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Step 4: We must show that a circle which separates A and B
defines A4 as a digital disk. This is clear, as well as the fact that if
D is a digital disk, a defining circle will separate 4 and B. The time
to compute all the L(r, s) is O(NN) = ON?).

For example, suppose where D is {(0, 0), (1, 0), (0, 1), (1, 1)}.
In this case, A = D. Then B = {(0, —1), (1, —1), (2, 0), (2, 1),
(1,2),0,2), (-1, 1), (=1, 0)}.

Fig. 1 shows the Voronoi regions (solid lines) and S (the poly-
gon centered at (3, 3), bounded by dashed lines). The furthest point
Voronoi regions are determined by the 2 lines x = fand y = 1.
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Counting with Fuzzy Sets

BART KOSKO

Abstract—The notion of fuzzy set cardinality is examined. Zadeh’s
suggested measure of fuzzy cardinality, the sigma-count, is adopted
and shown to generalize classical counting measure. This allows many
combinatorial structures and counting techniques to be fuzzified, and
hence used in knowledge representation and pattern recognition
models. A fuzzy set review is found in the Appendix.

Index Terms—Combinatorics, counting measure, fuzzy cardinality,
fuzzy sets, greedy algorithms, sigma-count.

How big is a fuzzy set? Intuitively a fuzzy set has less stuffing
than a nonfuzzy set. The fuzzy set of shiny red apples in a pile of
apples seems less dense than the pile, even if all the apples shine.
Similarly, the set of lightly gray pixels in a screen image seems to
have less content, less measure, than the set of gray pixels.

The structure sought is a fuzzy set cardinality. Fuzzy cardinality
can be cast in different ways; perhaps the most natural is Zadeh’s
sigma-count. Zadeh [1] has proposed generalizing the classical car-
dinality ¢ of a subset 4 C E,

o) = Zi_ Li(e),

where

1 if eeA,
Ii(e) = A
0 if egA,
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by extending the indicator function /4 to a [0, 1]-valued fuzzy-set
membership function m,. The new cardinality is called the sigma-
count,

T-Count (4) = ZE m4(e).

Thus the fuzzy subset of shiny apples {(a,, 0.3), (a,, 0.4), (as,
0.2), (a4, 0.7), (as, 1.0)} has sigma-count 2.6. Clearly, on this
interpretation of fuzzy cardinality, a fuzzy subset never has cardi-
nality greater than its associated nonfuzzy superset (the ‘‘defuzzi-
fied”’ set whose indicator function is 1 if and only if the member-
ship function is positive).

The sigma-count has the virtue of computability. It allows one
to get a theoretical and practical grip on fuzzy combinatorics. For
instance, the combinatorial structures known as greedy algorithms
and greedy heuristics can be fuzzified by allowing the underlying
set collection to contain fuzzy sets and by (carefully!) replacing
nonfuzzy cardinality with the sigma-count in the requisite argu-
ments. This allows fuzzy theory to be applied to heuristic search
algorithms. Once combinatorial structures and techniques have been
fuzzied, the sigma-count allows them to be applied to real problems
by, ultimately, summing membership function estimates.

The main result of this correspondence is the proof that the
sigma-count is a positive measure. Hence it generalizes counting
measure. (Counting measure is the countably additive set function
that yields c(A4) if A is finite, + o if A is infinite.) That is, on
nonfuzzy sets the sigma-count is finite when counting measure is
finite and the two finite (integer) numbers are the same, and infinite
when counting measure is infinite. In this sense Zadeh has identi-
fied the “‘right’’ cardinality structure, and so it seems reasonable
to apply the sigma-count to the science of counting, combinatorics.

On fuzzy sets the sigma-count has special expressive power.
Consider the positive integers {1, 2, 3, - - -}, which has +oo
counting measure. Define the fuzzy subset F with the membership
function

1
mF(’) 2i'
Then I-Count(F) = 1, which in some sense means there is only
one nonfuzzy integer. Intuitively the fuzzy subset F might corre-
spond to a child’s notion of numbers.

To prove that the set function E-Count is a positive measure on
sigma-algebras of fuzzy sets, and to motivate its measure-theoretic
interpretation, some propositions are needed. Let E be the under-
lying nonfuzzy set and let F(2) be the fuzzy power set of E—all
fuzzy subsets of E (which includes, of course, those in 2£). Then
since A C Bimplies m, < my, Progosition 1 immediately follows.

Proposition 1: For A, B, e F(2%):

If A C B, then E-Count(4) < I-Count(B).
Proposition 1 and the four inclusions

ANBCA, BCAUB

imply Proposition 2.
Proposition 2:

LZ-Count(4 N B) < min{Z-Count(A),
Z-Count(B)} < max {Z-Count(4),
IZ-Count(B)} < E-Count(4 U B).

A

As Zadeh has observed [2], the real-number identity
a + b = min(a, b) + max(a, b)

induces at once a like structure over fuzzy membership functions,
and hence over sigma-counts. This gives Proposition 3.
Proposition 3: For A, Be F(2%):
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E-Count(4) + E-Count(B) = L-Count(4 N B)
+ E-Count(4 U B).

Hence if A and B are disjoint (m,~p = 0), the set function Z-
Count is finitely additive. This property is required to prove the
Theorem.

Theorem: If § C F(2%) is a sigma-algebra of fuzzy sets (i.e.,
E € 0 and 6 is closed under fuzzy complements and countable
fuzzy unions), then Z-Count: 6 — R* is a positive measure.

Proof: It must be shown that Z-Count is zero on the empty set
and that it is countably additive, i.e., Z-Count(U /2, 4;) = T2,
E-Count (4)) if the sets {4,} /2 are pairwise disjoint. So, first, triv-
ially X-Count (&) = E,.r my(e) = 0. Second, the finite additivity
of L-Count extends to countable additivity if the following rela-
tionship holds: E-Count (F;) decreases to zero on every contracting
sequence of sets (F;)72, C 0, i.e., on every sequence in 6 such that
F; D F;yyand N2, F; = & and E-count (F;) < oo for some j.

Now F; D F;,, implies mg, = mg,,,. So Z-Count is decreasing.
And since L-Count (F;) = O for all i,

0 < lim inf Z-Count(F;) < lim sup E-Count(F;)

i— oo i— o

I

lim sup EE mg.(e) < EE lim sup mg,(e)

i—> o

= 2 inf sup mg,(e)

ecE j=1 k=j

2 inf mg(e)

e€E j> |

I

since mg,,, < mp, forall k = j,
=2 Mmae g (€) = > my(e) = 0.
eeE eeE

Therefore, the required limit exists: lim;_, Z-Count(F) = 0.
Therefore, the set function E-Count is countably additive, and thus
a positive measure on 0. Q.E.D

APPENDIX
Fuzzy SET REVIEW

Let E = {e, e, - * - } be a standard set. A fuzzy subset A of E
is the collection of element/membership-degree pairs {(e, m,
(€))}eer, Where the membership function m, is a generalized indi-
cator function, m,: E — [0, 1]. Let F(2%) denote the fuzzy power
set of E, all fuzzy subsets of E.

Fuzzy set operations are defined in terms of membership func-
tions. Let 4, B € F(2F).

A U B = {(e max{my(e), mg(e)}) }.ck-
A N B = {(e, min{my(e), mz(e)}) }eecr-

A° = {(e, 1 — my(e)}eer
A C Biff my(e) < mg(e)

I

for all e € E, or, more compactly, m, < m.

The empty set 3 has zero membership function, my = 0.
More generally, if / is an arbitrary index set and A; € F2£) for
all i € I, arbitrary union and intersection membership functions are

defined with suprema and infima:
My 4 and MAer4;

= sup my, = inf my,.
iel iel
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A Significant Plane for Two-Class Discrimination
Problems

J. DUCHENE

Abstract—In solving classification problems, the Fisher linear dis-
criminant is often used for discriminating between two pattern classes.
In addition to this discriminant direction, this correspondence pro-
poses the use of a second direction, orthogonal to the first, which max-
imizes the projected scatter. An example is provided to illustrate the
method.

Index Terms—Discriminants, multivariate data projection, pattern
recognition.

For discrimination problems between two classes of vector sam-
ples, the Fisher linear discriminant [1] is often used as the optimal
linear method, providing a linear combination of the original pa-
rameters in the sense of the best discrimination between these
classes.

More generally, the solution of such a problem of discrimination
for L classes is given by computing the eigenvectors of the 77! -
B matrix, with T as the total covariance matrix and B the between-
class covariance matrix. For L classes, the rank of the between-
class matrix is (L — 1) in the best case, and therefore only one
nonzero eigenvalue exists for a discrimination problem between
two classes. Then the subspace obtained by this method is a one-
dimensional space.

In order to represent the original vector samples onto a plane
including the previous discriminant vector, two different methods
can be proposed: the first way is to determine a second (or more)
discriminant vector, orthogonal to the first [2], [3] (the optimal
discriminant plane). The other way is to combine the discriminant
analysis and a principal components analysis (so-called Karhunen-
Loeve expansion) [4]: in that case, the objective is to obtain a plane
that could simultaneously give information on discrimination (first
vector) and scatter (second vector).

The expression of the first vector is well known, if the problem
is solved by the optimization of the Fisher criterion [2]

wl.s

where « is chosen so that d’ -+ d = 1, with & as the difference
between the two class-centers and W the within-class covariance
matrix.

We propose to obtain the second vector u by computing a vector
which maximizes the projected scatter and which is orthogonal to
the first one, i.e.,

= o

V = u'Tu maximum
with the two constraints
u'd =0and u'u = 1.
These expressions can be written using the Lagrange multipliers:
C=uTu— N\, (u — 1) — \ud.
Setting the partial of C with respect to u equal to zero:

a—C=2Tu—2)\,u—)\zd=0 )
ou
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