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Abstract—We present the new bidirectional variational autoen-
coder (BVAE) network architecture. The BVAE uses a single
neural network both to encode and decode instead of an encoder-
decoder network pair. The network encodes in the forward
direction and decodes in the backward direction through the
same synaptic web. Simulations compared BVAEs and ordi-
nary VAEs on the four image tasks of image reconstruction,
classification, interpolation, and generation. The image datasets
included MNIST handwritten digits, Fashion-MNIST, CIFAR-
10, and CelebA-64 face images. The bidirectional structure of
BVAEs cut the parameter count by almost 50% and still slightly
outperformed the unidirectional VAEs.

Index Terms—variational autoencoder, bidirectional backprop-
agation, directional likelihoods, ELBO, evidence lower bound

I. DIRECTIONAL VARIATIONAL AUTOENCODERS

This paper introduces the new bidirectional variational
autoencoder (BVAE) network. This architecture uses a single
parametrized network for encoding and decoding. It trains
with the new bidirectional backpropagation algorithm that
jointly optimizes the network’s bidirectional likelihood [1],
[2]. The algorithm uses the same synaptic weights both to
predict the target y given the input x and to predict the
converse x given y. Ordinary or unidirectional VAEs use
separate networks to encode and decode.

Unidirectional variational autoencoders (VAEs) are unsuper-
vised machine-learning models that learn data representations
[3], [4]. They both learn and infer with directed probability
models that often use intractable probability density functions
[5]. A VAE seeks the best estimate of the data likelihood
p(x|θ) from samples {x(n)}Nn=1 if x depends on some observ-
able feature z and if θ represents the system parameters. The
intractability involves marginalizing out the random variable
z to give the likelihood p(x|θ):

p(x|θ) = Ez|θ
[
p(x|z, θ)

]
=

∫
z

p(x|z, θ) p(z|θ) dz. (1)

Kingma and Welling introduced VAEs to solve this compu-
tational problem [5]. The VAE includes a new recognition (or
encoding) model q(z|x, ϕ) that approximates the intractable
likelihood q(z|x, θ). The probability q(z|x, ϕ) represents a
probabilistic encoder while p(x|z, θ) represents a probabilistic
decoder. These probabilistic models use two neural networks

with different synaptic weights. Figure 1a shows the archi-
tecture of such a unidirectional VAE. The recognition model
doubles the number of parameters and the computational cost
of this solution.

The new bidirectional backpropagation (B-BP) algorithm
trains a neural network to run forwards and backwards by
jointly maximizing the respective directional probabilities.
This among other things allows such a network to run back-
ward from output code words to expected input patterns.
Running a unidirectionally trained network backwards just
produces noise. B-BP jointly maximizes the forward likelihood
qf (z|x, θ) and backward likelihood pb(x|z, θ) or the equivalent
sum of their respective log-likelihoods:

θ∗ = argmax
θ

qf (z|x, θ) pb(x|z, θ) (2)

= argmax
θ

ln qf (z|x, θ)︸ ︷︷ ︸
Forward pass

+ ln pb(x|z, θ)︸ ︷︷ ︸
Backward pass

. (3)

A BVAE approximates the intractable q(z|x, θ) with the
forward likelihood qf (z|x, θ). Then the probabilistic encoder
is qf (z|x, θ) and the probabilistic decoder is pb(x|z, θ). So
the two densities share parameter θ and there is no need for a
separate network. Figure 1b shows the architecture of a BVAE.

VAEs vary based on the choice of latent distribution, the
method of training, and the use of joint modeling with other
generative models, among other factors. The β-VAE intro-
duced the adjustable hyperparameter β. It balances the latent
channel capacity of the encoder network and the reconstruction
error of the decoder network [6]. It trains on a weighted
sum of the reconstruction error and the Kullback-Leibler
divergence DKL

(
q(z|x, ϕ)||p(z|θ)

)
. The β-TCVAE (Total Cor-

relation Variational Autoencoder) extends β-VAE to learning
isolating sources of disentanglement [7]. A disentangled β-
VAE modifies the β-VAE by progressively increasing the
information capacity of the latent code while training [8].

Importance weighted autoencoders (IWAEs) use priority
weights to derive a strictly tighter lower bound on the log-
likelihood [9]. Variants of IWAE include the partially im-
portance weighted auto-encoder (PIWAE), the multiply im-
portance weighted auto-encoder (MIWAE), and the combined
importance weighted auto-encoder (CIWAE) [10].

Hyperspherical VAEs use a non-Gaussian latent probability
density. They use a von Mises-Fisher (vMF) latent density that



(a) Unidirectional VAE architecture (b) Bidirectional VAE architecture

Fig. 1: Bidirectional vs. unidirectional variational autoencoders: Unidirectional VAEs use the forward passes of two separate networks for
encoding and decoding. Bidirectional VAEs run their encoding on the forward pass and decoding on the backward pass with the same
synaptic webs–weight matrices in both directions. This cuts the number of tunable parameters roughly in half. (a) The decoder network
with parameter θ approximates p(x|z, θ) and the encoder network with parameter ϕ approximates q(z|x, θ). (b) Bidirectional VAEs use the
forward pass of a network with parameter θ to approximate q(z|x, θ) and the backward pass of the network to approximate p(x|z, θ).

gives in turn a hyperspherical latent space [4]. Other VAEs
include the Consistency Regularization for Variational Auto-
Encoder (CRVAE) [3], the InfoVAE [11], and the Hamiltonian
VAE [12] and so on. All these VAEs use separate networks to
encode and decode.

Vincent et alia [13] suggests the use of tied weights in
stacked autoencoder networks. This is a form of constraint
that parallels the working of restricted Boltzmann machines
RBMs [14] and thus a simple type of bidirectional associative
memory or BAM [15]. It forces the weights to be symmetric
using WT on the backward pass. The building block here
is a shallow network with no hidden layer [16], [17]. They
further suggest that combining this constraint with a nonlinear
activation would most likely lead to poor reconstruction error.

Bidirectional autoencoders BAEs [18] extend bidirectional
neural representations to image compression and denoising.
BAEs differ from autoencoders with tied weights because
they relax the constraint by extending the bidirectional as-
sumption over the depth of a deep network. BAEs differ
from bidirectional VAEs because they do not require the joint
optimization of the directional likelihoods. This limits the
generative capability of BAEs.

The next sections review ordinary VAEs and introduce
probabilistic BVAEs using the new B-BP algorithm. Section
IV compares them on the four standard image test datasets:
MNIST handwritten digits, Fashion-MNIST, CIFAR-10, and
CelebA-64 datasets. We find that BVAEs cut the number
of tunable parameters roughly in half while still performing
slightly better than the unidirectional VAEs.

II. UNIDIRECTIONAL VARIATIONAL AUTOENCODERS

Let p(x|θ) denote the data likelihood and z denote the
hidden variable. The data likelihood simplifies as

p(x|θ) = p(x, z|θ)
q(z|x, θ)

=
p(x|z, θ)p(z|θ)

q(z|x, θ)
. (4)

The likelihood q(z|x, θ) is intractable to solve. So unidirec-
tional VAEs introduce a new likelihood that represents the
recognition or encoding model. The term qf (z|x, ϕ) represents
the forward likelihood of the encoding network that approxi-
mates the intractable likelihood q(z|x, θ):

p(x|θ) = p(x|z, θ)p(z|θ)
q(z|x, θ)

=
p(x|z, θ)p(z|θ)qf (z|x, ϕ)

q(z|x, θ)qf (z|x, ϕ)
. (5)

The corresponding data log-likelihood ln p(x|θ) is

ln p(x|θ) = ln

[
p(x|z, θ)p(z|θ)qf (z|x, ϕ)

q(z|x, θ)qf (z|x, ϕ)

]
(6)

= ln p(x|z, θ) + ln
p(z|θ)

qf (z|x, ϕ)
+ ln

qf (z|x, ϕ)
q(z|x, θ)

(7)

= ln p(x|z, θ)− ln
qf (z|x, ϕ)
p(z|θ)

+ ln
qf (z|x, ϕ)
q(z|x, θ)

. (8)

Now take the expectation of (8) with respect to qf (z|x, ϕ):

Ez|x,ϕ
[
ln p(x|θ)

]
=

∫
z

qf (z|x, ϕ) ln p(x|θ) dz (9)

= ln p(x|θ)
∫
z

qf (z|x, ϕ) dz (10)

= ln p(x|θ) (11)

because qf (z|x, ϕ) is a probability density function and its
integral over the domain of z equals 1. The expectation of the
term on the right-hand side of (8) with respect qf (z|x, ϕ) is

Ez|x,ϕ

[
ln p(x|z, θ)− ln

qf (z|x, ϕ)
p(z|θ)

+ ln
qf (z|x, ϕ)
q(z|x, θ)

]
= Ez|x,ϕ

[
ln p(x|z, θ)

]
−DKL

(
qf (z|x, ϕ)||p(z|θ)

)
+DKL

(
qf (z|x, ϕ)||q(z|x, θ)

)
(12)

where

DKL

(
qf (z|x, ϕ)||p(z|θ)

)
= Ez|x,ϕ

[
ln

qf (z|x, ϕ)
p(z|θ)

]
(13)



Fig. 2: Training a bidirectional variational autoencoder with bidirectional backpropagation algorithm: This framework uses a single network
for encoding and decoding. The forward pass with likelihood qf (z|x, θ) runs the encoding to the latent space. The backward pass with
likelihood pb(x|z, θ) decodes the latent features.

and

DKL

(
qf (z|x, ϕ)||q(z|x, θ)

)
= Ez|x,ϕ

[
ln

qf (z|x, ϕ)
q(z|x, θ)

]
. (14)

Combining (8), (9), and (12) gives

ln p(x|θ) = Ez|x,ϕ
[
ln p(x|z, θ)

]︸ ︷︷ ︸
Decoding

−DKL

(
qf (z|x, ϕ)||p(z|θ)

)︸ ︷︷ ︸
Encoding

+DKL

(
qf (z|x, ϕ)||q(z|x, θ)

)︸ ︷︷ ︸
Error-gap

. (15)

The KL-divergence between qf (z|x, ϕ) and q(z|x, θ) yields
the following inequality because of Jensen’s inequality:

DKL

(
qf (z|x, ϕ)||q(z|x, θ)

)
= Ez|x,ϕ

[
ln

qf (z|x, ϕ)
q(z|x, θ)

]
(16)

=

∫
z

qf (z|x, ϕ) ln
qf (z|x, ϕ)
q(z|x, θ)

dz (17)

= −
∫
z

qf (z|x, ϕ) ln
q(z|x, θ)
qf (z|x, ϕ)

(18)

≥ − ln

∫
z
�����qf (z|x, ϕ)

q(z|x, θ)
�����qf (z|x, ϕ)

(19)

= − ln

∫
z

q(z|x, θ) dz (20)

= − ln 1 = 0 (21)

because the negative of the natural logarithm is convex. So

ln p(x|θ) ≥ Ez|x,ϕ
[
ln p(x|z, θ)

]
−DKL

(
qf (z|x, ϕ)||p(z|θ)

)︸ ︷︷ ︸
L(x, θ, ϕ)

(22)

and

L(x, θ, ϕ) = Ez|x,ϕ
[
ln p(x|z, θ)

]
−DKL

(
qf (z|x, ϕ)||p(z|θ)

)
(23)

where L(x, θ, ϕ) is the evidence lower bound (ELBO) on the
data log-likelihood p(x|θ).

Unidirectional VAEs train on the estimate L̃ELBO(x, θ, ϕ) of
the ELBO using ordinary or unidirectional backpropagation
(BP). This estimate involves using the forward pass qf (z|x, ϕ)
to approximate the intractable encoding model q(z|x, θ) and
the forward pass pf (x|z, θ) to approximate the encoding
model. The gradient update rules for the encoder and decoder
networks at the (n+ 1)th iteration or training epoch are

θ(n+1) = θ(n) + η∇θ L̃ELBO(x, θ, ϕ)

∣∣∣∣∣
θ=θ(n),ϕ=ϕ(n)

(24)

ϕ(n+1) = ϕ(n) + η∇ϕ L̃ELBO(x, θ, ϕ)

∣∣∣∣∣
θ=θ(n),ϕ=ϕ(n)

(25)

where η is the learning rate, ϕ(n) is the encoder parameter,
and θ(n) is the decoder parameter after n training iterations.



III. BIDIRECTIONAL VARIATIONAL AUTOENCODERS

Bidirectional VAEs use the directional likelihoods of a net-
work with parameter θ to approximate the data log-likelihood
ln p(x|θ). They use the same bidirectional associative network
to model the encoding and decoding phases. The forward-pass
likelihood qf (z|x, θ) models the encoding and the backward-
pass likelihood pb(x|z, θ) models the decoding. So BVAEs do
not need an extra likelihood q(z|x, ϕ) or an extra network with
parameter ϕ.

The data log-likelihood is

p(x|θ) = p(x|z, θ)p(z|θ)
q(z|x, θ)

. (26)

Then

ln p(x|θ) = ln

[
p(x|z, θ)p(z|θ)

q(z|x, θ)

]
(27)

= ln

[
p(x|z, θ)p(z|θ)qf (z|x, θ)

q(z|x, θ)qf (z|x, θ)

]
(28)

= ln
[
p(x|z, θ)

]
− ln

[
qf (z|x, θ)
p(z|θ)

]
+ ln

[
qf (z|x, θ)
q(z|x, θ)

]
. (29)

Now take the expectation of (29) with respect to qf (z|x, θ)
and consider the left-hand side of (29):

Ez|x,θ
[
ln p(x|θ)

]
=

∫
z

qf (z|x, θ) ln p(x|θ) dz (30)

= ln p(x|θ)
∫
z

qf (z|x, θ) dz (31)

= ln p(x|θ). (32)

The expectation of the right-hand term is

Ez|x,θ

[
ln p(x|z, θ)− ln

qf (z|x, θ)
p(z|θ)

+ ln
qf (z|x, θ)
q(z|x, θ)

]
= Ez|x,θ

[
ln p(x|z, θ)

]
−DKL

(
qf (z|x, θ)||p(z|θ)

)
+DKL

(
qf (z|x, θ)||q(z|x, θ)

)
(33)

where

Ez|x,θ

[
ln

qf (z|x, θ)
p(z|θ)

]
= DKL

(
qf (z|x, θ)||p(z|θ)

)
(34)

and

Ez|x,θ

[
ln

qf (z|x, θ)
q(z|x, θ)

]
= DKL

(
qf (z|x, θ)||q(z|x, θ)

)
. (35)

The corresponding data log-likelihood of a BVAE with
parameter θ is

ln p(x|θ) = Ez|x,θ
[
ln p(x|z, θ)

]︸ ︷︷ ︸
Decoding

−DKL

(
qf (z|x, θ)||p(z|θ)

)︸ ︷︷ ︸
Encoding

+DKL

(
qf (z|x, θ)||q(z|x, θ)

)︸ ︷︷ ︸
Error-gap

. (36)

The log-likelihood of the BVAE is such that

ln p(x|θ) ≥ Ez|x,θ
[
ln p(x|z, θ)

]
−DKL

(
qf (z|x, θ)||p(z|θ)

)︸ ︷︷ ︸
L(x, θ)

(37)

because the KL-divergence DKL

(
qf (z|x, θ)||q(z|x, θ)

)
≥ 0. So

L(x, θ) = Ez|x,θ
[
ln p(x|z, θ)

]
−DKL

(
qf (z|x, θ)||p(z|θ)

)
(38)

where L(x, θ) is the ELBO on ln p(x|θ) and we take the
expectation Ez|x,θ with respect to qf (z|x, θ).

Bidirectional VAEs train on the estimate L̃ELBO(x, θ) of
the ELBO that uses bidirectional neural representation [2].
This estimate involves using the forward pass qf (z|x, θ) to
approximate the intractable encoding model q(z|x, θ) and the
reverse pass pb(x|z, θ) to approximate the decoding model.
The update rule at the (n+1)th iteration or training epoch is

θ(n+1) = θ(n) + η∇θL̃ELBO(x, θ)

∣∣∣∣∣
θ=θ(n)

(39)

where η is the learning rate and θ(n) is the autoencoder
network parameter just after the nth training iteration. Figure
2 shows the probabilistic approximation of a BVAE with the
directional likelihoods of a bidirectional network.

IV. SIMULATIONS

We compared the performance of unidirectional VAEs and
bidirectional VAEs using different tasks, datasets, network
architectures, and loss functions. We first describe the image
test sets for our experiments.

A. Datasets

The simulations compared results on four standard image
datasets: MNIST handwritten digits [19], Fashion-MNIST
[20], CIFAR-10 [21], and CelebA [22] datasets.

The MNIST handwritten digit dataset contains 10 classes
of handwritten digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This dataset
consists of 60,000 training samples with 6,000 samples per
class, and 10,000 test samples with 1,000 samples per class
Each image is a single-channel image with dimension 28×28.

The Fashion-MNIST dataset is a database of fashion images.
It is made of 10 classes namely ankle boot, bag, coat, dress,
pullover, sandal, shirt, sneaker, trouser, and t-shirt / top. Each
class has 6,000 training samples and 1,000 testing samples.
Each image is also a single-channel image with dimension
28× 28.

The CIFAR-10 dataset consists of 60,000 color images from
10 categories. Each image has size 32×32×3. The 10 pattern
categories are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Each class consists of 5,000 training
samples and 1,000 testing samples.

The CelebA dataset is a large-scale face dataset of 10,177
celebrities [22]. This dataset is made up of 202,599 color



(a) Bidirectional convolutional (Bi-Conv2D) layer (b) Bidirectional residual block (Bi-ResBlock)

(c) Bidirectional residual VAE network

Fig. 3: Bidirectional VAE with residual network architecture: This cuts the tunable parameters roughly in half compared with unidirectional
VAEs. (a) is the bidirectional convolutional layer. Convolution runs in the forward pass and convolution transpose runs in reverse with the
same set of convolution masks. (b) is the architecture of a bidirectional residual block with bidirectional skip connections.

(three-channel) images. This is not a balanced dataset. The
number of images per celebrity varies between 1 − 35. We
divided the dataset into two splits of 9,160 celebrities for train-
ing and 1,017 celebrities for testing the VAEs. This resulted
in 185,133 training samples and 17,466 testing samples. We
resized each image to 64× 64× 3.

B. Tasks

We compared the performance of bidirectional VAEs and
unidirectional VAEs on the following four tasks.

1) Image compression and reconstruction: We tested the
self-mapping of the image datasets with unidirectional and
bidirectional VAEs. This involved the encoding of images with
latent variable z and the subsequent decoding to reconstruct
the image after the latent sampling. We evaluated the perfor-
mance of VAEs on this task using the Peak Signal-to-Noise

Ratio (PSNR), Fréchet Inception Distance (FID) [23], [24],
and Structural Similarity Index Measure (SSIM) [25].

2) Downstream image classification: We trained simple
classifiers on the latent space features of VAEs. These VAEs
compress the input images and a simple classifier maps the
latent features to their corresponding classes. We evaluated
the classification accuracy of this downstream classification.

The VAE-extracted features for the MNIST handwritten
dataset trained on simple linear classifiers. We used a neural
classifier with one hidden layer of 256 logistic hidden neurons
to classify the VAE-extracted features from the Fashion-
MNIST and CIFAR-10 datasets.

We used the t-distributed stochastic neighbor embedding (t-
SNE) method to visualize the reduced features. This method
uses a statistical approach to map the high-dimensional repre-
sentation of data

{
xi

}N

i=1
to their respective low-dimensional



TABLE I: MNIST handwritten digits dataset with VAEs. We used the residual network architecture. The dimension of the latent variable
is 64. The BVAEs each used 42.2MB storage memory and the VAEs each used 84.4MB storage memory.

Model Parameters Generative Task Reconstruction and Classification

NLL ↓ AU FID↓ PSNR ↑ SSIM↑ rFID↓ Accuracy ↑
VAE 22.1M 86.72 18 4.340 20.59 0.8959 3.510 94.97%
Bidirectional VAE 11.1M 86.69 15 3.370 20.64 0.8988 3.050 95.26%

β-VAE (β = 0.5) 22.1M 88.12 23 2.021 22.19 0.9306 1.711 93.15%
Bidirectional β-VAE (β = 0.5) 11.1M 88.09 26 2.034 22.39 0.9332 1.702 94.32%
β-VAE (β = 1.5) 22.1M 86.99 15 4.855 19.75 0.8726 4.370 95.20%
Bidirectional β-VAE (β = 1.5) 11.1M 87.21 15 5.589 19.80 0.8736 5.011 96.19%

β-TCVAE (β = 0.5) 22.1M 88.18 24 1.975 22.21 0.9299 1.662 93.37%
Bidirectional β-TCVAE (β = 0.5) 11.1M 87.99 26 2.000 22.30 0.9325 1.760 94.17%
β-TCVAE (β = 1.0) 22.1M 86.87 18 3.544 20.68 0.8988 3.143 95.08%
Bidirectional β-TCVAE (β = 1.0) 11.1M 86.68 18 3.419 20.75 0.9007 3.085 95.66%
β-TCVAE (β = 1.5) 22.1M 87.20 14 5.623 19.64 0.8690 5.052 95.56%
Bidirectional β-TCVAE (β = 1.5) 11.1M 86.90 15 4.968 19.86 0.8756 4.548 96.54%

IWAE 22.1M 86.02 20 2.958 19.30 0.8627 2.774 96.40%
Bidirectional IWAE 11.1M 86.00 19 3.330 19.21 0.8587 3.030 96.29%

Algorithm 1: BVAE Training with bidirectional backpropagation

Input: Data {xn}Nn=1 and latent space dimension J .
Initialize: Synaptic weights θ ∈ {Nθ,Vθ,Wθ} , learning rate
α, and other hyper-parameters.

1: for iteration t = 1, 2, ..... do
2: Pick a mini-batch {xm}Bm=1 of B samples
3: for m = 1, 2, ...., B do
4: Forward Pass (Encoding): Predict the variational mean and

log-covariance:

µ̂m = Wθ

(
Nθ

(
xm

))
and

ln σ̂2
m = Vθ

(
Nθ

(
xm

))
5: Sample the latent features zm from the variational Gaussian

distribution with condition xm:

εm ∼ N (0, I) and zm = µ̂m + εm · σ̂m

6: Backward Pass (Decoding): Map the latent variable back
to the input space:

â(x)
m = Nθ

T
(
Wθ

T(zm))
7: end for
8: Estimate the negative log-likelihood NLL(x, θ):

KLD(x, θ) =
1

B

B∑
m=1

DKL

(
N (µ̂m,Diag(σ̂2

m))||N (0, I)
)

BCE(x, θ) = − 1

B

B∑
m=1

ln pb(xm|zm, θ)

L̃ELBO(x, θ) = BCE(x, θ) + KLD(x, θ)

9: Update θ by backpropagating L̃ELBO(x, θ) through the weights.
10: end for
11: return θ

representation
{
yi

}N

i=1
based on the similarity of the dat-

apoints [26]. This low-dimensional representation provides
insight into the degree of separability among the classes.

3) Image generation: We compared the generative perfor-
mance of bidirectional VAEs with their corresponding unidi-
rectional ones. These VAEs trained with the Gaussian latent
distribution N (0, I). We tested the VAEs using both Gaussian
sampler and Gaussian mixture model samplers post-training
[27]. We used the estimates of the negative of the data log-
likelihood (NLL) and the number of active latent units (AU)
[28] as the quantitative metrics for performance evaluation.

4) Image interpolation: We conducted linear interpolation
of samples. The interpolations involve a convex combination
of two images over 10 steps. The encoding step transforms
the mixture of two images in the latent space. The decoding
step reconstructs the interpolated samples.

C. Model Architecture

We used different neural network architectures for various
datasets and tasks.

Variational Autoencoders: We used deep convolutional and
residual neural network architectures. VAEs that trained on
the MNIST handwritten and Fashion-MNIST used the residual
architecture. Figure 3c shows the architecture of the bidirec-
tional residual networks that trained on the MNIST datasets.
The unidirectional VAEs with this architecture used two such
networks each: one for encoding and the other for decoding.
The BVAEs used just one of such network each. Encoding
runs in the forward pass and decoding runs in the backward
pass.

Each of the encoder and decoder networks that trained on
the CIFAR-10 dataset used six convolutional layers and two
fully connected layers. The corresponding BVAEs used only
one network for encoding and decoding each. The dimension
of the hidden convolutional layers is {64 ↔ 128 ↔ 256 ↔
512 ↔ 1024 ↔ 2048}. The dimension of the fully connected
layers is {2048 ↔ 1024 ↔ 64}.

The configuration of the VAEs that trained on the CelebA
dataset differs slightly. The sub-networks each used nine
convolutional layers and two fully connected layers. The
dimension of the hidden convolutional layers is {128 ↔
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(a) Unidirectional β-VAE
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(b) Bidirectional β-VAE

Fig. 4: t-SNE embedding for the MNIST handwritten digit dataset:
Latent space dimension is 128. (a) A simple linear classifier that
trained on the unidirectional VAE-compressed features achieved a
95.2% accuracy. (b) The simple classifier achieved 97.32% accuracy
when it trained on the BVAE-compressed features.

128 ↔ 192 ↔ 256 ↔ 384 ↔ 512 ↔ 768 ↔ 1024 ↔ 1024}.
The dimension of the fully connected layers is {4096 ↔
2048 ↔ 256}.

The VAEs used generalized nonvanishing (G-NoVa) hidden
neurons [29], [30]. The G-NoVa activation a(x) of input x is

a(x) = αx+ xσ(βx) = αx+
x

1 + e−βx
(40)

where α > 0 and β > 0. Each layer of a BVAE performs
probabilistic inference in both the forward and backward
passes. The convolutional layers use bidirectional kernels. The
kernels run convolution in the forward pass and transposed
convolution in the backward pass. Transposed convolution
projects feature maps to a higher-dimensional space [31].

Downstream Classification: We trained simple linear classi-
fiers on VAE-extracted features from the MNIST digit dataset.
We trained shallow neural classifiers with one hidden layer and
100 hidden neurons each on the extracted features from the
Fashion-MNIST images. Similar neural classifiers with one
hidden layer and 256 hidden neurons each trained on VAE-
extracted features from the CIFAR-10 dataset.

D. Training

We considered four implementations of VAEs and compare
them with their respective bidirectional versions. The four
VAEs are vanilla VAE [5], β-VAE [6], β-TCVAE [7], and
IWAE [9]. We trained these over the four datasets across
the four tasks. We used the AdamW optimizer [32] with
the OneCycleLR [33] learning rate scheduler. The optimizer
trained on their respective ELBO estimates.

We designed a new framework for bidirectional VAEs and
implemented unidirectional VAEs with the Pythae framework
[34]. All the models trained on a single A100 GPU. Tables I
- IV and Figures 4 - 6 present the results.

E. Evaluation Metrics

We considered the performance of the VAE models on
generative and compression tasks. We used the following
quantitative metrics:

• Negative Log-Likelihood (NLL): This is an estimate of the
negative of ln p(x|θ). This is computational intractable so
we used the Monte Carlo method to estimate this. Lower
value means the model generalizes well to unseen data.

• Number of Active Latent Units (AU) [28]: This reflects the
number of latent variables with variance above a given
threshold ϵ. We have

AU =

D∑
d=1

I
[
Covx

[
Ez|x,ϕ[zd]

]
≥ ϵ

]
(41)

where I is an indicator function, zd represents the dth

component of the latent variable, and ϵ = 0.01. Higher
AU means the model uses more features for the latent
space representation. But having too many active units
can lead to overfitting.

• Peak Signal-to-Noise Ratio (PSNR): This compares re-
constructed images with their target images. Higher value
implies better reconstruction from data compression.

• Structural Similarity Index (SSIM): This is a perceptual
metric. It quantifies the degradation from data compres-
sion. Higher SSIM value implies better reconstruction
from image compression.

• Downstream Classification Accuracy: This is the classi-
fication accuracy of simple classifiers that trained on the
latent or VAE-extracted features. Higher accuracy means
the compression extracts easy-to-classify features.

• Fréchet Inception Distance (FID) [23]: This metric eval-
uates the quality of generated images. It measures the
similarity between the distribution of real images and the
distribution of generated images. Lower value implies that
the generated images are closer to the real images.
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Fig. 5: MNIST handwritten image: Image interpolation with variational autoencoder networks.

TABLE II: Fashion-MNIST dataset with VAEs. We used the residual network architecture. The dimension of the latent variable is 64. The
BVAEs used 42.2MB memory parameters and the unidirectional VAEs used 84MB memory parameters.

Model Parameters Generative Task Reconstruction and Classification

NLL ↓ AU FID↓ PSNR ↑ SSIM↑ rFID↓ Accuracy ↑
VAE 22.1M 231.3 13 3.082 19.19 0.6964 2.521 87.17%
Bidirectional VAE 11.1M 231.1 15 3.045 19.21 0.6973 2.478 87.84%

β-VAE (β = 0.5) 22.1M 232.4 17 1.946 20.01 0.7282 1.569 87.16%
Bidirectional β-VAE (β = 0.5) 11.1M 232.4 20 1.965 20.05 0.7303 1.658 87.93%
β-VAE (β = 1.5) 22.1M 231.5 9 3.220 18.59 0.6714 2.947 86.89%
Bidirectional β-VAE (β = 1.5) 11.1M 231.5 9 3.346 18.60 0.6729 2.893 86.66%

β-TCVAE (β = 0.5) 22.1M 232.3 24 2.420 20.04 0.7238 1.996 87.71%
Bidirectional β-TCVAE (β = 0.5) 11.1M 232.3 19 2.026 20.09 0.7288 1.749 88.06%
β-TCVAE (β = 1.0) 22.1M 231.1 12 2.833 19.18 0.6941 2.427 87.21%
Bidirectional β-TCVAE (β = 1.0) 11.1M 231.2 12 2.891 19.21 0.6954 2.469 87.06%
β-TCVAE (β = 1.5) 22.1M 231.8 9 3.579 18.54 0.6678 3.234 86.62%
Bidirectional β-TCVAE (β = 1.5) 11.1M 231.4 10 3.273 18.58 0.6702 2.969 87.00%

IWAE 22.1M 230.3 17 2.489 17.78 0.6529 2.070 88.14%
Bidirectional IWAE 11.1M 230.4 14 2.881 18.10 0.6559 2.432 88.05%

(a) Unidirectional VAE (b) Bidirectional VAE (Ours) (c) Unidirectional β-VAE (d) Bidirectional β-VAE (Ours)

Fig. 6: Image interpolation with VAEs on the Fashion-MNIST dataset.

TABLE III: CIFAR-10 dataset with VAEs. The dimension of the latent space is 256. The BVAEs each used 107MB memory parameters
and the unidirectional VAEs each used 214MB memory parameters.

Model Parameters Generative Task Reconstruction and Classification

NLL ↓ AU FID↓ PSNR ↑ SSIM↑ rFID↓ Accuracy ↑
VAE 56.6M 1817.0 51 2.483 18.67 0.4532 2.305 51.73%
Bidirectional VAE 28.3M 1814.1 37 2.442 18.93 0.4742 2.255 50.55%

β-VAE (β = 0.5) 56.6M 1816.7 85 2.225 19.48 0.5191 1.955 51.78%
Bidirectional β-VAE (β = 0.5) 28.3M 1815.1 65 2.122 19.83 0.5466 1.827 51.74%
β-VAE (β = 1.5) 56.6M 1820.9 32 2.625 18.12 0.4113 2.483 50.44%
Bidirectional β-VAE (β = 1.5) 28.3M 1816.1 40 2.535 18.39 0.4337 2.342 51.91%

β-TCVAE (β = 0.5) 56.6M 1816.8 50 2.225 19.26 0.5035 2.035 50.96%
Bidirectional β-TCVAE (β = 0.5) 28.8M 1814.0 59 2.101 19.63 0.5321 1.942 50.51%
β-TCVAE (β = 1.0) 56.6M 1819.6 27 2.485 18.47 0.4362 2.348 49.57%
Bidirectional β-TCVAE (β = 1.0) 28.3M 1814.0 42 2.380 18.91 0.4752 2.201 50.93%
β-TCVAE (β = 1.5) 56.6M 1824.1 33 2.673 17.93 0.3940 2.604 50.52%
Bidirectional β-TCVAE (β = 1.5) 28.3M 1816.8 35 2.576 18.36 0.4315 2.437 51.04%

IWAE 56.6M 1814.6 122 2.415 18.55 0.4540 2.173 51.94%
Bidirectional IWAE 28.3M 1811.5 128 2.309 18.84 0.4838 2.015 51.65%

V. CONCLUSION

Bidirectional VAEs encode and decode through the same
synaptic web of a deep neural network. This bidirectional

flow captures the joint probabilistic structure of both directions
during learning and recall. BVAEs cut the synaptic parameter



TABLE IV: CelebA-64 dataset with VAEs. The dimension of the latent variable is 256. The BVAEs each used 133.8MB
memory parameters and the unidirectional VAEs each used 267.6MB memory parameters.

Model Parameters Generative Task Reconstruction

NLL ↓ AU PSNR ↑ SSIM↑
VAE 69.1M 6221.9 80 20.54 0.6528
Bidirectional VAE 34.6M 6217.7 52 20.66 0.6532
β-VAE (β = 0.1) 69.1M 6243.0 240 22.35 0.7225
Bidirectional β-VAE 34.6M 6261.9 90 22.60 0.7243
β-TCVAE (β = 0.1) 69.1M 6277.2 93 22.15 0.7189
Bidirectional β-TCVAE 34.6M 6275.2 145 23.55 0.7681
β-IWAE 69.1M 6221.1 77 20.44 0.6521
Bidirectional β-IWAE 34.6M 6217.5 204 20.81 0.6551

count roughly in half compared with unidirectional VAEs. The
simulations on the four image test sets showed that the BVAEs
still performed slightly better than the unidirectional VAEs.
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