0.1014 0 0 0
P-13 | 0.0512 0 0 0 0 0 0 0 0 0
P-14 0 0 0 0 0 0 0 0 0 0
P-15 0 0 0 0 0 0 0 0 0 0.0402
P-16 0 0 0 0 0 0 0 0 0 0.0329
P-17 0 0 0 0 0 0 0 0 0 0.0543
P-18 0 0 0 0 0 0 0 0 0 0
P-19 | 0.0360 0 0 0 0 0 0 0 0 0
P-20 0 0 0 0 0 0 0 0 0 0
P-21 0 0 0 0 0 0 0 0 0 0
P-22 0 0 0 0 0 0 0 0 0 0
P-23 0 0 0 0 0 0 0 0 0 0.0911
P-24 0 0 0 0 0 0 0 0 0 0
P-25 0 0 0 0 0 0 0 0 0 0
P-26 0 0 0 0.0536 0 0 0.0504 0 0 0
P-27 0 0.0654 0 0 0 0 0 0 0 0
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Table 2.4 Designed IPRs for the simulated pilfield in Fig. 2.17
1, Iz A 7 L A I, I i PCS*
P, 0.1247  0.2172 0 0 0.4561 0 0 0 0 0.7980
P, 0 0.2331  0.1764 0 0.4033 0 0 0 0 0.8128
Py 0 0 0.2763  0.3801 0.1364 0 0 0 0 0.7928
P, 0 0 0 0 0 0.3233 0 0.0993 0 0.4226
Ps 0 0 0 0 0 0 0.3576 0 0.2501 | 0.6077
ICS® 0.1247 04503 0.4527 0.3801 0.9958 0.3233| 0.3576  0.0993  0.2501
a. PCS: Producer-Centric|Sum.
b. ICS: Injector-Centric Sum.
Table 2.5 Average estimated IPRs (EKF) for the simulated oilfield, assuming all producers are
correctly modeled
1, I, I, A I Is 2 Iy Iy PCS
B, 0.1148  0.2454 0 0 0.4355 0 0 0 0 0.7957
P, 0 0.2451  0.1849 0 0.3802 0 0 0 0 0.8102
P, 0 0 0.2840 0.3641 0.1424 0 0 0 0 0.7905
Py 0 0 0 0 0 0.3541 0 0.0643 0 0.4184
Ps 0 0 0 0 0 0 0.3466 0 0.2606 | 0.6072
ICS 0.1148 0.4905 0.4689 0.3641 09581 0.3541| 0.3466 0.0643  0.2606
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2. For Py, Iswas allg
reductions from |
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same.
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¢ and Ig. Similarly, for Ps,
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above observation, the PC
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me estimated value as the |t

ns from I and /.

Ss for P4 and Ps remain a

s greater than one.

otal IPR

Is was allocated approximately the

Imost the

To further illustrate same of these observations, let us focus on the specific|producer
P4, because this can provide|us valuable insights into the performance of different methods.
In Table 2.5, where P, was correctly modeled, the EKF estimated (average) /PR to
be0.0643, but in Table 2.6, where P, was incorrectly modeled, (average) /PR4s has been
reduced to 0.0494 and “psetido-(average) /PR;s” became 0.0485, so it is difficult to tell
which injector is actually contributing to P,. Note, also, that (average) /PRss was reduced
Table 2.6 Average estimated IPRs (EKF) for the simulated oilfield, where each producer includes the
three closest injectors.
1, 1, I, L I Iy I, Iy I PCS
P, 0.1148  0.2454 0 0 0.4355 0 0 0 0 0.7957
P, 0 0.2451  0.1849 0 0.3802 0 0 0 0 0.8102
P, 0 0 0.2840 0.3641 0.1424 0 0 0 0 0.7905
Py 0 0 0 0 0.0485 0.3212 0 0.0494 0 0.4191
Ps 0 0 0 0 0.0364 0 0.3295 0 0.2416 | 0.6075
ICS 0.1148 0.4905 0.4689 0.3641 1.0430 0.3212| 0.3295 0.0494 0.2416
Table 2.7 Estimated IPRs between /33 and its affected producers in the real field using |[EKF and
different CEKFs.
Pl PZ P3 P4 PS PG P7 PS P9 Pl() Pll P12 P3 ICS
EKF .137 .118 .100 .090 .126 .060 .086 .042 |146 .049 .179 .105 .166 1.40
MAP .091 .069 .061 .055 .085 .022 .023 .008 110 .009 .148 .075 .152 091
MS 102 .079 063 055 .087 .026 .049 .007 {111 .011 .143 .071 .145 0.95
r=2 117 092 072 .074 .062 .002 .041 .001 097 .001 .168 .089 .162 0.98
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from 0.3541 to 0.3212, so (average) IPR4s and (average) /PRys altogether were reduced by
0.0478 which is very close to| the “pseudo-(average) IPR,s” of 0.0485.

Our two tests have demonstrated that an injector assumes a small “pseudo-IPR”
value when it is incorrectly included in a producer-centric model, and causes the IPRs of all
the actual contributing injectors in that model to be reduced. If this injector is incorrectly

included in too many such madels, the ICS of this injector can become greater than pne.

2.3.2 Real Data Case Study

Although the simulated tests in Section 2.3.1 demonstrate the problem, the|injector-
centric sum of /s is only slightly greater than one, which might downplay the significance of
the problem; but, this is only because our simulated oilfield is quite simple and doesn’t have
a large number of wells as in real oilfields. It is easy to imagine that, if /5 was included in
many more producer-centric models, its injector-centric sum would grow much greater than

one.

To demonstrate this, an injector, labeled /55, was selected from the same real oilfield
studied and processed by independent EKFs in Section 2.2. A map of I3 (large triangle), its
affected producers (circles), and all other injectors included in the producer-centric models
(small triangles) are depicted in Fig. 2.20. Observe that| I35 is included in 13 neighboring
producer-centric models, labeled P-P);. I35’s estimated IPRs (at k = 1471) with each of its
affected producers are summarized in row 1 of Table 2.7. Observe that its ICS is much larger
than one; hence, using the unconstrained EKF in Section 2.2 can lead to significant violation

of the physical constraint that|//CS < 1.
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To further demonstrate the significance of the problem, it is worth mentioning that
this particular oilfield had 57 out of 380 injectors that violated the constraint on ICS, and

about 20% of those 57 injectors had situations more severe than the one just shown for /3.

2.3.3 Inequality-Constrained State Variable Model

Section 2.2 has laid down the foundation for single producer-centric model. Because
imposing cross-producer constraints during the estimation process demands the coupling of
multiple producer-centric models, the notations in this Chapter are slightly more |intricate.
Specifically, a producer-centric reservoir model for P; (i = 1,..., Np) that includes N;
independently contributing inhjectors is depicted in Fig. 2.20, where is,j(t), ns,()(t) and
im,s;(Hy(@) (j = L,..., N;) are the actual injection rate| that flows into the reservoir, the
corresponding injection rate|measurement noise, and the measured injection rate of S;(j)
(P’s j" contributing injector), respectively; pi(t), np, (t) and p,,(f) are the actual production
rate, the corresponding production rate measurement noise, and the measured production rate
of P;, respectively; ps,(;)(t) represents the amount of production rate in p(7) contributed by

S;(). It follows (i = 1,..., Np):

I
M_z

p,.(t 4 p«-?-(.i)(l) ‘

s
I

(2-32)

M_z

[ (s ks, jy) X,y ()% g, 5, (1)
1

~.
I

where f(7s,(jy, ks;(j)) are scale functions which show how much of each injection rates

flows in the direction toward P;, and are viewed as a linear or non-linear scalar function of
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the distance, 75,(j), and the [permeability, ks, (), between P; and §;(j). Because noise-free
data, is;(;)(t) (j=1,..., N;) and p(1), are not directly available, we use their measured values,
Im,s;(j) (®) (j=1,...,N) and p,, (), for our data processing.

The two-parameter auto-regressive (AR) model used in Section 2.2 to characterize the

impulse response between P;land S;(j) is reproduced below (i = 1,..., Np, j = 1,..., N)):
hs (@) =bgre " (2-33)

And, the numerical IPR valye between P; and §;(j) has the following expression (i = 1,...,

Np,j=1,..,Np:

Vst Usiiyoks ) _ Ysu
(-’ (1-as,)’

IPR,,, = (2-34)

—as(*T

where @5,y = € Ysi) = bsiy X @siy XT ¥ = b pT and Tis the

Si(J)

sampling period. Finally, the subsystem between P; and &;(j) can be modeled as:

Psjy (k+1) =205, (k) Py, (k) = 053y (K) P k=Dt Vs 5 ) (KD + Moo (K) - (2-35)

D

P (k+1) =20, (k) ps (k) = &g, (k) pg;, (k =1

. (2-36)
+IPRg (k)1 = g (k)i 5 ) (K) + 1

(k)

Psi (i)

where n,, & (k) is the additive noise. Note that P; is affected by N; injectors (see Fig. 2.21);
(2

hence, N; second-order finite{difference-equation models |are needed for P;. Collecting these

N; models into (2-32), a SVM  for P; can be constructed as|described next.
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2.3.4 A New Modified State Variable Model

In Section 2.2, based| on the same reservoir and producer-injector model, different

SVMs have been established. The first SVM based on |(2-35) directly estimated s, (j) and
V«IS;'U) so that IPRg;,(jy had to| then be computed by (2-34). A second SVM based on (2-36)
estimated ,//PRs,(j) and \/' Xs.j) - 1t was developed for two major reasons: 1) When

JVIPRs,j) is treated as a state variable, the EKF not only provides an estimate of VIPRs ()

but it also provides its error ((pseudo-) variance, which can be used to calculate a numerical

upper and lower bound for the estimated /IPRg,;); and 2) It is physically meaningful to

only have nonnegative-valugd as;(j)> yc’gi(j) and IPRg,(jy. Due to strong noise ?de other
uncertainty factors in the real data, the first SVM sometimes produced negative-valued as, ;)
and yéi( j)- The second SVM overcame this problem because, regardless of the siLn of the
estimated ,/IPRs,(; and \/'(7‘5?(7)', their squared values always give positive-valuej IPRs,(j)
and g, (jy. :

In this section, we propose a third SVM based on [(2-36) to directly estimat | IPRs,(j

and as,(jy, because all constraints on the estimated |parameters during the estimation

processing are then linear, whereas the constraints, when /IPRs,) and \/Ti(}-) are
\

estimated, are nonlinear.

For the new SVM, the 4 X 1 state vector between P; and S;(j), xs,(j) (k), is:

X5 (K) = x5 () x55,2(K)  Xg,5,5(K) xsimez(k)]r

(2-37)
=UPRy;, (k) &g, (k) pg, (k=1 pg, (0T




A SVM for P; can be established (i = 1,..., M), using (2-36) and (1), as:

~—

X5 (k+1) Fso g N +n, (&
fso(Xs kD +n,_ (k

~—

X (k+1)

x,(k+1)= =fi(x,(k)+n, (k) | (2-38)

s KD || Fsony Xy kD) +n k)

X5 (V)
Pk +1)=pg o (k+ 1)+ pg oy (k+ D+ + pg o (kD +n, (k+1)

=0 0010001 000 l]xx,.(k+l)+np’(k+1) (2-39)
=Hx (k+D+n, (k+1)

Equations (2-38) and|(2-39) are our state equation and measurement equation,

respectively, and, my, (k) = [nxsl_m Mygy nxsi(n,)]T and n, (k + 1) are additive

zero-mean white noises with 4N; X 4N; block diagonal covariance matrix Q,,/(k) and
variance 7, (k + 1), respectively. It follows from (2-36) and (2-37) that each x;,;)(k + 1)

in (2-38) is described by the following four-state model (j=1,..., V):

(k)
X5, (k)
Xg (2 (k)
= Xg(jya (k) +n, (k)
25,02 (XG0 (k) = x5 1,0 (k) x5 ()

+ X5 0 (KA = X5 5, k) sy (KD |

XS0

X k+1D) = fg (x50, (kD +n

(2-40)

where ny = [y ) (k) ngg ;) (k) 0 s (1"
The EKF processing of the above SVM provides us with X;(k + 1|k + 1), which

estimates x;(k + 1) based on measurements up to and| including time k + 1 [pp,;(k +
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1) pmi(k) - pmi(1)], and the pseudo-error-covariance matrix of X;(k + 1|k + 1),

Pi(k + 1]k + 1).

2.3.5 Cross-Producer State Variable Model

In this section, we explain how to impose constraints on some of the states in our

SVM during the EKF procgssing. We, again, assume Np producers, P,..., Py,, and N,

P
injéctors, 1i,..., IN,- The constraints on each IPR and « values occur within each producer-
centric model, whereas the |constraints on injector-centric sums of the IPRs are across
multiple producer-centric models. Consequently, all producer-centric models have to be
coupled together into a complete cross-producer SVM. This can be achieved by combining

the state vectors of all the producer-centric SVMs to form the following augmented state

Vec‘tor:
T T
x(k) =[x, &) X&) - xM(k)] (2-41)

The resulting cross-producer SVM is:

x,(k+1) filx, (k) k] n, (k)

1 k

x(k+1)= “2(k.+) = fz[xz.(k <&} + n"z_()
: = : (2-42)

x!v,, (k + 1) i‘“vixl fNF[xNP (k)ak] l‘lxNF (k)

= f[x(k).k1+n, (k)
and
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p(k+1) H 0 - 0 x(k+1 n, (k+1)
k+1 0 H, - 0 x,(k+1 n (k+1)
ptk+n=| P2ETD L o f (kD )
: : : : (2-43)
puk+D ) (0 0 Hy \xy (k+D)) \n, (k+1)

=H_ x(k+1)+n,(k+1)

2.3.6 Inequality-Constrained State Vectors

In this section, all the ¢onstraints are first formulated as linear inequalities in terms of
x(k).
Because the first and second component of each xg,;(k) are IPRg,;)(k) and
as,(j) (k), respectively [see (2-37)], the constraints that all the individual /PR and & values,
at ény time point k, must f3ll in the interval [0, 1] can be expressed as (Vi =1, ..., Np,

Vj=1,..,N;and VI = 1,2):

0< x5, (k) <1 (2-44)

This set of inequalities can be written in terms of x(k), as:

B, 0 0\ x k)
0 B : x, (k
0<Cx(k)= L 0 2:( ! <1 (2-45)
0 0 B, | x, %
where B;is N; X 4N; (i = 1,..., Np), as:
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al [0,1] can be written in terms of x(k), as:

x, (k)

x|,

x,, (k)

d,y 0 0 0];

combined as:

(2-46)

point £,

(2-47)

(2-48)

(2-49)

(2-50)
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2.3.7 Inequality-Constrained State Estimation

Simon, et al. [163-165] developed the linear state-equality/inequality constrained
methods for the Kalman Filter. In this section, we generalize those methods to the EKF using
our cross-producer SVM [(2-42) and (2-43)] that is subject to (2-50).

There are several variants of the Constrained EKF| (CEKF) method. We first provide
its most general form, and then look at two of its special cases.

The General Projection CEKF (GP CEKF) approach is: Given X(k + 1|k +1) and a
symmetric positive definite weighting matrix W, compute a new estimate x(k + 1), such
that

argmin{[¥(k +1) - £(k +11k + D" xW X[¥(k +1)— £(k +11k +1)]}
Flk1) (2-51)

such that: 0<C x(k+1)<1

The reasoning behind (R-51) is: if the standard EKF estimator X(k + 1|k + 1) doesn’t
satisfy (2-50), we look for another estimator, X(k + 1), that is as close to X(k + 1|k + 1) as
possible while at the same time satisfying (2-50). Note that if X(k + 1|k + 1) satisfies (2-
50), x(k + 1) is set equal to X(k + 1|k + 1), i.e., the CEKF estimator X(k + 1) will be the
same as the EKF estimator X(fc + 1|k + 1).
Equation (2-51) is a standard quadratic programming problem subject to a set of linear
inequality constraints. Such a problem can be solved by many existing algorithms, e.g.,

Active Set Algorithms [136].
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A special case of (2151) is called a Maximum| Probability CEKF (MAP CEKF)
approach, and is formulated by setting W = P(k + 1|k #— 171, ie.: GivenX(k + 1]k + 1)
and P(k + 1|k + 1)~%, compute a new estimate X(k + 1), such that:

argmin{[¥(k +1) = £(k +11k + D" x P(k + 11k +1)" X[F(k +1) - £(k + 11k +1)]}
Rk (2-52)

§such that: 0<C x(k+1) <

e

Another special case pf (2-51) is called Mean Square CEKF (MS CEKE), and is
formulated by setting W = I i.e.: Given ¥(k + 1|k + 1),/compute a new estimate X¥(k + 1),
such that:

argmin{[X(k +1) = £(k +11k +D]" X[F(k +1)— #(k +11k +1)1}
F(k+) (2-53)

such that: 0<Cx(k+1)<1

To summarize, the following CEKF Procedure I is presented: Beginning with k = 0,

1. Apply the standard EKF [(2.22)-(2.26)] to the cross-producer model [(2-42) and
(2-43)] to obtain A(k + 1|k + 1).
2. Check if X(k + 1|k + 1) violates the constraints: if so, go to Step 3; if not, go to
Step 5.
3. Given a weighting|matrix W, (2-51) is solved to obtain X¥(k + 1).
4. X(k + 1|k + 1) is|set equal to X(k + 1).

5. Set k= k+1, and return to Step 1 (until the end of the data).
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It’s worth noting that the coupling of the states of different producer-centric models
occurs during the constrained optimization process (Step 3), which is why it’s called

constraint coupling.

2.3.8 Case Study

To assess the performance of the MAP and MS CEKF methods, and to gain some

insights into the design of an even better weighting matrix, the two methods are first applied

to the simulated oilfield studied in Section 2.3.1. As in Section 2.3.1, we ran 100 Monte-
Carlo simulations. The resulting average IPR values at k = 1000 are summarized in Tables
2.8 and 2.9 for the MAP and MS CEKEF, respectively. Observe their results are quite close,
which indicates one can either use the MAP or MS CEKF. Therefore, in the rest of this
section, we focus only on MS CEKEF results (Table 2.9). Comparing them against the EKF
results (Table 2.6), observe that: 1) The IPR values between /5 and all producers have been
reduced such that the ICS of /s is less than one; 2) In each producer model, the IPRs of all
other injectors have increased by a total amount that|is approximately the same as the

amount that the IPR of /5 has been reduced by.

Table 2.8 Estimated IPRs (MAP CEKF) for the simulated oilfield, where each producer includes the
three closest injectors.

1, A ; 2 A Ts L Iy Iy PCS
P, 0.1235 02523 i 0 0.4198 0 0 0 0 0.7956
P, 0 0.2519  0.1929 0 0.3653 0 0 0 0 0.8101
P, 0 0 02931 03717 0.1257 0 0 0 0 0.7905
P, 0 0 q 0 0.0389  0.3262 0 0.0540 0 0.4191
Ps 0 0 q 0 0.0274 0 0.3336 0 0.2464  0.6074

ICS 0.1235 0.5042  0.4860 0.3717 0.9771 0.3262  0.3336  0.0540  0.2464
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Table 2.9 Estimated IPRs (MS

three closest injectors.

\
)
\
|

|
|
|
|

CEKEF) for the simulated oilJield, where each producer i

ncludes the

11 12 13 14 [5 [6 [7 [3 19 PCS
P, 0.1214 0.2510 D 0 0.4221 0 0 0 0 0.7945
P, 0 0.2506 0.1911 0 0.3673 0 0 0 0 0.8090
P; 0 0 0.2914 0.3707 0.1273 0 0 0 0 0.7894
Py 0 0 D 0 0.0380 0.3260 0 0.0540 0 0.4180
Ps 0 0 D 0 0.0269 0 0.3336 0 0.246]1 0.6066
ICS 0.1214 0.5016 0.4825 0.3707 0.9816 0.3260 0.3336 0.0540 0.246l
The above IPR changes are positive for P, and Ps. To explain this, let us focus on P,
again, and observe, in Tablgs 2.8 and 2.9, that: CEKF has forced the “pseudo-IPR;s” to be
reduced from 0.0485 to 0.0380, an amount that is shaqed by I, and 3. Specifically, /PRy
increases from 0.0494 to 0.0540, so it is clearer that Iy is more likely to be contributing to P,
than is /s.
On the other hand, the above IPR changes are negative for P,-Ps, because: P,-P; all
have their contributing injectors correctly modeled, so Table 2.6 has already| provided

thebest possible estimates us
the average estimates of /P
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2.3.9 Reduced-Length Constrained Extended Kalman Filter

To reduce the negative biases that the current CEKF introduced into the correctly
modeled producers, a better weighting matrix plays the key role; but, designing such a
weighting matrix is difficult for the current CEKF structure, because the weighting matrix
has to account for every state variable in x(k). In this section, we show how this full-length
CEKF can be reduced to a|reduced-length CEKF, that only involves the constrained IPR
state variables, and how a better weighting matrix can be designed for the reduced-length
CEKF.

Let x;pg (k) (2?2’1 N; X 1) be composed of those state variables in x(k) that represent

just the IPRs, i.e.:

X (k) =
I:xsl(m(k) x.sl(zm(k) x.s,uv,),x(k) xszm,l(k) xsz(z“(k) 'xS:(Nz),l(k) 4 (2-54)
stm.l(k) 'xSM(Z).I(k) st(NM).l(C)J

The constraints on the individual and the sum of|the IPR values [(2-45) and (2-47)]

can be re-expressed in terms|of x;pg (k):

0<x,,(k)<1 (2-55)
€ € " Ey

0 S C:um“rIPR (k) = e:ﬂ ezz ez: ) X pr (k) <1 (2'56)
€ni €y € N

wHere (n=1,...,N;andi=1]..., Np):
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e =[d ] (2-57)

n,i nil n,i,2 ni,

and d,,; (j=1,.., N;) have been defined in (2-49). Cémsequemly, the complete |constraint

on the IPR values [(2.50)] cdn be re-expressed as:

(2-58)

[—]

1
SCpppXpp (k)= (C Jxlpk(k) s1

We now let W;pp be @ weighting matrix just for xpg (k). Extensive experiments have

shown that, without losing performance, Procedure I can|be replaced by the following CEKF

Procedure II, which significantly reduces the dimensionality of the CEKF: Beginning with k

0,

1. Same as Step 1 in Procedure I.

2. Same as Step 2 in Procedure 1.

3. Extract X;pp(k+ 1|k + 1) from X(k+ 1|k + 1) and solve the following

problem to obtain X;pr (k):

argmin {[¥,, (k +1) =& (k + 11k + D] XW,,,, X[

Fppp (k+1)

such that: 0<C . X e

(k)= R (k+11k+
(2-59)

(k+1)<1

4. Return the elements of X;pg (k + 1) to corresponding places in X(k + 1|k + 1).

5. Setk=k+1, and

In our previous tests

matrix W = I and weighting

return to Step 1 (until the en

1sing CEKF Procedure I, w

y matrix W = P(k + 1|k +

d of the data).

e observed that diagonal ¥

1)~ produced quite clos

weighting

e results;
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therefore, it seems reasoni
Procedure II.
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Table 2.10 Estimated IPRs (I
producer includes t

Designed CEKF with r = 2)
he three closest injectors.

1for the simulated oilfield, v

vhere each

1, A 1

14 Iq 16

I; & A

PCS

0.1155
0
0
0
0
0.1155

0.2460
0.2457
0
0
0
0.4917

q
0.18
0.28
0
0
0.44

0.4342
0.3788
0.1371
0.0151
0.0197
0.9849

0

0
0.3662

0

0
0.3662

57
64

0
0

0
21

0.3357

0.3357

0
0
0
0
0.2492
0.2492

0

0

0

0
0.3364
0.3364

0

0

0
0.0648

0
0.0648

0.7957
0.8102
0.7897
0.4156
0.6053
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2.4 Robust Production Rate Interpolatio

In this section, we| examine how often the production rate is measured in
practice. A small pilot arep selected from a real oilfield is depicted in Fig. 2.22. From
a sampling frequency perspective, the producers in this pilot area can be divided into

two groups: typical producers and extreme producers.

[}

The majority of the producers belong to the typical category; an example of the
complete production history of a typical producer is depicted in Fig. 2.23. The usual
sampling frequency of this producer can be observed as we zoom in to a local
window (day 410 ~ day 540) shown in Fig. 2.24(a); it is on average one
measurement every eight|to ten days. However, as can be seen in Fig. 2.24(b) (a
local window from day 285 ~ day 430 for the same producer), there are also cases in
the production history where the sampling interval could be every large, e.g., observe

that no measurement is available from day 347 to day 416.

T T T lA T T T T
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7788 4 L] 44 ‘ 2
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77761 . 4 . t%
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Figure 2.22 A pilot area selected from|a real oilfield.
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2.4.1 Intermittent Measurement Analysis

To study how the intermittent production rate might affect the performance of our
EKF estimation, we first construct a single producer-centric model with three contributing
injectors as depicted in Fig| 2.26, where a constant IPR value has been specified for each
injector-producer pair. It should be noted that the average of these three IPR values
is(0.2172 + 0.4561 + 0.0993)/3 = 0.2575.
For each injector, its injectipn rate at every time point is modeled as an independently and
uniformly distributed random variable with mean 300 bpd and standard deviation 70 bpd.
The injection rates of these three injectors are then fed into the Liu-Mendel Model to
generate the gross productign rates for the producer; and then 10% Gaussian measurement
noise are added to the prodpction rates. A window (day 1250 ~ day 1320) of the average
production rate of 100 Monte-Carlo simulations is depicted by the solid line in Fig. 2.27.
The average IPR curves of the three injectors based on 100 Monte-Carlo simulations of our
EKF strategy proposed in Section 2.2 (no CEKF needs to be involved here as there is only
one producer) using full set jof production measurements are depicted in 2.28; and, observe
that these curves gradually converge to their correct designed values, respectively.

On the other hand, assuming one measurement |is available every eight days, the
average sampled production rate is depicted by the discrete dots in Fig. 2.27. Now, we want
to examine how the estimation results might be influenced if such intermittent measurements
are used directly without any interpolation, namely, during the estimation process, we
perform both predictor and cprrector steps like a standard EKF for those time points where a

measurement is available, but only perform the predictor|step for all other time points where
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there is no measurement at all (such time points are also|referred to as missing-me

time points).
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wflere

K (k) =Pk, |k

The derivations of the correc

The estimate of x(

X(ki+1]kir1), can be express

Xk Tk =E{x
=FE{x

where
E(x(k,, )12 (k,, 1K)

Substitute (2-68) into (2-67),

Xk k) =Xk, 1k)+ P (k,, k., 1 k)P
whére
P (k. ki 1 k)=E{[(k,, 1 k)+ %k, | k)I[H (K
= Pk, |k)H (k)"
and

P (k. k)= E{Z(k,,
=E{[H (k

=H (k)]

tor equations, (2-65) and (2-
k

ed as (see lesson 12 of [121

} =P (ki ki 'ki)Pzgl(k

it follows that:

DH (k)" [H (k,

i+l

)P(k,,, |k

i+1) based on all avail

ki) Z(k.,)}
k) Z (k) + Ex (k)12

-
L

i+1 I

L2 (ki 1k}
)X (i 1 &) +v (ki DILH (K
P (ki 1 k) H (k)" + R(k,,)

H (ki,,)" + Rk, )]

66), are given below:

able measurements up

):

k)Z (ki 1h) +m (ki)

i+l lki)} - mx(ki+l)

ki 1k Z (K, 1K)

)Xk k) + vk, ")

’

W E K k) +v (k)] )

(2-66)

to Kiyq,

(2-67)

(2-68)

(2-69)

(2-70)

(2-71)
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Cénsequently, substitute (2-70) and (2-71) into (2-69), we have:

'i'.(kin I ki+l) 5 'f(k

i+

|k)+K(k,

where K (k,,,) is given in (2-66). Then it follows from (2-72) that:

X (ki Vhy) =K (ki Vh) — K (k. )2k, Lk,
=¥k, k) - Kk, )[H(ki+l )X

Then, the error covariance matrix for *(k,,, | k,,,) can be

P(ki+l Ikm) = [I _K(ki+1)H(ki+1)]P(ki+| 'ki)[l "K(ki+1)H(ki+1)]T

=[1 — K (ko ) H (k)] 2 ki, V1) = K e v (k)

i+l Z(kiﬂ lkz) (2'72)

(kipy 1k +v (k)] (2-73)

directly written as:

(2-74)
+K km )R(km )K(km )T
which can be simplified as (s¢e lesson 17 of [121]):
P(k,, |k, )=(I-KH)P(I-KH)" + KRK"
|
=(I-KH)P-PH'K" + KHPH"K" + KRK"
=(I-KH)P-PH'K" +K(HPH" +R)K" (2-75)

=(I-KH)P-PH'K" + PH'K"
=[1-K(k,)H (k,)]P(k,, | k)

i+l

Equations (2-72) and the last|line of (2-75) are the EKF

k.., [see (2-65)].m

corrector equations for time point

Applying the above intermittent EKF strategy to our producer-centric model in Fig.

2.26, the average IPR curves of the three injectors based on 100 Monte-Carlo simulations are




shown in Fig. 2.30 for four different scenarios, namely, the production rate is available once
every (a) three days, (b) eight days, (c) 15 days, and (d) 30 days. Observe, in Fig. 2.30, that,
as the sampling frequency become lower and lower, it takes longer and longer for the
estimated IPR curves to converge to the correct design values, respectively. For example, in
Fig. 2.30(b) where the sampling frequency, one measurement every eight days, is our most
usual sampling frequency in| practice, the convergence to the correct designed values are
delayed for about 1000 days (almost three years) compared to that in Fig. 2.28.

Therefore, it has becgme clear that using intermittent measurements without any

interpolation is not feasible for our EKF approach.

2.4.2 Zero-Order Hold Interpolation

In practice, one of the simplest and most often used data-interpolation (data-
conditioning) methods is the [Zero-Order Hold interpolation, which carries on the available
measurement all the way unti] a new measurement become available. For example, based on
100 Monte-Carlo simulationg, the average Zero-Order-Held (dotted line) production rate
using the sampled production rate (discrete dots) are depicted in Fig. 2.27.

Using the Zero-Order-Held production rates as measurements for the producer-centric
model in Fig. 2.26, the average IPR curves of the three injectors based on 100 Monte-Carlo
simulations of our standard EKF strategy are shown in Fig. 2.31 for four different scenarios,
namely, the production rate is javailable once every (a) three days, (b) eight days, (c) 15 days,
and (d) 30 days. Observe, in |[Fig. 2.31, that, as the sampling frequency become lower and
lower, the three estimated IPR curves all gradually converge to values closer and closer to

the average of the three designed values, 0.2575.
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(b) eight days; (c) 15 days; (d) 30 days.
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Figure 2.31 Average IPR value§ of the three injectors based on 100 Monte-Carlo simulations of EKF
estimation using Zero-Order-Held production rates when the actual production rate is
sampled once every (a) three days; (b) eight days; (c) 15 days; (d) 30 days.

Therefore, it also become clear that using the Zero-Order-Held measurements can also
significantly biases our EKF |estimation. To avoid all these negative impacts, a more reliable
interpolation method capablel of accurately reconstructing missing production rates is needed.
2.4.3 Extended Kalman Smoother using Intermittent Measurement

Before introducing our proposed data-interpolation method in the next section, we

first review some necessary

section. A smoothed estim

measurements that occur ed

background of the Extende
ate of a state vector X(k

rlier than k, plus the one

(k

d Kalman Smoother (EKS) in this
1,2,..,D) not only uses

at k (if available), but also uses

76

IR NS YT 0F SN RIS I R S




measurements after k, the sg
as EKF carried out in a back

In Fig. 2.32, we still
kivi (1 <i<M-—1)denot
respectively; and, k; + 1, k
points. Assume we are at t
obtain state estimations for

ki1, namely, X(k|k; 1) and

£(k1k,,)=%(k|

called “future measuremen
ward fashion (see Fig. 2.32)
focus on the intermittent m
e the time points where the
+2,...,and k; ;1 — 1 are

me point k;,4; and, X(k;44

lime points before k;, ; base

P(klkiyq) fork = kipq =1

k)+M(klk. )Z(k,, k)

easurement scenario, i.e.,

1, Kiy1 — 2, ..., k;, as folloy

ts”. One can also simply

let

™ and i+1™ measurements

|ki+1) and P(kipq]kipq) b
d on available measurems¢

VS

view EKS

k; and

are taken,
still the missing-measurement time
1ave been

ents up to

=x(klk)+AK)[X(k,, |k, )—%(k,, 1k)]
. (2-74)
P(klkiﬂ):{l +M(klk,)H (k) H F, J?(jlki)]}P(klk,.)
J=kiy -1
where
kiyi =1 ;
M(klk,.ﬂ):P(klk[){ Fy[X(l1k)] tH (k)" %
J=k (2-75)
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Figure 2.32 EKS processing using intermittent measurements.
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and
i1~
A(k)=P klk){HF (X&) } (ki 1 k)™ (2-76)

The derivations of (2-74)-(2176) are provided below:
To begin, we first derjve the single-stage EKS equations: The estimate of x(k;4; — 1)

based on all measurements up to k;.1, X(k;+1 — 1|k;+1), can be expressed as (see lesson 12

of [121]):
Xk — k)= E{x i —DIZ (k) ) 2-77)
=E{x(k,, —DIZ(k)}+ E{x(k,, —DIZ(k,, 1k)}—m (k. —1
where
E{x(k,, —DZ(k,, 1k)} = P, (k. — Lk, 1 k)P; (k,,, 1 k)Z(k,,, k) +m (k- (2-78)

Substitute (2-78) into (2-77), it follows that:

Rk, — 1k, ) =Rk, —11k)+ P,k k)P (K, 1 k)Z(k 1K) | (2-79)

i+l l+1 i+1

where

P (k |k,) = E{[®(k,,, —1Ik,)+%(k,,, — 1 k)I[H (k,, )%k, | k)+v(k, )]} (2-80)

i+ H-l
And, using Taylor expansion, we have:

x(ki+l) =

2-81
SRk, —11k)]+ F [£(k, gt

k) x(k,, =)+ %k, —11k)]+w(k,, —

=

i+l
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then, it follows that
Xk, k)= f[X(k,, —11k)] (2-82)
Subtracting (2-82) from (2-81), we have:
X(k, k)= Fy[x(k,, —11k)X(k,, —11k)+w(k,, —1) (2-83)

Substitute (2-83) into (2-80)| and then it follows that:
P (k. =Lk, k)=P(k,, —11k)Fy[£k, —11k)] H(k,)" (2-84)

x Vi T LRy

Note that P3;(k;41|k;) has been given in (2-71), so substituting (2-71) and (2-84) into (2-79),

we have:
®(k,, —1k ) =%k, —11k)+MC(k,, -1k, )Z(k,, k) (2-85)
where
Mk, —1lk,,) (2:86)
= P(kyy =11k )Py [k, |~ 11T H (k) TH (k)P (K, Vo) H (ki) + RO, )T
Substituting (2-66) into (2-86), we have:
Mk, —1lk,)=A(k,, -DK(k,,) (2-87)
where
Ak, =1)=P(k,,, =11 k)Fy[%(k,,, =11k Pk, 1k,)" (2-88)
Substituting (2-87) into (2-85), we have:
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X(k,, —11k.))

i+1

where the last line follows

1|k;4+1), it follows from (2-§

* (ki
=x(k;,,
=x(k;,
=x(k.

~1lk,,)
~1lk)- Mk,
~1lk)-M(k,
—1k)-M(k,
{H (k,
~1lk,)H
-1

i+l

= [I - Mk, i+l

Consequently, the error cova

P(k,, 11k,
=[1-Mk,, —11k, )}
[1-M(k, ~11k
Mk, —1\k,

which can be simplified as:

Pk, —1k,)=(I
=(I-MHF, )P - Pl
Pl

P - PF
—lk,

=(I - MHF,
= (I - MHF,
={I- Mk,

i+l

P-

)
)
)

~\MHF, )P (I - MHF, )

X(k,,
x(k,,,

—11k,)+ Ak, -
~1lk,) + Ak,

1)
D(

i+l T

5) that:

riance matrix P(k;,q — 1|k;

+1)H(ki+l )Fx [f(km -1l ki )]]
)[H(km)Q(km —I)H(km)

FYH'M" +M{H[F,PF]
FTH'M" +PFIH'M"
H(ki+1)FX [f(km —11 ki )]}P

Note that (2-89) and the last line of (2-92) are the single-s

from (2-65). To derive the

1 (ki )Fy [x(k,, -1 ki)]]P( Cit1

C(ki)Z (ki 1)
x(k |ki+[)_£(k,'+| Ik,)]

i+l

error-covariance matrix

—1k,)Z(k,,, k)
k) [H (k) E ki 1K)+ 9 (Ko,

~1lk,,)X
D[Fy [k, =1 k)IE(k,, =11k +w(k,,, —D]+v(k,,
(ki ) Fy [ 2Ky, =11 k)] Bk, —11K,)
M (k,,, —11k, ) H(k, w(k,, —1)- Mk, -1k, k.,

+1) can be directly written

~1lk,)

T
+

+ R(k,) | M (K, -

i+l

Lk,

i+l

+M[HQH +R |M"
FTH'M" + MHF ,PFIH™M"

+M[HQH™ + R|M"
+Q [H™ +R}M”

(k. —11k,)

i+l

tage EKS equations for k;

(2-89)

P(ki+1 -

(2-90)

~

as:

(2-91)

(2-92)

b1 — 1
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£k, 1k, ) =%k, —11k)+Mk,, 11k, )ik, k)
=Rk} ~11k)+ Ak, —D[£(k,, | k,+,)—x(k,+llk)] (2-93)

Pk, =1k, ) ={T =M (k,,, =11k, VH (k,,, )F [£(k.,, =11 k)]} P(k,,, —11K,)

i+l

Next, as our second step, we derive the double-stage EKS equations. The estimate of
x(k;y1 — 2) based on all measurements up to k;,q1, X(k;j+1 — 2|k;+1), can be expressed as
(see lesson 12 of [121]):

X(k,, =21k, )=E{xk,, -2 Z(k,)}
=E{x(k,, —2)1Z(k)}+ E{x(k,

(2-94)

\_/

“D1zk k)Y —m (K, —

i+l
where

E{x(k, —2)1Z(k,, 1 k)}+ P (k., =2,k Ik)P‘l(k‘+l lk)z (k1 k) +m (k. —2) (2-95)
Substitute (2-95) into (2-94), it follows that:

£k, —21k;,,) = (ki = 21k)+ P (K, k)P (ki Ve)Z (K, (2-96)

i+l i+ + i+l 1+1

where

P, (ki =2,k 1 k) = E{[£(k,,, — 21 k) + E(k,,, — 2 k)ILH (k,, )% (k.. k) +v(k, )]} (2-97)

i+l

and it follows from (2-83) that:

x(k,

i+1

—11j,) = Fy [#(k,,, — 21 k)% (k,, —21k)+w(k,, —2) (2-98)

Substituting (2-98) into (2-83), we have:
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X(k, k)=

Fy[®(k,, —11k)){

Substituting (2-99) into (2-9

P_(k

AU

lk;)=P(k|,

1+I

Note that P35 (k;.1|k;) has been given in (2-71), so substituting (2-71) and (2-10(

96), we have:

x(k,, —21k

(S i

where

Mk, —2lk,)=P(k,, -

Substituting (2-66) into (2-1

—

where

Atk =2) =Pk, -

Substituting (2-103) into (2-1

(kH-l 2 l kl+| )

F.[%(k,

1 (k,

i+l

7), we have:

~21k,)Fy[#(k,, -

D=2k,

i+l

21k)Fy[x(k

i+l

2), we have:

—21k,,)=A(

i+l

21k, )Fy [R(k,,, —

01), we have:

% (k.
( i+1

—21k;)+ A(k,
=21k;)+ A(k,,,

=21k,)]x(k,

—21k)+M(k,

il

20k F

i+l ]

-21k)]"F
[H (k,

VP (k|

i+l

k,

it

)k

=21k)] Fy[x

2)K
-2)[x

i+

21k;)+w(k,

[ %Kk~

[x(kH—l
Ik, )H (k

(ki)

¥ (k,, —1I

i+1

ki+l )i(kl+

i+l

2 I k,'+| )Z(ki+l I ki )

ki Vkipy) =

24
-} +wik,, —1 )( )
—11k)]" H(k,,)" (2-100)
)) into (2-
(2-101)
1k H(k. )"
)l (’*')] (2-102)
) B Rk, T
(2-103)
k)T Pk, 1K) (2-104)
k) '
: 2-105
£k, k)] ( )
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where the last line follows

2|ki+1), it follows from (2-1
Xk, =2lk,,) =%k, -
=Xk, —21k)-M(k,, |-

{HK,

=x(k,, —21k)-M(k,, |-
— M(

=X(ky, —21k)—M(k,, |-
[ Fylx(k,,

- M(km

=[1-Mk,, -2k, )H
- M(km

Consequently, the error covariance matrix P(k; 4

Pk, -2lk,)

=[I-M(k,, -2k, )H
Pk, =21k)[1 -M(Kk,,
+M (k;,, =21k, ) H (k)|

+Q(k,, —D]H (k)" M (k,,

which can be simplified as:

from (2-65). To derive th
01) that:

21k)— M (k,
=21k, )X
)Fy £k, —11k)IE (K, —
21k, )H (k,, )F,[x(k,,, —

~ 21k, ) H (ke )w(k,, -
2|k,+1)H(k,+l)F [X(k
20k )Xk, =21 k) +w(k,
21k, )H (k;, )w(k,,, —1) -
k OFy[%(k,, —11k)IF,[%X
_M(kn-l

20k, )H (k. )F
21k, )H (k. )w(k,

=21k, )2k,

i+]

k..

i+l

i+l i+]
i+l )

—Zlkl

ki )Fy [X(,
-2lk,,
(Fyl#(k,, -
-2k

i+l

—11k)IF,[%

VH (k,,,)Fy [k,
1IQ K,y =
)+ M (k,

i+l

Ki. 21k

i+l i+

e error-covariance matrix

lk;)

+1 i

k) +wik,, —D]+v(k,,)
k)% (K, —11k,)
-Mk,, -2k, wk,)
~11k,)]

_2)]

M (k,,,
ki =21k X (k,,, —
[X(k,yy — 1L Kk)Iw (K, —
Mk, -2k, )v(k,)

_2|k:+l)v(ki+l)
—21k,
2)

+1) can be directly written

ki =21k

—1k)IF [%(k,,, —21k,)]
2)F, [#(k,,, —11k)]"
DRk, OM (K, —21k,,,)

P(ki+1 -

(2-106)

as:

" (2-107)

r
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P(k,, —2k,,)=[I - MHF (k,,, - DFy (k;,, - 2)]
X P[I - MHF  (k,,, + DF (k,., -2)]
+MH | Fy (k;,, = 1)Q(k,, = 2)Fy (k;,; = 1) +Q(k,,, —1)|H"M" + MRM
=[I - MHFy (k,, —1)Fy(k,, —2)]P - PFy (k,, -2 Fy(k,, -)"H' M’
+MHF (k. —1)F (k,,, —2)PF, (k,,, —=2) Fy (k,,, - 1)" H'M"
+MH [ Fy (k;,, =)@k, = 2)Fy (kyyy =) +Q(k,, =) |H' M + MRM
=[I-MHF, (k,, —1)Fy(k,, —2)|P - PFy(k,, —2) Fy(k,, -D)"H' M"
+MH{ Fy (k= D[ Fy (K, —2)PFy (K, = 2) +Q(ki), = 2) | Fy (Kypy 1)
+Q(k,,, —~1)}H'"M" + MRM
=[I-MHF (k,, - 1)Fy(k,, —2)|P - PFy(k,, -2) Fy(k, -)'H' M
+PF, (k,, -2) Fy(k,,,~1)"H' M
={I-M(k,, 21k, )H(k, )Fy[£(k,, —11k)IF[£(k,, —21k)]} P(k,,, ;

Note that (2-105) and the

Kiy1 —2:
(k:+l 2|k1+1) f(k
£(k+l
(kH-l 2|k:+l)
_{I M(ka 2|kx+l)H

Finally, based on (2-93)

induction. m

2.4.4 Iterated Extende
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Figure 2.33 Iterative Extended Kalman Filter and Smoother.
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Figure 2.34 State Estimation based on EKF and IEKFS for intermittent measurements.

Once we come back to time point k;, we can update the estimated states in X(k;|k;)
with the estimated states in X(k;|k;4q1); and, then, repeat such EKF and EKS process
iteratively (see Fig. 2.33) untjl the estimated states have converged or we believe an accurate
enough estimate has been achieved.

Finally, we can feed| the iteratively estimated state vector into the measurement
equation, obtain an estimatg of the gross production rate, and use it as the interpolated
measurement. Therefore, this approach is named Irerative Extended Kalman Filter and

So far, our IEKFS has been focusing on state estimation in the interval between (ipcluding)

two available intermittent measurements. However, in practice, consecutive and intermittent

Smoother (IEKFS) method.

measurements occur alternatiyely as shown in Fig. 2.34. Therefore, as indicated in Fig. 2.34,
the overview of our global strategy is to use one-pass EKF when consecutive measurements
are available, and to use IEKFS when only intermittent measurements are available. Of
course, for interpolation purppse, we would only need the estimated states at those missing-
measurement time points; but| we need the EKF for the consecutive-measurement time points
to update and prepare the estimated states for the intermittent measurement interval that

follows.
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Figure 2.35 Based on 100 Monte-Carlo simulations of the producer-centric model from Hig. 2.26, a
window (day 800]l~ day 860) of (a) average production rates with measurement noise
(solid line) and our sampled measurements (discrete dots); (b) average actual production
rates without nois¢ (solid line), IEKFS interpolated production rates (dashed line) and
Zero-Order-Held production rates (dotted line).

2.5 Case Study

2.5.1 Hypothetical Test Case Revisited

To test the performance of our I]éKFS approach, we first go back to the single
producer-centric mode] introduced in Fig. 2.26. And we mainly focus on the scenario where
the noised production rates dre sampled once every eight days [see Fig. 2.35(a)], because it
best reflects the real world situation.

In Fig. 2.35(b), we| show how the IEKFS interpolated and Zero-Order-Held
production rates compare tq the actual production rates without measurement noise; and
observe that, unlike the Zero-Order-Held rates, the IEKFS approach manage to capture the
ups and downs (trends) of the actual production rates, which is very important for our state
estimation process. To numerically evaluate the two approaches, we compute their Root

Mean Square Errors (RMSE3) compared to the actual production rates, and summarize them
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Table 2.12 Root Mean Squar
production rates for|

[

meability map of reservoir simulator generated case 1.
|

e Errors (bpd) of the IEKF:E and Zero-Order Hold interpolated
the four producer-centric models in reservoir simulator case 1.

Producer | Producer 2 Producer 3 Producer 4
IEKFS 85.11 4.80 12.30 56.54
Zero-Order Hold 186.6( 25.20 40.17 126,37

Table 2.13 Root Mean Squar
production rates for

T
|
\
|
|

e Errors (bpd) of the IEKF
the four producer-centric mode

S and Zero-Order Hold interpolated
Is in reservoir simulator case 2.

Producer 1 Producer 2 Producer 3 Producer 4
IEKFS 9.28 5.36 11.70 96.75
Zero-Order Hold 28.00 28.36 35.00 193,84

Observe, in Fig. 2.38(:
this is because most water frg
day, the IPR curve of inject

injector 4 is one of the closg

|
|
|

1
1), that all IPR curves have very small values before day 1500;

|
m the injectors hasn’t reached producer 2 yet. Shortly after that
or 4 increased by a relatively large amount. This is because

st injectors to producer 2; T‘md although injectors 1 and 3 are
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equivalently close to producer 2, most of their water has been contributed to producers 1 and
4, respectively, due to their high and medium permeability channels. Therefore, given full
set of measurements, the EKF can provide us with IPR results that correctly reflect the
physical setup of the reservoir simulator experiment.

On the other hand, we observe that the IPR curves in Figs. 2.38(b) and (c) are
significantly biased; whereas the IPR curves in Fig. 2.38(d) are almost the same as their
counterparts in Fig. 2.38(a).| Similar results can be obtained for the other three ]‘Droducer-

centric models in this test case. These suggest that the IEKFS interpolated production rates

allow us to obtain almost equivalent results as if we had used full set of the measurements.
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Figure 2.38 For reservoir simulator case 1, IPR values between producer 2 and all five injectors
estimated by EKK that uses (a) full set of [the measurements; (b) intermittent
measurements; (c)| Zero-Order-Held production| rates; and (d) IEKFS interpolated
production rates.
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The second test case includes the same number of producers and injectors as the first

case; its permeability map is depicted in Fig. 2.39, where the entire field is homogenous and

has very low permeability except an extremely high permeability channel across| the field.

Again, all injectors are included in every producer-centric model during the EKF process.

The RMSEs of the interpolated production rates by the IEKFS and Zero-Order Hold

methods for all four produger-centric models are summarized in Table 2.13, where the

IEKFS still always outperform the Zero-Order Hold method. And, in Fig. 2.40, we present

the estimated IPR values between producer 2 and all five injectors for four different

scenarios as we did for the first case.

In Fig. 2.40(a), for example, we observe that injector 1 has the highest IPR values

throughout the test, which is| physically meaningful; because it is the closest injector located

in the high permeability channel with producer 2.

pbserve that the IPR cury 1 (c) are

And, similarly, we
significantly biased; wherea
counterparts in Fig. 2.40(a).
centric models in this test cg
enables our EKF to produce

field even when the sampling

2.6 Summary
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Figure 2.40 For reservoir simulator case 2, IPR values bet\ﬂeen producer 2 and all five injectors
estimated by EKK that uses (a) full set of | the measurements; (b) intermittent
measurements; (c)| Zero-Order-Held production| rates; and (d) IEKFS interpolated
production rates. ‘
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directly, which avoids estimating negative results for IPR values. Section 2.2 then went on to
describe a way that integratels important expert knowledge on oilfield for the initialization of
the EKF processing, present a method that eliminates noncontributing injectors| from the
model, and show how to validate the accuracy of our EKF results by using production-rate
history-matching. Our validation process has also led us to develop a method for selecting an
optimum ellipse size (for |each producer) for choosing the initial set of injectors by
minimizing history-matching errors. Finally, we showed how to convert a table of producer-
centric IPR values to a table pf injector centric IPR values.

Then, in Section 2.3, we used a simulated mini-oilfield to illustrate how independent

EKF processing of producger-centric models can lead to the violation of physically
meaningful constraints. We then extended Simon, et al’s|constrained Kalman Filter methods
to a Constrained EKF (CEKF) that, for the first time, has coupled all producer-centric
models in the oilfield. Our simulation results have shown that the CEKF guarantees
satisfaction of the constraints on the state vectors, and produces more accurate IPR values
for producers that are incorrectly modeled, but it biases IPR values for producers that are
correctly modeled. To addreps this problem, we have shown how the dimensionality of the
CEKEF can be significantly reduced and how a better weighting matrix can be easily| designed
to maintain IPRs of injectors| that are more likely to be contributing to a producer, and at the
same time to reduce the “pseudo-IPR” values of those that are more likely not to be
contributing to a producer. The CEKF reduces to the EKF when no constraint is| violated.
We also applied the CEKF|to 13 real oilfield producers that are affected by an injector
whose constraint is severely|violated, and have shown that the constraint was successfully

restored by the CEKFs.
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Figure 3.1 Overview of the complete IT2 FLS composed by K neurofuzzy filters [204].
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Figure 3.2 Filtering window for peurofuzzy filters, where r and|c are the indices of rows and columns,
e.g., x(r,c) is the luminance value of the pixel located at row r and column ¢ [204].
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Figure 3.3 28 pogsible pixel topologies for the neurofuzzy filters [204].
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3.2 Noise Removal
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B, (rie)= 20 G-

Similar operations are|carried out by all other neurofuzzy filters, each using an input

vector obtained based on the icorresponding pixel topology. This leads to K = 28 defuzzified

¢ takes these defuzzified values and

values, D,(r,c), D:(r,c),..., D

performs the following computations to obtain the final

free luminance value at locati

y(r,c)

Note that, in practice,
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In this section, each of the neurofuzzy filters is @ T1 NS-IT2 FLS, where the input

values are modeled as T1 F$s. Without loss of generality, focus on the MmGi=1,2..K

neurofuzzy filter to obtain an interval estimate, Y,(r,c), of the pixel value at location (r,c).

Recall that the input vector is x; = [Xi1 X2  Xi3]7, which is obtained by collecting three

pixel values in the filtering window based on the corresponding topology. Our proposed NS

IT2 FLS is based on N rules. Note that N is different from K in the previous section. K

denotes the total number of neurofuzzy filters in our complete FLS, whereas each

neurofuzzy filter has exactly NV rules. Choosing an appropriate value for N is quite important:

if N is too small, the neurofugzy filter's ability to model uncertainties is going to be limited,

which leads to poor performance; and if N is too large, the computational cost is going to be

very high. There does exist a standard procedure for chposing an optimal value for N; so,

generally, N is chosen in an ad hoc manner. In this chapter, based on our tests and trials, N is

chosen to be 3% = 27. Each rfile in the NS IT2 FLS take the following forms:

Rule 1: IF X;; is F} a

Rule 2: IF X;, is F3 a

Rule N: IF X;; is FY ¢

where the consequent of each
is the interval [y}, yX]; and ¢
described by a Lower Memb

(UMF) that have the followin,

nd X;, is F, and X3 is £,

nd X;, is F3 and X5 is F3,

ind X, is F and X;5 is FY,

rule, Gi" (k=1,..,N),is a
ach antecedent, FX (j = 1,

ership Function (LMF) and

o forms, respectively (u € X):

THEN y; = G}

THEN y; = G?

THEN y; = GV

n IT2 FS whose centroid |
2,3and k = 1, ..., N), is ar

1 an Upper Membership |

85, 122]
1 IT2 FS

Function
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NG olsu) ifus ™ !
;_j;(,)z (3-4)

mk
k k. . =i
NGmj,o5u) ifu>=——t

N(my, 0, ;u) if u<mj
M) =<1 if m' <u<m (3-5)
=Y iy

N(img, o8 ;u) if u >}

Y

where, e.g., N (Ezkj' ol; u) = exp [—% (u—mf;/af)?]. Examples of the three antecedent
IT2 FSs of the k" rule are dépicted by the gray areas in Fig. 3.4, each of which is called a

Footprint of Uncertainty (FOU).

The input T1 FS, X; i (J = 1,2,3), for the corresponding antecedent has the following

MF (u € X):

H; () =N(x;,0% ;u) (3-5)

where the mean of the MF is|the actual crisp input value lx;. Examples of the three input T1
FSs are depicted by the dotted lines in Fig. 3.4.
Details regarding the above rule-based inference system can be found in Chapter 11 of

[122]. This section briefly reviews all the necessary steps of the computations.

. L . k.
First, the firing interval for each antecedent in a rule, [ﬁ’}‘ fi j], is computed, where E‘

—k
(f; ].) corresponds to the maximum value of the fuzzy intersections between the LMF (UMF)

of FY and the MF of X, respectively, i.c.:
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Iy.k = rzlg(x{min [é{: (u), 44, (u):’} (3-7)
fij" = rfg(x{min [ﬁ;‘ (u),,u".(u)]} (3-8)

An example of the fuzzy intersections between El’-‘-(u) [Hfj (w)] and /,L{‘]- (u) for the k™

rule are depicted by the heavy dashed (solid) lines in Fig. 3.4, where the corresponding ﬁ’f

—k
and f, i values are also labeled.

Once the firing interval of each antecedent becomes available, the firing interval for

—k
each rule, [ﬁ-’j,fij] (k =1,2,}.., N), is obtained, as:

[ — k ;i
fu =it %)
k _ s Tk -
I = et 7o (3-10)

Finally, the Karnik-Mendel (KM) algorithm [85, 122] or the Enhanced KM (EKM)

algorithm [190] is used to compute the following two values:

a, (u) ,;1,"'2 (1) y /1,"3 (u) E’;(ll)
L N \./ .
,L_I,S(ll)

0 e 2§ U
0 100 X %0 X;3 150 200 250
(b) (c)

Figure 3.4 An example of the LMFs and UMFs, _lflki (u) and 'ﬁ:‘.(u), of the three antecedent IT2 FSs,
Fi’j(j = 1,2,3); the MFs, uf‘j(u), of the corresponding input T1 FSs , )?i’j- (j =1,2,3); and,
the fuzzy intersecti(l)\jﬂs:between Elkj (w) [ﬁfj (u)] and Jlkj (j =1,2,3), where (a) j=1; (b) j =

2;(c)j=3.
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which are the desired

Yi(r, o) = [yi(r, ), i(r, ¢)]

For the above i" sub-g
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()

Figure 3.5 (a) original image, and (b) image corrupted by 30% AWGN and 50% impulseinoise.
\

The corrupted image [was obtained by adding MGIN to the original imaée. After

extensive simulations, we used 30% AWGN and 50% impulse noise to contamJinate the
\

clean image [see Fig. 3.5(b)]. }
i

To train the i neurofuzzy filter, the filtering winjrldow was shifted through all pixel
\

locations (excluding the boundary pixels), i.e., r=2,3,.,R—1and c=23,..,C—1,
i
where R and C are the total number of rows and columsz of the pixels in the givqn image;

and, a set of input vectors, x;| was collected. The rule-based inference system produced a set

of D(r,c) values (r =2,3,...,R—1and c = 2,3,...,C —[1), which can be viewed ias the "

neurofuzzy filter's estimates of the original pixel values at corresponding locations. *\Iote that

all the neurofuzzy filters were¢ trained independently; therefore, the post-processer block was

not involved in this stage, namely, D4y(r,c) was not computed during the training sllage. The

“optimal” set of design parameters was obtained by optimizing the following Mean Square

Error (MSE) of the estimated|pixel values:

R-1C-1 s
ME R 2 2)(c b 2 2Dir) = y(0)] (3-13)

where y(r,c) is the original noise-free pixel value at (r,c).




conference paper [227], a reviewer

Comment: When this ¢hapter was published as a

suggested that it is not very| clear whether different images would need different training

images. In response, we wan{ to point out that only one training image set (shown in Fig. 3.5)

is needed to obtain a NS IT2 cable to different images.m

FLS that is universally appli

3.3 Particle Swarm Qptimization

One category of the|well-known techniques that can be employed to tune the

parameters of the above neurpfuzzy filters (NS-IT2 FLSs) is the gradient-based methods [13,

{endel [103, 122]. The analytical forms of the gradients of such

56] proposed by Liang and M

a NS-IT2 FLS that has many parameters and nonlinear computations are extremely

complicated, making their computer implementation very difficult, which has been the main

-IT2 FLSs from becoming widely used. Also, the performance

reason that has prevented NS

of the system can suffer significantly if the solution to minimizing the MSE quickly falls into

a local minimum, which can ¢asily occur when gradient-based methods are used.

In recent years, population-based random optimization techniques, such as| Particle

Swarm Optimization (PSO
programming (EP) [57], have
107]. In this chapter, we ad
“optimal” design parameters,
computer programs, and, as W

good results.
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where X; (¢) is the jLh element of position of the i particle in the M generation; ¢, and ¢, are
two constants called acceleration coefficients; ry(f) and r,,(t) are two random |variables
uniformly distributed in the [interval [0,1]; w is called inertia weight that is usually set to
decrease linearly from 0.9 to 0.4 during the course of the search process to help PSO reach

convergence; and, P, (t) denotes the global best (gbest) position found in the history of the

entire swarm, i.e. (i = 1,2, ..., M):

P()= ar% min f,,. (B (1)) (3-16)
B()

. " A . ‘
At the end of each generation, a new position of a particle is obtained, as: |
|

X,t+D=X,0+V,®) -G

3.3.2 Quantum-Behaved Particle Swarm Optimization

Despite its exceptionally good performance on many different problems, [Van den
Bergh [11] has shown that|the PSO algorithm does not guarantee global optimization;
therefore, ever since its debut in 1995, many variations and modifications of the PSO
algorithm have been proposed to enhance its performance [97, 173, 232]. Recently, Sun et al
[173, 195] proposed a Quantum-behaved PSO (QPSO) algorithm that, theoiretically,
guarantees optimal solution in the search space, and, they have shown that, in practice, the
QPSO algorithm provides befter results for many widely-used benchmark tests than does the

standard PSO algorithm. Therefore, this particular version of the PSO algorithm is our

choice. Its pseudo-code is [195]:




initialize X; (1) (i =
set P;(1) = X;(1) (i
fort = 1to G-1do
calculate m(t) =
P, (t) = argminf
fori = 1to M dq
if £(X;(0)) <
end if
forj=1ton
n = rand
P t+1
u = rand
if rand(0,
X;;(t
else
X;,;(t
end if
end for
end for
end for
Observe that the QPSd
1) instead of using (3-14), th

weighted average of its previ(

1,2, ... M) randomly

=12,..M)

ST B
o (Pi(E))

D

f(@&;(2)) then P;(t) = X;(t
do

0,1)

) =nXxP;t)+(1—n)x
(0,1)

)>0.5 then

+1) = P ;(t + 1) = B|my

+1) =P ;(t+ 1)+ Blmy
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B j(t+1) =nxP i)+ (1 —n)XP;t) (3-18)

where 71 is a random variable uniformly distributed in (0,1]; and 2) instead of using (3-17),

the location of each particle i§ updated as:

X, (6 H1) = (e + 1) + Blmy(®) = Xi (O)fIn (3-19)

where m(f) is the average best personal position of the entire swarm and u is also a random

variable uniformly distributed in (0,1]. Note that (3-19) was developed based on the solution

of the Schrédinger equation, which is why the algorithm has the prefix “Quantum-behaved”.

3.4 Additional Enhancement by BM3D and Contrast Scaling

As will be seen in |Section 3.5, the complete NS-IT2 FLS explained so far

significantly outperforms all other non-fuzzy methods as well as its Tl and S-IT2

counterparts quantitatively; however, when evaluated from a visual perspective, it has the

unwanted feature that the contrasts of the de-noised image are reduced. We observed that the

IPAMF+BM3D method proj

maintaining the contrast level

osed by Yang and Wu [2
after its noise removal proc

the NS-IT2 FLS and the I

D3] does a relatively goo
ess. This inspired our effo

PAMF+BM3D. Unfortuna

d job of

rts to try

tely, we

to integrate the outcomes of

observed that any MSE-based nonlinear fusion technique, such as Choquet Integral [130],

e NS-IT2 FLS and ignores that of the IPAMF+BM3D, merely

always favors the result of th

than does the IPAMF+BM3D. On

because the NS-IT2 FLS always has a much better MSE

the other hand, if we simply combine the results of the two methods by giving them equal
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weight (50%), the combined|result has much better visual quality, but its MSE can become
worse than some of the non-fuzzy techniques.

We also tested how cascading the NS-IT2 FLS |with IPAMF and/or BM3D could
affect the results. Through our simulations, we found that sequential processing of the noisy
image, first by the NS-IT2 FLS and then by the BM3D DCT [50] filter IPAMF was found
not to be needed), allowed the overall system to gain a certain amount of improvement, both
visually and for the MSE. This indicated that the BM3D filter has the ability to clean up
some residual noise in the image after it is processed by the NS-IT2 FLS; however,|although
the BM3D filter can maintain the contrast level of the image it processes, it does nothing to
bring back the lost contrasts. In other words, such an NS-IT2 FLS plus BM3D filtering
achieves better restoration off the image compared to just the NS-IT2 FLS, but the contrast
level of the outcome is still law.

Our goal of raising back the contrasts of the de-noised image turned out to be
attainable by simply performing a linear contrast scaling operation to the de-noised image,
the details of which are reviewed below. The restored contrast level leads to significantly
enhanced visual quality. Sometimes, appending such a contrast scaling filter can cause a
limited amount of negative effects to the MSE; however, the MSE is still much better than
those of all the non-fuzzy techniques.

To summarize, including BM3D and contrast scaling filters in series with the NS-IT2
FLS, as depicted in Fig. 3.6, lenabled us to outperform all existing methods by a significant
margin both quantitatively (MISE) and visually. All the simulation results that support these

claims are provided in Section 3.5.
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Comment: In the remainder of this chapter, we denote the NS-IT2 FLS followed by
just the BM3D filter as NS-IT2 FLS+, and the NS-IT2 FLS followed by the BM3D filter and

the contrast scaling filter as NS-IT2 FLS++.m

3.4.1 Block-Matching| 3-Dimensional (BM3D) Discrete | Cosine
Transformation (DCT) Filter

The BM3D DCT filter is very well studied in [50]; its computer implementation has
been made public available online by its authors. Here we only briefly go over the basic idea
and structure of this technique.

The BM3D DCT filter is designed to combat AWGN, and is based on an enhanced
sparse transform-domain representation, which is achieved by grouping similar 2D image
blocks into 3D arrays called groups. Then three-step collaborative filtering is applied to
these groups, namely: 1) 2D [DCT and 1D Haar wavelet transformation; 2) shrinking of the
transformed spectrum; and, 3) inverse 3D transformation. Such collaborative filtering has
been shown to attenuate noise, preserve the finest details shared by different blocks, and
preserve the unique features|of each individual block. The outcome of this collaborative
filter is a 3D estimate of thesg jointly-filtered image blocks which overlap among themselves.
Finally, an aggregation method that takes the advantages of the redundancy is| used to

combine the estimates for each pixel.
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3.4.2 Linear Contrast Scaling Filter

Without loss of generdlity, assume the range of the pixel values in the original noise-
free image is [a,b], where 0 € a < b < 255. After corruption by MGIN and processing by
the NS-IT2 FLS, pixel valugs always occupy a smaller range [c,d] within [ab], ie., a < ¢
and d < b. This results in a reduced contrast level of the de-noised image. To enhance the
contrasts back to their original level, i.e., to map pixels in [c,d] back to [a,b], one needs
knowledge of the exact valugs of a and b, which is usually not available in practice. In this
chapter, it is assumed that [¢,b] covers most of [0,255]; so, it is reasonable to simply map
[c,d] back to the full range [0,255]. This works very well for the widely-used test images
examined in Section 3.5. In cases where [a,b] only covers a small portion of [0,255], one can

estimate the values of a and 4, and then our proposed strategy still applies.

The possibilities of scaling an output image back into the domain of values occupied

by the original image usually include linear image scal#ng (also known as lineaﬁ‘ contrast

scaling filter), linear image scaling with clipping, and absolute value scaling [14 )]. In our

case, clipping is already carried out by (3-3), which ensures that ¢ is never negative and d

never goes over 255, so no additional clipping or absolute value operations are needed here.

As a result, one can apply the standard linear contrast scaling filter that is illustralLd in the

third box in Fig. 3.6, in which every input pixel value x € [c, d] is mapped into an output

|
pixel value y € [0,255] via:

y= L X(x—c) (3-20)

=c
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Table 3.1 MSEs of different apy

roaches for the four benchmar

K

images (baboon, pentagon,

boat, and

bridge) corrupted by|30% AWGN combined with|30%, 50%, and 70% impulse noise,
respectively. ;
Baboon Pentagon | Boat Bridge

Approach | 30% 50% 70% | 30% 50% 70% | 30% 50% 0% | 30% 50% 0%
Nlﬁfﬁ’;“ 5943 7174 10° | 6164 7242 9934 | 6043 7232 10* | 5935 7260  10°
Véii’;‘:‘ 4016 3359 3222 | 4026 2962 2376 | 4271 3531 3304 | 4861 4468 4401
Gaussian | 5321 5943 6902 | 5445 5605 6058 | 5676 6168 7003 | 6153 6899 7935
ROAD 3085 4210 5379 | 3286 4899 5571 | 2844 3929 4965 | 2879 3935 4953
H;’;‘Al\gg* 5953 6720 9462 | 6575 7542 9215 | 6069 6753 8592 | 5992 8096  10°
T1 FLS 1937 2214 2572 | 1851 1800 1814 | 2125 2383 2779 | 2817 3338 4006
S-IT2 1699 2063 2499 | 1434 1503 1600 | 1874 2214 2638 | 2479 3055 3737
NS-IT2 1084 1526 1989 | 539 711 897 | 1087 1501 1972 | 1574 2203 2874
TIFLS+ | 1699 1747 1916 | 1493 1257 1121 | 1742 1810 2066 | 2512 2844 3343
S-IT2+ 1391 1542 1819 | 1013 916 889 | 1432 1595 1903 | 2126 2511 3046
NS-IT2+ | 1016 1326 1670 | 322 413 529 | 853 1175 1577 | 1407 1920 2494
T1FLS++ | 1742 1463 1975 | 1104 825 1327 | 1369 1624 1808 | 1760 1748 2511
S-IT2++ | 1106 1337 2262 | 669 829 1413 | 771 905 1659 | 801 1103 2004
NS-IT2++ | 840 938 1766 | 544 591 772 | 665 623 1091 | 586 767 1439

Table 3.2 Percentage improvements from T1 to S-IT2 to NS-IT2 FLSs for the four benchmark images
(baboon, pentagon, boat, and bridge) corrupted by 30% AWGN combined with 30%, 50%,
and 70% impulse noise, respectively

Baboon Pentagon Boat Bridge
30% 50% 70% | 30% 50% 70% | 30% 50% 70% | 30% 50% 70%
T1 to S-1T2 123 6.82 .84 | 225 165 11.8 | 11,8 7.08 5.10 | 120 848 6.72
STONS 1 362 260 204 | 624 527 439 | 420 322 252|365 219 231
3.5.2 Visual Quality Analysis
Figs. 3.8 - 3.10 present, respectively, the images “Baboon”, “Pentagon” and [‘Bridge”
corrupted by 30% AWGN combined with 30% impulse noise and their restored|versions

based on all the aforementionged techniques. Figs. 3.11 - 3,13 present the same kind of results

when the images are corrupted by 30% AWGN combined with 50% impulse noise. Results
with 70%

for these two noise levels are very representative; those for 30% AWGN combined

impulse noise lead to similar images, and, therefore, they are not included here. Also, the
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restored versions baged on (b)-(f) non-fuzzy techniques; (g.1)-(g.3) FLSs without BM3D
or contrast scaling; {h.1)-(h.3) FLSs with just the BM3D; and (i.1)-(i.3) FLSs with both
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image “Boat” has similar resplts to those of these three images, and the conference version

of this chapter [227] already [presented some of its results; therefore, images for “Boat” are

not included here. The following observations can be made about these figures:

1. In Figs. 3.8 - 3.13, the noisy image and the restored outcomes by all non-fuzzy

techniques are presented on the left-hand side of the vertical separation line. Observe

that the IPAMF+BMBD method is definitely the winner in the non-fuzzy category

for all these images.

On the right-hand side of the vertical separation line, the NS-IT2 system images

always look better than their T1 and S-IT2 counterparts. This is easier to see for the
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In summary, the proposed NS-IT2 FLS++ allows u
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time a forest fire occurred. A total number of 517 fire incidents have been recorded. The
elements from this data set |are listed in Table 4.1. Note that this list does not include
temporal data, because they dre recorded in terms of month and day, and, therefore, are not
suitable for some of the numerical processes introduced in this chapter.

After careful examinations of the data set, it is noticeable that, out of the|517 fire
recordings, the burnt area Nas 247 zero entries, which means that these fires had sizes
smaller than 0.01 hectare (ha), where one hectare is 10,000 square meters or 2.471 acres. As
Fowler et al. [58] pointed ouf, “the fact that such a large proportion of the data indicates a
burn area of size 0 affects a4 number of decisions in the development of the prediction
system”. As an effort to decide which elements in Table 4.1 should be used for optimal
system design, Cortez and Morais tested (not exhaustively) several different subsets of these
elements as inputs to their data-mining systems; but the element sets they tested|seem to
have little impact on the prediction results. In [58], Fowler et al. proposed to use four of the
meteorological elements, namely, temperature, relative humidity, wind speed and rain, as
inputs to their FLS. Although, intuitively, these elements could have direct impact on the
fires, such a choice remains subjective and could be problematic, because, e.g., rain

measurements only have eight nonzero entries, which is hardly enough for training purpose.

4.2.1 Element Selection

In this Chapter, we propose to first categorize the burnt area measurements into two
classes, zero and nonzero, which allows us to apply feature selection techniques [51, 77-79,
95, 98, 142] from pattern classification to determine a subset of elements in Table 4.1 that

“optimally” characterize the two-class burnt area measurements.
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The technique employed in our study is callé‘d minimal-Redundancy-Maximal-

|
Relevance (mRMR) [142]. It selects the elements that !have the highest relevance to the

ere “relevance” is measure rmation.

target binary burnt area, wh d in terms of mutual infa

Because it has long been recognized that “the combination of individually good features do

not necessarily lead to good classification performance” [46, 47, 79, 142], the mRMR also

ensures the redundant information among the selected elen]nents is minimized.

A ranking of the elements in Table 4.1 (see the second row) was provided by the

mRMR (The software that realizes the mRMR method can be found at:

http://penglab.janelia.org/projymRMR/; its details are not of interest to this chapter.). As can

be seen, e.g., rain is ranked a§ the least useful element, which contradicts our intuition. This

could simply be due to the fag
years when the measurement
fire incidents occurred during

Based on mRMR, we
(DMC), Relative Humidity (}
sources for our system. Notg

Cortez and Morais.
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s were taken, and, therefore
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as data
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system performance, is: out qf the 517 burnt area measurements, 515 of them have values

distributed over the interval [0, 278.5] (ha). We refer to a measurement like this and the
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Table 4.1 Data elements and [their ranking based on minimal-Redundancy-Maximum-Relevance
(mRMR)
Burn  Duff Relative = Drfought Temp.  Fine Initial Wind X y Rain
Area Moist.  Humidity Cqgde Fuel Spread  Speed
Code Moist.  Index
Code
1 2 3 4 5 6 7 8 9 10
element values associated with it as a regular event. The other two measurements have
relatively very large values, 746.3 and 1090.8 ha. We refer to a measurement like this and
the element values associated with it as an extreme event, Note also that, these two extreme
events are themselves quite different (1090.8-746.3=334.5 ha), making each of them also an

unique event in the data set.
All previous forest-fire
simulations each with a ten-]

for the system was either the {

where y(k) and y (k) are, resp
measurement (k € {1,2,...,51

During each cross-vali

if the training data set contaif

is finely tuned to reduce the 1
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-size prediction techniques
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7}).
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No system, however, can afford to rule out these two extreme events from the data set;
because, to do so would cduse the system to completely lose its ability to predict an
exceptionally destructive forgst fire, which, as Fowler et al. [58] point out, “might have far
more serious consequences than many small errors”.

Therefore, we propos¢ to distinguish between regular and extreme events in the
training data set, and use them to design an IT2 FLS and a T1 FLS, respectively. Such an
IT2 FLS provides us a set of|general rules that are free from overfitting caused by extreme
events and specialize in predicting regular events; and, on the other hand, the T1 FLS

contains a set of elite rules that enable us to predict extreme events.

4.3 Mixture Fuzzy Logic System

As mentioned in Section 4.2, the regular events in the training data set are used to tune
the above IT2 FLS, which jprovides us with a set of | general rules that specializes in
predicting regular-size fires. NMeanwhile, the extreme events are used to design a T1 FLS that

provides us with a set of elite jrules for predicting significantly large fires.

4.3.1 Elite Rules for Predicting Extreme Events

Due to uniqueness of the extreme events, each elite rule is especially designed based

on one such event and, e.g., has the following form:

Elite Rule 1: IF x, is F{f and x, is F} ... and x; is F} and xg is Fg; THEN y is G™.
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ud (1) and p3 (i), are depicted in Fig. 4.1. As for the consequent of the rule, G is set to be

!

a T1 FS whose centroid equals y’.

4.3.2 Firing Criteria

A Mixture FLS is established by putting the two sets of rules (FLSs) together in
parallel. However, unlike a [single T1 or IT2 FLS where all rules are fired together to
different levels, a slightly madified criterion becomes necessary to determine which set of
rules is to be fired, because one needs to be more cautious about firing the elite rules due to

the significant consequences they can bring about.

x, (k),x, (k),...,x5(k)
} l

| HiiteRule1 |***| EliteRulen, |

if £ (k) 2/90% ‘os /{f V2 (k) > 90%

Collectinto
the set IF.
Is [F empty?
Yes \1:10

Zz‘enr fi(k) x gt
> icr fi(k)

xll(k)axz(k)ax;(k)axi(k) (k)=

General [ General
Rule 1 Rule N
See Section ITL.A
for details.
~ W+ Yr

Figure 4.2 Mixture FLS flowchart
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Given a set of actual input values, x,(k), x2(k),..., xs(k) (k € {1,2,...,517}), we first use

them to compute the firing level of each elite rule ,i.e. (i = 1,2, ..., Ng}):

fiky= min u;(x; (k) (4-4)

Jjell,2,...,

where Ng is the total number pf unique and extreme events (elite rules). If none of the firing

levels are greater than or equal to 90%, i.e. f*(k) < 0.9 (Vi € [1, Ng]), no elite rule is fired;

and, x,(k), x,(k), x3(k) and x4(k) are fed to the general rules to obtain a prediction of|the fire-

size. The firing threshold, 90%, ensures that every condition necessary for a rarely large fire

exists at least to the degree of (90%.

If one or more elite rules pass the firing threshold, the set of general rules is ignored,

i.e., only the passing elite rules are fired. We denote the set of such rules as Z. They can be
considered as a T1 FLS and defuzzified as [122]:

DALY

yk)= ﬂz—w (4-5)

ien

where yi is the burnt area valpe of the extreme event, bas Fd on which the " elite rule in Z is

constructed. A flowchart of above procedure of the Mixture FLS is depicted in Fig. 4.2.

Table 4.2 30-timg Monte-Carlo simulations of ten-fold cross-validation

Objective Naive Average Naive Zero Multiple Decision Trees Random
Function Predictor Predictor Regression Forests
RMSE 63.59 64.89 64.5 64.5 64.4

MAD 18.57 12.85 13.01 13.18 12.93
Objective Neural Network | Support Vector Evolved T1 Mixture ~ FLS Mixture FLS
Function Machine FLS (T1) (IT2)

RMSE 66.9 64.7 50.3 46.18 45.7

MAD 13.71 13.71 15.13 13.50 12.32
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This problem is caused by the nature of the data set, namely, the number of extreme events is
too limited. To more thoroughly examine the validity of the elite rules, some more extreme
events need to be collected and added to the existing data set to ensure that the| extreme

events will always be present|[in both training and testing stages.

4.5 Summary

Focusing on a particuldr kind of data set which has two subsets of events (regular and
extreme), this chapter has proposed a Mixture FLS that distinguishes and uses them
separately to build an IT2 and a T1 FLS. The IT2 FLS (general rules) is tuned by a QPSO
algorithm based on measurements from the regular event set, and the T1 FLS (elite|rules) is
designed by a one-pass method based on limited measurements from the extreme event set.
Once a set of input values is fed into the system, a firing criterion is first employed to select
the set of rules to be used. Those rules are then fired and defuzzified.

When applied to a benchmark forest fire data set, this Mixture FLS outperformed all
previous techniques with respect to average values of (300 cross-validation RMSEs and
MADs. The Mixture FLS performs very well for predicting regular events; however, due to
scarcity of the extreme events, their presence in both training and testing data sets cannot be
guaranteed; therefore, the validity of the elite rules cannot not be fully determined. As more
and more fire incidents become documented, it is expected that the number of extreme
events in the data set will also increase to assist validation

In the future, it is possible to further divide the data set into more than two groups

based on numerical analysis such as mRMR, and, thus, build a Mixture FLS with multiple
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sets of rules. It is also possible that, as new events join the data set, a genuinely different

group of events begins to emerge and, thus, demands a new set of rules for itself.
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Chapter 5 Uncertainty Measures for r}eneral Type-2 Fuzzy
Sets |

In this and the following chapter, we will be looking at some fundamental research
topics for the most advanced FSs that are currently under study — general TZLSS. In
particular, this section focuses on computing different uncertainty measures for such iFSs.

Previously, five uncertpinty measures have been defined for Interval Type-2 Fuzzy
Sets (IT2 FSs): centroid, cardinality, fuzziness, variance and skewness. Based on alrecently
developed ar-plane representation for a general T2 FS, we generalize these definitions to
such T2 FSs, and, more importantly, derive a unified strategy for computing all different
uncertainty measures with low complexity. Uncertainty measures of T2 FSs, with flifferent
shaped Footprints of Uncertqinty and different kinds of| secondary membership f}unctions
(MFs), are computed and are |given as examples. Observations and summaries are r‘pade for
these examples, and a Summary Interval Uncertainty Measure for a general T2 FS is
proposed to simplify the interpretations. Comparative studies of uncertainty measlures for

Quasi-Type-2 (QT2), IT2 and T2 FSs are also performed to examine the feasiFility of

approximating T2 FSs using QT2 or even IT2 FSs.

This section is about uncertainty measures for type-2 fuzzy sets (T2 FSs). In order to

understand why one should be interested in such measures for T2 FSs, one must first recall

5.1 Introduction

some facts about uncertainty, lincertainty measures, and uncertainty measures for both type-

1 (T1) and interval type-2 (IT2) FSs. |
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Zadeh [223] points out that uncertainty is an attribute of information, and introduced
the general theory of uncertainty (GTU), because existing approaches to representation of
uncertain information are inadequate for dealing with problems in which uncertain
information is perception-based and is expressed in a natural language. He also states that, in
GTU, uncertainty is linked to information through the |concept of granular structure — a
concept which plays a key role in human interaction with the real world [74, 218, 224].

It is necessary to quantify the uncertainty associated with fuzzy sets (FS) as|they are
used as granules in GTU, because, as Klir [92] points out that once uncertainty (and
information) measures become well justified, they can very effectively be utilized for
managing uncertainty and agsociated information. For example, they can be utilized for
extrapolating evidence, assessing the strength of relationship between given groups of
variables, assessing the influences of given input variables on given output variables,
measuring the loss of information when a system is simplified, and the like.

Klir [92] and Harmaneg¢ [72] have developed three fundamental principles to guide the

use of uncertainty measures under different circumstances

1. The principle of minimum uncertainty, which states that solutions with the least

loss of information should be selected, can be [used in simplification and conflict

@

resolution problen
2. The principle of maximum uncertainty, which states that a conclusion should
maximize the relevant uncertainty within constraints given by the |verified
premises, is widely used within classical probability framework [37, 38, 141].
3. The principle of| uncertainty invariance, which states that the amount of

uncertainty should be preserved in each transformation of uncertainty from one
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mathematical framework to another, is widely studied in the context of

probability-possibility transformation [62, 91, 93, 185).

Cross and Sudkamp [49] indicate that the quantification of the degree of uncertainty in

a FS depends upon the type of uncertainty one is trying to measure and on the particular

measure selected for that type|of uncertainty.

Among many uncertainty measures proposed for T1 FSs, the most frequently-used are

centroid, cardinality, fuzziness (entropy), variance and skewness, which provide us with very

useful characteristics of such FSs. For example, as Karnik and Mendel [85] pointed out, the

centroid of a T1 FS can be viewed as analogous (not equal!) to the mean of a probability

density function. It is the mog
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5.2 Type-2 Fuzzy Lo
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5.2.1 Earlier Represen|
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Table 5.1 notations, expressions and conce

pts for a T2 FS A

Item

Explanation

Aq
A,
A,
Ae(a)
a-plane representation of 4
FOU(A)
L@
Jx
Rz,

s, (x|a) and sg(x|a)

u (continuous) or
u; (discrete) € U

Vertical-Slice representation of A

Wavy-Slice representation of A

x (continuous) or x; (discrete) € X

a-plane of 4; A, = |,

Embedded T1 FS of 4; 4, = [,

Embedded T1 FS of A,; A, (a)

A

Secondary membership of A

Interval between the Lower and
FOU(A) atx; J, = [s,(x[0), s

Lower and Upper Membership

J;XE

Secondary variable of A
A=

A

Primary variable of 4

VxeX f\/ueu{(x' wlfew) = a}
cxW/X, UE]y

Embedded T2 FS of 4; A, = [, [fi(w)/ul/x, w €],

Footprint of Uncertainty of A; FOU(4) = 4,

alevel T2 FS of A; Rz, = a/A,

Functions (LMF and UMF) of 4

ex /%, wE€ [s,(x|a), sk

a/A,
a€l0,1]
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|

b S

fe@)/ul/x

U

€
U
A,

v

u
V.

x|a)]

=

Mendel and John [123]

i.e., a general T2 FS can be r¢

Definition 2. An embeq

have provided the following
i=|J4,
VA,

presented by the union of al

ided T1 FS of 4, A, is

Ag=[ _,u/x, uej M

important WS RT for A:

its embedded T2 FSs.

(3-3)

(-4

140



The embedded T1 FS A, that corresponds to an embedded T2 FS 4, contains the

primary memberships of that|A,.

Note that when applying the WS RT to an IT2 FS, 4, (5-3) can be simplified to:
A= yU A, (5-5)
VA,

This is because the se¢ondary memberships of A are always 1 for an IT2 FS, so only

the primary memberships areneeded to specify such a T2|FS.
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Figure 5.1 (a) FOU (shaded area) and secondary MFs (dashed curves) of a general T2 FS, (b)
Secondary MF for the T2 FS from (a) at x = x;
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5.2.2 Alpha-Plane RT for a T2 FS

The a-plane of a T2 F§ is analogous to an a-cut ofja T1 FS.
Definition 3. An a-plane for a general T2 FS A, denoted A4, is the union of all

primary memberships of A whose secondary grades are greater than or equal toa (0 < a <

1):

e X J.VMEU {(x’u) ! f"' (M) 2 a} = U Ae (a) (5-6)

VA, (@)

1
|
Il
Pram.

where A, (a) is an embedded|T1 FS of A,.m

Definition 4. Sz(x|a) denotes an a-cut of the secondary MF f (), i.e.,
Sg(xla) = [s.(x|a), sp(x|a)]m (5-7)

An example of Sz (x|a) at x;, raised to level a, is depicted in Fig. 5.1(a).
Definition 5. The 2D dpmain of 4, called the Footprint of Uncertainty of A, is denoted

FOU(A) and is the & = 0 plane, i.e.
FOU(A) = Aym (5-8)

An example of FOU (4)) is the shaded area in Fig. 1(a).

Definition 6. Let 1z, (x|u|a) be a 3D indicator function for a-plane Ay, where:

I, Gl = 1| (x,u)e Z}a _[1.Vxe X and Vue [sL(xla'),sR(xlo.t)] 5
0| (x,uwe A, |0, otherwise
Definition 7. An a-level T2FS, Ry , is [120]:
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>

Definition 8. A, is boy
Upper Membership Functid
Membership Function (LMF)

There are several diffes
(9) that s, (x|a) and sg (x|a)
used by us in the rest of this d
sg(x|a) = sup{u|u € [0,1],]
denote the LMF and UMF for

Fig. 5.1(b) depicts the
this figure, the LMF and UJ
UMEF values for A, at a give
for A; [s,(x1|1) and sg(x,]1

Liu’s [106] a-plane RT

i- |

a0

This RT is very useful because, since each A ¢

a-level T2 FS — a special

using existing techniques that

i, = ali, (o ula) = a/Aq

nded from both above and
n (UMF) for A, , and th
for A,.m
ent notations for UMF and 1
Vx € X denote the LMF and
issertation, where sy (x|a)
f,(w) = a} . Consequently
FOU(A) [e.g., see Fig. 1(a)
secondary MF for the T2 FS
{F values for FOU(A) [s,(;
n & [s;(x;]a) and sp(x|
], are labeled respectively.
" can be expressed in differer

la

R.

Ay

U «/4,= U

1] ae(0,1] ael0,1)

IT2 FS —, operations invo

have already been develope

below. The upper bound

e lower bound is calle

LMF in the literature. Obse
UMEF for A, respectively
= inf{ulu € [0,1], f (W)

, s.(x]|0) and sg(x|0)

], and ], = [s,(x]0), sp(x
A given in Fig. 5.1(a) at 3
x,|0) and sz (x1]|0)], the 1

)], and the LMF and UM

Nt ways, as:

U A@

VA, (@)

}

an be viewed as the FO
ving T2 FSs can be perfc

d for IT2 FSs.

(5-10)

is called

d Lower

rve from

, and are

> a} and

Vx €X

0)].

x=x. In

MF and

F values

(5-11)

U of an

rmed by
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5.2.3 Assumptions on the Secondary MFs
In this dissertation, it iy assumed that:
A, €A, Va,a,€(0,1] and & >, (5-12)
Equation (5-12) can be]interpreted in terms of secondary MFs, i.e. each secondary MF
of A must be a convex T1 FS|[94], i.e. it must satisfy the following structure:
g .(u) ue s, (x10),s,(xI1))
ue s, (x11),s.(xI1
fow) = [ (1D, 5y (1) (5-13)
h (u) ue (sx(x11),s,(x10)]
0 ug (—oo,5,(x10))U(s,(x10),+e0)
In (5-13), g,(u) and h,(u) € [0,1] are monotonically non-decreasing and non-increasing,
respectively. The secondary MF depicted in Fig. 5.1(b) is an example of f, (u) that satisfies
5-(13). Practical examples of [secondary MFs that satisfy (5-13) are triangles and trapezoids.
Table 5.2 Definitions of five T1 uncertainty measures
Name Formula References
Y
Centroid c(4) = -ZF—A}% (85, 122]
i=1 Ui
P L XIS
Cardinality’ p(A) = —ﬁ-zizlui [112]
~ o S22 - 1]
Fuzziness (Yager’s) frd)=1- 1 g [197]
L o 23,
Variance v(A) = E”—l[’#& [100]
i=1 %
N Ty, — 3.
Skewness S(A) = M%@]—“‘ (191]
i=1 %i
a. |X| = xy — x; is the length of the universe of discourse used in the computation.
b. ris a positive constant.
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Table 5.3 Definition

s of the five T2 uncertainty measures in (5-14) and (5-15)

Name & Symbol & :

Centroid, Cz(¢) %ﬁ—%

Cardinality, Pz(¢) lNﬁzzilui (Ae)

Fuzziness (Yager’s), [Fz () { = [Zﬁ1|2ui1(\‘11e/)r — llr]l/r

Variance, V() Ziza [ — e ui(Ae)
y

Skewness, Sz () = ¥ w4

5.3 Uncertainty Mea

In this section, we de
they can be computed by tak

FSs, and review existing algo

5.3.1 Definitions of Un

The uncertainty mea;s
M;(&),VE € X. The followin
because it was already used

general T2 FS:

1. Choose a well-est
uncertainty meas

used in this chapt

Table II (Becausg¢ the actual computations o

fine the uncertainty measur
ing the union of the uncerta

rithms for computing uncert

1g general two-step procedu

sures for General T2

certainty Measures for

ure of a general T2 FS

by Karnik and Mendel [8]

ablished uncertainty measur
ires (centroid, cardinality,

er follow the same definitio

FSs

es for a general T2 FS, show how

-level T2
\

ainty measures for an IT2 FS.

inty measures of all the

|
|
ra General T2 FS |

is a Tl FS, Mz, whose MF is

re is proposed for defining Mz (),

5, 122] to define the centroid of a

e for a T1 FS A, m(A). The five T1

fuzziness, variance and skewness)
ns in [191], and are summarized in

f the uncertainty measures require
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discrete universes
discretizations.).

Use the WS RT to

where the uncertai

in which 4, is the

T2 uncertainty mej

To describe the T1 F
SD(Mz(&)), where [(5-16)

summations in these equation

SD(M

define Mz with MF Mz($)

M, (& =JmA)
VA,

nty measure of 4,, m(4,), i
A)= (Xr},})lsr}h{fx(u)}/[f =m

corresponding embedded T

asures are summarized in Tal

S Mz, we use its centroid,
and (5-17) are for discrete

s by integrals]

c(M;() =5
! z‘elMﬁ (é)

of discourse, all of the deﬁr-litions in this chapter ass

Zf_—]ftMA(é A

(V¢ € X) as

s defined as

A)l

e

1 FS of A,. The five corre

ble III.

c(M3(§)), and standard d

& For continuous ¢ rej

YV (€ —cM;(©)

M (&)

-

Zi[:IMﬁ(é

ime such

(5-14)

(5-15)

sponding

Jeviation,

place the

(5-16)

(5-17)
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5.3.2 Computing Unce

Direct computations of

reasonable accuracy they req

T2 FSs. Using the a-plane RT, Liu [106] has already

computed by taking the uniorn

A generalization of (5-

Theorem 1. Let m(A)
be the corresponding uncerta

the corresponding uncertainty

M, (&)=

and m;(4,) and m,(4,) are

Then,

M;é= |

a0,

Proof:

rtainty Measures for a

18) to other uncertainty mea

be a given uncertainty meas

VA, (@)

the T2 uncertainty measures are not practical because

uire enumerations of an extremely large number of €

of the centroids of the a-planes of 4, Cz_ (§), i.e.

¢ =U a/C; (&)

ae[0,1]

nty measure for T2 FS 4 [s

measure for A,, where

U [&=m(A, (@) =[m (A,

the smallest and largest

U a/tm(A

ael0,1]

a/M, (&)=
1

shown that C5(&) (V¢ € X

sures is given in the follow

ure for a T1 FS A, Mz(§)

ce (5-14)] and M, (€) (V4

a

General T2 FS

), (Ay)]

alues of m(4.(@)), resp

)ym, (A,)]m

for even

mbedded

") can be

(5-18)

ing:
V¢ € X)

€ X) be

(5-19)

ectively.

(5-20)
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The theorem and its p
can easily be specialized to d

it follows that:

M i (

Because Mz(¢) isaT1FS, it

where Mz (¢|a) is the a-cut g

=

Substituting (5-21) into (5-23

M i(

Note that

means that

hence, the embedded T1 FS A

roof are given for continuo

iscrete universes of discours

)=Jm(A,) =] min {f, @
VA, va, (ped,
can be described by its T1 a

H= a/M;¢la), V¢
ae(0,1]

f Mz(&),ie. (V€ €X)

1,y ={S1M (52 af

), it follows that:

) = Q{m(Ae) | min (1,0

min 0) 2

fwza Y(xu)eA,;

1, must belong to A,. Conse

us universes of discourse,

e. By combining (5-14) an

}/m(Ae)

-cut representation [94], a

quently, it follows that:

but they

d (5-15),

(5-21)

(5-22)

(5-23)

(5-24)

(5-25)

(5-26)
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M;Elay=J{marnAea}= | mars U mA @) (5-27)
VA, VA,€A, VA, (@)
Note that the last line of (5-27) is the definition of the uncertainty measure for A, which is
given in (5-19), i.e.
M(Ela)=M; (§) VéeX (5-28)
Substituting (5-28) into (5-22)), it follows that
M$H= U a/M, (), Vee X (5-29)
ae[0,1]
which is the middle part of (3-20).

Next, consider the a-level T2 FS A,, whose uncertainty measure, M A &) (V¢ e X),
is defined by (5-28) and the last line of (5-27). Observe that (5-27) directly uses the
uncertainty measure of the émbedded T1 FS of A,, m(A.(@)). Since each m(A,(a)) is a
positive real number, the unign of all the numbers has a smallest and a largest value, my(Ag)
and m,.(4,), respectively; hence

Mﬁa &) =[my (Aa)nmr(‘qa)] (5-30)
Substituting (5-30) into (5-29) gives:
M &= a/im(A,).m(A)] Vée X (5-31)
ael0,1]
which is the right-hand side of (5-20).m
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Equation (5-20) lets u
with reasonable computation|

established algorithms for I

s compute our previously d

al costs, because each M Ay

example, k values of aare used, then Mz (), ..., Mz,

course, greater accuracy can

Our general procedure

1. Decide on how mj
its choice will de
and @ = 1 must a
For each a, comp]
Compute the ung
already-existing 4
discretization of t]
Repeat Steps 2 an

. Collect all of the A

It is worth noting the f{
Theorem 2. Each uncer
convex T1 FSs, as in (5-13), 1
Proof:

Given a general T2 FS

3

for computing an uncertaint

pend on the accuracy that
ways be used.

nte A,

lgorithms [191]. The accura
he primary variable, x.
d 3 for the k values of acho

£ M, (&) by using (5-20), to

pllowing:
tainty measure of a general
s also a convex T1 FS whos

A whose secondary MFs sat

(xlay)>s, (xlay) Ve, >

2 FSs and all the M, (§) ¢

be obtained by using a larger

any a-planes will be used, w

ertainty measure of Ay, M

efined T2 FS uncertainty measures

&) can be computed using already-

an be computed in parallel. If, for

(§) require k parallel processors. Of

number of a-planes.

y measure for a general T2 FS is:

'here a € [0,1]. Call that number £;

s required. Regardless of’

Ay (f) = [ml(A'a)' mr(ja ]’ usmg

cy of this step will depend upon the

sen in Step 1.

obtain Mz(¢).

T2 FS with secondary MF{S that are
e MF also satisfies (5-13).
isfy (5-13), it is clear that

o (5-32)
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(xla)<sp(xla) Vo, >a . (5-33)
hence,

Ay, € Ag (5-34)

1

Using (5-19) for M e, (&), it follows that:

M; &= m@Aa@n= U m@A@)+ U mA @)

VA, (a)) VA, (@))€ Ay, VA, ()€ Agy

=M, @+ U m@A@)

VA, (o )eﬁ,,_,

(5-35)

where the second line has magde use of (5-34). Consequently, the last line of (5-35) indicates:
Mz, (€) € Mz, (©) (5-36)

Substituting (5-30) into (5-36)), we see that:

m (A, ).m, (A, )< m (A, ).m (A,)] (5-37)

from which it follows that:
m(A)>m(A,) Vo, > (5-38)
m,(A,)<m(A,) Ya,>a (5-39)

Comparing (5-38) and (5-39)|to (5-12) and (5-33), respectively, shows that M z(§) must also

satisfy (5-13).m
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Definitions of Mz (§)

and m,.(4,), are summarized

5.4 Examples

In this section, uncertainty measures for differen

procedures described above. ]

1. Three representat
each of which fort
High Amount, Thi
LMFs and UMFs
they have quite
primary variable’

. For each word, t¥
trapezoids. The ti

and apex location,

Apex

An example of the
5.3(b) at x = 5.8 f
base equal to sg (A
right end points, E|

=0,05,1):

and algorithms for comput

in Table 5.4 for the five unc

he specific T2 FSs were sel

ve FOUs were selected fro
med FOU (A). The three wor
eir FOUs are depicted in F
are given in Table V. Thes
different shapes, successiv
domain, [0, 10]. Each word
vo classes of secondary MF
iangle secondary MFs have

Apex(x), parameterized as [

x)=5,(x10)+w[s,(x10)—

triangle secondary MFs for,
or the three values of w. Th
|0) — s1,(x|0) and top defin

P, (x) and EP-(x), both of w

ng its left and right ends

ertainty measures.

t T2 FSs are computed 1

m the 32-word codebook
ds used are Tiny, Medium
g. 5.2 and the parameters
e five FOUs were chosen
ely cover different span
is a separate example.
s were used, namely trian
> base equal to sg(x|0) —

125](w=0,0.5,1):

5, (x10)]

the word Medium is show
e trapezoidal secondary M
ed by the locations of the

hich are parameterized as

ected in the following way:

) ml(Aa)

using the

in [109]
and Very
of their
because

s of the

gles and

s (x]0)

(5-40)

n in Fig.
{Fs have
left and

[125] (w
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EF(x)3

EP (x) =1

An example of thg

‘Fig.53(c)atx=5

So, for each of the thre
cases; hence, our results are f
How many discretizg
approximation to the centroi

discretized a € [0,1] into 21

Table 54  Algorithms

Mg, (&) = [mu (4

for

=5, (x10)+0.6w[s,(x10)

5, (x10)=0.6(1—w)[ s, (x|

> trapezoidal secondary MFs

.8 for the three values of w.

e words, there are two kinds
or 3x2x3 =18 general T2
td values of a are need
d has been studied in [106,

values, for which & = 0,0.05

computing the five

'a)' m, (Aa)]

~5,(x10)] (5-41)

0)—s,(x10)] (5-42)

for the word Medium is shown in

of secondary MFs, each with three

ESs.
ed to produce a close| enough
125]. Based on those studies, we

,0.1,...,0.95,1.

2

uncertainty — measures O

algorithms

for m;(Ag) algorithms form,(4,)

Definitions of Mz_(§)
=1 = I xii(Ae(
€4, (&) = Uva, [f =
Pz (§) = =BKlyy
1,(8) = Uva, | = < pRAUIETH
N
Fﬁu(f) = UVAg(a) I:f =1- [ZI—1|2L

Zy:x[xi":(cﬁ

(4] (/ia)v KM
P(Aa) =D
fl(A‘a) =i

2
))
Ae(@))]

|

N
Ei=1u

V2 () = Unno £ =
I, [ximc(c

v (/ia), KN

N1/T

51(Ag), KM

Si.§) = Uva, (@ [f = Z¥. o

) ui(Ae(@)

1/EKM
(s.(x]@))’
(Aer (@)’

¢, (Ay), KM/EKM
r(x|@))

e2 (a))c

pr(“ia) =p(s
f;'(‘qa) = fy (4

1/EKM v,.(A,), KM/EKM

I/EKM sy (Ag). KM/EKM

a. p(e) is defined in Table 5.2.
b. fy(#) is defined in Table 5.2,
sg(x|a) is further away from

c. Agy(a) is a T1 FS defined 4
below 0.5, or u(4e;()) =s
0.5 otherwise.

{(Ae(@))
N uiCe(@))

i(Ae(@))

and, A.;(a) is a T1 FS defined
).5 than s, (x|a), or u(4.; (@))
s (Vx € X): u(4.;()) = sg(
L (x]|@) if both s, (x|a) and sg

as (Vx € X): u(Ae1(@)) = 5
= 5, (x|a) otherwise.

r(x|a) if

x|a) if both s, (x|a) and sg
x|a) are above 0.5, or u(4

(x|a) are

e2 (a)) =
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tiny

medium
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0

0 5 1

s

Figure 5.2 Three FOUs from a sub-vocabulary selected fro

S

1

z

0.8

0.6

0.4

= e o e

0.2

X
10 Go 5

m the 32-word codebook in

SGu)

10

5
(2)
Figure 5.3 (a) FOU for the word

(5-40), and w = O,
parameterized by w [

The uncertainty measu
MFs are depicted in Figs. 5.4
five uncertainty measures fo
skewness going from left to
uncertainty measures of the w

Observe from Fig. 5.4,
more concentrated as w increg
decreases as w increases from

is also somewhat symmetric

g

0

Medium, (b) five triangular se
0.5, 1] when x = 5.8, and
see (5-41) and (5-42)] when x =

res for the three words with

r the word, i.e. centroid, ¢
right. Each plot has three
ord for the three triangle (tra
that for all the words, the M
ases from O to 1. “More co
0 to 1. For the somewhat sy

al for all w values. For the

|
} and 5.5, respectively. In t}fnese figures, each row dis

5 0
condary MFs parameterized
(c) five trapezoidal seconc
5.8.

by w [see
lary MFs

triangle and trapezoidal secondary
plays the
ardinality, fuzziness, variance and
T1 FSs, which correspond to the
ipezoidal) secondary MFs.
becomes

)(C4(8))
m, Cz(§)

{F of the centroid, C5(§),
ncentrated” means that SD
mmetrical FOU of Mediu

very small sounding word, Tiny,
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Cz(&) skews from left to righ
Very High Amount, C5(&) sk
Observe, also, from Fi
exactly the same shape as
parameterized using w = 0.5
cut of Pz(8), [p1(Aa), r (4
sg(x|a), respectively (see T
secondary MFs.
Additionally, for all th

=0, but there is no fixed tren

It as w increases from O to 1
ews from right to left as w in
g. 5.4, that for all the words
the secondary MFs, e.g. if
P;(§) is also the same king
)], only depends on the L

able IV), and, s; (x|a) and s

e words, the MF of fuzzines

{1 for other values of w.

. For the very large sound
creases from O to 1.

, the MF of cardinality, P
the secondary MFs are
1 of triangle. This is becau
MF and UMF of A, s.(

r(x|a) are fully determin

ng word,

(£), has
triangles
se the a-
x|a) and

ed by the

s, Fz(&), skews to the left when w

Finally, for all the words, the MFs of variance and skewness, V(&) and Sz(£), both
become more concentrated as w goes from 0 to 1, just like Cz(¢), because Cz_, V5, and Sj,
all have similar mathematical forms (see Table 5.4).

Table 5.5 FOU data for three words: each LMF and UMF is represented as a trapezoid (a, b, c, d),
where a, b, ¢ and d are the locations of the left end|of its base, the left end of its top, the
right end of its top and the right end of its base, respectively. The fifth parameter for the
LMF is its height.

Word LMF UMF
Tiny (0,0,0.05,0.63, 1) (0,0, 0.36, 2.63)
Medium (4.86,5.03, 5.03, 5.14, 0.27) (3.59,4.75,5.50,6.91)
Very high amount (9.34,9.95, 10, 10, 1) (7.37,9.73, 10, 10)
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0.2

L5
(a) Uncertainty Measures for “i

0 0.1

2 0 01 02
(b) Uncertainty Measures for *

Fy(%)

Figure 5.4 uncertainty measures
by w [see (5-40), and

differ from plot to plof.

Table 5.6 |SI[M4(¢)]| values fo
the three values of w,

I the three words with triangle
and |M4(&)| for the three word

5% 0.1 0.2
(c¢) Uncertainty Measures for *)

for three words and their three
w =0, 0.5, 1]. Note that the n

Medium;’
V(&)

0.5
Very high amount” ‘

triangle secondary MFs parameterized
umerical labels for the horizontal axes

\
and trapezoidal secondary Mf’ s and for
with interval secondary MF's

Tin) Medium Very High Amount |
Secondary MFs Secondary MFs Secondary MFs ‘
w | Tri. Trap| Interval | Tri. Trap. Interval | Tri.  Trap. Interval
,'g 0 | 0.538 0.682 1461 1.792 0.513 0.643
£ .5|0282 0430 0843 | 0531 0823 1997 | 0275 0421 0811
G 110227 0.343 0.380  0.604 0.223  0.340
._«E‘ 0| 0543 0.735 0939 1.272 0.514 0.697
._g 510468 0708 1.153 | 0.811 1.226 1.994 | 0.444 0.671 1.093
8 110543 0.720 0.939 1.246 0.514 0.683 1
2 0009 0.133 0.164 0.216 0.091 0.127 ‘
g 510082 0.121 0.184 | 0.121 0.174 0.267 | 0.079 0.117 0.178
2 110079 0.114 0.136  0.193 0.076 0.111
g 00563 0.636 1.143 1371 0.536  0.585
& 50237 0372 0742 | 0399 0618 1.509 | 0230 0356 0.712
§ 1 0171 0.280 0.284 0.453 0.166  0.270 }
2 00866 0938 2230 2.936 0.822 0.838 ‘
% 510278 0.451 1058 | 0.613 0981 3474 | 0274 0430 1.017 |
% 110182 0.311 0.414 0.675 0.180 0.302 \

Observations from Fig

left to the readers.

5.5 are very similar to tho

|
se from Fig. 5.4, and are kherefore




It should by now be dlear to the reader that it requires some effort to extract useful
summarizations and comparisons from the plots of the MFs of the uncertainty measures, and,

some of them are quite subje¢tive. Next, we turn to more quantitative analyses.

5.5 Quantitative Interpretations and Summaries of Uncertain
Measures

The MF of a generic uncertainty measure for a general T2 FS, whose secondary MFs
satisfy (13), is depicted by the solid curve in Fig. 6, whereas the MF for the same generic
uncertainty measure for an [T2 FS, that has the same| FOU as the general T2 FS, is a
rectangular function and is depicted by the dashed lines in Fig. 6.

Theorem 3. If the secdndary MF of a T2 FS 4 is contained within the secondary MF
of another T2 FS B at Vx € X, then an uncertainty measure for A, Mz(§), is always
contained within the uncertainty measure for B, Mz(&).m

If the secondary MF of a T2 FS 4 is contained within the secondary MF of another T2

FS B at Vx € X, then it follows from (5-7) that (Va € [0,1]):

Proof:
s; (xla)yzs; (xla (5-43)
AL B.L
s/-‘_R(xIa)SsE‘R(xlaf (5-44)
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(c) Uncertainty Measures for “V

0.5

/ery high amount”

15

5

Figure 5.5 Five uncertainty mg
parameterized by w
horizontal axes differ

Table 5.7 Centroids of five unceftainty measures of the T2 FSs,

their IT2 and QT2 cq
three words, triangular

see (5-40), and w = 0, 0.5, 1].
from plot to plot.

unterparts [100(IT2-T2)/T2 an

-‘b,s 0 0.
|
|

asures for three words and their three trapezoidal secondary MFs

Note that the numerical labels for the

and their Percentage Differe}nces from
d 100(QT2-T2)/T2, respectively], for

secondary MFs and three values of w ‘

Tiny Medium Very High Amount

w T2 100(T2- 10p@QT2- T 1000T2-12)  100@QT2- ™ 100(T2-12) | 100QT2-
T2)/T2 T)/T2 /T2 12)/T2 /T2 | T)IT2

.'g 0 | 0429 46.20% 13.65% | 5.147 0.803% -0.355% | 9.573  -2.019% | -0.620%
g 0.5 0.747 -16.12%  -10.18% | 5.197  -0.160% -0.110% | 9.264 1.252% 0.784%
o 1 0.849 -26.17%  -15.95% | 5.200 -0.212% -0.138% | 9.159 2.411% 1.459%
Z 0 [0536 71.855% 36/008% | 0.369 180.563%  90.455% | 0.541  67.486% 33.820%
E 0510922 -0.06% -0{083% | 1.035  -0.057% -0.079% | 0.907  -0.063% -0.087%
8 1.307 -295%  -14.82% | 1.702 -39.163%  -19.651% | 1.272 -28.739% | -14.44%
2 0 |0059 60.398% 23|319% | 0.068 95217%  33.821% | 0.059 60.395% | 24.199%
§ 050114 -1699% -10.20% | 0.182 -26.712%  -14.730% | 0.111  -15222% | -9.231%
= 1 0.121  -21.76%  -16.61% | 0.156 -14419% -15.591% | 0.123 -23.114% | -16.75%
§ 0 | 0284 66.061% 30(739% | 0.525  45.424% 01498% | 0.271  68.375% | 31.844%
'g 0.5 0.397 18.962% 11{430% | 0499 52.951% 33.647% | 0.393  16.435% 9.897%
> 1 10394 19986% 13|755% | 0.494 54.499% 35.528% | 0.394  16.258% 11.569%
2 0 [0312 -116.1% @ 33[490% | 0.197  -496.6% 36.428% | -0.30 56.214% | 34.580%
% 0.5] 0215 -1233% 56293% | 0.039 -2091.5% 214.228% | -0.22 111.137% | 51.172%
B 1 |0157 -132.0%  94452% | 0031 2614.8% 285.614% | -0.16 188.114% | 87.722%

\
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Table 5.8 Centroids of five unce

rtainty measures of the T2 FSs

and their Percentage Differe

nces from

their IT2 and QT2 counterparts [100(IT2-T2)/T2 and 100(QT2-T2)/T2, respectively], for
three words, trapezoidal secondary MFs and three values of w
Tiny Medium Very High Amount
w ™ 100(T2- 100@QT12- T 100qT2-  100@QT2-T2) T 100(T2- 100(QT2-
T2)/T2 2)/T2 T2)/T2 /T2 T2)/T2 T2)/T2
o 0.528 18.746% 6.216% | 5.136 1.026% .833% 9.450 -0.749% -0.061%
é 0510722 -13.163% -6.179% | 5.186  0.063% 0.123% 9277 1.111% 0.587%
o] 1 | 0.805 -22.121% -11.418% | 5.192  -0.059% .018% 9.196  1.998% 1.066%
B 0 | 0.678 35.756% 13.924% | 0.615 68.192% 26.536% | 0.676 34.018% | 13.249%
E 0510910 1.207% 11207% | 1.015  1913% 913% 0.896  1.160% 1.160%
5 1 1.142  -19275%  -6.299% | 1.416 -26.859%  -8.753% 1.115  -18.709% | -6.117%
8 0 | 0.079 20.398% 4819% | 0.108 23.389% 3.680% 0.078 21.618% 5.579%
g 0.5]0.106 -11.117% -3.131% | 0.162 -17.675%  -5.292% | 0.105 -9.943% -2.771%
& 1 [0.118 -19.701% -1.872% | 0.164 -18.220%  -7.992% | 0.118 -19.954% | -7.831%
3 0 | 0383 23.284% 9.126% | 0.657 16.096% 5.605% 0.367 24.536% 9.750%
& 050407 15.907% 7914% | 0.523  45.947% 25.513% | 0.401 14.020% 7.082%
!>€ 1 | 0404 17.062% 9974% | 0.506  50.988% 30.549% | 0.401  14.022% 8.479%
8 0 | 038 -113.03%  6388% | 0.253 -408.01% -27.256% | -0.37 25.012% 6.598%
% 0.5]0.255 -119.6% 28.507% | 0.064 -1326.6%  89.576% | -0.26 81.023% | 26.845%
& 1 10195 -1258%  54.733% | 0.046 -1808.3% 158.174% | -0.20  135.60% | 51.995%

where s;, (x1@), 55 ,(x1@)

and B, respectively. Based o

Using (5-19) for M ; (&), itf]

M, (&

and s; (x1@), s;,(xl@)

n (5-43) and (5-44), we have
Ay € B,
bllows that:
= |J m(B.(a)
VB, (a)
= U mB@+ |
VB, (a)eA, VB,(a)e
=M; )+ U mB.@
VB, () A,

denote the LMF and UMF of A,

(Va € [0,1]):

m(B, (@)

Aﬂ'

)

(5-45)

(5-46)

where the second line has made use of (5-45). Consequently, the last line of (5-46) indicates:
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Based on (5-28), (5-47) is eqy

(5-48) shows that each a-cut
a-cut of the uncertainty meas
always contained within the y

Note that Fig. 5.6 show
general T2 FS that satisfy (5-
of the IT2 FS that has the sam

One widely accepted in
a uniformly weighted intervy
and right end points is weigh
general T2 FS has its valy
interpretation not so straigh
measure for the T1 FS M;(¢§)

Definition 9. A Summ|

general T2 FS 4 is:

SIM (&) =[c(

M;, (&) € Mg, (§)

nivalent to (Va € [0,1]):

Mz, (§la) € Mg, (§]a)

of the uncertainty measure f
ure for B. As a result, the ui
ncertainty measure for B, M
s a special case of Theorem

13) are always contained wi

terpretation for an uncertain
il for which every uncertair
ed equally. On the other ha
es weighted differently oy

tforward. We, therefore, i

ary Interval Uncertainty M

M ;(£)—SD(M ;(£)),c(M;

e FOU as the general T2 FS.

or A is always contained w
ncertainty measure for 4, |
5(§)m

3, because the secondary

hin the rectangular second

ty measure of an IT2 FS i
nty-measure-value betwee
nd, the uncertainty measur
er its support, which n

ntroduce the following s

leasure (SIUM), SI[Mj;(¢

&) +SD(M ; ()] m

(5-47)

(5-48)

ithin the

W/i (6)’ is

MFs of a

lary MFs

that it is
n its left
e for the
1akes its

ummary

], for a

(5-49)

It follows from (5-49) that the length of SI[M z(&)] is:

172}

SIIM ;(H]1= 28D(M ;(£)) (5-50)
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The larger this value, which |s determined only by SD(M3(£)), the more uncertain is A as

pezoidal secondary MFs alhd for the three values

the three

measured by M;(&). The |SI[Mz(&)]| values of the five uncertainty measures for

words with triangle and tra of w are

summarized in Table VI. Obderve that the fatter the FOU ‘is (see Fig. 2), i.e., the more area it

contains, the larger are the |S][Mz(§)]]| values.

It is instructive to cpmpare these SIUMs against the corresponding uncertainty

measures for an IT2 FS that has the same FOU as the general T2 FS; therefore, the lengths

of the five uncertainty measures, |[M4(¢)|, for the three words with interval secondary MFs

are also summarized in Table| VI. Observe that:

| SITM ON < 1SIIM o pessian OV < T M oy ()] (5-51)

word, triangle, w

Comparing (5-40), (5-41) and (5-42), it is straightforward to show that, for the same

value of w,

P (x) < Apex(x) < EP.(x) (5-52)

which indicates that, at each
within the trapezoidal seco

rectangular MF. Then it foll

Mword,trapemid,w(f) » and bOth arg

has a smaller SD value than th

x, for the same FOU, the t1
ndary MF, and, of course
pws from Theorem 3 that A
e contained within M ir, (

e outer MF, and, therefore,

riangle secondary MF is ¢
, both are contained wi

7l (&) is containe

word,triangle, w
&). It is intuitive that the i

5-51) follows.

ontained

thin the

d within

nner MF
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5.6 Comparative Studies of T2, IT2 and ¢T2 FLSs
|
|

Mendel et al. [125] have proposed to use Quasi—Type—Z (QT2) FLSs in the place of
full-blown T2 FLSs to reduge computational expenses. IIt has been shown in [125] that a
QT2 FLS provides a good approximation when used to compute the centroid of a full-blown
T2 FS with triangle secondary MFs. Additionally, a chaotic time series forecaster designed
using a QT2 Fuzzy Logic System (FLS) outperformed its IT2 counterpart.

Similarly, while a gengral T2 FS can be viewed as a very large collection of a-level
T2 FSs, one FS for each valpe of @, Hamrawi and Coupland [70] proposed the concept of

QT2 FSs.

Definition 10. A QT2 KS, AQ, is the union of only two a-level T2 FSs, i.e. fTO and /flz

AQ = AO U A‘l‘ (5‘53)

a

0 m(4) m (k)

Figure 5.6 MF of a generic uncertainty measure for a general T2 FS (solid curve) and the MF of that
generic uncertainty measure for an IT2 FS (dashed line) that has the same FOU as the
general T2 FS.
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In this section, comparative studies are performed to see whether QT2 or

FSs can be used to provide g

for general T2 FSs.

Computing the uncertainty measure for a QT2 FS i

Compute the uncertainty me
Ay, Mz (£); and 3) Connect {

Table 5.7 provides co
and the three values of w. In
T2)/T2 and 100(QT2-T2)/T?2
measures for the T2 FSs,
differences between the centr

and T2 FSs, respectively.

Table 5.8 provides the same kind of compara

trapezoidal secondary MFs an

A careful examination
medium and very high amoun
gives large errors; hence,

uncertainty measures for gene

5.7 Summary

This section has exten

cardinality, fuzziness, varianc

asure for Ag, Mz (£); 2) Co
he end-points of M4 (§) and

mparative results for the thr

ood enough approximations

Table 5.7, each word has th
. The first column provide
and the second and third

oids of the uncertainty meas

d the three values of w.
of Tables 5.7 and 5.8 revea
t, replacing a general T2 F!
we do not advocate such

ral T2 FSs.

ded five well-known T1 F

nvolves the following ope

e and skewness) to general ]

to all of our uncertainty

mpute the uncertainty me

My, (§).
ee words, triangle second
iree columns, labeled T2,
s the centroids of the un
columns provide the pe

ures for IT2 and T2 FSs,

ive results for the three

Is that, except for the cen

S by either an IT2 FS or a

replacement for compu

S uncertainty measures (¢

[2 FSs by using the WS R

even IT2

measures

rations: 1)

asure for

ary MFs
100(IT2-
certainty
rcentage

and QT2

> words,

troid for
QT2 FS

ting the

centroid,

T. It has
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also shown how Liu’s a-plan|
general T2 FS by using ex
measures for an IT2 FS. This

Examples have been g

different FOUs and triangle ¢

Measure (SIUM) has been proposed for interpretive purp

measure for a general T2 FS
secondary MFs of a T2 FS c4
of a T2 FS is contained with
former T2 FS is narrower tha

Comparative studies of
performed and showed th;

approximations for the uncer

number of cases. Consequently, one should not replace a

QT2 FS for such computation
The approach used in t

ranking, subsethood and other

e RT can be used to comput

n the SIUM of the latter.

it neither IT2 nor QT2

tainty measures for T2 FSs,

his chapter can also be appli

isting algorithms for comy
is done one a-plane at a tim
ven that showed the five un

r trapezoidal secondary MF}

n affect each uncertainty me

in the secondary MF of an

uncertainty measures for T

S.

from a T1 FS to an interval. Our results have shown

important measures of gene

e the five uncertainty meas
uting the comparable un
e.

certainty measures for T2
s. A Summary Interval Un

oses that simplifies the un

asure, namely if the secon

other T2 FS, then the SIU

2, IT2 and QT2 FSs have ¢
FSs can provide good
except for the centroid o

general T2 FS by either a

ed to define and compute §

ral T2 FSs.

ures of a

certainty

FSs with

certainty
certainty

how the

dary MF

M of the

also been

enough

f a small

n IT2 or

imilarity,
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Chapter 6 Computi
means of

In the previous chapter
FS) A can be obtained by takj
level @) of A. Karnik-Mende

used for computing the cel

algorithms can be time-consyming, especially when the

many « - planes. This chapte
to compute the centroid of 4
plane. Extensive simulations
time by 75% to 80% and 504
and still maintains satisfactot

variable x and - plane are di

6.1 Introduction

As studied in Chapter

secondary memberships can take any value between [0,1]

FS whose secondary member
freedom and, consequently,

(e.g., [42-45, 65, 66, 86, 106,

ing the union of the centroid

ntroid of each a-plane. Tt

r proposes a new method na

% to 75% compared to KM

'y computation accuracy for

ng the Centroid 0} Type-2 Fuzzy S
Centroid-Flow Algforithm

, we showed that the centro

(KM) or the Enhanced Ka

without having to apply K

have shown that the CF alg

scretized finely enough.

5, a general Type-2 Fuzz

ships all equal 1, a general
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169, 170, 174, 181, 229]).

d of a general type-2 fuzz
s of all the a-planes (each
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1e iterative features in K
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and EKM algorithms, res
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An important calculat
provides a measure of the
computed during type-reduct
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non-zero values of the prima

FS. This does not seem to be

y variable of 4, regardless o

a correct measure of the un
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T2 FS.

Most recently, Liu [1(
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computation time, using the

because it lets the calculation

6.2 KM Algorithms ;

In this section, we rev|

and two of their important p

way to process the KM calculations, and, the continuous

the same as the continuous v¢
continuous versions of these
two properties. Although thg
digital computers, they havg
convergence of the (discrete)
[127, 129], and, the two prop

The continuous KM alj

1. Compute the initi

then set j=1 and

2. Compute ¢;(4,) j

new algorithm, which we ¢

5

and Their Properties

algorithms is because the C

» continuous KM algorithm

erties still hold as long as x i

1l value, ¢;(A,)o, for ¢;(Ay)

“flow” from one a-plane tc

ew the continuous versions

roperties. Note that the EK

rsion of the KM algorithms

been used in the past to

KM algorithms [125], as W

yorithm for computing ¢;(4,

) [Taspvlyax+ [ xs,

all Centroid Flow (CF) a

the next.

of KM algorithms [125,

M algorithms are a more
version of the EKM algor
The reason we are focusi

F algorithm is derived by

gain a better understandi

ell as properties about the

) is:

» as:

(xla)dx

0

I:sk(x l)dx + I:SL

b =c,(A,),-

[

S

)

xla)dx

s discretized finely enough.

lgorithm,

127, 129]

efficient

ithms are
ng on the
using the
s are not always implemented on

ng about

centroid

(6-1)

(6-2)
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J'b[ xsg(xla)dx + J:wst x|l a)dx
- i i

a(A)) == = (6-3)
I'sk(xla’)dx+.[ s, (x 1 @)dx
—o0 b;
3. If convergence ocgcurs, STOP; otherwise, go to step 4.
4. Set
b, = CI(A(z)j (6-4)

5. Set j=j+1, and go to Step 2.

Because the continuous version of the KM algorithm for computing c,(4,) is very
similar to the above algorithm, it is not stated here.
The two important properties of the continuous version of the KM algorithms, that are
made very heavy use of in the sequel, are:

Theorem 1.[125, 127, 129] (a) For ¢; (/ia)j defined in (6-3),

)

rgbmin{c,(/ia) Jd=aA,)s (6-5)

i

ie.

1 (Ag) +o0
J- st(xla)dx+J. ( )st() la)dx
e ola

oo

c,(A,)= (6-6)

se(xlande+ [ s, (xladx

J'L‘I (a)
¢ (Ay)

(b): For ¢, (A,) defined as
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b. 400
j " xs, (x| @)dx + L xsp (x|

o)dx

c,(/i ). = . —
i J'_"’sL(xla)dx+jb s, (x10

arg max{c, (A,,).,- }=c,(4,),

b;
ie.

+o0

'M")st(xla)dx+'[

T ¢, (Ay)

D —

XSy

x| a)dx

c,(A,,) +oo
[ sL(xIa’)cix+J' o Se(x
] ¢, (Ag)

| a)dx

o ] B I -
25,5 @) (55| @)
a / ------- -
0 / u
5519 5,0 a"'];{ (% [a+T) s3] @)
(b)

Figure 6.1 (a) FOU (shaded area) and secondary MFs (dash
Secondary MF for the T2 FS from (a) at x = x;.

ed curves) of a general T2

(6-7)

(6-8)

(6-9)

FS, (b)
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where (6-6) shows that b; that minimizes ¢, (Ag) j is itself the minimum value, c(4y); and

(6-9) shows that b; that maximizes ¢, (4) j is itself the maximum value, ¢, (Ay).

6.3 Alpha-Plane Connection Equations

Our CF algorithm depends on being able to convert one a-plane into a nearby a-plane.
In this section, connection equations are derived that let|us connect an a-plane to |a nearby
(a + Ty)-plane, where Ty, as mentioned above, is a small [increment. Note that we do not use
da for T, because the derivations of the CF algorithms involve integrals with respect to
primary variable x, and include both dx and 7. Calling 7}, da, could cause some confusion,
because there are no integral with respect to a. It is assumed that g, (u) and h, (u) in (5-13)
are both piecewise linear in|the interval [a, a + Tg], where T is small enough so that the
gradients of g,(u) and h, (%) with respect to a, g',(w) and h'y(u), are approximately
constant in that interval.

From geometry, g',(u) and h', (w) in [@, @ + T;] can be expressed as [see Fig. 6.1(b)]:

P (a+T)-«a
- s -1
8 s (xle) s,(xla+T)-s,(xla (12
W (s, (x| n—— G T - (6-11)

~

sp(xla)—sy(xla+T,

where g'(s, (x| @)) is the gradient of g () at u=s,(xl@), and h'(s,(x|@)) is the gradient

of h (u) at u=s,(xl). Begause f, (u) is pre-specified |either numerically or analytically,
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so that g’(s, (xl@))and A'(s,

can be obtained using (6-10)

s (xlx

sp(xla

Any a-plane of A A,

sg(x|a); therefore, (6-12)

and (6-11), respectively, i.e.

T,

S

+T.)=s, (xla)+

S

+HT) = s, (x1 @) +

sg(x|a + T)] by using A, and the specific forms of the

(6-13) are called a-plane con

6.4 Centroid Flow A

6.4.1 Alpha-Plane Centroid Connection Equa

The a-plane centroid
Gl (/ia+Ts) and Cr(Aa+Ts) be
summarized in Theorem 2. /
demonstrate, in the rest of tl
compute ¢;(Ay47,) and ¢, (4,

Theorem 2: When the @

nection equations.

lgorithm

connection equations tha

Although its details appear

+7)-

(x| @)) can be computed, th

g, (xle

W (s, (xl

can be fully determined by i

nis chapter, that it is a very

bjective is to compute ¢; (4,

~

~

and (6-13) let Agyr, be determined [i.e. s;(x|a +

itions

are derived in this se

computed using ¢;(4,) and ¢, (4,), respectively,

to be quite complicated,

+7,)» set [in (6-16)-(6-22)

en s, (xla+T,) and s,(x

ts LMF and UMF, i.e. 5 (

secondary MFs; hence, (6

/ computationally efficien|

la+T,)

(6-12)

(6-13)

x|a) and
Ts) and

-12) and

ction let

and are
we shall

t way to
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and, when the objective is to

In order to compute C(Aa, o, )
B, =(-1) {s, (c(A)

D =

La

T| [
~  L(s(x
c(/i‘,) 1

D, =T, =T
2 ’[L‘ L'(s,(x

E =[5 (x1@)dx

a &

c(/ia)=c,(fia)
s (xla)=s(xla)
s,xla)=s,(xla)
| Lw=h
R(x)=g(x)
i=0

compute ¢, (A‘HTS), set [in (

c(A,)=c,(A,)
sxla)y=s,(xl@)
) s,(xla)=sp(xl )
L(x)=g(x)
R(x) = h(x)

i=1

, first compute:

-s5,(c(A) @)+

6-16)-(6-22)]

T

S

L'(s, (c(Aa

X

| @)

+o0
+j s, (x| @)dx
ek ,(xlar)

-——dx+I . ——;————dx
a)) <o) R (s, (x 1))

i |
<) R(s,(x1 @)

M) R(s,(c(A,)la)

(6-14)

(6-15)

(6-16)

(6-17)

(6-18)

(6-19)
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a

E,, = J‘:A.,)xsl(x l@)dx + J:;a)xsz(x |@)dx ; (6-20)

then compute

A = \/(El,a + Dz.a)2 Elz,a L (_l)i 2B,E,, (Dl,aEl,a =Dy B, ) —(E 4+ DZ,a)El,a

6-21)
BaEI.a (
and, finally, compute
c(Apr)=c(A)+(-1)A,m (6-22)
Proof of Theorem 2 when the objective is to compute ) (/ia+rs):
To begin, let
Ay =0 (Aa+Ts) - (Az) (6-23)
where, according to (6-6),
k) (Ag) Foo
) j st(x|a)dx+J' xs, (xl@)dx
C,(Aa) — ¢ (Ag) (6-24)

¢ (Ag) +oo
[ sR(xla)dx+J' & )sL(xla/)dx
o €Ay

400

IC'(AM")st(xIa+7;)dx+ i fscxla+T)dx
€ Aa+1} (6'25)

s, (xla+T)dx

Cl (Aa+ﬂ ) =

¢ (Mgsr,)
Cse(xla+T)dx+| .
J‘—m r( ) & (gez,)
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Note that when the secondary
Vae [0,1]; consequently, Ay

and (6-23) into (6-24) , it follg

Cl (A(HTJ ) =

¢ (Ag)+A,
| x| s, (xl @)+

MFs of A satisfy (5-13), it
is guaranteed to be non-ne

bws that:

S

(s, (x 1 @)

jdx+

J.z-,(,«i,, I+,

x| s, (xla)+

is true that ¢;(4,) < ¢;(4

gative. Substituting (6-12

’ = )d
g (s, (xla)

a+Ty) for

), (6-13)

* (6-26)

sR(xIa)+]

J-c, (Ay )+A,(

Next, let:

Terml EJ'

—

Term2 = _[

Using (6-27)-(6-30), (6-23) c4

+o0
& I x
¢ (Ag)+A,

17}

R
(s (x1 ) 1 (Ag)+h,

(Ag)+By -

B (s (x

1
| @) 4 ———i
O

bo

x(sk (xla)+

S

1 (Ag)+D, ( | )
s, (¥ &) +————
e : B (sp (x|

+4oo
+j . s, (xla)+
c,(A,,)+A,,( Al ) g,(

L

;1,,) +oo
s xladx+‘[ s, (xla
R(xla) oy L

Ay) 400
st(xla)dx+J' o oxs, (x
ot ¢ (Ag)

n be rewritten as:

T
s, (xla))

s

Lt k)

]dx
)
de

—]dx
X))

2

i

x| a))

S

)dx

| @)dx

(6-27)

(6-28)

(6-29)

(6-30)
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Term

1

_ TermlxE, , —Term2XE, ,

Term

Assuming that Ay is small, T¢

Terml = IC’(A")){SR (xla)+

- (xl@)
+_[ X s, (xla) +4
¢ (Ay) L

a(Aq)
= .L, xsp(xla)dx +

S

o P
W (sp(xld

+[selc (A1)~

¢ (Ag) T
+]

_ Ez,a
2 El.a

5

Term2X E

»rm1 can be approximated as

=

: T, di+ J-c,(jia)ma
b (s, (x| @)) (A
J-c,(/iaH-Aa

¢/ (Ag)

=

7; ]
R
g (s, (xl@))
jm)st (x| @)dx

T,

s, (c,(Ay) @)

. T, i T,
W (sp(c, () 1@)  g'(s,(c,(A) @)
A2 3 2A c,(A,)

=E,,+D, ,+B,—

where B, and D, , are defined

B, =5,(c,(A,) )

S

Similarly, Term?2 can be apprq

¢/ (Ag) X
=f [L B (sg (x| @) dx+j<

2
1, respectively, as:

-5, (¢, (A) o)+ L

—dx+I . x—,————“————dx
¥)) a) g'(s, (xla))

follows:

Sp(xla)+

(SL(X la)+

¢/ (Ag)+Aq
| X

¢ (Ay)

T,

S

',—7‘"———] dx
W (s, (x| )

g (s, (xla))

B (s, (c, (A,

ximated as follows:

o X

40 g'(s, (x1@))

V) g'(s,(c,(A)l @)

“

(6-31)

(6-32)

(6-33)

(6-34)
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¢ (Ag)
Term2=| °

—oc0

sl
+_|' s, (xla) 4
ali| F

(sk(xla)i

J-c,<A,,)+A

¢/ (Ag)

T
L dx+
h (s (x| a))j

__,Tx— dx—j”'(fi")”
g (s, (xla)) a(Ag)

c,(/ia) o0
=~ [ sp(xladxit [ o Sl
e 1\ Ag

J-c,d,,) T,
= R (sg(x

=E_+D,,+A,B

where D, , is defined, as:

D,

a

Substituting (6-32) and (6-35

T,

a

=T J‘C'(A«)—l dx+
1= W (sp(x1 @)

into (6-31), it follows that:

@

, -
A2 +2Aac,(A,,)]xEm »
2 ,

———dx+J— _ ,—J&
a)) @) g°(s, (x1 )

sp(xla)+

s, (xla)+

ix+A,B,

(" _,_l_dx}
0t g’(s, (x| @)

,—TA———]dx
R (sg(xla))

e
g5, (1)

EI,{I + D2,a + ArzB(t)x EZ,a

(EW + DM +A,B,)X

4 XE, ,+4,B, x| ¢(A)XE,

2

A
Dl.a' XEl,a N D2,¢r XEZ,a+'7aBzz XEI,IZ

r + AtzBa)x El.a

The last line follows from (6-23) because

2,a

& E
(A= E

La

Note that (6-36) is a quadratic equation in A, i.e.,

(E ,+D, , +AB)XE

(6-35)

(6-36)

(6-36)

(6-37)
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Atz I:AaBaEl.a T

B E.
———"2"" A2 +(E|

The roots of (6-39) can be obt

guaranteed to be non-negative

(El,a + Dl,a)El.a] = Dl.aEl,a

«tD,,)E A

La=a

+(Dy,Es 4

ained using the standard qua

, the following unique solut

B Dl,!ZEl.Il) = O

2

-D, E iBE
2

2,2,

+

a™la

on is obtained for A, :

E +D, )
Aaz\/( La 2.af)

Elz,a + 2BaEl,a(Dl,aEl,a —DZ,

zEZ,a) - (El,a + Dz,a)El,a

Finally, ¢, (Amn ) can be computed using (6-23) once A,

Renaming c,(A‘,), sp(xla),
(6-41) becomes equivalent to

Proof of Theorem 2 wh

To begin, let

>

where, according to (6-9),

€, (/.%a
I

BaEl,a

¢ (AM )=c,(A)+A,

s, (xla), h(x) and g(x) ac
6-22).m

en the objective is to comput,

« =€, (Aa) —C (Aa+n )

+oo
xs, (x| af)dx+j @ )st(xi a
Cr a

is obtained, i.e.,

e C,(Aan,) :

c,(A)=

J-L‘,(A

) o0
sy (xlayde+ | e

I Y

X

(6-38)

(6-39)

dratic formula, and, because A, is

(6-40)

(6-41)

cording to (6-14) and setting i = 0,

(6-42)

(6-43)
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~ J.C,m.,q;,usL(ﬂa+n)dx+j+j& xsp(xl@+T,)dx
¢ (Agr) =3 = == (6-44)
[ s (el @+ Tdx+ | o Se(xla+T,)dx
Note that when the secondary MFs of 4 satisfy (5-13), it is true that c,(A)> ¢, (A,.,.) for
Vae [0,1], consequently, A,|is guaranteed to be non-negative.
Substituting (6-12), (6-]13) and (6-42) into (6-44), it follows that:
Cr (AaH;) =
¢, (Ag)-A T +oo T
l@) H———— |dx+| . la)+ ——— |dx
.L, x[sL(x ) g'(sL(xI(Z))J -[L‘,(A,,)—Ax sp(xla) h'(sR(xla))} (645)
J-C'(A")_A(SL()CI o)+ #)dx+ J'm_ ( 5. (x| a)+ ,—TJ——}ix
- g (s, (xla) e (Ag)-4 W (s, (x @)
Next, let:
c,(/ia) o0
E, =3[ s (xladx+ | o Selxlaydx (6-46)
¢, (Ayg) 4oo
Eo=[ " xs,(xlaydx+ | s (xl @) (6-47)
C,(A,,)—A,,
Term3= [ x(sL(xI T O de
- g (s (xla))
(6-48)
+[7 A sl +— L dx
€ (Aa)-8q h (s, (xl )
cr(AIX)_Aﬂ
Term4 = | (SL(xIa‘)+ ,( (f l—S]dx
e s, (xle
% (6-49)
+j+°°_ sp(x1 @) +— N
€ (Ag)-By W (sp(xl))
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Using (6-45)-(6-49), (6-42) ¢

Iy

an be rewritten as:

‘2_‘2 Term3 _ El'a X Term4

— Em X Term3

Term4 E X

lLa

Term4

Assuming that A, is small, Term3 can be approximated as follows:

¢, (Ay)
Term3=I x[sL(xlaf)+‘

- |
+ era)x sp(xla)H

¢, (Ay)
_[ xs, (x| a)dx +

)
g'(s, (xl @)

dx~ | (k0
¢, (Ag)-4,
T

¢, (Ay)
‘ 5 +J. (Ag)-A
W (sp(x1 @) o (A)-a,

LW xsp (x @)dx

- it R LIS
= g, (xla) <) I (s, (x| @))

+[se(c, (A1) =5, (c.(A,) | @)

. T, _ T, J
W (sg(c(AD1 @)  g'(s,(c,(A,)|a))
Y 2
=E,,+D,_,+B, 24,4, (A)-A,

2

where B, and D, , are defined, respectively, as:

B, =s,(c,(A,)la)-

Similarly, Term4 can be apprq

x(sL(xla)+
8

-

(s, (x @)

k(sk (xla)+ o) (;I p—~

¢, (Ay)
" ] xdx
¢, (Ag)-8,

ximated as follows:

s, (c,(A) @) +— L — T
h(sg(c,(ADl@)  g'(s,(c,(A) )

 (Ag) : X dx+f+w_ i X dx}

g (s, (xla)) ) B (sp (x| @)

(6-50)

(6-51)

(6-52)

(6-53)
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¢, (Ay)
Term4 = J (sL (xla)+

“ s(xla)
+_[ s (xla
(Al R

¢, (Ag)
=[5, (xl @y +

§

¢, (Ag) T
+]

*,——dX"i‘J‘ _ ,“‘—dx
g' (s (xla)) & A I (s (x1 X))

=E,+D,,+A,B,

where D, , is defined as foll

Substituting (6-51) and (6-54

E,  X(E  +L

L,(A,,>SR (x @)dx
T

DWS:

into (6-50), it follows that:

’Z,a + AaBa) = E],zz X[EZ,a +D,

+A,B

B R
= g5, (xla)) &) I (sp (x| @)

2A,¢,(A,)— A2

2

T c,(/i,,) T
TR [ N | —t |8
g'(sL(xIa’))jdx '[""’iﬂ’“A"[h(x a)+g'(sL(xla))j r

T ¢, (Ay) T
s rtae s dx
- Hisxlan TR a))JdH -L,(A,,)—A,, (SR (xla)+ ———h'(sR = a))]

|

(6-54)

(6-55)

E

B ) E 1

X

E  X(E ,+ D,,+A

Dy +BoB, [ Ey o = B o X,

B,)

a—a

2

o Aa
A,)] +25B,XE,,

EZ.aDZ,a - El.a}Dl.a - Bar X El.a

B XE +D, +A,B.)D
A,
2

El.a X(El.a

The last line follows from (6-#3) because

(6-56) is a quadratic equation

+D,,+A,B,)

2,a

(~ )
c.(A
r a E

l.a

inA,,ie.,

(6-56)

(6-57)
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\
\
!
|
|
AZ
Aa [AaBaEl,a + (El,a + D2.zz)El,a:| = EZ,aDZ.a i El,aDl,a +—2—BaEl.a (6-58)
BafEl a A2
——_’Aa + El,a + Dz,a)El.aAa + (El,aDl. x EZ,aDZ.a) =0 (6-59)
The roots of (6-59) can be gbtained using the standard quadratic formula, and, because A,
can only be non-negative, the following unique solution is obtained for A, :
\/(El,a + Dz,a ’ Elz,a - ZBaEl.a(El.aDl.lz - El.aDZ,af) - (El,a + DZ.a)EI,a
A, = (6-60)
BaEl,a
Finally, c, (Amn ) can be computed using (6-42) once A, is obtained, i.e.,
¢,(Apr)=c,(A,)-A, (6-61)
Renaming c,(/ia), sp(xla),|s, (xla), h(x) and g(x) according to (6-15) and setting i = 1,
(6-61) becomes equivalent to|(6-22).m

Note that B,, D, ,, D, ,, E,, and E, , are computable once ¢,(A,) or c,(Aa) have
been obtained.

Corollary I: Assume (¢ (Aa) has been computed, aTd the a-plane centroid connection
equations have been used tq compute B,, D,,, D,,, E,,, E,,, A, and C(A,HT‘ ), after
which B, ;. Dyyr s Dygur b Eigur s Ey g and A, have to be computed in order to
compute C(Amzn ). Instead of computing E . and E,, . directly by (6-19) and (6-20),
they can be computed recursiyely, as (¢ =0,T,,2T.,..,1-T,):
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La+T, = lLa

EZ.oHT_r = Ez,a +

c(Ausz,)

D2,a+L(Aa) [s\(xl@+T,)=s,(xl@+T,)]dx

¢(Agr,)

DL”L@ x[s,(xl@+T,)~s,(x|@+T,)]dx m

Derivations of (6-62) and (6-63) when the objective is to compute ¢, (Aa+7}. )i

It follows from (6-23)

ol Amr_‘ )

El.a+7} =
—
c,(/i,,)

—0

¢ (Ag)+A
+["
¢ (Ay)

Substituting (6-12) and (6-13

1 (Ay)
El.o:+’rJ = j_m SR

¢ (Ay)
+[7

¢ (A A
+
¢ (Ay)

=E ,+D)

Similarly, it follows from (6-

and (6-29) that:

sp(rla+Tydv+ [ s

ol An+tr )

L(xla+T,)dx

sR(xIa+Z.)dx+ITA S (xl@+T,)dx

¢ (Ag)+A

“sp(xl@+T,)dx— |

c,(Aa)

s, (xla+T,)dx

) into the first two terms of (6-64), it follows, that:

(xla)dx+_|.: s, (xlapds

T

Ll n T,
h (sp(x1 )

400
N LU A
f/(Aa)g(sL(x|a))
¢ (A )+,

¢ (Ay)

“sp(xla+T,)dx— s, (xla+T,)dx

1 (Ager,)
,,+J’CW [sp(xl@+T,)—s,(xl@+T,)]dx

23) and (6-30) that:

(6-62)

(6-63)

(6-64)

(6-65)
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By =] asyla+ Tdx+ [T xs (xla+T,)dx

i (Agsr,)

=[x+ Tdx+ [ xs,(xla+T,)dx
- e (6-66)

¢ (Ag )+

+,[c’(AaMast(xla+7})dx‘J S"st(xlw+T:)dx

c(Ag) ¢ (Ag)

=By + D+ [ x5, (xl @+ T) -5, (vl @+ T,)]d

¢ (Ag)

Renaming c,(/ia), sp(xla)} s, (x1a), h(x) and g(x) according to (6-14), (6-65) and (6-

66) become equivalent to (6-62) and (6-63), respectively.

Derivations of (6-62) and (6-63) when the objective is to compute c, (z‘i,,,JrT‘v ):

It follows from (6-42) and (6-46) that:

¢, (Agyr,)
E _ g

La+T, —
s o

L

+o0
L(x|a+TJ)dx+chn)sR(x|a+z,)dx

¢, (Ay) +oo
= 5, xla'+TA,)dx+J"M)sR(x|a+Tx)dx (6-67)
¢, (4,) ¢, (Ay)
—[CT s (xl@+T)dx+

¢, (Ah)-A,

| Se(xl@+T,)dx

¢, (Ag)-

Substituting (6-12) and (6-13) into the first two terms of (6-67), it follows, that:

)

¢, (Ag) oo
E g, = L 1 (x! “)d”L_(,za)sR (x| a)dx
T

o {Aq) T
+ S S TN e I S
I- g (s, (xl@)) Luuh’ sp(x1 )
¢ (Ay)

—j:’(fi") s,(xla+T,)dv+ [

A, -4 ¢, (Ay)+A

a

Sg(xla+T, )dx (6-68)
o (Ay)
=E +Dh,+| i sl et da) =, (xla+ day]de

=B+ Db, + [ s, (xla+ de) - sy (xl ar+ dan)]d

¢, (Ay)

Similarly, it follows from (6-42) and (6-47) that:
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400

Er(/imr_‘)
E2,a+7f‘ =J-_m st(-X|a+7;)dx+ afSR(X|(Z+TS)dx

¢ ( "imr_‘, )

t,(A,,) o0
= ks, (x @)+ | o el @)
"Vr a

+J- 2 (Ag) xT, J-+w xT,

——dx+| . ———dx
™ g, (xla) () ' (sp (x| @)

L (Ay) ¢, (Ag)
- xs, (xla+T dx+_[ | xs,(xla+T)dx
) s, 1€ Dext | xsg V)

c,(Ag)
+D, +J' 4

€y (Agar,

)x[sR(x|a+dar)—sL(x|a+da)]dx

¢ (Agez,)
=E +D,+[ L als (e de) - s (xla+day]dx

(6-69)

Finally, renaming c,(Aa), sp(xla), s, (xla), h(x) and g(x) according to (6-15), (6-68)

and (6-69) become equivalent to (6-62) and (6-63), respectively.m

6.4.2 Procedure of the|CF Algorithm

The basic idea of the (F algorithm is to use the a-plane centroid connection

equations

in Theorem 2 and Corollary [I to compute the centroids of all the a-planes instead of using

KM algorithms, because, ag is demonstrated later in this section, the a-plane centroid

connection equations have mych lower computational costs than do KM algorithms

The complete CF algorithm for computing the centroid of a general T2 FS A

1. Decide on how many a-planes will be used, where a € [0,1]. Call that number k;

its choice will depend on the accuracy that is required. Regardless of

and a = 1 are always used. Note that the increment between adjacent a

T, =1/(k - 1).

k,a=0

values is
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2. Use the KM (EKM) algorithms to computeJ the centroid of 4, i.e., C i, =
|

[c (/Io)' cr(Ap)].
3. Apply a-plane ce

By, D1, D2y, |
C; ) =la(4,).

4. For all remaining
centroid connecti

compute By, Dy o

Aa+7‘s’ C"au:, &)=

ntroid connection equations, (6-14)-(6-22)(29)-(37), tﬂ compute

E1 0, B2 and A in order to compute the centroid of ATS,

¢, (A1

|
> a-planes (a =T, 2Tx,...’, 1), apply the modified a-plane

\
on equations, (6-14)-(6-18), (6-62), (6-63) and (§-22), to
\

. Dy 4, E1 4, E2 4 and A in order to compute the centroid of

[/ (Agr 1€, (A )] | |

5. Collect all of the k C;_ (§) by using (5-18), to obtain C($). |

The computational effi

(EKM) algorithms are examired next.

ciencies of the CF algorithm, as compared to those of the KM

|

- L
In Step 2 of the CF algorithm, when ¢,(4,) or c,(.ﬁo) is computed, the CF algorithm

uses KM (EKM) algorithms,

algorithms.

computations are D, ,, D, ,

In Step 3, when cl(‘z‘ﬁ) or c,(/—iﬂ) is compuked, the most time-consuming

L L.
so the amount of computa#lon is the same for both kinds of

E,, and E, , each of which contains two integrals, resulting

in a total of eight integrals. On the other hand, one iteration of a continuous KM (EKM)

algorithm involves four integrals [e.g., see (6-3)]; so, if th‘ KM (EKM) algorithm cénverges
f !

l |

in N iterations, 4N integrals| must be computed. Consequently, unless the KM‘(EKM)
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algorithms converge in lesg than two iterations, they will have more integrals to compute
than will the CF algorithm. Although the CF algorithms have more addition and
multiplication operations than do the KM algorithms, the computational costs of these

operations are much smaller than those of integrals, and have therefore been ignored.

In Step 4, when ¢, (Awm ) [or ¢, (A, .r.) ] is computed for all remaining @-planes,

similar analyses as just dong for Step 3 can be made. Furthermore, as shown in (6-62) and

(6-63), E,, and E,, now| contain only one integral each; and the integration range
[c(z:lw),c(zia,ﬂ_r )] is usually much smaller than the integration ranges [—W,C(Awrx )] or

[C(Aa T ),+o°] used in (6-3)] hence, computation time in Step 4 of the CF a]gorithL\ will be

much less than in Step 3.
Consequently, in theory, the CF algorithm should be computationally much more

efficient than the KM algorithms. This is verified by the examples in Section VIL.

6.4.3 Further Computation Reduction when using Triangle or
Trapezoidal Secondary MFs

Further computation reductions can be achieved for the a-plane centroid connection

equations when the secondary MFs are either triangles or trapezoids. In both casT, gx(W)

and hy (w) in (5-13) will the be linear; thus, g', (w) and h', (1) will be constants that can be
computed using geometry [use a figure like Fig. 6.3(a) in which g, (w) and h, (w)are straight

lines], as:

p 1
= 6-70
8: () s, (xI)=s,(x10) ( )
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Assume c(4,) has be

have been used to compute

Dl,a+T5 ’ DZ,a+Ts ’ El,a+T5 , B

¢(Ag+2r,)- Based on (6-70)

B (u) = :

Sp(x11) =5, (x

and (6-71), it is straightforw

can also be computed, recursively, as (a = 0, T, 27,...,

lLa+T, — D, +

Dz.a+7_, = Dz,a

Derivations of (6-72) g

It follows from (6-70),

D,

La+T,

”/(Aaﬂ,)

=T [I:(A”)X(SR

¢/ (Ag)+A,

+
4]

(Ag)

D +T,| [
l,a 5 c,(/i,

+HT,

X5 (x11) =5, (x10))x — |

c( Aa»,n )

7 [
[

ind (6-73) when the objectiv

¢(Anr,)

_[.(,;a; (s,(x11)=5,(x10

5

(6-71) and (6-34) that:

+oo
5 (x11) = 5 (x10)dx + | R
(xIl)—sR(xIO))dx+J‘+; x
c,(/i‘r

r,(/i,,

")'T")x(sR(xI D) —sp(x10)—s,

Similarly, it follows from (6-70), (6-71) and (6-36)

en computed, and, the a-plane centroid connection
By, D14, Dy Ev s Ez o g and c(Agyr,), after whi

2,a+7, and Agyr, have been computed in order to

i x(s,(x11)=s,(x10

0)

ard to show that Dy g7, an

1-T,):

=8, (xI1)+ sz(xlO))dx}

—5,(x11) +s2(x10))dx}

e is to compute C,(A,.;):

)x(sL(xI D—s, (x| O))dx}
s, (x11)=s,(x10))dx
" (s, (x11) =5, (x10))dx

\
xI1)+sL(xI0))dx]

that:

(6-71)

equations

ch By,

compute

d Dz,a+7‘5

SO

(6-72)

(6-73)

(6-74)
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& (Agr,)
DZ.a+T_\, =T\{ -

¢ (Ag)
="
(A)+A,
+"
¢/ (Ay)

-, +1 [

~

~

Finally, renaming c,(lia), sg(xla), s (xla), h

(6-74) and (6-75) become eq

Derivations of (6-72) and (6-73) when the objectiv

It follows from (6-70),

¢ ( Aa\q} )

Dl.aﬂf, = Ta |: ey
|: .[C,(f\;, )-Ag
¢, (Ag)
[t
z‘,(/ia)
.[-,(A,,)-An
¢, (Ag,
= Dl,a + T; [J.C

N

x(

T,

s

=

=D, ,+T.

lLa 5

(Ag)

Similarly, it follows fry

(s, (x11) =5, (x10))dx + J"TA

J-c, (Ay)
¢, (A )TA

5 (1) =5 (x1 0+ [

¢ (Agiy

xll)—sR(xIO))dx+.[:i s

5 (xl 1)—sR(xIO))dx—J‘q(A"

¢ (Ay)

:";"’(sk (x11) =5, (x10) =5,

nivalent to (6-72) and (6-73)

(6-71) and (A-32) that:

5 (1D =5, (el + [

K1) =5, (x10)dx+ [ (s
s, (eI =5, Ce O+ [
X(Sp(x11) =5, (x10) =, (4

"V x(s, (x11) = s, (x10) = s, (x

bm (6-70), (6-71) and (6-36)

(s, (xID =5, (x1 0))dx}
(x11) - s, (x10))dx
(s, (1) —s, (x] O))dx}

xI1)+s, (x| 0))dx:|

1(x) and g(x) according
, respectively.m

e is to compute C,(A,.; )

A1) = sy (x10))dy
x(sy(xI D=5, ] 0)dx,
(1D =5, (x10))dx
| X(sp(x1D) =, (x10))dx
cI1)+s, (x| 0))dx:|

1)+ sR(xlO))d.x:|

that:

— 71

[

(6-75)

to (6-14),

(6-76)




D, 41 =T, [ _L;(AMTJ) s, (xI1)—s,(x10))dx+ J.:A )(sR (x11) = s (x| 0))dx]
=T [ j_‘;"‘“'A“ (5| (1D = s, 1O+ [ (5 (I =5 (x] 0))dx}
=T [j_‘:"“')(sL(x 1= s, (x10)d+ [ (501D =5, (x1 0))dx
) o . (6-77)
c.(Ay) ¢, (Ay
_ J:.,U;H)-A, (5, (x11)—s, (x10))dx + L(M (D =55 (x| 0))dx}
= 1, [IC’((;"_A (5 (x11) =5, (x10) =5, (x11) +sL(x|O))a'x:|
=D,, +n[jf’(‘:““)(sL(x|1)—sL(x|0)—sR(x|1)+sR(x|0))dx}

Finally, renaming cl(ga), sg(xl@), s, (xla), h(x) and g(x) according to (6-15),
(6-76) and (6-77) become equivalent to (6-72) and (6-73), respectively.m
Therefore, when the CF algorithm is applied for a T2 FS 4, that has either triangle or
trapezoidal secondary MFs, (6-72) and (6-73) are used in Step 4 instead of (6-17) and (6-18),
respectively.
Consequently, in thegry, the CF algorithm for T2 FSs with triangle or trapezoidal
secondary MFs should be pven more computationally efficient than for other| kinds of

secondary MFs, and even mgre computationally efficient than the KM and EKM algorithms.
6.5 Comparative Studies

" tiny o small o medium o high amount 1 Very high amount
0.5 0.5 0.5 0.5 j\ 0.5 /
0 0y 0 ‘ ‘ ‘ X 0 | Y 0 N X 0 X
0 5 100 5 10

b5 10 S0 0510
Figure 6.2 Five FOUs from a sub-vocabulary selected from the 32-word codebook in [111].
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1) Five representatiy
the words Tiny,
FOUs, FOU(A),
LMFs are given
quite different s
f

different spans o

domain. Each wo

2) For each word, t

bell-shaped funct

sg(x]0) — s, (x|0

0.25,0.5,0.75, 1) :

An example of th|
3(a) at x = 6 for
equal to sz (x]0)
78) (w=0, 0.25, 0
gx(), is an S-s
reverse S-shaped

word Medium is §

So, for each of the five word

hence, there are 5 X 2 X 5 =

Small, Medium, High Amo
are depicted in Fig. 6.2 and
in Table 6.1. These five FO

hapes, overlap with neigh

rd can be considered as a separate example.

Apex(x)=s,(x10)+w[s, (x10)—s,(x10)]

haped MF; and, the secon

hown in Fig. 3(b) at x = 6 fo

e FOUs were chosen from|the 32-word codebook in [111] for

unt and Very High Amount. Their

the parameters of their UMFs and

Us were chosen because they have

boring FOUs, successively cover

ain, [0,10], and together this

the primary variable’s do cover

wo classes of secondary MFs were used, namely tria%gles and

ions. (a) The triangle secondary MFs have base equal to
\

1
) and apex location, Apex(x), parameterized as [123] (w=0,

; (6-78)

e triangle secondary MFs for the word Medium is shkon in Fig.

all five w values. (b) The bell-shaped functions also ﬁave base

— 51, (x]0) and apex location, Apex(x), also parameteri%ed as (6-

5, 0.75, 1). The secondary MF on the left of the apex! location,
\

ary MF on the right, h,/(u), is a

MF. An example of the bell-shaped secondary Ml%s for the

r all five w values. i

s, there are two kinds of secondary MFs, each with five cases;

50 general T2 FSs in our comparative studies.

|
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Table 6.2 The FOUs, types of econdary MFs [Triangles (T) or Bell-shaped (B)] and w values of the

10 selected T2 FSs.

Al Al A} A~4 AS A~6 A7 AS A9 AIO
. Very . Very

. , High ; ; ; High ;
FOU" Tiny Small Medium ot high Tiny  Small  Medium amount high

amount amount

Sec&’;‘.’,aw T T T T i B B B B B

w 0 0.5 .25 1 0.75 0 0.5 0.25 1 0.75

a. FOUs are in Fig. 6.2.
b. Secondary MFs are in Figs. 6.3(a) and 6.3(b).

=

6.5.1 Discretization of/ the Primary Variable

In this section, the number of a-planes, k, is fixed at 25, i.e., T, = 0.0417 (in Section

6.5.2, the discretization of af-planes is examined and k = 25 is shown to producd‘ accurate
results). As mentioned abovg, the domain of the primary variable x is [0, 10]. Thej KM and

CF algorithms (The EKM 4lgorithms produce exactly the same numerical resule as KM
i
algorithms, so only the KM algorithms are studied for accuracy tests.) were applied to all 50

\
T2 FSs using primary variaple sampling intervals, T, of 0.5, 0.1, 0.01 and 0.0dl. It was
\

observed that both the KM and CF algorithms converged in all 50 cases for T, < 0.01. Due
to space limitations, results gre shown here only for 10 of the 50 T2 FSs, labeled 1%1, /iz,...,
\

Aqg and A;,, whose names arld parameters are given in Table II. Observe that trianjgle (bell-

shaped) secondary MFs were| used for A;-Ag ( “¢-Aqg). ;

The centroids of A;-Ag and Ag-A;o, computed using KM (solid lines) and CF (circles)

algorithms are depicted in Figs. 4 and 5, respectively. Note, here and in several subsequent

1
figures, that although the golid lines appear to be continuous, they were obtPined by

\
connecting only the end points of the centroids of the a-Plane. Scanning each row of both

|
|
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figures from left to right, on¢ observes the convergence of the centroid as T, varies from 0.5
to 0.1 to 0.01 and to 0.001. It is evident that when T, < 0.01, the centroids computed by the
KM and CF algorithms are approximately the same. Consequently, x is sampled at 0.01 in all

of our remaining simulations.

Note that it may be possible to achieve convergence when 0.01 < T, < 0.1; but, this

wasn’t examined since our main focus is on convergence| with respect to the sampling of a.

N

6.5.2 Accuracy Tests (Discretization of alpha
\
|
\

It is important to study how the centroid computed by the CF algorithm cohlpares to
\

the centroid computed by the KM algorithms as a function of k. Let Cjxpy G |k) and
Cicr(&]k) denote the centrdids computed by KM and CF algorithms, respectivel%r, when k

a-planes are used. For all 30 T2 FSs, Czxn(§1k) and C4cr(§|k) were computed and we

observed that they gradually converged as k was increased from 2 to 35 a—pianes. To

\
|
and 6.7 for A;-As and A4-4,,, respectively. And corresponding results for k =i 25 have
[

already been given in Figs. 6,4 and 6.5. As can be seen, results from the CF algorithm match

illustrate this, Cz gy ($1k) and Czcr(&|k) (for k =5, 10, 15 and 20) are depicted in Figs. 6.6

those from the KM algorithnis better for larger « (i.e., k = 15, 20 and 25).
\
In order to quantify the comparisons between Cj xp ($]k) and Cjz cr(€]k), wé used the

following absolute difference, d;(k), between the defuzzified values of Cjxpm (if |k) and

Cacr(§1K), ie. c(Cgum(§1k)) and c(Cy cr (§]K)), respectively:

d; (R =|e(C; oy (1N =€(Cy ¢ (E10)
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, Ag (each

row is for an 4;) apd for different primary variable sampling intervals of 0.5, 0.1, 0.01

and 0.001 (from left to right in each row).

Figure 6.4 Centroids computed by KM (solid lines) and CF (circles) algorithm for A;,..
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Ay (each

L

row is for an A;) and for different primary variable sampling intervals of 0.5, 0.1, 0.01 and

0.001 (from left to right in each row).

Figure 6.5 Centroids computed|by KM (solid lines) and CF (circles) algorithms for Ag,..
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used (k=5) and they gradually converge as we increase the value of k. Similar results can be
obtained if we use any of the|other four FOUs to construct the T2 FS.

Although such specipl secondary MFs are rarely used in practicality, this test
suggested by the reviewer did allow us to confirm the validity of the CF algorithm under

such an extreme condition.m

6.5.3 Computation Time Tests

|

|
In this section, the computation times for the KM, EKM and CF algori‘thms are
compared. It is difficult to| develop general mathematical models that characterize the

1
computation time of each algorithm, because: 1) When applying KM or EKM alg(#rithms to

an a-plane, the total number of iterations are unknown ahead of time, 2) The integration
regions of the (continuous) KM and EKM algorithms may vary for different FOL'jls at each
iteration; and, 3) It is obvious, from (6-17)-(6-20), (6-62), (6-63), (6-72) and (6-73>, that the

\
integration switch points, c(f) and c(Ag47,), are also different for different FOUs, which
causes the CF integration regions also to be different. ‘

The actual computation times varied very slightly when the computer ran the KM,
EKM and CF programs each|time; so, S00 simulations were performed for each T2|FS, from
which the average and standard deviation (STD) of the computation times of the KM EKM
and CF algorithms were obtained for all 50 T2 FSs for 34 values of k (k = 2, 3,..., 35).
Because the results are similar for T2 FSs with the same kind of secondary MFs;j only the

average and STD of the computation times for A;-Ag and A¢-A,, are depicted as functions

of k in Figs. 6.11 and 6.12, respectively. Observe that, as expected, all the average
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Figure 6.6 Czxy (§]k) (solid lines) and Czcr(€]k) (circles) for (a) Ay; (b) Ay; (¢) As; (d) Ay (e) Ag
using k=5, 10, 15 and [20. :
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Figure 6.8 dz(k) (splid lines) for A4;-A;, and the 0/01 threshold (dotted lines).
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Figure 6.9 Special secondary MF that has near-abrupt changes for word High Amount, when x = 6.
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Figure 6.10 Cz .y (§]k) (solid lines) and C4¢r (£]k) (circles) for Ay, using k =5, 10, 15 and 20.

computation times increase glmost linearly as k increases for all three algorithms. Observe,

also, that the STD of the computation times are much smaller as compared to thsi‘; average

computation times; hence, we only focus on the average computation times in the rest of the

analyses. Finally, by comparing the top rows of Figs. 6.11 and 6.12, observe that qLe actual

\
[
\
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In Fig. 6.14, when k|> 20 and for T2 FSs with triangle secondary MFs, the CF
algorithm reduces the compytation time by over 80% compared to KM, and by about 75%
for EKM; and, for T2 FSs with bell-shaped secondary TIFS, the CF algorithm reduces the

computation time by over 75% compared to KM, and by about 50% for EKM algorithms.

6.6 Summary

This section used two Important properties of continuous KM algorithms to develop a
new way to compute the centroid of a general T2 FS ]eJding to a new Centroid Flow (CF)
algorithm. The CF algorithm avoids the iterative features of KM (EKM) algorithms by
utilizing the structural knpwledge of the secondary MFs. This section has shown
theoretically that, in terms| of computation time, the CF algorithm is guaranteed to

outperform KM and EKM algorithms for T2 FSs with triangle and trapezoidal secondary
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|
Chapter 7 Conclusion and Future WorL

|

7.1 Conclusion ‘

Chapter 2 of this dissertation proposed a novel data interpolation algoritk*m called

IEKFS that allows a dynami¢ Extended Kalman Filter (EKF) estimation system, which was
originally designed to accurately estimate interwell connectivity only when measurements
can be made every day, to obtain equivalently good performances even when a large portion
of data is missing, e.g., only one measurement available every eight days. To be self-
contained, this chapter proyides a comprehensive background review of this Larticular
problem, including the parametric models used to characterize the subsurface reserl'oir, how
different SVM can be established based on this model, practical strategy for applying the
EKF technique on a large-scdle oilfield, and how to dynamically impose physical cTnstraints
on the estimates as they are obtained. The IEKFS algorithm can be viewed as an ﬁ‘cchnique
that enhances the robustness |of the system in a highly uncertain environment frorq! the data
perspective. ‘

In Chapters 3 and 4, two different types of advanced FLSs were developed, iamely, a
Non-Singleton IT2 FLS and a Mixture FLS, the former for a Universal Ima‘e Noise
Removal Filter and the latter for a Forest-Fire-Size Predictor. These two types of FLSs are
both developed based on the same QPSO designing paradigm. This kind q‘f design
framework allows us to easily implement complex FLSs that are previously understudied

due to technical difficulties. Based on this framework, readers can easily modify aq‘d extend

the above FLSs to fit a variety of research problems for data sets that have different features.
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\
In Chapter 5, we focused on general T2 FSs, and provided a unified the

computing different uncertain

RT, extensive simulation resylts that demonstrate the app

to interpret the resulting unce
this unified theorem, Chap

computing the centroid of a T|

7.2 Future Work

This dissertation has p
learning systems, one from 4
One can easily image the con|
that is subject to frequently m
first use the IEKFS algorithm
robust FLSs for learning purp
parametric model that describ
So a question that naturally r:
FLS still have the value dej
between the two paths, one fu
allows the unified employmg
superiority of such an integrat

Regarding the details o

IEKFS haven’t been extensiy

rtainty measures, which themselves are T1 FSs. Then,
ter 6 developed a much

2 FS.

rovided two separate paths

nection between the two pa

lissing measurements and a

es the system. On the other

orem for
ty measures for T2 FSs based on a recently developed a-plane
licability of this theorem, and how
based on

more efficient CF algorithm for

for improving the performance of
data perspective and one from a system design perspective.

s as follows: given an application
Freat deal of uncertainties, one can
to create high quality vi
to have a

|

mvT
etric model for a system, does a

KFS algorithm, one has

rtual measurements, and then use the
oses. However, to use the

3Tand, FLSs are usually el-free.
ses is: If there exists a param
nnection

nonstrated in this dissertation? To draw a direct co

ture topic of research is to look for an interesting problem that

nt of the IEKFS algorithm and FLSs, and demonstrate the
ed system compared to other techniques.
f the interwell connectivity estimation problem, the CEKF and

vely tested on real field data yet; they have been separately
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tested on hypothetical and reservoir simulator data. To apply the CEKF to real data, a
strategy that enables us to eliminate non-contributing injectors and select an optimal initial
injector set is needed. This |can be quite complex, because the CEKF operates from an
injector-centric perspective; therefore, once an injector |is eliminated from one producer-
centric model, it affects all other producer-centric models that include this injector. We also

need a strategy to select optimal contributing injector set for a producer-centric model during

\
the IEKFS processing, befor¢ putting this technique into practical use. The RMSEs of the

interpolated production rates |can be used as our selection criterion. Additionally, Jo jointly
\

apply IEKFS and CEKEF in a feal field, we will need a unified framework, under wl"rich both

|
interpolation and estimation| can be correctly carried out. Because, the CEKF groups

multiple producer-centric models together from an injector-centric perspective, the IEKFS is

still based on a single producer-centric model. It is possible that the contributing inj‘ector set

for a producer during IEKFS processing differs from the contributing injector set seiected by
\

the same producer during CEKF processing. Whether this will be problematic or‘not also

awaits study. ‘

On the FLS side, an jncreasingly popular topic is to extend current IT2 ‘FLSS to

general T2 FLSs, which are sppposedly more robust, as when IT2 FLSs are compaq‘ed to T1

|
FLSs. Chapters 5 and 6 can serve as foundations for such studies. The practical values of

these materials in the actual |[design or implementations of general T2 FLSs remain to be

shown.
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