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DIFFERENTIAL HEBBIAN LEARNING

Bart Kosko
VERAC, Inc., 9605 Scranton Road, San Diego, CA 92121-1771
ABSTRACT
The differential Hebbian law éij = éi é. is examined as an
alternative to the traditional Hebbian law éij = Ci Cj for

updating edge connection strengths in neural networks. The motivation

is that concurrent change, rather than just concurrent activation, more
accurately captures the "concomitant variation" that is central to
inductively inferred functional relationships. The resulting networks
are characterized by a kinetic, rather than potential, energy. Yet we
prove that both system energies are given by the same entropy-like
functional of connection matrices, Trace(E E). We prove that the
differential Hebbian is equivalent to stochastic-process correlation

(a cross-covariance kernel). We exactly solve the differential Hebbian
law, interpret the sequence of edges as a stochastic process, and report
that the edge process is a submartingale: the edges are expected to
increase with time. The submartingale edges decompose into a martingale
or unchanging process and an increasing or novelty process. Hence
conditioned averages of edge residuals are encoded in learning though the
network only "experiences" the unconditioned edge residuals.

INTRODUCTION

Synaptic connections are causal connections. Their modification is
an act of inductive inference. Edge connection strengths are inferred
from node (neuron, processing element, etc.) behavior. This suggests that
the modification criteria should, at minimum, reflect the logico-causal
criteria of scientific method used for attributing a functional relation-
ship among variable quantities. And what are these criteria but that
the quantities should move or change in the same or opposite directions
aind that the "cause" temporally p{ecedes the "effect?" Eighteenth century
enpiricist philosopher David Hume™ observed that we habitually make causal
ascriptions when we observe sustained "constant conjunctions of events."
In his System of lLogic, nineteenth century empiricist philosopher
John Stuart Mill“ refined Hume's observation. Mill observed that the
causality we attempt to inductively infer is simply the "concomitant
veriation" of the variable quantities, and this formulation, often restated
in the jargon of statistical inference, remains the operative notion cf
causality today.

THE DIFFERENTIAL HEBBIAN LAW

The task is to specify the dynamical equation éi.=f(C, E) of
the edge e, . that connects node (causal variute) C; to C. in a network, where
ot = (Cl, oo s Cn) is the node state vector and E = [ei.] is the matrix of
edge connections. We assume the transfor oguation Ci = z(C, T) is given
for each node (and is dominated by an inner product of input edges and
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: é, = . + 1
nodes) ; g C @y D, (1)

where Di contains all other terms. This functional form, a sort of

neural OR gate, predominates in neural modeling. We assume that the
righthand side of (1) contains terms internal and external to the
network. The simplest internal terms are the inner product minus the
current activation C,. The external terms are an observation or sensor
term oi and an advicé or teacher or expert-response term Ri' both of

arbitrary structure. Hence Di = 0i + Ri - Ci.

The standard selection of f in e,, = £(C, E) is attributed to

the "correlation learning" hypothesis of Hebb3, which is simply that
concurrent activation of nodes increases the "synaptic efficacy" or
strength of the connection between them. In a nutshell,

e, . = cC,C, . (2)
1] 1)

Typically the current strength &4 is subtracted from the righthand

side to represent "forgetting" or” "memory decay" (or to slow the other-

wise exponential growth?). This linear appendage does not affect the

current analysis and for notational simplicity we omit it.

Equation {2} is widegpread in the neural net literature. It occurs
in the f%mous Grossberg?~ equations and the related equations of
Hopfield’ and in similar form in the adaptive equations of most neural
modelers. But apart from referencing Hebb's (nonmathematical) conjec-
ture, it seems the operative argument for using (2) is simply that
everyone uses it. For surely the problems with (2) warrant investigat-
ing alternatives. To begin, (2) promotes spurious causal associations.
If any two processors or nodes are active in a network, no matter how
big the network, how far apart the nodes, or how independent their
patterns of activation, the Hebbian law (2) grows a causal connection
between them. Concomitant activation replaces concomitant variation.
Worse, the spurious causal attributions tend to grow exponentially
fast (as can be seen from the exponential form of the exact solution
of (2) when the forget term ey, is appended). 1In practice this

necessitates "hardclipping" of ifiterconnects both during training and
classification sessions. Finally, transfer functions must first be
integrated before (analytically) including them in (2). This integra-
tion is never easy.

A natural alternative to (2) is the differential Hebbian law:

e = G Cj . (3)

The differential Hebbian measures concomitant variation. It imputes
causality according to (lagged) conjunctions of event changes. As a
result, it truly behaves in correlation fashion. For although the
functions C, are nonnegative, their derivatives are not. Hence the

connection e, . strengthens iff both nodes agree in sign, hence iff both
nodes move in” the same direction. (Note thig implies concurrent activa-

tion.) Negative causality accumulates if they move in opposite direc-
tions. Moreover, transfer functions such as (1) can be directly plugged
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into (3), allowing many properties to be determined analytically.
Below we exploit this fact to solve the system (1) and (3) for eij(t).

The idea of using rates of change in learning laws is spreading.
Two egpecially noteworthy cases are the drive-reinforcement model of
Klopf =9 and the backward-error-propagation model of Rumelhart-“,
Hinton, and Williams. Klopf reports that a wide array of Pavlov-like
learning behaviors is accurately predicted (retrodicted) by a change-
based law. Rumelhart uses a time derivative of input activation
(essentially C.) in his "generalized delta law" (subsuming the classical
perceptron con%ergence theorem) to solve the exclusive-or problem,
the parity problem, and a variety of others.

KINETIC ENERGY CONNECTIONS

The energy of a network is the sum of the eigenvalues of the
product connection matrix EE. Here E is the n-by-n symmetric matrix
of connection changes [é,.]. For Hopfield networks, Abu-Mostafa and
St. Jaques* have shown that the number of energy minima (memory sites)
is no more than n. We conjecture that these and ccmparable equilibria
correspond to the eigenvalues of EE.

To prove the eigenvalue theorem, define the potential energy (P.E.)
and kinetic energy (K.E.) of the network {C, C, E, E] as follows:

iZJZCi Cj eij' (4)
X e, . (5)
i3 13 1]

The trick is that if the Hebbian law (2) is in force, then &,, replaces
ci Cj in (4). If the differential Hebbian law (3) is in force, then

P.E. cTEC

K.E. = CrEC

éij replaces C; éj in (5). Hence then P.E. = K.E. !
2 P.E. if E = CCT
THEOREM. PIREY = - . (&)
e ——— . l . . 3 .T
i=1 K.E. if E = CC

where Al, es 1A, are the eigenvalues of EE (ﬁE).

PROOF. By basic linear algebra, the sum of eigenvalues of EE equals the
sum of diagonal elements, the trace Trace(EE). Then

Trace(EE) = E (El:i)ii = Z Z eij éji = Z Zeij éij
i i J 1 J

equals P.E. or K.E. according as E equals C cT or ccl. Q.E.D.

Two comments are in order. First, when a no weight-change analys?s
is desired--as it often is in Grossberg and Hopfield networks-—simply invol
the Hebbian or differential Hebbian law to replace &, with cicj or Cicj‘

Second, Trace(EE) can be viewed as an entropy-like functional. For, in
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learning networks, the edges or neural pathways adapt slowly to the
activation or signals flowing through them. I.e., éi' tends to be

smaller than e,. at any time t. Let us model this property with the
hypothesis that? &,, = 1n e,.. Now recall that Von NeumannlZ? gefined

the entropy of a (qlantum-mechanical) system with Trace(P 1nP), where

P is a positive semidefinite matrix with Trace(P) = 1, thus generalizing
the 1og—of—probabil}§y entropy of Boltzmann and others (including
Shannon). Watanabe~ has kept this entropy measure current by showing
how its minimization corresponds to.pattern recognition in many cases.
On our learning hypothesis, Trace(EE) = Trace(P 1lnP) for suitable P.
However, since Trace(E) = Trace(E) = 0, E cannot be normalized to 1

and thus an exact identity between the two trace functionals cannot be
expected to hold.

CORRELATION AND AN EXACT SOLUTION

Let us interpret the node vector C as a random vector. Let each
node C, be a stochastic process: C.: TxQ — [0, ) , where T is an

index éet of time valiues and (Q, A,lP) is the probability space. Suppose
we know the present value of C;j(t) (C.(t,w))}. Then given no other
information, and being true scientific empiricists, what is our best
prediction of Ci(t + 1) ? Surely it is just the present value Ci(t)'

Let us call this the quasi-martingale assumption:

EP( Ci(t + 1)) = Ci(t) . (7)

where EP is the expectation with respect to probability measure P. If
we now use the discrete differential Hebbian, we arrive at

e..(t+1) = e (t) + AC(t) AC (t +1) (8)
1j _ i j

ij
t
= SZ:O Ac, (s) ACi(s + 1)

t
Do fey(s) - E(c(s))]le (sv1) - E(C,(s+1))],
1 ] J

s=0
which has the form of a nonnormalized cross-covariance kernel--the key
term in the definition of statistical correlation. This identity
establishes a direct connection with correlation and our operative
definition of causality, the differential Hebbian (3).

Since the differential Hebbian uses derivatives of transfer
functions, we can plug in dynamical equations such as (]) and, solve
directly for e ;- We demonstrate that the network [C, C, E, E] given
by (1) and (3) can be easily solved. The trick is that e, can be
pulled out of the inner product in (1). (3) then takes the form
éi' + a e = b --a first-order inhomogeneous ordinary
differential equation with variable coefficients, one of the most

tractable differential equations. Details of this expansion can be
found in Kosko™"""-. Here we state the exact solution:
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e..(t) = e s), (9)

t s
p(s) ds C - p(u) du
0 (R + -/;(s) e 0 d
0

where the functions p and g cgntain the grouped terms that occur in
the manipulation when Ci and C, are expanded with (1), which for

brevity we omit. The essential point is that p only contains the obser-
vation term Oi and contains it linearly and q contains both O.l and O,

and the product o; Oj' The constant K is given by K = eij(O).

EDGES AS SUBMARTINGALES

The edge e is expected to increase in strength in time as informa-

tion accumulates under the differential Hebbian hypothesis (3). This
answers the question where edges tend on average, or, put another way,
how connected networks become on average. To formalize such specula-
tions, we interpret e,. as stochastic process-—-e, .: TXQ — (-0 ,00)—

on the probability gpace ($2, A, P). We superscript with t to index the
random variables {ei.}.

External input enters the network through the observation terms O,
in (1). A hearty scientific empiricism dictates that, fundamentaly, wé
know nothing of the future flux of experience. Experimentation is the
resultant coping gevice. What does this mean for future values of the
random variable Oi when we know the present value Oi’ s < t ? More
precisely, suppose we have an increasing sequence of sets of information
in the form of a "filtration" of sigma-algebras A_ < A, < A, s < t.
Then what is the conditional expectation E(0.,|A_ ) ? Surely the most
we can assert is the present observed value. ~ThiS constitutes a network
martingale assumption:

t _ S .
E(Oil AS) = Oi if s = t. (10)

Since the product Oi 0, occurs in the g term of solution (9), we must

further assume that the two observatiog ppocesses are conditionally
independent martingale processes: E(Oi Ojl As) = Oi 0, for s < t.

(Technically we also assume the processes are suitably inteégrable and
filtration measurable.)

So is the edge process a martingale if the observation processes are
conditionally independent martingales? It turns out that the edge process
is a submartingale process. (The proof, in Kosko'®, uses Jensen's
inequality and the convexity of the exponentials in the modified (9).)

The expected future value is at least as big as the present value when
conditioneg on all the information available up to the present time.
Hence E(ei.l AS) > e?. for s £ t. The proof is facilitated by

interpreting the integrals in solution (9) as conditional expectations
(since stochastic integrals are always martingales). For instance, the
first integral then takes the form E(pt] At). This interpretation keeps

account of the acquired information and outputs functicns not constants.
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Hence neural or causal networks can be expected to become more
connected on average as time passes. The causal consequences of this
ray seem anti-entropic, perhaps even a violation of the second law of
thermodynamics. But in fact total connectivity is the maximum entropy
case (where entropy is intuitively interpreted). Order is established by
a contrast between edge connections and edge disconnections, as in a
military hierarchy or a bureaucratic dictatorship rather than in a
voting democracy. Better, in terms of dynamic communication connec-
tions, note how a monitored debate tends unidirectionally to a free-for-
all discussion.

Another consequence is that edge processes can be decomposed into
a sum of a martingale and an increasing process:

ef, = ij + NG, (11)
vwhere M is the martingale process and N 1s either positive or zero. M
represents what stays the same in the connection process. Hence N
represents what is new or novel, and, in the spirit of Kohonenl®, we
call it the novelty process. A consequence of the Doob-Meyer decomposi-
tion (11) is that N, and hence its residual, can be written as follows:

t
t K k-1
Ny o= ]{Z;l Eley; - e la ). (12)
t t-1 _ t t-1
Nij - Nij = E(eij - ey | At-l) . (13)

Of the many things that can be said of this novelty process, perhaps

the most significant concerns what it, and hence the edge process,
encodes. (13) makes the contribution to differential Hebbian learning.
What is significant is that a conditioned average is encoded even though
not experienced. The expected edge residual is ccnditioned on exactly
what it should be--all the information accumulated up to the present.
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