Adaptive bidirectional associative memories

Bart Kosko

Bidirectionality, forward and backward information flow, is introduced in neural networks to produce two-
way associative search for stored stimulus-response associations (4;,B;). Two fields of neurons, F4 and Fp,
are connected by an n X p synaptic marix M. Passing information through M gives one direction, passing
information through its transpose M7 gives the other. Every matrix is bidirectionally stable for bivalent and
for continuous neurons. Paired data (4;,B;) are encoded in M by summing bipolar correlation matrices. The
bidirectional associative memory (BAM) behaves as a two-layer hierarchy of symmetrically connected
neurons. When the neurons in F4 and Fp are activated, the network quickly evolves to a stable state of two-
pattern reverberation, or pseudoadaptive resonance, for every connection topology M. The stable reverbera-
tion corresponds to a system energy local minimum. Anadaptive BAM allows M to rapidly learn associations
without supervision. Stable short-term memory reverberations across F, and Fp gradually seep pattern
information into the long-term memory connections M, allowing input associations (A;,B)) to dig their own
energy wells in the network state space. The BAM correlation encoding scheme is extended to a general
Hebbian learning law. Then every BAM adaptively resonates in the sense that all nodes and edges quickly
equilibrate in a system energy local minimum. A sampling adaptive BAM results when many more training
samples are presented than there are neurons in F4 and Fp, but presented for brief pulses of learning, not
allowing learning to fully or nearly converge. Learning tends to improve with sample size. Sampling
adaptive BAMs can learn some simple continuous mappings and can rapidly abstract bivalent associations
from several noisy gray-scale samples.

. Introduction: Storing Data Pairs in Associative
Memory Matrices

An n X p real matrix M can be interpreted as a
matrix of synapses between two fields of neurons. The
input or bottom-up field F4 consists of n neurons
{ai, ... ,a,). The output or top-down field F consists
of pneurons{by, ... ,bp}. Theneuronsa;and b;are the
units of short-term memory (STM). For convenience,
we shall use a; and b; to indicate neuron names and
neuron states. Matrix entry m;; is the synaptic con-
nection from a; to b;. Itisthe unit of long-term memo-
ry (LTM). The sign of m;; determines the type of
synaptic connection: excitatory if m;; > 0, inhibitory
if m;; < 0. The magnitude of m;; determines the
strength of the connection. A real n-dimensional row
vector A represents a state of F4, a STM pattern of
activity across the neurons qj, ... ,a,. A real p-di-
mensional row vector B represents a state of Fg. An
associative memory is any vector space transformation
T:R"— RP. Usually Tis nonlinear. The matrix map-
ping M:R" — RP is a linear associative memory. When
F 4 and Fgare distinct, M is a heteroassociative associa-
tive memory. It stores vector data pairs (A;,B;). In
the special case when F4 = Fp, M is an autoassociative
associative memory. It stores data vectors A;.

Recall proceeds through vector-matrix multiplica-
tion and nonlinear state transition. The p-vector AM
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is a fan-in vector of input sums to the neuronsin Fg: A
M = (Ipy, ... ,Isp). Specifically, each neuron a; fans
out its numeric output a; across each synaptic pathway
m;;j, sending the gated product a; m;; to each neuron b;
in Fg. Each neuron b; receives a fan-in of n gated
products a; m;j, arriving independently and perhaps
asynchronously, and sums them to compute its input
Iyj=aimyj+ ... +a,my;. Neuron b; processes input
I, to produce the output signal S(/;;). In general the
signal function S is nonlinear, usually sigmoidal or S-
shaped. The associative memory M recalls the vector
of output signals [S(Ip1), - .. ,S(Isp)] when presented
with input key A. In the simplest associative memo-
ries, linear associative memories, each neuron’s output
signal is simply its input signal: S(I;) = Ip;. Then
associative recall is simply vector multiplication: B =
AM.

What is the simplest way to store m data pairs
(A1,By),(A2,B2), ... ,(As,Bp) in an n X p associative
memory matrix M? The simplest storage procedure is
to convert each association (A4;,B;) into an n X p matrix
M;, then combine each association matrix M;
pointwise. The simplest pointwise combination tech-
niqueis addition: M =M;+ ...+ M. Thesimplest
operation for converting two row vectors A; and B; of
dimensions n and p into an n X p matrix M; is the
vector outer product AiT B;. So the simplest way to
store m (A;,B;) is to sum outer product or correlation
matrices:

M=ATB, + ... +AIB,. (1)

This is the familiar storage method used in the theory
of linear associative memories, studied by Kohonen!?
and Anderson et al.3 Iftheinput patterns Ay, ... ,An
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are orthonormal—A,'AjT = 1ifi = j, 0 if not—perfect
recall of the associated output patterns {B; ... ,B,}is
achieved in the forward direction:

AM=AATB,; + z (AADNB;
i#j

=B, @
If Ay, ... ,Ap are not orthonormal, as in general they
are not, the second term on the right-hand side of Eq.
(2), the noise term, contributes crosstalk to the re-
called pattern by additively modulating the signal
term. More generally, as Kohonen? has shown, the
least-squares optimal linear associative memory
(OLAM) M is given by M = A* B, where A isthe m X n
matrix whose ith row is A;, B is the m X p matrix whose
ith row is B;, and A* is the Moore-Penrose pseudoin-
verse of A. If {A;, ... ,A,} are orthonormal, the
OLAM M = ATB, which is equivalent to the memory
scheme in Eq. (1).

Il. Discrete Bidirectional Associative Memory (BAM)
Stability

Suppose we wish to synchronously feed back the
recalled output B to an associative memory M to im-
prove recall accuracy. The recalled output B is some
nonlinear transformation S of the input sum A M:B =
S(AM) = [S(AM!), ... ,S(A MP)], where M/ is the jth
column of M. What is the simplest way to feed B back
to the associative memory? Since M has dimensions n
X p and B is a p vector, B cannot vector multiply M,
but it can multiply the M matrix transpose (adjoint)
MT”. Thus the simplest feedback scheme is to pass B
backward through MT. Any other feedback scheme
requires more information in the form of a p X n matrix
N different from M”. Field F, receives the top-down
message B MT and produces the new STM pattern A’
=SB M") = [SB M)),...,SB M?)] across Fa,
where M; is the ith row (column) of M (M7). Carpen-
ter* and Grossberg®? interpret top-down signals as
expectations in their adaptive resonance theory
(ART). Intuitively A’is what the field Fj expects to
see when it receives bottom-up input B.

If A" is fed back through M, a new B’ results, which
can be fed back through M7 to produce A”, and so on.
Ideally this back-and-forth flow of distributed infor-
mation will quickly equilibrate or resonate on a fixed

data pair (A;,By):
A —- M — B,
A «~ MT « B,
A - M - B,
A" <~ MT < B,
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If an associative memory matrix M equilibrates in this
fashion for every input pair (4,B), then M is said to be
bidirectionally stable.!0:11

Which matrices are bidirectionally stable for which
signal functions 8? Linear associative memory matri-
ces are obviously in general not bidirectionally stable.
We shall limit our discussion to sigmoidal or S-shaped
signal functions S, such as S(x) = (1 + e~*)~1, or more
generally, to bounded monotone increasing signal
functions. Grossberg!? long ago showed that this is
not alimitation at all. He proved that, roughly speak-
ing, a sigmoidal signal function is optimal in the sense
that, in unidirectional competitive networks, it com-
putes a quenching threshold below which neural activ-
ity is suppressed as noise and above which activity is
contrast enhanced and then stored as a stable rever-
beration in STM. In particular, linear signal func-
tions amplify noise as faithfully as they amplify sig-
nals. This theoretical fact reflects the evolutionary
fact that real neuron firing frequency is sigmoidal.

First we consider bivalent, or McCulloch-Pitts,!3
neurons. Eachneuron g; and b; is either on (+1) or off
(0 or —1) at any time. Hence a state A of F4 is a point
in the Boolean n-cube B" = {0,1}" or {—1,1}». A state B
of Fpis a point in BP = {0,1}P or {—1,1}P. A state of the
bidirectional associative memory (BAM) (F4, M, Fp) is
a point (A,B) in the bivalent product space B* X B?.
Topologically, a BAM can be viewed as a two-layer
hierarchy of symmetrically connected fields:

A
(D)

What is the simplest signal function S for a bivalent
BAM (F4, M, Fg)? The simplest S is a threshold
function:

1 if BMI > o
i={ (3)

OifBMl.T<O,

1 if AM > o,
{ 4)

0 if AM < 0

where once again M; is the ith row (column) of M (M7)



and M/ is the jth column (row) of M (MT). If the input
sum to each neuron equals its threshold 0, the neuron
maintains its current state. It stays on if it already is
on, off if already off. For simplicity, each neuron has
threshold 0 and no external inputs. Ingeneral, a;hasa
numeric threshold 7’ and constant numeric input I;; b;
has threshold Sjand input J;. A bivalent BAM is then
specified by the vector 7-tuple (Fa, T, I, M, Fg, S, J)
and the threshold laws (3) and (4) are modified accord-
ingly; e.g., a; = 1if BM? + I, > T

Which matrices M are bidirectionally stable for bi-
valent BAMs? All matrices. Every synaptic connec-
tion topology rapidly equilibrates, no matter how large
the dimensions n and p. This surprising theorem is
proved in Refs. 11 and 14 and generalizes the well-
known undirectional stability for autoassociative net-
works with square symmetric M, as popularized by
Hopfield!s and reviewed below. Bidirectionality, for-
ward and backward information flow, in neural nets
produces two-way associative search for the nearest
stored pair (A;,B;) to an input key. Since every matrix
is bidirectionally stable, many more matrices can be
decoded than those in which information has been
deliberately encoded.

When the BAM neurons are activated, the network
quickly evolves to a stable state of two-pattern rever-
beration, or nonadaptive resonance.*’ The resonance
is nonadaptive because no learning occurs. The
weights m;; are fixed. This behavior approximates
equilibrium behavior in a learning context since
changes in the synapses (LTM traces) m;; are invari-
ably slower than changes in the neuron activations
(STM traces) a; and b;. Below we shall exploit this
property to construct adaptive BAMs.

The stable reverberation corresponds to a system
energy local minimum. Geometrically, an input pat-
tern is placed on the BAM energy surface as a ball
bearing in the bivalent product space B* X BP. In
particular, the bipolar correlation encoding scheme
described below sculpts the energy surface so that the
data pairs (4;,B;) are stored as local energy minima.
The input ball bearing rolls down into the nearest
basin of attraction, dissipating energy as it rolls. Fric-
tional damping brings it to rest at the bottom of the
energy well, and the pattern is classified or misclassi-
fied accordingly. Thus the BAM behaves as a pro-
grammable dissipative dynamic system.

For completeness we review the proof'%11 that every
matrix is bivalently bidirectionally stable. The proof
technique is to show that some system functional E:B"
X BP — R is a Lyapunov function or bounded mono-
tone decreasing energy function for the network. The
energy function decreases if state changes occur. Sys-
tem stability occurs when the functional E rapidly
obtains its lower bound, where it stays forever. Lya-
punov functionals provide a shortcut to the global
analysis of nonlinear dynamic systems, sidestepping
the often hopeless task of solving the many coupled
nonlinear difference or differential equations. The
most general Lyapunov stability result is the Cohen-
Grossberg theorem!® for symmetric undirectional au-

toassociators, which we extend in this and the next
section to arbitrary bidirectional heteroassociators.
The Lyapunov trick of the Cohen-Grossberg theorem
is to substitute the neuron state-transition equations
into the derivative of the appropriate energy function,
and then use a sign argument to show that the deriva-
tive is always nonpositive. Hopfield!® used the dis-
crete version of this Lyapunov trick to show that zero-
diagonal symmetric unidirectional autoassociators are
stable for asynchronous or serial state changes, i.e.,
where at any moment at most one neuron changes
state. The argument we now present subsumes this
case when Fy = Fg and M = MT in simple asynchro-
nous operation. An appropriate measure of the ener-
gy of the bivalent (A,B) is the sum (average) of two
energies: the energy A M BT of the forward pass and
the energy B MT AT of the backward pass. Taking the
negative of these quadratic forms gives

E(AB) = —Y%AMBT - 4, BM7AT
=— AMBT

=~ Z Zaibjmij, (5)
i

provided all thresholds T; = S; = 0 and inputs [; = J; =
0, which we shall assume for simplicity. Ingeneral the
appropriate energy function includes thresholds and
inputs linearly:

EAB)=AMBT—-IAT+TAT-JBT+ SBT.

BAM convergence is proved by showing that syn-
chronous or asynchronous state changes decrease the
energy and that the energy is bounded below, so the
BAM monotonically gravitates to fixed points. E is
trivially bounded below for all A and B:

EAB) 2~ % Imy.
J

i

Synchronous vs asynchronous state changes must be
clarified. Synchronous behavior occurs when all or
some neurons within a field change their state at the
same clock cycle. Asynchronous behavior is a special
case. Simple asynchronous behavior occurs when only
one neuron per field changes state per cycle. Subset
asynchronous behavior occurs when some proper sub-
set of neurons within a field changes state per cycle.
These definitions of asynchrony are cross sectional.
The resultant time-series interpretation of asynchro-
nous behavior is that each neuron in a field randomly
and independently changes state, converting the BAM
network into a stochastic process. In the proof below
we do not assume that changes occur concurrently in
the two fields F4 and Fg. Otherwise, in principle the
energy function might increase. Examination of the
argument below shows, though, that this is very unlike-
ly in large networks since so many additive terms in the
energy differential are always negative. In any event,
the BAM model of back-and-forth information flow we
have been developing implicitly assumes that state
changes are occurring in at most one field F4 or Fpata
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time. Further, the Lyapunov argument below shows
that synchronous operation produces sums of
pointwise (neuronwise) energy changes that can be
large. In practice this means synchronous updates
produce much faster convergence than asynchronous
updates.

First we consider state changes in field F4. A simi-
lar argument will hold for changes in Fp. Field Fu
change is denoted by AA = A, — A; = (Aay, ... ,Aa,)
and energy change by AE = E; — E;. Hence Ag; = —1,
0, or +1 for a binary neuron. Then

AE=—-AAMBT
= Z Aai z bjmu
7 7
=- Z Aa,B MT. (6)
i

We need only consider nonzero state changes. If Ag; >
0, the state transition law (3) above implies B M7 > 0.
If Ag; < 0, Eq. (3) implies B M,T < 0. Hence state
change and input sum agree in sign. Hence their
product is positive: Aa; B M? > 0. Hence AE < 0.
Similarly, the sign law (4) for b; implies AE = ~ A M
ABT <0. Since M was an arbitrary n X p real matrix,
this proves that every matrix is bivalently bidirection-
ally stable.

lil. BAM Correlation Encoding

Which BAM matrix M best encodes m binary pairs
(A;,B;)? The correlation encoding scheme in EqT 1)
suggests adding the outer-product matrices A7 B;
pointwise, at least to facilitate forward recall. Will
this work for backward recall? The linearity of the
transpose operator implies that it will:

MT = (ATB)T + ... (ATB,)T
=BlA + ... +BTA,. @)

However, the additive scheme (1) implies that if we use
only binary vectors, M will contain no inhibitory syn-
apses. Sothe input sums B M7 and A MV can never be
negative. Sothe state transition laws (3) and (4) imply
that a; = b; = 1 once a; and bj turn on, which they
probably will after the first update. Exceptions can
occur for initial null vectors or a null matrix M, when a;
=p i = 0.

Bipolar state vectors do not produce this problem.
Suppose (X;,Y;) is the bipolar version of the binary
pair (4;,B,), i.e., binary zeros are replaced with minus
ones,i.e.,X;=2A;—Iand Y; =2 B; — I, where I is a unit
vector of n-many or p-many ones. Then the ijth entry
of XT'Y is excitatory (+1) if the vector elements x*and
y* agree in sign, inhibitory (—1) if they disagree in sign.
'ﬁhis is simple conjunctive or Hebbian correlation
learning. Thus the sum M of bipolar outer-product
matrices

M=XTY, +... +X7Y, (8
naturally weights the excitatory and inhibitory con-
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nections. Multiplying M or M7 by binary or bipolar
vectors produces input sums of different signs, so Egs.
(3) and (4) are not trivialized.

Note that to encode m binary vectors Ay, ... ,A,, in
a unidirectional autoassociative memory matrix, Eq.
(8) reduces to the symmetric matrix Xf Xi+...+X,
X, which is the storage mechanism used by Hop-
field!> (who also zeros the main diagonal to improve
recall). Note also that the pair (A;B;) can be un-
learned or forgotten (erased) by summing — X7y, or,
equivalently, by encoding (A{,B;) or (A;,Bf) since bipo-
lar complements are given by X¢ = —X; and Yi=-Y.
Equation (8) allows data to be read, written, or erased
from memory. Further, (X¢)7 Y¢ = XTY;, so storing
(A;,B;) through Eq. (8) implies storing (Af,B5) as well.

Strictly speaking bipolar correlation learning laws
such as Eq. (8) can be biologically implausible. They
imply that synapses can change character from excit-
atory to inhibitory, or inhibitory to excitatory, with
successive experience. This is seldom observed with
real synapses. However, when the number of stored
patterns m is fairly large, |m,-j| > 0 tends to hold. So
the addition or deletion of relatively few patterns does
not on average change the sign of m;.

Is it better to use binary or bipolar state vectors for
recall from Eq. (8)? In Ref. 10 we prove that bipolar
coding is better on average. Much of the argument can
be seen from the properties of the bipolar signal-noise
expansion

XM = XXDY; + > (XXDY;

J#i

=nY; + Z XXNY;

J#i
= Z Cinj, (9)
J

where ¢;; = ¢j; = X; XJT

The c;; are correction coefficients. Ideally the Cj
will behave in sign and magnitude so as to move Y;
closer to Y; and give Y; more positive weight the closer
Yj is to Y;. Then the right-hand side of Eq. (9) will
tend to equal a positive multiple of Y; and thus thresh-
old to Y;or B;, When the input X is nearer X; than all
other X;, the subsequent output Y should tend to be
nearer Y; than all other Y;. When Y is fed back
through M7, the output X’ should tend to be even
closer to X; than X was, and so on. Combining this
argument with the signal-noise expansion (9) and its
transpose-based backward analog, we obtain an esti-
mate of the BAM storage capacity for reliable recall:
m < min(n,p). No more data pairs can be stored and
accura! lyrecalled than the lesser of the vector dimen-
sions v:od.

This -nalysis explains much BAM behavior without
Lyapu-:v techniques. However, such accurate de-
coding : -aplicitly assumes that if stored input patterns
are close, stored output patterns are close. Specifical-
ly we make the continuity assumption:



1/nH(A,A)) ~ 1/pH(B;B)), (10)

where H(. . .) denotes Hamming or /! distance. This
is an implicit assumption of continuous mapping net-
works. When a data set substantially violates it, as in
the parity mapping, which indicates whether there is
an even or odd number of ones in a bit vector, super-
vised learning techniques such as backward error
propagation!’-20 are preferable.

Do the correction coefficients c;; behave as desired?
They do, when (10) holds, in the sense that they natu-
rally connect bipolar and binary spaces:

cij§0 iff H(Al-,Aj)-Z-n/Z. (11)

Expression (11) follows from
;i = XiXJT
= (number of common elements)
— (number of different elements)
=[n — H(A,A)] — H(AA))
=n — 2H(A;A)). (12)

If A; is more than half the space away, so to speak, from
A,, and thus by (10) if B; is approximately more than
half the space away from B;, the negative sign of ¢;;
corrects Y; by converting it to Y, which is a better
approximation of Y; since B is approximately less
than half the space away from B;.. The magnitude of ¢;;
then further corrects Y; by directly approaching the
maximum signal amplification factor, n, as H(B;B})
approaches 0. If A; is less than half the space away
from A;, then c;; > 0 and ¢;; approaches n as H(B;,B))
approaches 0. If A; is equidistant between A; and A},
then ¢;; = 0. Finally, bipolar coding of state vectors is
better on average than binary coding in the sense that
on average

AXTZ¢,

XTZc, iff H(A,A)Zn/2 (13)
tends to hold. So on average the c; always correct
better in magnitude than the mixed coefficients A; XJT
and sometimes the mixed coefficients can have the
wrong sign.

Consider a simple example.
store two pairs given by

Suppose we wish to

A;=(101010) B,=(1100),

A,=(111000) B,=(1010).

Note that the vectors are nonorthogonal and that the
continuity assumption (10) holds since 1/6 H(A;,A9) =
1/3~1/2 =1/4H(B,,By). Convert these binary pairs
to bipolar pairs:

X,=(1 -1 1 -1 1 -1 Y= 1 -1 -1,

X,=(1 11 -1 -1 -1 Y,=(1 -1 1 -1).

Convert the bipolar pairs (X;,Y;) to correlation matri-
ces X Y

1 1 -1 -1
-1 -1 1 1
1 1 -1 -1

Xv=l_, ., 1 1|
11 -1 -1
-1 -1 1 1
1 -1 1 -1
1 -1 1 -1

iy, 111

-1 1 -1 1

-1 1 -1 1

-1 1 -1 1

Then M is given by M = X7Y; + X1V

2 0 0 -2
0 -2 2 0
2 0 0 -2
-2 0 0 2
0 2 -2 0
-2 0 0 2

M=

Then, using binary vectors for recall for ease of com-
puting, we see that

AM=@4 2 -2 -4 — (1 1 0 0)=B,

AM=@4 -2 2 -4 — (1 0 1 0)=B,

on using the threshold signal function (4) and, on using
Eq. (3),

BMT=@2 -2 2 -2 2 -2 — (1 0 1 0 1 0)=A,

BMT=(@2 2 2 -2 -2 =2) — (1L 1 1 0 0 0)=A,
Theuse of synchronous updates, combined withsatisfy-
ing the continuity assumptionand the memory capacity
constraint [2 < min(6,4)], produced instant conver-
gence to the local energy minima E(A;,B;) = — A; MB/
=—(42-2-4)(1100)T=—6=E(A3,B5). Suppose
we perturb As by 1 bit. In particular, suppose we
present an input A = (01 100 0) to the BAM. Then

AM=(2 -2 2 -2) — (1 0 1 0)=B,

and thus A evokes the resonant pair (As,Bs) with initial
energy E(A,By) = —4. Now suppose an input A = (00
0110)is presented to the BAM. Since H(A,A;) =3<
5 = H(A,A,), we might expect A to evoke the resonant
pair (A{,By). Infact

AM=(-2 2 -2 2) — (0 1 0 1)=Bj

and B{ in turn recalls Aj, which recalls BS, etc., with
energies E(A,BS) = —4 > —6 = E(A$,Bj) since H(A,A?)
= 1. We recall that the bipolar correlation encoding
scheme (8) stores (A$,BY) when it stores (A;,B;).
Figure 1 displays snapshots of asynchronous BAM
recall. Approximately six neurons update between
snapshots. The spatial alphabetic associations (S,E),
(M,V), and (G,N) are stored. Fj4 containsn =10 X 14
= 140 neurons. Fpcontains p =9 X 12 = 108 neurons.
A 40% noise corrupted version (99 bits randomly
flipped) of (S,E) is presented to the BAM and (S,E) is
perfectly recalled, illustrating the global order-from-
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Fig. 1. Asynchronous BAM recall. Approximately six neurons update per snapshot. The associated spatial patterns (S,E), (M,V), and
(G,N) arestored. Field F contains 140 neurons; F,108. Perfect recall of (S,E) is achieved when recallis initiated with a 40% noise-corrupted
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chaos aesthetic appeal of asynchronous BAM opera-
tion.

"BAMs are also natural structures for optical imple-
mentation. Perhaps the simplest all-optical imple-
mentation is a holographic resonator with M housed in
a transmission hologram sandwiched between two
phase-conjugate mirrors. Figures 2 and 3 display two
different optical BAMs discussed in Ref. 21. Figure 2
displays a simple matrix—vector multiplier BAM with
M represented by a 2-D grid of pixels with varying
transmittances. Figure 3 displays a BAM based on a
volume reflection hologram. The box labeled thresh-
old device accepts a weak signal image on one side and
produces an intensified and contrast-enhanced ver-
sion of the image on its output side. The Hughes
liquid crystal light valve or two-wave mixing are two
ways to implement such a device. Note that the con-
figuration requires the hologram to be read with light
of two different polarizations. Hence diffraction effi-
ciency of holograms recorded as birefringence patterns
in photorefractive crystals will be somewhat compro-
mised.

IV. Continuous BAMs

A continuous BAM!0.11 jg specified by, for example,
the additive dynamic system

@=—a;+ Yy Sbmy;+I, (14)
J

bj=—b;+ Z S(aym; +J; (15)

where the overdot denotes time differentiation. The
activations a; and b; can take on arbitrary real values.
S is a sigmoid signal function. More generally, we
shall only assume that S is bounded and strictly mono-
tone increasing, so that S’ = dS(x)/dx > 0. For defi-
niteness, we assume all signals S(x) are in [0,1] or
[~1,1], so that the output (observable) state of the
BAM is a trajectory in the product unit hypercube I X
IP where I" = [0,1]" or [~1,1]*. For example, in the
simulations below we use the bipolar logistic sigmoid
S(x) =2(1+e~¥)~1—=1forc>0. I;andJ;areconstant
external inputs.

The first term on the right-hand sides of Eqgs. (14)
and (15) are STM passive decay terms. The second
term is the endogenous feedback term. It sums gated
bipolar signals from all neurons in the opposite field.
The third term is the exogenous input, which is as-
sumed to change so slow relative to the STM reaction
times that it is constant. Of course both right-hand
sides of Egs. (14) and (15) are in general multiplied by
time constants, as is each term. We omit these con-
stants for notational convenience.

The additive model [Eqgs. (14) and (15)] can be ex-
tended to a shunting® or multiplicative model that
allows multiplicative self-excitation through the term
(A; — @) [S(a;) + IP] and multiplicative cross-inhibi-
tion through a similar term, where A; (B;) is the Posi-
tive upper bound on the activation of a; (b;), and I} (Jf)
and [; (Jf) are the respective constant non-negative
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Fig. 2. Matrix-vector multiplier BAM.
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Fig. 3. BAM volume reflection hologram.

inhibitory and excitatory inputs to a; (b;). The shunt-
ing model can then be written

4; = —a; + (A; ~ a)[S(a) + [F]- ai[z m;;S(b)) + 1{], (16)
J

b; = —b; + (B; — b)[S(b;) + JF]— bj[z m;S(a)) + J;]. 1

The inhibitory shunt a; (b;) can be replaced with C; + a;
(Dj + b;) where C; (D)) is a non-negative constant.
Then the range of a; (b)) is the interval [-Ci,Ajl
([-D;,B;]). The bidirectional stability of systems (16)
and (17) follows from the same source of stability as the
additive model, the bidirectional/heteroassociative ex-
tension of the Cohen-Grossberg theorem.’® The
thrust of this extension is to symmetrize an arbitrary
rectangular connection matrix M by forming the zero-
block diagonal matrix N:

0 M
M7 o)’

sothat N = N7, Thus the bidirectional heteroassocia-
tive procedure is converted to a large-scale unidirec-
tional autoassociative procedure acting on the aug-
mented state vectors C = [A | B], for which the Cohen-
Grossberg theorem applies. The subsumption of the
unidirectional version of Eqgs. (16) and (17) by fixed-
weight competitive networks is discussed in Ref. 16.
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The Cohen-Grossberg theorem is further extended in
the next section when we prove the stability of adap-
tive BAMs. For simplicity we shall continue to ana-
lyze only the additive model, which subsumes the sym-
metric unidirectional autoassociative circuit model
put forth by Hopfield?2 when M = M7,

As shown by Kosko,!%!1 the appropriate bounded
Lyapunov or energy function E for the additive BAM
system [Eqs. (14) and (15)] is

BAB) =S L " §(x)xdx, — S S(a) S) my
i i

b,
-3 s@i+ S jo 'Sy~ S S Iy (19)
i J j

The time derivative of E is computed term by term.
The objective is to factor out S’ (a;) & from terms
involving inputs to a; and S’ (b;) b; from terms involv-
ing inputs to bj, regroup, then substitute in the STM
Egs. (15) and (16). The time derivative of the inte-
grals is equivalent to the sum of the time derivative of
Fla;(t)] for F4 terms, of G[b;(t)] for Fp terms. The
chain rule gives dF/dt = dF/da; da;/dt = S’ (a;) &; a;.
The F,4 input term gives S’ (a;) @; I;. 'The product rule
of differentiation is used to compute the time deriva-
tive of the quadratic form, which gives the sum of the
two endogenous feedback terms in Eqs. (14) and (15)
modulated by the respective terms S’ (a;) @; and S (b;)
bj. Rearrangement then gives

B=- Z S'(ai)di[ ~a; + Z S(bym;; + 1‘]
) J
-y sf(bj)i)j[— b+ Y Slamy + J,]
7 i

== S@ai= > Sb)b?
i i
<0 (19)

on substituting Eqgs. (14) and (15) for the terms in
brackets. Since S’ > 0, Eq. (19) implies that E = 0 if
and onlyiféd; = b;=0foralliandj. At equilibrium all
activations and signals are constant. Since M was an
arbitrary n X p real matrix, this proves that every
matrix is continuously bidirectionally stable.

As Hopfield?? has noted, in the high-gain case when
the sigmoid signal function S is steep, the integral
terms vanish from Eq. (18). Then the equilibria of the
continuous energy E in Eq. (18) are the same as those
of the bivalent energy E in Eq. (5), namely, the vertices
of the product unit hypercube I" X I or, equivalently,
the binary points in B* X BP. Continuous BAM con-
vergence then has an intuitive fuzzy set interpretation.
A fuzzy set is simply a point in the unit hypercube I" or
I, Each component of the fuzzy set is a fit!4 (rather
than bit) value, indicating the degree to which that
element fits in or belongs to the subset. In a unit
hypercube, the midpoint of the hypercube, M = (1/2,1/
2, ... ,1/2) has maximum fuzzy entropy!4 and binary
vertices have minimum fuzzy entropy. In a continu-
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ous BAM the trajectory of an initial input pattern—an
ambiguous or fuzzy key vector—is from somewhere
inside I® X IP to the nearest product-space binary
vertex. Hence this disambiguation process is precise-
ly the minimization of fuzzy entropy.!114

V. Adaptive BAMs

BAM convergence is quick and robust when M is
constant. Any connection topology always rapidly
produces a stable contrast-enhanced STM reverbera-
tion across F4 and Fg. Thisstable STM reverberation
is not achieved with a lateral inhibition or competi-
tive!%23 connection topology within the Fy and Fjg
fields, as it is in the adaptive resonance model,? since
there are no connections within F4 and Fg. The idea
behind an adaptive BAM is to gradually let some of
this stable STM reverberation seep into the LT'M con-
nections M. Since the BAM rapidly converges and
since the STM variables a; and b; change faster than
the LTM variables m;; change in learning, it seems
reasonable that some type of convergence should occur
if the m;; change gradually relative to a; and b;. Such
convergence depends on the choice of learning law for
mi;. .
In this section we show that, if m;; adapts according
to a generalized Hebbian learning law, every BAM
adaptively resonates in the sense that all nodes (STM
traces) and edges (LL.TM traces) quickly equilibrate.
This real-time learning result extends the Lyapunov
approach to the product space I X IP X R"*p, The
LTM traces m;; tend to learn the associations (A;,B;) in
unsupervised fashion simply by presenting A; to the
bottom-up field of nodes F,4 and simultaneously pre-
senting B; to the top-down field of nodes Fz. Input
patterns sculpt their own attractor basins in which to
reverberate. In addition to simple heteroassociative
storage and recall, simulation results show that a pure
bivalent association (A;,B;) can be quickly learned, or
abstracted from, noisy gray-scale samples of (A;,B;).
Many continuous mappings, such as rotation map-
pings, can also be learned by sampling instantiations of
the mappings, often more instantiations than permit-
ted by the storage capacity constraint m < min(n,p) for
simple heteroassociative storage.

How should a BAM learn? How should synapse m;;
change with time given successive experience? In the
simplest case no learning occurs, so m;; should decay to
0. Passive decay is most simply a model with a first-
order decay law:

;= —my, (20)
so that m;;(t) = m;;(0) e~* — 0 as time increases. This
simple model contains two ubiquitous features of un-
supervised real-time learning models: exponentiation
and locality. The mechanism of real-time behavior is
exponential modulation. Learning only depends on
locally available information, in this case m;;. These
two properties facilitate hardware instantiation and
increase biological plausibility.

What other information is locally available to the
synapse m;;? Only information about a; and b;. What



is the simplest way to additively include information
about a; and b; into Eq. (20)? Multiply or add a; and
bj—a; b; or a; + b;. Multiplicative combination is
conjunctive; learning requires signals from both neu-
rons. Additive combination is disjunctive; learning
only requires signals from one neuron. Hence associa-
tive learning favors the product a; b;. This choice is
also an approximation of the correlation coding
scheme (9) and produces a naive Hebbian learning law:

;= —my; + a;bj. (21)

Again scale constants can be added as desired. Inte-
gration of Eq. (21) shows that, in principle, m;; can be

unbounded since a; and b; can, in principle, just grow

and grow. This possibility is sure to occur in feedback
networks. So Eq. (21) is unacceptable. Moreover, on
closer examination of m;;, which symmetrically con-
nects the ith neuron in F4 with the jth neuron in Fg, we
see that the activations a; and b; are not locally avail-
able to m;;.

Only the signals S(a;) and S(b;) are locally available
to m;;. InEq. (8) the bipolar vectors can be interpret-
ed as vectors of threshold signals. So the simplest way
to include the locally available information to m;; is to
add the bounded signal correlation term S(a;) S(b;) to
Eq. (20). We call this a signal Hebb law:

Clark Guest (personal communication) notes that (22)
is equivalent to the dynamic beam coupling equation
in adaptive volume holography. The dynamic system
of Eqgs. (16), (17), and (22) defines an adaptive BAM.
Suppose all nodes and edges have equilibrated. Then
the equilibrium value of m;; is found by setting the
right-hand side of Eq. (22) equal to 0:

my; = 8,(a)S,(b). (23)

The signal Hebb law is bounded since the signals are
bounded. Suppose for definiteness that S is a bipolar
signal function. Then

~128(a)S) < L. (24)

The signal product is +1 if both signals are +1 or both
are —1. The product is —1 if one signal is +1 and the
other is —1. Thus the signal product behaves as a
biconditional or equivalence operator in a fuzzy or
continuous-valued logic. This biconditionality un-
derlies the interpretation of the association (A;B;) as
the conjunction IF A; THEN B;, and IF B; THEN A;.
Moreover, the bipolar endpoints —1 and +1 can be
expected to abound with a steep bounded S.

Suppose m;j is maximally increasing due to S(a;)
S(bj) = 1. Then Eq. (22) reduces to the simple first-
order equation

my;+my; =1, (25)

which integrates to
t
m,;(t) = e™'m,;(0) +[ e~ 9ds
0
= e“mij(O) +(1—-e7

— 1 ast increases for any initial m,-j(O). (26)

Similarly, if m;; is maximally decreasing, the right-
hand side of Eq. (24) is —1 and m;; approaches +1
exponentially fast independent of initial conditions.
This agrees with Eq. (23). The signal Hebb law (22)
asymptotically approaches the bipolar correlation
learning scheme (8) for a single data pair. So the
learning BAM for simple heteroassociative storage can
still be expected to be capacity constrained by m <
min(n,p).

The BAM memory medium produced by Eq. (22) is
almost perfectly plastic. Scaling constants in Eq. (22)
must be carefully chosen. In particular, the forget
term —m;; in Eq. (22) must be scaled with a constant
less than unity. Otherwise present learning washes
away past learning m;;(0). In practice this means that
a training list of associations (A1,B4), ... ,(A,,Bn)
should be presented to the adaptive BAM system more
than once if each pair (A;,B;) is presented for the same
length of time. Alternatively, the training list can be
presented once if the first pair (A;,B;) is presented
longer than (As,B5) is presented, (As,Bs) longer than
(A3,B3), (A3,B3) longer than (A4,By), and so on. This
holds because the general integral solution to Eq. (22)
is an exponentially weighted average of sampled pat-
terns.

In what sense does the adaptive BAM converge?
We prove below that it always converges in the sense
that nodes and edges rapidly equilibrate or resonate
when environmentally perturbed. Recall and learn-
ing can simultaneously occur in a type of adaptive
resonance.*? ~

At this point it is instructive to distinguish simple
adaptive BAM behavior from standard adaptive reso-
nance theory (ART) behavior. The high-level pro-
cessing behavior of the Carpenter-Grossberg? ART
model can be sketched as follows. Only onenodein Fig
fires at a time, the instar® node b; that won the compe-
tition for bottom-up activation when a binary input
pattern was presented to F4. The winner b; then fans
out its spatial pattern or outstar® tothe nodesin Fy. If
this fan-out pattern sufficiently matches the input
pattern presented to F,, a stable pattern of STM re-
verberation is set up between F4 and Fp, learning can
occur (but need not), and instar b; has recognized or
categorized the input pattern. Otherwise b; is shut off
and another instar winner by fans out its spatial pat-
tern, etc., until a match occurs or, if no match occurs,
until the binary input pattern trains some uncommit-
ted node b, to be its instar. Hence each instar node b;
in the ART model recognizes or categorizes a single
input pattern or set of input patterns, depending on
how high a degree of match is desired. Match degree
can be deliberately controlled. Direct access to a
trained instar is assured only if the input matches
exactly, or nearly, the pattern learned by the instar.
The more novel the pattern presented to Fy, and the
higher the desired degree of match, the longer the ART
system tends to search its instars to classify it.

In the adaptive BAM every Fp node b; in parallel
fans out its outstar across F4, when a STM pattern is
active across Fy. The signal Hebb law (22) distributes

1 December 1987 / Vol. 26, No. 23 / APPLIED OPTICS 4955



recognition capability across all the edges of all the b;
nodes so that most bivalent associations are unaffected
by removing a particular node. The closest analogtoa
specifiable degree of match in a BAM is the storage-
capacity relationship between pattern number and
pattern dimensionality, m < min(n,p). The closer m
is to the maximum reliable capacity, the greater the
~ match, between an input pattern and a stored associa-

tion (A;,B;), required to evoke (A;,B;) into a stable
STM reverberation. When m is small relative to the
maximum capacity, there tend to be few basins of
attractions in the state space I X I, the basins tend to
have wide diameters, and they tend to correspond to
the stored associations (A;B;). Each stored associa-
tion tends to recognize or categorize a large set of input
stimuli,. When m is large, there tend to be several
basins, with small diameters. When m islarge enough,
only the exact patterns A; or B; will evoke (A;B;).
Within capacity constraints, all inputs tend to fall into
the basin of the nearest stored association and thus
have direct access to nearest stored associations. Nov-
el patterns are classified or misclassified as rapidly as
more familiar patterns.

Learning can also occur in an adaptive BAM during
the rapid recall process. Familiar patterns tend to
strengthen or restrengthen the reverberating associa-
tions they elicit. Novel patterns tend to misclassify to
spurious energy wells (attractor basins), which in ef-
fect recognize them, or by Eq. (22) they tend to dig
their own energy wells, which thereafter recognize
them. Asthesimulationresults discussed below show,
many more patterns can be stably presented to the
BAM than min(n,p) if they resemble stored associa-
tions. Otherwise the forgetting effects of Eq. (22)
prevail and at any moment the adaptive BAM tends to
remember no more than the most recent min(n,p)-
many distinct inputs (elicited associations).

We now prove that the adaptive BAM converges to
local energy minima. Denote the bounded energy
function in Eq. (18) by F. Then the appropriate ener-
gy or Lyapunov function for the adaptive BAM dy-
namic system of Egs. (16), (17), and (22) is simply

EABM) =F+1/23 > mp, @7)
[

since the time derivative of 1/2 m? is mjh;;. Thisnew

energy function is bounded since each m;; is bounded.
When the product rule of differentiation is applied to
the time-varying triple product in the quadratic form
component of F [Eq. (18)], we get the triple sum

i S(a)S(b) + §'(a)a;m;S(b) + §'(b)bm;S(a,).

In the nonlearning continuous BAM the first term of
this triple sum was zero and the new sum of squares in
Eq. (27) was constant and hence made no contribution
to Eq. (19). Now the time derivative of E in Eq. (27)
gives, on rearrangement,

b= =SS iy 18@)86) - my) - 3 8162 - S 982
i

i J
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== mE= > Sadat— > 86
[ i j
<0, (28)

on substituting the signal Hebb learning law (22) for
the term in brackets in Eq. (28). Hence an adaptive
BAM is a dissipative dynamic system that generalizes
the nonlearning continuous BAM dissipative system.
When energy stability is reached, when E = 0, Eq. (28)
and S’ > 0 imply that both edges and nodes have
stabilized: rm;;=a;=b;=0foralliand;j. Henceevery
signal Hebb BAM adaptively resonates. This result
further generalizes in a straightforward way to any
number of layered BAM fields that are interconnected,
not necessarily contiguously, by Eq. (22).

Can an adaptive BAM learn and recall simulta-
neously? In the ART model* a mechanism of atten-
tional gain control [inhibition due to the sum of Fjp
signals S(b;)] is introduced to enable neurons q; in F4
to distinguish environmental inputs I from top-down
feedback patterns B. In principle, an attentional gain
control mechanism can also be added to an adaptive
BAM. Short of this new mechanism, how can neuron
a; distinguish external input I; and internal feedback
input from Fg? InEq. (14) these terms both additive-
ly effect the time change of a;. So external and inter-
nal feedback to @; can only differ in their patterns of
magnitude and duration over some short time interval.
If the magnitude and duration of inputs are indistin-
guishable, the inputs are indistinguishable to a;.
When they differ, g; can in principle learn and recall
simultaneously.

Suppose a randomly fluctuating, uninformative en-
vironment confronts the adaptive BAM. Then I;
tends to have zero mean in short time intervals. This
allows g; to be driven by internal feedback from Fg. If
learning is permitted, familiar STM reverberations,
evoked perhaps by other a; (or b;), can be strength-
ened. When I; remains relatively constant over an
interval, a new pattern can be learned, and can be
learned while F4 and Fg reverberate, eventually domi-
nating those reverberations. If the reverberations are
spurious, learning is enhanced by appropriately
weighting I;. Insimulations, scaling I; by p, the num-
ber of neurons in Fg, has proved effective presumably
because it balances the magnitude of I; against the
magnitude of the internal Fg feedback sum in Eq. (14).

An extension of these ideas is the sampling adaptive
BAM. Thereis a trade-off between learning time and
learning samples. The standard learning model is to
present relatively few samples for long lengths of
learning time, typically until learning converges or is
otherwise terminated, as in simple heteroassociative
storage, or to present few samples over and over, as in
backpropagation.l’-20 In what we shall call sampling
learning several samples are presented briefly—typi-
cally many more patterns than neuron dimensional-
ity—and the underlying patterns, associations, or
mappings are better learned as sample size increases.
Learning is not allowed to converge. Only a brief pulse
of learning occurs for each sample. When the sam-
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Fig.4. Sampling adaptive BAM noisy training set. Forty-eight randomly generated gray-scale noise patterns are presented to the system.

Unlike in simple heteroassociative storage, no sample is presented long enough for learning to fully or nearly converge. Twenty-four of the

samples are noisy versions of the bipolar association (Y, W); twenty-four are noisy versions of (B,Z). Three samples are displayed from each

training set. Samples are presented four at a time—from the (Y,W) training set, then four from the (B,Z) training set, then the next four from

the (Y,W) training set, etc. Both fields F4 and Fp contain forty-nine samples, violate the storage capacity m « min(n,p) for simple
heteroassociative storage.

pling learning technique is applied to the adaptive
BAM, a sampling adaptive BAM resuilts. For exam-
ple, an adaptive BAM can rapidly learn a rotation
mapping, if n = p, by simply presenting a few spatial
patterns at F4 and concurrently presenting the same
pattern rotated some fixed degree at Fz. Thereafter
any pattern presented at F4 produces the stable STM
reverberation with the input pattern at F4 and its
rotated version at Fg.

We note that Hecht-Nielsen2* has developed his
feedforward counterpropagation sampling learning
technique for learning continuous mappings, and
probability density functions that generate mappings,
by applying Grossberg’s outstar learning theorem??
and by applying the sampling learning technique to
Grossberg’s unsupervised competitive learning223;

m,-j = (ll - mu)b], (29)

which is also used in the ART model,* where
(i1, . . . ,in) is anormalized input pattern or probability
distribution presented to F4 and b; provides competi-
tive modulation, e.g., b; = 1 if b; wins the Fp instar

competition for activation and b; = 0 otherwise. For
simple autoassociative storage the competitive instar
learning law (29) is also dimension bounded for non-
sampling learning. Nomore distributions at F4 can be
recognized at Fp than, obviously, the number p of
instar nodes at Fg. Yet Hecht-Nielsen?* has demon-
strated that sampling learning with Eq. (29) can learn a
sine wave, which has minimal dimensionality, well
with thirty neurons and a few hundred random sam-
ples, almost perfectly with a few thousand random
samples. '

Figures 4-6 display the results of a sampling BAM
experiment. F4 and Fp each contain forty-nine gray-
scale neurons arranged in a 7 X 7 pixel tray. The
output of the bipolar logistic signal function S(x) is
discretized to six gray-scale levels, where S(x) = —1 is
white and S(x) = lisblack. S(x) =—1ifactivationx <
—51,S8(x) =1if x > 51. Forty-eight randomly generat-
ed gray-scale noise patterns are presented to the adap-
tive BAM. The forty-eight samples violate the stor-
age capacity m <« min(n,p) for simple
heteroassociative storage. Figure 4 displays six of
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Fig.5. Sampling adaptive BAM associative recall and abstraction. A new noisy version of Yis presented to field F4. Initial BAM STM acti-
vation across F4 and Fp is random. The BAM converges to the pure bipolar association (Y, W) it has never experienced but has abstracted
from the noisy training samples in Fig. 4.

these random samples. Twenty-four of the samples
are noisy versions of the bipolar association (Y,W);
twenty-four are noisy versions of (B,Z). Noise was
created by picking numbers in [—60,60] according to a
uniform distribution, then adding them to the activa-
tion values, —52 or 52, underlying the bivalent signal
values making up (Y,W) and (B,Z). Unlike in simple
heteroassociative storage, no sample is presented long
enough for learning to fully or nearly converge. Sam-
ples are briefly presented four at a time—four from the
(Y,W) training set, then four from the (B,Z) training
set, then the next four from the (Y, W) training set, and
so on to exploit the exponentially weighted averaging
effects of the signal Hebb learning law (22).

Figure 5 demonstrates recall and abstraction with
the sampling adaptive BAM. A new noisy version of Y
is presented to field F4. The initial STM activation
across Fy and Fp is random. The BAM converges to
the pure bipolar association (Y, W) it has never experi-
enced but has abstracted from the noisy training sam-
ples. As in Plato’s theory of ideals—and unlike the
naive empiricist denial of abstraction of Locke, Berke-
ley, and Hume—it is as if the BAM learns redness from
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red things, smoothness from smooth things, triangu-
larity from triangles, etc., and thereafter associates
new red things with redness, not with most-similar old
red things.

In Figure 6 the BAM is thinking about the STM
reverberation (Y,W). A new noisy version of Z is
presented to field Fp, superimposing it on the (Y,W)
reverberation. The reverberating thought is soon
crowded out of STM by the environmental stimulus Z.
The BAM again converges to the unobserved pure
bipolar association, this time (B,Z), it abstracted from
the noisy training samples.

This research was supported by the Air Force Office
of Scientific Research (AFOSR F49620-86-C-0070)
and the Advanced Research Projects Agency of the
Department of Defense under ARPA Order 5794. The
author thanks Robert Sasseen for developing all soft-
ware and graphics.
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NOTES: Gaussian spectral dansity: p(E) = (2no0) ~ Y N exp {= (E = Eq) 21202}
damped sinusald: ()= Ag exp (ag + fupt]
epectral dansily of dampad sinusold: [Flu) = Agiod + (w - wgl] = %

For matching ot apacial densities to second order about tha peak,
438 0= ogh, No = (ogh#1Ag), and Eg = hagy2e, where

1 = time, h = Planck's constant,

o = standard daviation, o = angular frequoncy,

Ng = Gaussian tina intensity. AQ = amplituds of sinusoid, and

Ep = enorgy of spactral line, ¢ = damping constant.
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Fig. 2. Spectral density of a damped sinusoid and a Gaussian
approximate each other near the peak when the parameters of the
two distributions are chosen appropriately.

no intervention by the operator is required: It is not necessary to
exercise subjective judgment to set parameters that depend on the
type of spectrum being analyzed. The technique is based on the
similarities between the zero- and second-order terms of the Taylor-
series expansions of a Gaussian distribution and of a damped sinu-
soid (the first-order terms are zero): The two zero-order terms and
the two second-order terms become equal when the peak amplitudes
of the two distributions are set equal at the sinusoidal-oscillation
frequency, and the standard deviation of the Gaussian is matched,
on the frequency scale, to the damping constant of the sinusoid.
Thus, the two distributions are made to approximate each other in
the vicinity of the peak (see figure). However, the two distributions
differ far from the peak, where the damped sinusoid is more consis-
tent with measured data.

A principal advantage of the algorithm is that there is no require-
ment to adjust weighting factors or other parameters when analyzing
general x-ray spectra. Thus, there is no erroneous subjective bias.
All spectra, no matter how complicated, are analyzed with the same
routine. The algorithm uses only the magnitude Fourier spectrum
to calculate the distribution parameters, whereas some analytical
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procedures require the use of complex (phase and magnitude) spec-
tral data. In this case, only the magnitude data are available from
the spectral densities.

This work was done by David Nicolas, Clayborne Taylor, and
Thomas Wade of Marshall Space Flight Center. Inquiries concern-
ing rights for the commercial use of this invention should be ad-
dressed to the Patent Counsel, Marshall Space Flight Center. Refer
to MFS-26039.

Baseband processor for communication satellites

A baseband processing (BBP) system for advanced satellite com-
munications has been successfully demonstrated. This system pro-
vides increased data capacity through frequency-reusing multibeam
antenna systems, using time-division multiple access (TDMA) and
onboard satellite switching. Large numbers of thin-route trunking
stations and user-based earth terminals are handled efficiently by
satellite baseboard switching. The baseband processor that per-
forms this function is one of the primary subsystems for the next
generation of satellite communication systems. With the BBP sys-
tem, the satellite can route data messages individually among loca-
tions anywhere in the continental United States. The function of
the BBP system as a part of the satellite transponder system is to
process, control, and route message traffic among individual users
equipped with onsite ground terminals and among thin-route trunk-
ing terminals served by both the scanning-beam and fixed-beam
antennas. The BBP system is-required to include the nonblocking
switching of data on individual channels, the interconnection of any
terminals to any other terminal on a point-to-point basis, and inter-
connection of any terminal to any other set of terminals in a limited
broadcast mode.

A description of the operation of the baseband processor begins
with the incoming uplink traffic. Messages are transmitted to the
satellite in a TDMA format. The messages arriving at the input of
the BBP system are demodulated down to baseband. Messages that
may have been encoded for rain-fade compensation are decoded.
The messages are then stored in one of two input memories. While
one memory is being loaded, the other is being unloaded. The 64-
bit-word messages being unloaded from the input memories are
routed to the output memories through the routing switch on a word-
by-word basis. The output memories work like the input memories:
one is unloading while the other is being loaded. The message
stream of 64-bit words being unloaded from the memories is encoded
where needed for rain-fade compensation and modulated to the
downlink frequency, whereupon it exits the BBP system. The
BBP-system digital routing controller, as programed from the mas-
ter-control ground station, routes the messages properly through the
BBP system, and controls the uplink and downlink scanning-beam
sequencing.

The user, although his/her messages are being broken down, com-
pressed into bursts, and time-division multiplexed with many other
messages, sees a continuous, unbroken connection with whomever
he/sheis communicating. Figure 3 shows the functional diagram for

continued on page 4971



