
Bayesian Bidirectional Backpropagation Learning
Olaoluwa Adigun

Signal and Image Processing Institute
Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, CA 90089-2564.

adigun@usc.edu

Bart Kosko
Signal and Image Processing Institute

Department of Electrical and Computer Engineering
University of Southern California
Los Angeles, CA 90089-2564.

kosko@usc.edu

Abstract—We show that training neural classifiers with
Bayesian bidirectional backpropagation improves the perfor-
mance of the network. Bidirectional backpropagation trains a
deep network for both forward and backward recall through the
same layers of neurons and with the same weights. It maximizes
the network’s joint forward and backward likelihood. Bayesian
bidirectional backpropagation combines prior probabilities at
the input and output layers with the likelihood structure of the
layers. It maximizes the posterior probability of the network. It
differs from other forms of neural Bayesian estimation because
it uses the bidirectional likelihood of the network instead of the
unidirectional likelihood. Bayesian bidirectional backpropagation
outperformed classifiers trained with both unidirectional and
bidirectional backpropagation. The networks trained on the
CIFAR-10 and CIFAR-100 image test sets. A Laplacian or Lasso-
like prior outperformed both Gaussian and uniform priors.

Index Terms—Bidirectional backpropagation, regularization
term, backpropagation invariance, Bayesian training

I. BAYESIAN BIDIRECTIONAL BACKPROPAGATION

We show how prior probabilities can improve the likelihood
structure of the recent bidirectional backpropagation algorithm
[1]–[4]. This greater control over the network’s layer likeli-
hood structure improves classification accuracy.

Bidirectional backpropagation allows deep networks to run
and train in reverse through the same network structure.
Bidirectional operation exploits information in the training
data that forward-only operation simply ignores. It also takes
full advantage of the likelihood structure of all neural layers.
This allows the careful addition of layer priors to improve
classification or regression.

Figure 1 shows the Bayesian bidirectional architecture when
the input weights include a Laplacian prior on the multivariate
normal likelihood. The identity input neurons define a regres-
sor in the backward direction. The Laplacian prior acts like a
Lasso or l1 constraint on the backward regression. Figures 2
and 3 show image samples from the respective CIFAR-10 and
CIFAR-100 datasets that trained the deep neural classifiers.

Ordinary backpropagation trains a neural network for for-
ward inference from an input pattern x to an output vector y
for classification or regression [5]–[7]. This backpropagation
training is a form of the Expectation-Maximization algorithm
[8], [9]. So it iteratively climbs the nearest hill of likelihood or
log-likelihood in parameter space. It also maximizes only the
forward likelihood pf (y|x,Θ) for a given vector of network
parameters Θ [8], [9].

Bidirectional backpropagation maximizes both the for-
ward likelihood pf (y|x,Θ) and the backward likelihood
pb(x|y,Θ). It does not overwrite the forward training because
it maximizes the joint likelihood. Ordinary backpropagation
training ignores the backward probability because it maxi-
mizes only the forward likelihood pf (y|x,Θ).

The key idea is that the forward and backward
training epochs maximize the likelihood product
pf (y|x,Θ)pb(x|y,Θ). So bidirectional backpropagation
maximizes the sum L of the log-likelihoods [1], [2], [4]:

L = log pf (y|x,Θ) + log pb(x|y,Θ). (1)

The log-likelihood sum L corresponds to different error
functions in general. Using the correct error function at the
terminal layers prevents overwriting. It also allows the network
to exploit more of the information in the input-output training
data. Then running a bidirectionally trained classifier in reverse
produces an estimate of a pattern-class centroid at the input
because the input layer acts as a regressor with a squared-error
error function. But running a forward-only trained classifier in
reverse tends to produce only noise at the input.

Figure 4 shows these different effects in a trained deep
classifier. The network had 7 hidden layers with 512 ReLU
neurons in each hidden layer. The network had 10 output
softmax neurons and it trained on the CIFAR-10 image dataset.
Panel (b) shows that the network’s backward pass produced
only visual noise after it trained with ordinary or unidirec-
tional backpropagation. Panel (c) shows that the bidirectionally
trained network’s backward pass produced good centroidal
estimates of the pattern class given the same pattern-class
labels or unit bit vectors as input stimuli.

The bidirectionally trained network in Figure 4 also had
better classification accuracy with only slightly greater training
cost. It had 56.07% accuracy while the unidirectionally trained
classifier had only 54.36% accuracy. Bayesian bidirectional
training with the Laplacian or Lasso-like prior in (52) fur-
ther increased the classification accuracy to 57.01%. Training
on the CIFAR-10 dataset also produced overwriting in the
backward direction for unidirectional backpropagation but not
for bidirectional backpropagation. The bidirectionally trained
network had 28.02% classification accuracy on the CIFAR-100
dataset. The unidirectionally trained network had only 26.01%
accuracy.

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

Matching the layer likelihood to the neurons at that layer
preserves the backpropagation learning algorithm. We call this
backpropagation invariance [9]. Backpropagation invariance
ensures that the same backpropagation gradient learning laws
hold at each layer and in each direction. BP invariance also
allows direct noise injection in the layers to improve both
convergence and classification accuracy. This holds because
backpropagation is a special case of generalized Expectation-
Maximization [8], [9] and because we can always noise-boost
the EM algorithm with just that noise that makes the current
signal more probable as the EM algorithm climbs the nearest
hill of log-likelihood [10], [11].

We can extend the joint likelihood structure of bidirectional
backpropagation to a joint posterior structure by adding a prior
probability at the input and output layer. We call this Bayesian
bidirectional backpropagation. It amounts to multiplying the
layer likelihood by the prior. It gives back ordinary likelihood-
only bidirectional backpropagation if the priors are uniform.

Figure 1 shows the posterior structure of Bayesian bidi-
rectional backpropagation. The figure shows the important
case of putting a Laplacian or Lasso-like prior on the input
likelihood layer. The input layer of identity neurons acts as
a regressor when neural signals pass backwards from the
output or classification probability vector y. So it has a
multivariate normal likelihood. Putting a normal prior on this
likelihood gives a type of ridge regressor [12], [13] in the
backward direction. Simulations on the CIFAR-10 and CIFAR-
100 image datasets found that the Laplacian prior produced
better overall classification accuracy than did Gaussian or
uniform priors. Table II also shows that the Laplacian prior did
better with a Gaussian than a Laplacian backward likelihood.

II. BAYESIAN BIDIRECTIONAL BACKPROPAGATION

Bayesian training of a neural network is a form of maximum
a posteriori (MAP) estimation. It maximizes the posterior
f(Θ|x):

f(Θ|x) =
g(x|Θ)h(Θ)∫
g(x|Θ)h(Θ) dΘ

∝ g(x|Θ)h(Θ) (2)

where g(x|Θ) is the likelihood and h(Θ) is the prior density
of the now random vector of parameters Θ. The MAP estimate
ΘMAP equivalently maximizes the log-posterior and thus
maximizes the sum of the log-likelihood and the log-prior:

ΘMAP = arg max
Θ

f(Θ|x) (3)

= arg max
Θ

g(x|Θ)h(Θ) (4)

= arg max
Θ

log g(x|Θ) + log h(Θ) (5)

because the unconditional total-probability denominator term∫
g(x|Θ)h(Θ)dΘ is not a function of Θ.
The bidirectional backpropagation algorithm uses separate

directional posteriors (and can extend to any finite number

of directions). The forward posterior pf (Θ|x) has the usual
network form from Bayes theorem:

pf (Θ|x) =
gf (x|Θ)hf (Θ)∫
gf (x|Θ)hf (Θ) dΘ

∝ gf (x|Θ)hf (Θ) (6)

where gf (x|Θ) is the forward likelihood and hf (Θ) is the
forward prior. The backward posterior pb(Θ|y) has the like
form

pb(Θ|y) =
gb(y|Θ)hb(Θ)∫
gb(y|Θ)hb(Θ) dΘ

∝ gb(y|Θ)hb(Θ) (7)

where gb(y|Θ) is the backward likelihood and hb(Θ) is the
backward prior.

The bidirectional network’s total or joint bidirectional poste-
rior combines the forward posterior pf (Θ|x) and the backward
posterior pb(Θ|y). The conjunctive “and” gives rise to the
posterior product pf (Θ|x)pb(Θ|y) because to first order the
two directional passes are independent of each other. This
gives the joint posterior as this product pf (Θ|x)pb(Θ|y) (this
generalizes to k directions as just the product of the k
directional posteriors). Then the bidirectional MAP estimate
ΘBMAP maximizes the joint bidirectional posterior:

ΘBMAP = arg max
Θ

pf (Θ|x)pb(Θ|y) (8)

= arg max
Θ

gf (x|Θ)hf (Θ)gb(y|Θ)hb(Θ). (9)

Maximizing the log-posterior gives the same MAP estimate:

ΘBMAP = arg max
Θ

log gf (x|Θ) + log hf (Θ)

+ log gb(y|Θ) + log hb(Θ) (10)
= arg max

Θ
log gf (x|Θ) + log gb(y|Θ)

+ log hf (Θ) + log hb(Θ) (11)
= arg max

Θ
log gf (x|Θ) + log gb(y|Θ) + log h(Θ)

(12)

where h(Θ) = hf (Θ)hb(Θ).
The original bidirectional backpropagation (B-BP) algo-

rithm [1], [3], [4], [14] is a form of maximum likelihood
estimation. B-BP training endows a multilayer neural network
with a form of bidirectional inference and proceeds as the joint
gradient optimization of the forward likelihood pf (y|x,Θ) and
the backward likelihood pb(x|y,Θ). So the B-BP maximum-
likelihood estimate ΘBBP has the form

ΘBBP = arg max
Θ

pf (y|x,Θ) pb(x|y,Θ) (13)

= arg max
Θ

log pf (y|x,Θ) + log pb(x|y,Θ). (14)

Suppose the default case that both the forward prior hf (Θ) and
the backward prior hb(Θ) are uniform probability densities.
Then the Bayesian B-BP estimate ΘBMAP reduces to the
original maximum-likelihood B-BP estimate ΘBBP :

ΘBMAP = ΘBBP . (15)

Forward Pass

Backward Pass

Input layer Output layer

PriorBackward likelihood Forward likelihood

Fig. 1: Bayesian Bidirectional Backpropagation: The network maximizes the joint forward and backward posterior probability. The network
diagram shows the simple but practical case of a Laplacian or Lasso-like prior on the input weights. The identity neurons at the input field
give rise to a vector normal likelihood and thus a squared-error error function in the backward direction. The softmax neurons at the output
field give rise to a multinomial likelihood and thus a cross-entropy error function in the forward direction. So the network acts as classifier
in the forward direction and a regressor in the backward direction.

A. Bidirectional Mapping Structure

A bidirectional neural network N is a feedback dynamical
system [4], [15]. It passes neural information forward and
backward through the same web of synapses [1], [4] and thus
weight matrices W and their transposes WT .

The forward pass propagates the input x ∈ X from the
input layer through the hidden layers to the output layer of
the network. The forward pass has the form

at = N (x) (16)

where at represents the activation at the output layer. The
backward pass propagates the target vector t ∈ Y from the
output layer of the network through the hidden layers to its
input layer. This requires propagating t through the transpose
WT of the weight matrices. The backward pass representation
has the form

ax = N T (t) (17)

where ax represents the activation at the input layer.
The inverse mappingN−1 does not exist as a point mapping

in general. But it always exists as set-valued mapping or in-
verse or pullback mapping from the power set of the network’s
range set back to the power set of its pattern domain set. Neu-
ral classifiers use 1-in-K encoding of their K pattern classes
in the forward direction. The K unit basis vectors b1, . . . ,bK

code for the classes and define the K target vectors in forward
training. Then the K pullbacks N−1(bk) partition the input
pattern space RI : RI = N−1(b1)∪· · ·∪N−1(bK). The whole

point of training a classifier is to achieve such a partition that
carves up the pattern space into exactly the right K pattern
classes C1, . . . , CK . Bidirectional processing assists with this
task by using rather than ignoring the associative information
inherent in the backward pass while training.

We next show how to structure this B-BP training for a
bidirectional network that classifies in the forward direction
and regresses in the backward direction. Then the backward-
pass vector N T (bk) of the output target unit bit vector bk

should approximate the sample class centroid of pattern class
Ck because the centroid minimizes the squared error of the
input regression layer. Figure 4 confirms that both likelihood-
only B-BP and Bayesian B-BP estimate these sample class
centroids while ordinary unidirectional BP does not.

1) Forward Likelihood: Supervised training uses labeled
input patterns from the K pattern classes C1, . . . , CK . The
forward pass maps the labeled input vector x to its corre-
sponding target t or unit basis vector bk. The K output
softmax neurons in the classifier define a Bayesian K-class
classifier [16], [17]. Their softmax ratio structure dictates
that this terminal layer has the forward likelihood pf (t|x,Θ)
of a one-shot multinomial. So a vector passing through the
network corresponds to one roll of a K-sided die where the
K sides have different probabilities in general. We encode
the K pattern classes with the K unit bit vectors of the
K−dimensional unit hypercube {0, 1}K . An alternative uses
independent Bernoulli probabilities as the terminal forward
likelihood [18]. The output activation in that case is binary

Algorithm 1 How to train a neural classifier with Bayesian
bidirectional backpropagation.

Require: Dataset D = {x(i),y(i)}Ni=1, batch size L, learning
rate η, backward training start M∗, number M of epochs,
number B of iterations per epoch, penalty parameter λ,
and backward loss coefficient α.

Require: Initialize the network parameter Θ(0).
1: Compute the class centroids for all the K classes:

ck =
1

Nk

Nk∑
j=1

xk(j).

2: Compute the projection x̃k of class centroid ck on the
class sample set Sk for all the K classes:

x̃k = arg min
x(i)∈Sk

||x(i) − ck||2.

3: for m = 1 to M do
4: Pick L random samples from D.
5: Compute the forward pass of the data batch:

at(l) = N (x(l)).

6: Compute the forward error Ef :

Ef = − 1

L

L∑
l=1

t(l)T log at(l).

7: if m < M∗ then
8: Compute the backward pass of the data batch:

ax(l) = N T (t(l)).

9: Compute the backward error Eb:

Eb = − α

2L

L∑
l=1

||ax(l) − x̃(l)||22.

10: Compute the penalty term:

RΘ = λ||Θ||1 .

11: Bidirectional update:

Θ(m+1) = Θ(m) − η∇Θ

(
Ef + Eb +RΘ

)∣∣∣
Θ=Θ(m)

12: else
13:

Θ(m+1) = Θ(t) − η∇Θ

(
Ef +RΘ

)∣∣∣
Θ=Θ(m)

14: end if
15: end for

logistic or bipolar logistic.
The multinomial or categorical forward likelihood has the

form

pf (t|x,Θ) =

K∏
k=1

(
atk
)tk (18)

log pf (t|x,Θ) =

K∑
k=1

tk log atk (19)

where atk is the activation of the kth output neuron and tk

is the target of the kth output neuron with 0 ≤ atk ≤ 1 and∑K
k=1 a

t
k = 1. Then the forward error Ef (Θ) at the output

softmax layer is just the cross-entropy:

Ef (Θ) = − log pf (t|x,Θ) = −
K∑
k=1

tk log atk. (20)

2) Backward Likelihood: The backward pass maps the
target vector t back through the network and its transposed
weight matrices WT to the input pattern space. We modeled
the backward likelihood as a bell curve because the input
neurons have identity activations. We chose the usual vector
Gaussian density function or the vector Laplacian probability
density. These densities give the respective loss functions as
the squared error (SE) or the absolute error (AE). Assume
there are J input neurons.

The backward likelihood pb(x|t,Θ) in the Gaussian or
multivariate-normal case is

pb(x|t,Θ) =
1

2π
J
2

exp−
||ax−x||22

2 (21)

log pb(x|t,Θ) = −J
2

log 2π − 1

2
||ax − x||22 (22)

because pb(x|t,Θ) ∼ Gaussian(x|ax, I). Then the backward
error Eb(Θ) is the negative log-likelihood and thus the squared
error:

Eb(Θ) = − log pb(x|t,Θ)− log(2π)
J
2 (23)

= − log pb(x|t,Θ)− J

2
log 2π (24)

=
1

2
||ax − x||22 (25)

where u = J
2 log 2π does not depend on Θ.

The backward Laplacian likelihood has the form

pb(x|t,Θ) =

J∏
j=1

1

2
exp−|a

x
j−xj | (26)

=
1

2J
exp−

∑J
j=1 |a

x
j−xj | (27)

=
1

2J
exp−||a

x−x||1 . (28)

log pb(x|t,Θ) = −J log 2− ||ax − x||1 (29)

because x = (x1, x2, ..., xJ) consists of J i.i.d. random
variables such that p(xi|t,Θ) ∼ Laplace(xi|ax, 1). This gives
the absolute error (AE) as the backward error Eb(Θ):

Eb(Θ) = − log pb(x|t,Θ)− log 2J (30)
= − log pb(x|t,Θ)− J log 2 (31)
= ||ax − x||1 (32)

where u = J log 2 does not depend on Θ. Then (23)-(25)
and (30)-(32) show that the negative of log pb(x|t,Θ) for the
Laplacian and Gaussian densities equal the sum of Eb(Θ) and
a constant with respect to Θ. So minimizing Eb(Θ) maximizes
the log-likelihood log pb(x|t,Θ) with respect to Θ.

3) Parameter Prior: The prior h(Θ) is the unconditional
distribution of Θ although hierarchical priors can also apply.
The default priors is the uniform prior and reduces Bayesian
B-BP to likelihood-only B-BP as in (15). We also tested
normal and Laplacian (ridge-like and Lasso-like) priors on the
backward weights at the input layer.

The log-prior of the normal prior Θ ∼ Gaussian(Θ|0, τ2I)
involves a squared error:

log h(Θ) = log (2πτ2)
−K2 exp−

||Θ||22
2τ2 (33)

= −K
2

log (2πτ2)− ||Θ||
2
2

2τ2
(34)

= −K
2

log (2πτ2)− λ||Θ||22 (35)

= w − λ||Θ||22 (36)

with λ = 1
2τ2 and w = −K2 log (2πτ2).

The log-prior of the Laplace prior Θ ∼ Laplace(Θ|0, τI)
likewise involves the absolute error:

log h(Θ) = log (2τ)
−K

exp−
||Θ||1
τ (37)

= −K log (2τ)− ||Θ||1
τ

(38)

= −K log (2τ)− λ||Θ||1 (39)
= w − λ||Θ||1 (40)

with λ = 1
τ and w = −K log (2τ).

B. Neural Classifier and Bayesian Bidirectional Backpropa-
gation Algorithm

We next define the classifier-regressor probability structure
that we used to train the Bayesian B-BP classifiers. The
algorithms find the maximizing value Θ∗ with gradient ascent
on the given bidirectional posterior. .

The classifier’s forward likelihood pf (t|x,Θ) is multi-
nomial for output target vector t. Its backward likelihood

pb(x|t,Θ) is vector normal or Gaussian. The backward prior
h(Θ) is Laplacian or a Lasso-like l1 penalty. Then

Θ∗ = arg max
Θ

pf (Θ|t,x) pb(Θ|x, t) (41)

= arg max
Θ

log pf (t|x,Θ) + log pb(x|t,Θ)

+ log h(Θ) (42)
= arg min

Θ
− log pf (t|x,Θ)− log pb(x|t,Θ)

− log h(Θ) (43)
= arg min

Θ
Ef (Θ) + Eb(Θ) + λ||Θ||1 − w (44)

= arg min
Θ

Ef (Θ) + Eb(Θ) + λ||Θ||1 (45)

because (20) and (23) - (25) show that

− log pf (t|x,Θ) = Ef (Θ) (46)
− log pb(x|t,Θ) = Eb(Θ) + u (47)

− log h(Θ) = λ||Θ||1 − w (48)

where u and w do not depend on Θ. This simplifies to

Θ∗ = arg min
Θ

Ef (Θ) + Eb(Θ) + λ||Θ||1 (49)

= arg min
Θ

(
− tT log at +

1

2
||ax − x||22 + λ||Θ||1

)
(50)

= arg min
Θ

(
−

K∑
k=1

tk log atk +
1

2

J∑
j=1

|axj − xj |
2

+ λ||Θ||1
)
.

(51)

Algorithm 1 lists the pseudocode for Bayesian bidirectional
backpropagation with a Laplacian or Lasso-like prior. The
pseudocode describes the Bayesian error function

E(Θ) = −tT log at + α||ax − x||2 + λ||Θ||1 (52)

for a classifier-regressor bidirectional network. The forward
pass uses the one-shot multinomial or categorical distribution.
So its negative logarithm gives the error as a cross-entropy.
The backward pass uses the multivariate Gaussian probability.
So its error function is just the squared error. The forward pass
includes the regularizing Laplacian prior and its corresponding
l1 or absolute error.

III. SIMULATION EXPERIMENTS

A. Datasets

This classification simulations trained and tested on the
CIFAR-10 and CIFAR-100 image datasets.

1) CIFAR-10: CIFAR-10 is a set of 60,000 color images
from 10 classes. The classes are airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck [19]. Each class
consists of 5,000 training samples and 1,000 testing samples.
Each image has dimension of 32× 32× 3.

2) CIFAR-100: CIFAR-100 is a set of 60,000 color images
from 100 pattern classes with 600 images per class. The 100
classes divide into 20 super-classes. Each super-class consists
of 5 classes [19]. Each image has dimension 32×32×3.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Fig. 2: CIFAR-10 sample images: The figure shows 10 samples
from the CIFAR-10 dataset that contains 10 pattern classes and a
total of 60,000 sample images.

Fig. 3: CIFAR-100 sample images: This figure shows 100 samles
from the CIFAR-100 dataset that contains 100 pattern classes with
600 images per class. CIFAR-100 consists of 20 super-classes with
5 classes per super-class.

B. Network Description

We trained deep neural classifiers on the CIFAR-10 and
CIFAR-100 datasets. All the classifier networks used identity
neurons in the input layer and 512 ReLU neurons in each
hidden layer. They used either 10 or 100 softmax neurons
in the output layer. We trained some of the classifiers with
ordinary unidirectional BP as a baseline. We trained the other
classifiers with B-BP either without or with a Bayesian prior. A
dropout value of 0.2 for the hidden-layers reduced overfitting
in the models.

C. Results and Discussion

Table I shows the benefits of using Bayesian bidirectional
backpropagation to train a deep neural classifier. The base-
line trained with unidirectional BP. The backward prior or
penalty/regularizer term was a Laplacian or Lasso-like prior
for B-BP. The table data show that Bayesian B-BP outper-
formed both unidirectional BP and B-BP.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

(a) Target images from the CIFAR-10 dataset for backward pass
through a deep classifier.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

(b) Backward pass: Unidirectional backpropagation produced only
visual noise.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

(c) Backward pass: Bidirectional backpropagation produced centroidal
estimates of the correct pattern class.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

(d) Backward pass: Bayesian bidirectional backpropagation with a
Laplacian prior produced still better centroidal estimates.

Fig. 4: Backward-pass recall in deep classifiers trained the CIFAR-
10 image dataset. The unidirectionally trained classifier produced
only visual noise at the input layer on the backward pass while the
bidirectionally trained classifier produced a good centroidal estimate
of the pattern class. The classifiers used 7 hidden layers with 512
ReLU neurons in each hidden layer and 10 output softmax neurons.
The 3072 input neurons had identity activations and so defined a re-
gression layer on the backward pass. Unidirectional backpropagation
caused overwriting in the backward direction during training while
bidirectional backpropagation did not. Bidirectional and Bayesian
training also had better classification accuracy.

Table II shows the classification accuracy for 4 different
cases of Bayesian B-BP. The simulations compared two dif-
ferent backward likelihoods with two different priors. The
two likelihoods were the usual squared error and the similar
but more robust absolute error. The two priors were the
Gaussian and the Laplacian. The best combination was a
normal backward likelihood (squared error) and a backward
Laplace prior for both the CIFAR-10 and CIFAR-100 datasets.

TABLE I: Bayesian B-BP training outperformed both unidirectional
and likelihood-only B-BP training. Baseline training used unidirec-
tional BP. B-BP outperformed the baseline and Lasso Bayesian B-
BP outperformed likelihood-only B-BP for both the CIFAR-10 and
CIFAR-100 datasets.

Dataset Training Method Penalty Term Accuracy

CIFAR-10
Baseline 54.36%

Bidirectional BP No 55.16%
Bidirectional BP Yes 57.01%

CIFAR-100
Baseline 26.01%

Bidirectional BP No 27.78%
Bidirectional BP Yes 28.02%

TABLE II: 4 types of Bayesian B-BP training. Classifier simula-
tions compared squared-error (SE) Gaussian and absolute-error (AE)
Laplacian backwards likelihoods with Gaussian (SE) and Laplacian
or Lasso-like (AE) priors or penalty terms. The best combination was
a Gaussian likelihood and Laplace prior for both the CIFAR-10 and
CIFAR-100 datasets.

Dataset Backward Loss Penalty Term Accuracy

CIFAR-10
SE SE 55.98%
SE AE 57.01%
AE SE 56.10%
AE AE 56.07%

CIFAR-100
SE SE 27.74%
SE AE 28.02%
AE SE 27.86%
AE AE 27.80%

IV. CONCLUSION

The new bidirectional backpropagation algorithm maxi-
mizes the joint forward and backward likelihood structure of a
given multilayer neural network. Matching the layer likelihood
structure to the layer neuron structures ensures that back-
propagation invariance holds. Then the same backpropagation
gradient learning laws holds in each direction. Maximizing the
bidirectional posterior probability combines a prior probability
structure with the layer likelihood structure. The Lasso-like
Laplace prior in (52) gave the best classifier performance
compared with Gaussian and uniform priors.

REFERENCES

[1] O. Adigun and B. Kosko, “Bidirectional backpropagation,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 5, pp.
1982–1994, 2019.

[2] ——, “Noise-boosted bidirectional backpropagation and adversarial
learning,” Neural Networks, vol. 120, pp. 9–31, 2019.

[3] ——, “Training generative adversarial networks with bidirectional back-
propagation,” in 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). IEEE, 2018, pp. 1178–1185.

[4] B. Kosko, “Bidirectional associative memories: Unsupervised hebbian
learning to bidirectional backpropagation,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 103–115, 2021.

[5] P. J. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” Doctoral Dissertation, Applied Mathematics,
Harvard University, MA, 1974.

[6] D. Rumelhart, G. Hinton, and W. R., “Learning representationsby back-
propagating errors.” Nature, pp. 323–533, 1986.

[7] M. Jordan and T. Mitchell, “Machine learning: trends, perspectives, and
prospects,” Science, vol. 349, pp. 255–260, 2015.

[8] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional
neural networks,” Neural Networks, vol. 78, pp. 15–23, 2016.

[9] B. Kosko, K. Audhkhasi, and O. Osoba, “Noise can speed backprop-
agation learning and deep bidirectional pretraining,” Neural Networks,
vol. 129, pp. 359–384, 2020.

[10] O. Osoba, S. Mitaim, and B. Kosko, “The noisy expectation–
maximization algorithm,” Fluctuation and Noise Letters, vol. 12, no. 3,
pp. 1 350 012–1–1 350 012–30, 2013.

[11] O. Osoba and B. Kosko, “The noisy expectation-maximization algorithm
for multiplicative noise injection,” Fluctuation and Noise Letters, vol. 15,
no. 01, p. 1650007, 2016.

[12] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[13] B. Efron and T. Hastie, Computer age statistical inference. Cambridge
University Press, 2016, vol. 5.

[14] O. Adigun and B. Kosko, “Bidirectional representation and backpropa-
gation learning,” in International Joint Conference on Advances in Big
Data Analytics, 2016, pp. 3–9.

[15] B. Kosko, “Adaptive bidirectional associative memories,” Applied optics,
vol. 26, no. 23, pp. 4947–4960, 1987.

[16] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[18] O. Adigun and B. Kosko, “High capacity neural block classifiers
with logistic neurons and random coding,” in 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–9.

[19] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

