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DIFFERENTIAL HEBBIAN LEARNING 

Bart Kosko 
VERAC, Inc., 9605 Scranton Road, San Diego, CA 92121-1771 

ABSTRACT 

The differential Hebbian law ~.. = C.. 6. is examined as an 
13 1 j 

alternative to the traditional Hebbian law ~.. = C.C. for 
13 1 J 

updating edge connection strengths in neural networks. The motivation 
is that concurrent change, rather than just concurrent activation, more 
accurately captures the "concomitant variation" that is central to 
inductively inferred functional relationships. The resulting networks 
are characterized by a kinetic, rather than potential, energy. Yet we 
prove that both system energies are givenby the same entropy-like 
functional of connection matrices, Trace(E E). We prove that the 
differential Hebbian is equivalent to stochastic-process correlation 
(a cross-covariance kernel). We exactly solve the differential Hebbian 
law, interpret the sequence of edges as a stochastic process, and report 
that the edge process is a submartingale: the edges are expected to 
increase with time. The submartingale edges decompose into a martingale 
or unchanging process and an increasing or novelty process. Hence 
conditioned averages of edge residuals are encoded in learning though the 
network only "experiences" the unconditioned edge residuals. 

INTRODUCTION 

Synaptic connections are causal connections. Their modification is 
an act of inductive inference. Edge connection strengths are inferred 
from node (neuron, processing element, etc.) behavior. This suggests that 
t[~ modification criteria should, at minimum, reflect the logico-causal 
criteria of scientific method used for attributing a functional relation- 
ship among variable quantities. And what are these criteriabut that 
the quantities should move or change in the same or opposite directions 
and that the "cause" temporally p[ecedes the "effect?" Eighteenth century 
e[Ipiricist philosopher David Hume observed that we habitually make causal 
ascriptions when we observe sustained "constant conjunctions of events." 
In his System of Loqic, nineteenth century empiricist philosopher 
John Stuart Mill Z refined Hume's observation. Mill observed that the 
causality'we attempt to inductively infer is simply the "concomitant 
variation" of the variable quantities, and this formulation, often restated 
in the jargon of statistical inference, remains the operative notion cf 
causality today. 

THE DIFFERENTIAL HEBBIAN LAW 

The task is to specify the dynamical equation ~..=f(C, E) of 
i] 

the edge eij that connects node (causal v~i~e) C to C in a network, where 

C ~L = (C I, .... , C n) is the node state vector and E 1 J = [eij] is the matrix of 

edge connections. We assume the transfer equation C. = ~(C, E) is ziven 
1 

for each node (and is dominated by an inner product of input edges and 
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nodes): 6. : ECk eki + D. , (I) 
1 1 

k 
where D. contains all other terms. This functional form, a sort of 

1 
neural OR gate, predominates in neural modeling. We assume that the 
righthand side of (i) contains terms internal and external to the 
network. The simplest internal terms are the inner product minus the 
current activation C.. The external terms are an observation or sensor 
term O~ and an advic~ or teacher or expert-response term R., both of 

1 
arbitrary structure. Hence D. = 0 + R. - C.. 

1 1 1 1 
The standard selection of f in eij = f(C, E) is attributed to 

the "correlation learning" hypothesis of Hebb 3, which is simply that 
concurrent activation of nodes increases the "synaptic efficacy" or 
strength of the connection between them. In a nutshell, 

&,. : c.c.. (2) 
13 z J 

Typically the current strength e.. is subtracted from the righthand 
13, 

side to represent "forgetting" or 'memory decay" (or to slow the other- 
wise exponential growth?). This linear appendage does not affect the 
current analysis and for notational simplicity we omit it. 

Equation (2) is widespread in the neural net literature. It occurs 
in the f~mous Grossberg 4-6 equations and the related equations of 
Hopfield' and in similar form in the adaptive equations of most neural 
modelers. But apart from referencing Hebb's (nonmathematical) conjec- 
ture, it seems the operative argument for using (2) is simply that 
everyone uses it. For surely the problems with (2) warrant investigat- 
ing alternatives. To begin, (2) promotes spurious causal associations. 
If any two processors or nodes are active in a network, no matter how 
big the network, how far apart the nodes, or how independent their 
patterns of activation, the Hebbian law (2) grows a causal connection 
between them. Concomitant activation replaces concomitant variation. 
Worse, the spurious causal attributions tend to grow exponentially 
fast (as can be seen from the exponential form of the exact solution 
of (2) when the forget term -e.. is appended). In practice this 

~3 
necessitates "hardclipping" of interconnects both during tralnlng and 
classification sessions. Finally, transfer functions must first be 
integrated before (analytically) including them in (2). This integra- 
tion is never easy. 

A natural alternative to (2) is the differential Hebbian law: 

~.. : 6 6. (3) zj  z j 

The differential Hebbian measures concomitant variation. It imputes 
causality according to (lagged) conjunctions of event changes. As a 
result, it truly behaves in correlation fashion. For although the 
functions C. are nonnegative, their derivatives are not. Hence the 

1 
connection e.. strengthens iff both nodes agree in sign, hence iff both 

z] 
nodes move in the same direction. (Note this implies concurrent activa- 
tion.) Negative causality accumulates if they move in opposite direc- 
tions. Moreover, transfer functions such as (I) can be directly plugged 
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into (3), allowing many properties to be determined analytically. 
Below we exploit this fact to solve the system (I) and (3) for e. (t). 

13 
The idea of using rates of change in learning laws is spreading. 

Two esp@cially noteworthy cases are the drive-reinforcement model of 
Klopf 8-9 and the backward-error-propagation model of Rumelhart ~0, 
Hinton, and Williams. Klopf reports that a wide array of Pavlov-like 
learning behaviors is accurately predicted (retrodicted) by a change- 
based law. Rumelhart uses a time derivative of input activation 
(essentially C=) in his "generalized delta law" (subsuming the classical 
perceptron convergence theorem) to solve the exclusive-or problem, 
the parity problem, and a variety of others. 

KINETIC ENERGY CONNECTIONS 

The energy of a network is the sum of the eigenvalues of the 
product connection matrix E~. Here E is the n-by-n syr~netric matrix 
of connection changes [e..]. For Hopfield networks, Abu-Mostafa and 
St. Jaques II have shown ~at the number of energy minima (memory sites) 
is no more than n. We conjecture that these and ccmparable equilibria 
correspond to the eigenvalues of E~. 

To prove the eigenvalue theorem, define ~he potential energy (P.E.) 
and kinetic energy (K.E.) of the network [C, C, E, E] as follows: 

= = icj (4) j eij , 

K.E. = ~T E C = E ~ C. 6. e. (5) 
i j 1 J 1J 

The trick is that if the Hebbian law (2) is in force, then e.. replaces 
13 

in (4). If the differential Hebbian law (3) is in force, then c i cj 
aij replaces 6 i Cj in (5). 

n 

THEOREM. ~ Xi 

Hence then P.E. = K.E. ! 

I P.E. if E = C C T 
= (6) 

i = i K.E. if E = 6 C T ' 

where X I ..... A n are the eigenvalues of EE (EE). 

PROOF. By basic linear algebra, the sum of eigenvalues of EE equals the 
sum of diagonal elements, the trace Trace(EE). Then 

i i j 1 j 

equals P.E. or K.E. according as E equals C C T or C cT. Q.E.D. 

~o comments are in order. First, ~en a no weight-change analysis 
is desired--as it often is in Grossberg and Hopfield networks--simply invo~ 
the Hebbian or differential Hebbian law to replace eij with C C i j or C.C..I 3 

Second, Trace(EE) can be viewed as an entropy-like functional. For, in 
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learning networks, the edges or neural path~{ays adapt slowly to the 
activation or signals flowing through them. I.e., @. tends to be 

1 1  

smaller than e.. at any time t. Let us model this pr6perty with the 
hypothesis tha~ ] e.. = In e... Now recall that Von Neumann 12 defined 

13 - 1J 
the entropy of a (quantum-mechanical) system with Trace(P inP), where 
P is a positive semidefinite matrix with Trace(P) = I, thus generalizing 
the log-of-probabil$~y entropy of Boltzmann and others (including 
Shannon). Watanabe ~ has kept this entropy measure current by showing 
how its minimization corresponds to.pattern recognition in many cases. 
On our learning hypothesis, Trace(EE) ~ Trace(P inP) for suitable P. 
However, since Trace(E) = Trace(E) = 0, E cannot be normalized to 1 
and thus an exact identity between the two trace functionals cannot be 
expected to hold. 

CORRELATION AND AN EXACT SOLUTION 

Let us interpret the node vector C as a random vector. Let each 
node C. be a stochastic process: C.: T x~ -- [0, = ) , where T is an 

index ~et of time values and ( ~ , A,IP) is the probability space. Suppose 
we know the present value of C~(t) (C.(t, ~ )). Then given no other 
�9 . . + �9 �9 1 . . . .  

informatlon, and being true sclentlflc emplrlclsts, what is our best 
prediction of Ci(t + i) ? Surely it is just the present value Ci(t). 

Let us call this the quasi-martinqale assumption: 

Ep( Ci(t + I) ) : C.(t)l ' (7) 

where Ep is the expectation with respect to probability measure P. If 

we now use the discrete differential Hebbian, we arrive at 

e..(t + i) : e..(t) + A2 (t) AC.(t + i) (8) 
i j  i . ]  i ] 

t 
= ~ AC (s) ACj(s + i) 

S = 0 i 

t 

= s __~ 0 [Ci(s) - E(Ci(s))][Cj(s+I) - E(Cj(s+I))], 

which has the form of a nonnorma!ized cross-covariance kernel--the key 
term in the definition of statistical correlation. This identity 
establishes a direct connection with correlation and our operative 
definition of causality, the differential Hebbian (3). 

Since the differential Hebbian uses derivatives of transfer 
functions, we can plug in dynamical equations such as (I) and.solve 
directly for e... We demonstrate that the network [C, C, E, E] given 

13 
by (I) and (3) can be easily solved. The trick is that eij can be 

pulled out of the inner product in (I). (3) then takes the form 

~.. + a e.. = b --a first-order inhomogeneous ordinary 1j  1 j  
differential equation with variable coefficients, one of the most 
tractable differential equations. Details of this expansion can be 
found in Kosko 14-15. Here we state the exact solution: 
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S 

p(s) ds t p(u) du 

eij(t) = e (K + (s) ds), (9) 

where the functions p ~nd q contain the grouped terms that occur in 
the manipulation when C. and C. are expanded with (I), which for 

i ] 
brevity we omit. The essential point is that p only contains the obser- 
vation term O. and contains it linearly and q contains both O. and O. 

z z 3 
and the product 0 i Oj. The constant K is given by K = eij(0). 

EDGES AS SUBMARTINGALES 

The edge e.o is expected to increase in strength in time as informa- 
z] 

tion accumulates under the differential Hebbian hypothesis (3). This 
answers the question where edges tend on average, or, put another way, 
how connected networks become on average. To formalize such specula- 
tions, we interpret e.. as stochastic process--e..: T x~ ~ (-~,~)-- 

z j  i J  
on the probability ~pace ( ~, A, P). We superscrzpt with t to index the 
random variables {eij}. 

External input enters the network through the observation terms 0 i 
in (I). A hearty scientific empiricism dictates that, fundamentaly, we 
know nothing of the future flux of experience. Experimentation is the 
resultant coping ~evice. What does this mean for future values of the 
random variable O. when we know the present value 0~, s < t ? More 

1 1 
precisely, suppose we have an increasing sequence of sets of information 
in the form of a filtration of sigma-algebras A s ~ A~ ~ A, s _ t. I !  i i  < ' 

Then what is the conditional expectation E(O~I A ) ? Surely the most 
1 s 

we can assert is the present observed value. This constitutes a network 
martinqale assumption: 

E(0~II As) = 0~ if s ~ t ( 1 0 )  1 

i 

Since the product O, O, occurs in the q term of solution (9), we must 
z] 

further assume that the two observatio~ p~ocesses are cQnditionally 
independent martingale processes: E(O~ O~I A ) = O~ O~ for s < t. 

z j  s z j  - 
(Tec.hnically we also assume the processes are suitably integrable and 
filtration measurable.) 

So is the edge process a martingale if the observation processes are 
conditionally independent martingales? It turns out that the edge process 
is a sub__martingale process. (The proof, in Kosko 14, uses Jensen's 
inequality and the convexity of the exponentials in the modified (9).) 
The expected future value is at least as big as the present value when 
conditione~ on all the information available up to the present time. 
Hence E(e.. I A ) a e~ for s ~ t. Th~ proof is facilitated by 

z ]  s z ]  . 
interpreting the integrals in solution (9) as conditional e~ectations 
(since stochastic integrals are always martingales). For instance, the 
first integral then takes the form E(Pt I At). This interpretation keeps 

account of the acquired information and outputs functions not constants. 
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Hence neural or causal networks can be expected to become more 
connected on average as time passes. The causal consequences of this 
may seem anti-entropic, perhaps even a violation of the second law of 
thermodynamics. But in fact total connectivity is the maximum entropy 
case (where entropy is intuitively interpreted). Order is established by 
a contrast between edge connections and edge disconnections, as in a 
military hierarchy or a bureaucratic dictatorship rather than in a 
voting democracy. Better, in terms of dynamic cor~nunication connec- 
tions, note how a monitored debate tends unidirectionally to a free-for- 
all discussion. 

Another consequence is that edge processes can be decomposed into 
a sum of a martingale and an increasing process: 

e t - M~ NsNt~ " (ii) ij - ij + i' 
~r M is the martingale process and either positive or zero. M 
represents what stays the same in the connection process. Hence N 
represents what is new or novel, and, in the spirit of Kohonen 16, we 
call it the novelty process. A consequence of the Doob-Meyer decomposi- 
tion (ii) is that N, and hence its residual, can be written as follows: 

t 

k _ ek~l i Ak_l ) , (12) t = ~ E(ei j 13 Nij k = 1 

�9 = _ e t-I 
N~I3 - N~T 113 E(e~j ij I At-l) (131 

Of the many things that can be said of this novelty process, perhaps 
the most significant concerns what it, and hence the edge process, 
encodes. (13) makes the contribution to differential Hebbian learning. 
What is significant is that a conditioned average is encoded even though 
not experienced. The expected edge residual is ccnditioned on exactly 
what it should be--all the information accumulated up to the present. 
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