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Abstract—A large language model (LLM) can map a feedback
causal fuzzy cognitive map (FCM) into text and then reconstruct
the FCM from the text. This explainable Al system approximates
an identity map from the FCM to itself and resembles the
operation of an autoencoder (AE). Both the encoder and the
decoder explain their decisions in contrast to black-box AEs.
Humans can read and interpret the encoded text in contrast to
the hidden variables and synaptic webs in AEs. The LLM agent
approximates the identity map through a sequence of system
instructions that does not compare the output to the input. The
reconstruction is lossy because it removes weak causal edges
or rules while it preserves strong causal edges. The encoder
preserves the strong causal edges even when it trades off some
details about the FCM to make the text sound more natural.

Index Terms—Causal reasoning, autoencoders, fuzzy cognitive
map, feedback dynamics, explainable AI, agentic AI

I. GENERATING CAUSAL FEEDBACK Fuzzy COGNITIVE
MAPS BY IDENTITY APPROXIMATIONS

How do we generate representative text from a causal
feedback semantic network? This task is at least as difficult
as the reverse problem of how do we reliably map text to a
causal feedback semantic network such as a feedback fuzzy
cognitive map (FCM) [1]-[8] dynamical system.

We harness large language models (LLMs) to approximate
an identity map & : F — F from the feedback causal
map F € F to ®(F) ~ F by way of representative text.
The mapping structure ¢ resembles the forward-backward
structure of autoencoders (AEs) often found in Al image
generators and LLMs. But those semi-supervised maps rely on
black-box neural networks with simple feedforward layers of
neurons and that have no dynamics. FCM knowledge graphs
are explainable Al (XAI) models that list their local causal
rules in their edge matrix. Their feedback structure defines a
dynamical system with rich output equilibria that can act as
answers to user questions and can guide agentic-like tasks.

Figure 1 shows this autoencoder-like identity approximator.
The LLM agent with the encoding prompt maps from the FCM
to text. The LLM agent with the decoding prompts then maps
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the text back to the reconstructed FCM. The encoded text
summary latent I sounds unnatural when the encoder focuses
on capturing every detail of the FCM. The LLM agent with the
content editing prompt can rewrite the text to make it sound
more natural. But this might come with a loss in detail leading
to a lossy reconstruction.

Consider an FCM that models the cause of clinical depres-
sion [9]. Column 2 of Table I gives the nodes of this FCM.
The 7" node C represents “fatigue or loss of energy” and the
9 node Cy represents “loss of appetite”. Figure 2a shows the
edge matrix F of this FCM. It also shows that there is a causal
edge eg7 “loss of appetite” — “fatigue or loss of energy” with
weight wg7 = 0.8. The LLM agent with the encoding prompt
translated this edge to this sentence in the latent I summary:

‘Loss of appetite’ strongly causes ‘fatigue or loss of energy’
and significantly increases ‘psychomotor retardation’ and ‘re-
duced interest for daily functioning’.

The LLM agent decodes this summary as follows: C7 is
“fatigue or loss of energy”, Cy is “loss of appetite”, and the
edge eg7 “loss of appetite” — “fatigue or loss of energy” has
weight wg7 = 0.8. The agent was too focused on capturing
the exact nodes and edges so the text sounds unnatural.

The LLM agent with the content-editing prompt rewrites
the text summary latent I to make it sound more natural. This
gives the natural sounding text summary latent II with the
corresponding sentence:

Even a loss of appetite contributes to the cycle by strongly
causing fatigue and significantly increasing psychomotor re-
tardation and a loss of interest in daily activities.

This sentence from the latent II summary then translates to the
following: C~ is “fatigue or loss of energy”, Cy is “appetite”,
and the fuzzy or partial causal edge eg; “appetite” — “fatigue
or loss of energy” has weight wg; = —0.8. Note that the
source node is “appetite” instead of “loss of appetite”.
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Fig. 1: Autoencoding Fuzzy Cognitive Maps (FCMs) with a single LLM agent and multi-prompting: The input FCM is on the top-left. Its edge matrix E
is on the bottom-left. The edge matrix colors correspond to the edge weights. Higher edge weights correspond to brighter colors. The LLM agent with the
encoding prompt converts the input FCM into the text description latent I. This text description is a detailed description of the input but sounds unnatural.
The LLM agent with the content-editing prompt reworks latent I into latent II. The result sounds more natural but sacrifices some detail. The LLM agent
with the decoding prompt reconstructs FCMs from their text description in latent I and latent II. The top-right FCM shows that unnatural yet detailed latent
I gives a lossy FCM reconstruction. The less detailed yet natural sounding latent II gives a lossier reconstructed FCM in the bottom-right FCM.

Section II-A explains how feedback FCMs work. It shows
how FCMs model causal dynamical systems as weighted
directed graphs and also explains what their nodes and edges
represent. This section also explains how FCMs evolve in
discrete time through matrix-multiplication and nonlinear op-
erations to give FCM limit-cycle equilibria. Section II-A
concludes by showing how to mix FCMs into a new FCM.
FCMs allow knowledge combination through convex mixing
unlike directed acyclic graphs (DAGs) [10] or Markov chains
with different states.

Section II-B discusses autoencoding and its variants in-
cluding ordinary and variational autoencoder networks. This
section also explains how our FCM “autoencoder” differs
from the usual autoencoder networks in terms of explainability
and supervision. Section II-C briefly explains LLMs and
their single-agent and multi-prompting version. It shows how
system instructions can manipulate the behavior of the LLM
agent. This section also explains how the LLM’s Natural
Language Processing (NLP) and Named Entity Recognition
(NER) capabilities [11] encode and reconstruct FCMs.

Section III explains how we use LLMs to map FCMs to
text and then back to FCMs. It goes through every system
instruction that multi-prompts LLM agent to systematically
convert an FCM to text. It also goes through the system
instructions that help the LLM reconstruct an FCM from its
text description.

Section IV discusses our experiments and their results.
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Google’s Gemini 2.5 Pro [12] takes 3 different FCMs as
input and then converts them to their corresponding text
descriptions. The Gemini LLM then reconstructs the FCMs
from those text descriptions. The 1% columns of Tables I, III,
and IV describe the nodes on the input FCMs. Figures 2a, 3a,
and 4a show their respective edges.

The 2™ and 3 columns of Tables I, III, and IV give
the nodes of the corresponding reconstructed FCMs. Fig-
ures 2b—2d, 3b—3c, and 4b—4c show the edge matrices of
those reconstructed FCMs.

Section V discusses the trade-off between natural-sounding
text and FCM-reconstruction accuracy. It also shows that our
lossy reconstruction still preserves the strong causal connec-
tions in the FCM. This section also explains how some nodes
get flipped during FCM reconstruction.

II. How FCMs, AEs, AND LLMS WORK
A. Fuzzy Cognitive Maps

FCMs model causal dynamical systems as directed weighted
cyclic graphs. They allow fuzzy or partial causality and
feedback cycles unlike causal graphs such as Bayesian belief
networks (BBNs) that allow only DAGs [10]. Feedback lets
FCMs model dynamical systems with complex equilibria such
as limit cycles. FCMs with different nodes also mix through
convex combination unlike DAGs or Markov chains.

1) Causal model: The FCMs model the causal variables
in the dynamical system as “concept nodes” of the directed



graph. The nodes are associated with some kind of magnitude
such that the corresponding causal variable can “increase”,
“improve”, or “intensify” because of the other causal variables
of the system.

Let C; and C; denote the respective i and ;™ concept
nodes or causal variables in the FCM. The edge e;; from
C; to C; connects the nodes if “C; causes C;”. The weight
w;; € [—1,1] on the edge e;; describes the degree to which
C; causes C. A positive w;; means that an increase in C;
causes C; to increase or a decrease in C; causes C; to
decrease. A negative w;; value means that an increase in
C; causes C; to decrease or a decrease in C; causes C; to
increase. The magnitude of w;; shows the strength of the
causal connection. A magnitude close to 1 denotes a “strong”
causal connection and a magnitude close to O denotes a “weak”
causal connection.

The 1% column of Table I and Figure 2a give the respective
nodes C1—C14 and the edge matrix E of a 14-node FCM that
models causes of clinical depression [9]. The i row and the
4™ column of the edge matrix E gives the value of wy; for
edge e;;.

2) Discrete time-evolution: The n-dimensional row vector
C(t) € [0, 1]™ represents the state of a n-node FCM at discrete
time t. The k™ component Cj(t) of this state vector C(t)
denotes the state of the k" concept node in the FCM at
time ¢. The k™ node is “active” if Cy(t) is close to 1 and
it is “inactive” if Cy(t) is close to 0. The causal variables
corresponding to the active nodes are present in the system at
time ¢ and the variables corresponding to the inactive nodes
are absent from the system at time {.

The FCM’s state vector C(t) evolves in discrete time ¢
through matrix-multiplication and nonlinear squashing. The
state of the FCM C(t + 1) at time ¢ + 1 depends on the state
of the FCM C(t) at time ¢ and on the edge matrix F:

Cile+1) = ¢(ic¢<t>wzj) m

where ¢ is an increasing nonlinear function bounded between
zero and one.

The sequence of FCM state vectors C'(0), C(1), C(2), ...
describes the trajectory of the FCM in discrete time ¢ starting
from the initial state C'(0). This qualitatively represents the
corresponding trajectory of the dynamical system that the
FCM models. The limiting behavior of this sequence gives
the equilibrium behavior of the FCM. The FCM converges to
a fixed point if C(t) converges to a constant row-vector. The
FCM converges to a k-step limit cycle if C(t) = C(t + k)
at some point in the trajectory. Then a sequence of k state
vectors repeats itself over and over again.

The FCM equilibria partition the input space. The set of
all initial states that lead to a certain equilibrium makes up
the basin of that equilibrium. The map from the basins to
the equilibrium characterizes the FCM and also the dynamical
system that the FCM models.
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3) FCM Mixing: FCMs allow mixing through convex com-
bination. Let Sq, So, ..., S, denote the respective node sets
of m FCMs. The node-set of the N-node FCM mixture is
S=51US5U...US,,. The N x N edge matrix Ek pads the
kM FCM’s edge matrix Ej, with zero-rows and zero-columns
corresponding to the nodes in S — Sj. The edge matrix E of
the FCM mixture is

m
E=> uFx ()
k=1

where v, are convex mixing weights such that vy > 0 and
21 vk = 1.

FCM mixing is closed: Mixing FCMs gives back an FCM.
This is not true in general for BBN DAGs or for the stochastic

matrices of Markov chains. Mixed DAGs can have cycles and
mixed different-state stochastic matrices may not be stochastic.

B. Autoencoders

Autoencoding is a form of identity mapping from a do-
main back to itself. This involves a two-step process: (1)
transforming the input into a reduced form in the latent
space, and (2) reconstructing the input with minimal loss.
The first step is encoding and the second step is decoding.
Autoencoding applies to various domains including signal
processing, information theory, and statistical learning.

Autoencoder networks are a family of autoencoding models
that use an encoder network and a decoder network. The
encoder network maps the input data to its latent variable
and the decoder network reconstructs the input data from
the latent variable. Variational autoencoders are variants of
autoencoder networks that map to constrained latent variables
and this makes them suitable for generative tasks [13]-[16].
Autoencoder networks can solve various problems including
dimensionality reduction [17], denoising [18], anomaly detec-
tion [19], image compression [20], and feature extraction [21],
[22].

There are other forms of autoencoding that replace neural
network models with other techniques for encoding and de-
coding. Examples of such techniques include Principal Com-
ponent Analysis (PCA), wavelet transforms, and dictionary
learning.

The encoder and the decoder networks of the autoencoder
are usually black boxes and do not explain their decisions in
encoding and decoding. The latent variables the encoder maps
to is usually not human interpretable. Also it relies on a loss
function that compares the reconstructed pattern to the input
pattern.

We present a way of multi-prompting a LLM system so that
it achieves an identity map from the FCM to text and back to
FCM just like an autoencoder but its system instructions can
explain its decisions during the encoding and the decoding
process. Its latent variables are also human-interpretable text
descriptions of the FCM. It can give reasons for its decisions
during reconstruction by quoting from the text that the decoder
takes as input. Also it achieves the identity map without having
to compare the reconstructed FCM to the target FCM and



just by following a sequence of carefully designed system
instructions.

C. Large Language Models (LLMs)

LLMs are Al systems that have trained on the vast cor-
pora of human-generated text for the purpose of generating
human-like language. These models use the transformer neural
architecture [23] with an attention mechanism and billions
or trillions of parameters to learn human linguistic patterns.
This enables LLM to perform tasks such as text generation,
summarization, translation, code-synthesis, and NER. LLMs
have become foundational in NLP and they power chatbots,
virtual assistants, and enterprise automation across industries.

Single-agent multi-prompting is a strategy where a single
LLM instance uses successive multiple-structured prompts to
solve a complex problem. This approach leverages the internal
capabilities of the LLM agent to handle sequential or parallel
subtasks using techniques such as chain-of-thought prompt-
ing, role-playing, or staged queries. Applications of single-
agent multi-prompting span education, coding, planning, and
decision support where task complexity is managed through
prompt design rather than architectural overhead.

III. NEw FCM-LLM MAPPING TECHNIQUE

We designed a system with an LLM agent and multi-
prompting to convert an input FCM to its latent summary
and then reconstruct the FCM. The system used successive
system instructions together with multi-prompting. The system
instructions manipulate the behavior of the LLM agent. They
tell the LLM agent how to process its inputs and how to
structure its outputs. These instructions also specify what
aspects of the input to focus on.

A. Encoding Prompt

This uses a set of system instructions that define how the
LLM agent extracts the text summary latent I from the input
FCM. This form of encoding maps the FCM to a detailed
but unnatural summary. It takes the FCM node list and the
edge-weight matrix as input

The encoding prompt also instructs the LLM to explain each
edge of the input FCM as text. The LLM summarizes the
causal edge weights in words. The LLM has to measure the
importance of each node based on how many edges connect
it to other nodes. It then has to distribute the focus of the text
among the nodes based on their importance: Focus more on
the nodes that are more important. The LLM also has to sound
natural as it describes this.

B. Content Editing Prompt

This prompt requires a set of system instructions that define
how the LLM agent rewrites the text summary latent II from
the encoded text summary output latent I of the LLM agent
with the encoding prompt. The LLM agent with the encoding
prompt may focus more describing the FCM edges than on
sounding natural. It may generate text that sounds forced and
repetitive and hard to read. The LLM agent with the content
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editing prompt reworks the latent I summary and makes it
sound more natural. This system instruction is not too specific
and depends on the LLM’s NLP capabilities.

C. Decoding Prompt

The decoding divides into 3 subtasks: noun detection, node
detection, and edge extraction. The LLM agent uses a set of
3 successive system instructions to solve the subtasks.

1) Noun detection: This system relies on the LLM’s Named
Entity Recognition (NER) capabilities. It asks the LLM to
take the output text from the LLM agent with the encoding
or the content editing prompt and process it sentence-by-
sentence. The LLM then has to detect nouns, noun phrases,
and pronouns in those sentences. The LLM also matches the
pronouns to their corresponding noun antecedents. The nodes
in an FCM are always nouns or noun phrases that describe
a causal variable in the dynamical system. The detected
nouns and noun phrases serve as node candidates for the
reconstructed FCM. The LLM can also explain where these
node candidates come from in the text.

2) Node detection: This system uses a set of system in-
structions to extract nodes from nouns and noun phrases. It
instructs the LLM agent to go through the list of nouns and
noun phrases from node detection and then refines it into a list
of FCM nodes. The FCM nodes are nouns and noun phrases
that represent causal variables in the dynamical system. They
have some degree of magnitude: They can either “increase”,
“improve”, or “intensify”. The LLM agent with the ‘node
detection’ prompt goes through the list of nouns and noun
phrases and looks for these properties. The LLM also checks if
the text suggests a causal connection between the nouns/noun
phrases. The LLM can quote from the text to give evidence
of these causal connections.

3) Edge extraction: This system uses a set of instructions
that describes how to extract n? — n node-pairs from a list of
n nodes. The LLM agent then goes through each node pair
and looks through the text for evidence of positive, negative, or
zero causal influence. The LLM then assigns the edge weights
based on the language used in the text. The LLM can also
quote the text to justify its choice of causal edges.

This list of edges along with the node-list completely
describes the reconstructed FCM. The 2" column of Table 1
and Figure 2b give the respective nodes and the edge matrix
F of an FCM reconstructed from the LLM agent’s “raw” text
summary latent I that described the FCM from Figure 2a and
Table I’s column 1.

The 3™ column of Table I and Figure 2c give the resepctive
nodes and the edge matrix E5 of the FCM reconstructed
from the latent II text summary that describes the FCM from
Figure 2a and Table I's column 1.

IV. EXPERIMENT SETUP

We applied Google’s Gemini 2.5 Pro LLM with “tempera-
ture = 0” and “top_p = 0.95” on three FCM inputs. The first
FCM modeled the causes of clinical depression with 14 nodes
and 180 edges. This densely connected FCM had only positive
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(d) Adjusted edge-reconstruction E from latent I1.

Fig. 2: Autoencoding for the clinical depression FCM: (a) Edge matrix F corresponding to a 14-node FCM that models the causes of clinical depression.
The nodes C'1—C'14 from the 1st column of Table I are along the rows and columns. The source nodes are along the rows and the target nodes are along the
columns. The element on the 5™ row and j™ column gives the weight on the edge from C; to C. Brighter color on the edge matrix corresponds to bigger
edge weight or strength. (b) Reconstructed edge matrix £ from the encoded latent I summary. The reconstruction is more accurate because the input text was
detailed even if it sounded unnatural. (c) Reconstructed edge matrix E> from the encoded latent IT summary that refined the encoded text with the content
editing prompt or sub-task. The reconstruction is not as accurate because the input text was not as detailed although it sounded natural. Many non-zero edge
weights in E changed to zero in Es. The edge weights that correspond to the flipped nodes C4, Co, and Co from the 3 column of Table I are negative.
These negative edges are in red. (d) The adjusted reconstructed edge matrix from latent II text with flipped nodes. The reconstruction is lossy but it preserves
the stronger causal connections with larger edge weights.

causal edges. The 1% column of Table I lists its nodes C1—C14.
Figure 2a shows its edge matrix E. The edge matrix E uses
brighter colors for causal edges with larger magnitudes.

The LLM agent completely encoded the FCM into a latent

I summary consisting of 824 words. The LLM agent with the
decoding prompt systematically reconstructed an FCM with
14 nodes but with 178 edges. The 2" column of Table I lists
the 14 nodes C1—C14 and Figure 2b shows the edge matrix
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TABLE I: Target and reconstructed nodes for the autoencoding of the clinical depression FCM

Concept Node | Target Reconstruction from Latent I Reconstruction from Latent II
Cy Psychomotor agitation Psychomotor agitation Psychomotor agitation
C. Psychomotor retardation Psychomotor retardation Psychomotor retardation
Cs Depressive mood Depressive mood Depressive mood
Ca Reduced interest for daily function Reduced interest for daily function Interest for daily function
Cs Insomnia Insomnia Insomnia
Cs Hypersomnia Hypersomnia Hypersomnia
Cr Fatigue or loss of energy Fatigue or loss of energy Fatigue or loss of energy
Cs Recurrent thoughts of death Recurrent thoughts of death Thoughts of death
Co Loss of appetite Loss of appetite Appetite
Cio Diminished ability to think or concentrate | Diminished ability to think or concentrate | Concentration
Ci1 Indecisiveness Indecisiveness Indecisiveness
Ci2 Feelings of worthlessness Feelings of worthlessness Worthlessness
Ci3 Extreme self-criticism Extreme self-criticism Self-criticism
Cia Depression Depression Depression

C, C3 Cr Cip Ciz Cu C, C3 Cr Cip Ciz Cu C, C3 Cr Cip Ci3 Cu

0.8
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(a) Target edge matrix: E (b) Reconstructed edges from latent I: £;  (c) Reconstructed edges from latent 1I: Fso

Fig. 3: FCM autoencoding for a strongly-connected depression FCM subset: (a) The edge matrix E corresponding to the subset of nodes Ca2, C3, C7, Ci2,
C13, and C'14 from the depression FCM model described by Table I and Figure 2. The concept nodes from Table III index the rows and columns. The rows
list the source nodes and the columns list the target nodes. The element on the i row and the j™ column gives the weight on the directed causal edge from
the i source node to the 5™ target node. The brighter colors correspond to the larger (stronger) causal edge weights. (b) Reconstructed edge matrix from
the encoded latent I summary. Many non-zero edge weights in F are here zero but most of the bigger edge weights remain non-zero. (c) The reconstructed
edge matrix from latent II summary that refined the encoded text with the content-editing prompt. Many non-zero edge weights in F changed to zero in E>
while most of the strongly connected edges remained non-zero.
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Fig. 4: FCM autoencoding for celiac disease classifier: (a) The edge matrix E corresponding to the 8-node FCM model that classifies celiac disease. The
concept nodes from table IV index the rows and columns. The element on the i row and the 5™ column gives the weight on the directed causal edge
from C; to C;. The brighter colors correspond to larger (stronger) causal edge weights. (b) Reconstructed edge matrix from the encoded latent I summary.
Many non-zero edge weights in £ are zero but most of the high-magnitude edge weights remain non-zero. (c) Reconstructed edge matrix from the encoded
latent IT summary that refined the encoded text with the content editing prompt or sub-task. Many non-zero edge weights in E are here zero but most of the
high-magnitude edge weights remain non-zero.
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TABLE II: Reconstruction error with the autoencoding of the clinical depres-
sion FCM in Figure 2a

Metrics Latent I | Latent II | Adjusted from Latent II
l1-norm | 14.56 78.40 41.20
lp-norm | 1.588 8.643 4.240
loo-norm |, 0.650 2.002 0.653

F. The edge matrix E; is also colored such that the brighter
color corresponds to the higher edge weight.

The LLM agent with the content editing prompt reworked
the LLM agent’s 824-word latent I text into 602 words of
refined latent II text. The LLM agent with decoding prompts
reconstructed a 14-node FCM from this latent II text, but
this FCM only had 89 edges. Also 27 out of those 89 edges
were negative because 3 out of the 14 nodes represented the
opposite of the corresponding target node. The 2" column
of Table I lists the nodes C;—C74 of this FCM and colors
the “flipped” nodes in red. These nodes represent the opposite
of their corresponding target node. Figure 2c shows the edge
matrix F, where brighter colors correspond to higher edge-
weight magnitudes or causal-degree magnitudes. It colors the
negative edge weights in red.

The 2" FCM samples 6 nodes Cy, Cs, C7, C1a, Ci3, and
C14 from the first FCM. These nodes had the strongest causal
connections among themselves. The 1% column of Table III
lists the nodes of this FCM and Figure 3a gives its edge matrix
E. The figure colors the edge matrix E so that brighter colors
correspond to higher edge weights.

The LLM agent describes this FCM in 211 words. The LLM
agent with decoding prompts then reconstruct a 6-node FCM
with 20 edges from this raw text. The 2" column of Table IIT
lists the nodes of this FCM and Figure 3b shows the edge
matrix from its latent I summary. The figure colors are such
that the brighter colors correspond to larger edge weights.

The LLM agent with the content editing prompt reworked
the LLM agent’s latent I summary into 321 words of refined
latent II summary. The LLM agent with the decoding prompts
reconstructed a 6-node FCM with 20 edges from this refined
text. The 3 column of Table III and Figure 3c show the
respective nodes and the reconstructed edge matrix from the
latent II summary. The figure colors are such that brighter
colors correspond larger edge magnitudes.

The 3" FCM describes classification of celiac disease (CD)
from tissue using 8 nodes and 28 edges [24]. The 1% column
of Table IV and Figure 4a give the respective nodes and
the edge matrix £ of this FCM. The LLM agent with the
encoding prompt described this FCM with 211 words of the
latent I summary. LLM agent with decoding prompts then
reconstructed a 6-node FCM with 26 edges. The 2" column
of Table IV gives its nodes and Figure 4b gives its edges. The
figure colors are also such that the brighter color corresponds
to a higher edge weight.

The LLM agent with the content editor prompt reworked
the output of the first FCM into 295 words of refined latent II
text. The LLM agent with the decoding prompt reconstructed
a 8-node 26-edge FCM out of this text. The 3™ column of

Table IV and Figure 4c give respective the nodes and the edge
matrix Fs of this FCM. The edge matrix shows the higher edge
weights as brighter colors.

V. DISCUSSION

Figures 2a and 2b show that the LLM agent with the
encoding and the content editing prompt approximated an
identity map from E to E; pretty well despite never comparing
FE; to E. This is due to the careful step-by-step systematic
method used to map the FCM to text and to map the text
back to an FCM. The carefully designed system instructions
multi-prompted the LLM agent to follow this method exactly.

The latent I summary from the LLM agent with the encod-
ing prompt sounded forced because the LLM focused more on
accurately describing the FCM edges than sounding natural.
The LLM agent with the content editing prompt reworded the
latent I text summary to sound more natural but it came at
the cost of reconstruction accuracy. Figures 2a and 2c show
that the FCM reconstructed from the latent II summary of
the LLM agent text missed a lot of edges. But even this lossy
reconstruction preserved the stronger causal links of the FCM.
The figures also show that edge weights on the 4%, 9, and
10" rows and columns have flipped signs. The edge weight
wyg flipped its sign twice and remained positive because it
was in the 9" row and the 4" column. This occurred because
the 4™, 9™ and 10" reconstructed nodes from the latent
II summary represented the opposite of the corresponding
causal variable from the target FCM. Table I's 1% and 3™
columns show this by highlighting the flipped nodes in red.
The reconstructed FCM has “appetite” as the 9" node instead
of “loss of appetite” in the target FCM.

Figure 2d flips the negative edges so we can compare it
to 2a. The comparison shows that many non-zero edges from
Figure 2a are zero in Figure 2d. But most of the high-weight
edges remained non-zero. So even the lossy reconstruction
preserves most of the important edges.

Table II measures the respective l1, l2, and [, norms of the
reconstruction errors in its rows 1-3. Its 1** and 2" columns
measure the respective error involved in reconstructing the
edge matrix from the latent I and latent II summaries. The
37¢ column adjusts the reconstruction error from the latent
II summary by flipping the edges connected to Cy4, Cy, and
C1o. The table shows that the latent I summary gave the best
reconstructed edge matrix.

Figures 3a—3c and Figures 4a—4c show something similar.
Some non-zero edge weights from the target FCM are zero
in the both the reconstructed FCMs from the latent I and the
latent II summaries. The two reconstructed FCMs differ little.
Both the reconstructed FCMs preserve the stronger causal
connections from the target FCM.

Tables I and IV show that there are some nodes in the FCM
reconstructed from the latent II text that are slightly different
from the corresponding target nodes. The tables highlight these
nodes in blue. The 3™ column of Table IV calls the 7" node
“mitotic activity” instead of “mitoses” as in the 1% column.
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TABLE III: Strongly-connected subset of the clinical depression FCM

Concept Node | Target Reconstructed from Latent I Reconstructed from Latent 11

Ca Psychomotor retardation Psychomotor retardation Psychomotor retardation

Cs Depressive mood Depressive mood Depressive mood

Cr Fatigue or loss of energy | Fatigue or loss of energy Fatigue or loss of energy

Ci2 Feelings of worthlessness | Feelings of worthlessness Feelings of worthlessness

Ci3 Extreme self-criticism Extreme self-criticism Extreme self-criticism

Cia Depression Depression Depression

TABLE IV: Concept nodes of the Celiac Disease (CD) classifier FCM
Concept Node | Target Reconstructed from Latent I Reconstructed from refined Latent 11

Cy Villi blunting Villi blunting Villous blunting
C. Crypt hyperplasia Crypt hyperplasia Crypt hyperplasia
Cs Intraepithelial lymphocyte infiltration | Intraepithelial lymphocyte infiltration | Intraepithelial lymphocyte infiltration
Cy Epithelial changes Epithelial changes Epithelial changes
Cs Lamina propria MNC infiltration Lamina propria MNC infiltration Lamina propria inflammation
Ce Decrescendo pattern Decrescendo pattern Decrescendo pattern
Cr Mitoses Mitoses Mitotic activity
Csg Class of celiac Class of celiac Classification of celiac

VI. CONCLUSION

A sequence of well-designed system instructions can multi-
prompt an LLLM agent to convert an FCM into text and then
reconstruct the FCM back from the text by a new multi-step
method. This approximates an identity map from the FCM to
itself like an autoencoder but with human-interpretable text
descriptions and does not compare the reconstructed output
FCM with the input FCM. The LLM agent also explains its
decisions unlike black-box neural autoencoder models.
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