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Abstract. An adaptive multiexpert mixture of feedback causal models
can approximate missing or phantom nodes in large-scale causal models.
The result gives a scalable form of big knowledge. The mixed model ap-
proximates a sampled dynamical system by approximating its main limit-
cycle equilibria. Each expert first draws a fuzzy cognitive map (FCM)
with at least one missing causal node or variable. FCMs are directed
signed partial-causality cyclic graphs. They mix naturally through con-
vex combination to produce a new causal feedback FCM. Supervised
learning helps each expert FCM estimate its phantom node by compar-
ing the FCM’s partial equilibrium with the complete multi-node equi-
librium. Such phantom-node estimation allows partial control over these
causal hallucinations and helps approximate the future trajectory of the
dynamical system. But the approximation can be computationally heavy.
Mixing the tuned expert FCMs gives a practical way to find several phan-
tom nodes and thereby better approximate the feedback system’s true
equilibrium behavior.

Keywords: Causal Phantom Nodes · Big Knowledge · Fuzzy Cognitive
Maps.

1 Mixing Expert Causal Feedback Models to Find
Phantom Causal Nodes

Building large-scale causal models faces a key epistemic problem: What are the
relevant but missing causal variables in a causal model? Where do these missing
nodes come from? Who or what neural or other data-mining system comes up
with them?

This paper gives a working answer for the hard causal problem of how to
model a sampled multivariable feedback dynamical system ẋ = f(x) that has
multiple variables. The technique uses a large number of experts or other knowl-
edge sources.

The answer has two parts: Experts first guess at the relevant nodes that affect
some equilibrium behavior. But they allow that there is at least one missing node
that they should include. Figure 1 shows this first step for a single expert where
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the expert can be a human or neural network or any other knowledge source or
data-based algorithm. Then we mix or combine these causal models in a high-
level probability mixture of the causal models and then tune from there. Figure
2 shows this second step for three experts whose causal mixture estimates three
distinct missing or phantom causal nodes.

This multiexpert adaptive process gives a causal mixture of experts that is
itself a feedback dynamical system that approximates the sampled underlying
dynamical system. The express use of feedback or cyclic models rules out using
acyclic DAG causal models [17, 3, 21]. DAGs are feedforward systems and so
have no nontrivial dynamical equilibria because they have no dynamics at all.
We focus in contrast on estimating discrete equilibrium limit cycles.

Fig. 1. Causal phantom nodes augment a FCM and help approximate the FCM dy-
namics and its target equilibrium limit cycles. The figures on the left show the FCMs
and the figures on the right show their corresponding limit cycle. (a) The original FCM
with 4 nodes. (b) The augmented FCM with 4 observable nodes and one phantom node.
The original FCM does not approximate the limit cycles of the system it models. The
FCM with the phantom node can approximate the target limit cycles with its own
limit cycles.

The missing nodes or variables are phantom nodes if we analogize them to
the well-documented neural hallucination of missing phantom limbs [22]. De-
tecting phantom nodes involves what we can view as a rough form of causal or
AI hallucination [1]. The induced creative or hallucinatory outcome resembles
adding noise to a nonlinear system in stochastic resonance [14] where a small
amount of noise can improve system performance but too much noise can harm
it. We have also found with phantom nodes that a small amount of causal hal-
lucination or noise-like perturbation can help estimate a missing relevant causal
node or variable while too much hallucination tends to obscure it. We can better
approximate the dynamical system if we control these causal hallucinations.

We use feedback fuzzy cognitive maps (FCMs) for this difficult estimation
task. FCMs model causality in complex feedback dynamical systems [11–13,
19, 28, 8, 20, 24, 13, 25, 2]. FCMs are signed directed cyclic graphs of partial or
fuzzy causality where a positive sign indicates causal increase while a negative
sign indicates causal decrease. FCMs naturally combine by mixing their partial-
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Fig. 2. Phantom nodes augment experts’ FCMs that then combine to approximate
the limit cycles of a dynamical system through controlled hallucinations. (a) Causal
Dynamical system that the expert FCMs model and its target limit cycle that the
FCMs try to approximate. (b) Three 6-node FCMs from 3 different experts and their
corresponding limit cycles. The limit cycles do not match those of the dynamical sys-
tem. This indicates the presence of phantom nodes. (c) Phantom nodes A, B, and C
respectively augment FCMs from experts 2, 3, and 1. Phantom nodes allow controlled
hallucinations and approximate the dynamical system’s limit cycle. (d) The 3 7-node
FCMs mix into a 10-node FCM through convex combination. The combined FCM hal-
lucinates a limit cycle even closer to that of the dynamical system.

causality edge matrices in a weighted average. Missing nodes correspond to zero-
padded rows and columns in an augmented edge matrix.

Even detecting a single causal phantom can be computationally heavy. A
missing or phantom node can causally affect the other variables in a causal
model and further do so in still more complex ways in a final mixture model.
These changes affect causal nonlinear system’s dynamics and thus can easily
change its equilibrium causal predictions [9, 10, 4].

These changes can also change the dynamics of a feedback nonlinear FCM and
thereby change its equilibrium attractors such as its fixed points or limit cycles.
These attractors act as answers. They are how the FCM’s what-if predictions
given input stimuli. This change in dynamics and equilibrium structure can also
suggest the presence and nature of the phantom variables. That is the idea
behind the limit-cycle-based algorithm in this paper that estimates the causal
structure of a phantom node from known target limit cycles. The known limit
cycles allow validation and supervised learning of the causal edges to and from
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the phantom concept node. Such limit cycles may correspond in practice to a
user’s desired policy outcome.

Section 2 gives the details of simple feedback FCMs. Section 2.1 explains
how FCMs model causality as weighted signed directed graphs. Figure 3 shows
an example of a FCM that models behavior in an undersea herd of dolphins.
Section 2.2 describes the time evolution of a FCM. It explains how FCMs go from
their current state to the next state using matrix multiplication and thresholding.
Section 2.3 describes different types of equilibrium behaviors of a FCM. Figure 4
gives examples of dolphin FCM limit cycles. Section 2.4 explains how FCMs can
mix through convex combination in contrast to Directed Acyclic Graphs (DAGs).

Section 3 explains the concept of phantom nodes. Figure 5 gives an example
of a phantom node in the dolphin FCM. Section 3.1 describes the effect that
phantom nodes can have on the FCM’s limit cycles. Figure 6 shows an example
of dolphin limit cycles in the presence and the absence of the phantom node
“SURVIVAL THREAT”. Section 3.2 gives a way of estimating phantom nodes by com-
paring the FCM’s limit cycles to that of the underlying dynamical system. Figure 7
shows the approximate limit cycles from the phantom-node-augmented dolphin FCM.

Section 4 describes the process of combining multiple FCMs each augmented with
phantom nodes. Figure 2 shows this process.

Section 5 gives the results from our experiments. Figures 8 and 9 show that the
mixture of augmented FCMs performs better than do its component FCMs.

2 Fuzzy Cognitive Maps
Fuzzy Cognitive Maps (FCMs) model causal behavior in a dynamical system as a
directed weighted cyclic graph. The directed edges describe the causal relationships
between concept nodes. FCMs allow feedback and therefore converge to non-trivial
equilibria like limit cycles. FCMs can model a dynamical system by approximating its
limit cycles. They take the current state of the dynamical system as input and give the
future trajectory of the system as output.

The FCMs allow causal cycles whereas Directed Acyclic Graphs (DAGs) do not.
This lets us mix FCMs together through convex combination. DAGs cannot mix in
general because a mixture of two or more acyclic graphs tends to have cycles. FCM
mixing is closed: Mixing FCMS always gives back a FCM. The mixed FCM often has
a much richer causal and dynamical structure than do the mixed FCMs. So in this and
in other senses FCM mixtures tend to improve with expert sample size.

2.1 Causal Modelling through FCMs

The direct edges of the FCMs describe the causal relation between the concept nodes
in the FCM. An edge eij from Ci to Cj says "Ci causes Cj". The weight of the edge
eij describes the degree to which Ci causes Cj .

eij = Degree(Ci → Cj) (1)

FCMs allow “partial causality". The weight eij ∈ [−1, 1]. A positive eij means that an
increase in Ci causes an increase in Cj and a negative eij means that an increase in Ci

causes a decrease in Cj . A high magnitude of eij means Ci “strongly" causes Cj and
eij close to 0 means Ci “weakly" causes Cj . There is no causal relationship between Ci

and Cj if eij = 0 or if there is no edge between Ci and Cj .



Phantom Node Estimation in FCM Mixtures 5

A n × n matrix E can represent the edges of the FCM. The weight eij for the
edge connecting the node Ci to the node Cj corresponds to the matrix element on the
ith row and the jth column. The concept-node pairs with no edge connecting them
correspond to 0 values in the edge matrix.

Consider the 5-node FCM in Figure 3. The FCM describes the group behavior of
a dolphin pod in the presence of a survival threat such as a shark. The causal-edge
matrix E for this dolphin FCM is

E =


0 1 0 −1 0
0 0 1 0 −1
0 −1 0 1 −1
1 0 −1 0 1
−1 1 0 −1 0

 . (2)

The edge weight e45 from node C4 to C5 is 1 because the presence of a “SURVIVAL
THREAT" like a shark causes the dolphins to “RUN AWAY". The edge weight e54
similarly is -1 because running away gets the dolphins away from the shark.

Fig. 3. Dolphin FCM of dolphins near a threat such as a shark.

2.2 FCM State Evolution

A n-dimensional vector C(t) ∈ [0, 1]n can represent the state of a n-node FCM at time
t. The ith concept node is “active" at time t if Ci(t) is equal to or close to 1. The ith
concept node is “inactive" at time t if Ci(t) is equal to or close to 0. The node is “partially
active" otherwise. An active node indicates the presence of the corresponding causal
factor in the system and an inactive node indicates the absence of the corresponding
causal factor.

The state C(t+ 1) of the jth node at time t+ 1 is

Cj(t+ 1) = Φ

( n∑
i=1

Ci(t)eij

)
(3)
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where Φ is an increasing nonlinear threshold-like function such that 0 ≤ Φ(x) ≤ 1.
The sum inside the parentheses in equation 3is the matrix product between the state
row-vector C(t) and the edge matrix E.

Consider the dolphins at “REST" in the presence of a shark. The product of the
state vector C(t) =

(
0 0 1 0 0

)
and the edge matrix E gives

(
1 0 −1 0 1

)
that thresh-

olds to the state vector C(t + 1) =
(
1 0 0 0 1

)
. This means the dolphins run away in

herd clusters.
This process repeats to give the time-evolution of the FCM. The FCM will start

at an initial state C(0) and then go through the states C(1), C(2), C(3), and so on in
order. This gives the evolution of the system that the FCM models over time.

A node can also clamp to a constant value c. The clamped node Cj(t) equals c for
all time t no matter what Equation 3 says it should equal.

2.3 FCM Equilibria

A sequence of n-dimensional state vectors C(t) describe the dynamics of a FCM. The
FCM can have different equilibrium behaviors depending on how state-vector sequence
turns out. The FCM converges to a fixed point if the state vector converges to a constant
vector. The FCM converges to a K-step limit cycle if there is C(t+K) = C(t) in the
state-vector sequence. Then a set of K-state vectors will repeat themselves over and
over in the same order. The FCM may converge to a chaotic attractor if there is no
repeating pattern in the state-vector sequence.

The set of initial states that lead to a given equilibrium attractor describe the basin
of attraction for said equilibrium attractor. These basins of attractions partition the
FCM’s state space. This map from the basins to the attractors characterizes the FCM
and the dynamical system it models.

Figure 4 gives 3 examples for limit cycles in the dolphin FCM. The initial states(
0 0 0 1 0

)
and

(
0 1 0 1 0

)
respectively in the first and third example lead to the same

limit cycle “SURVIVAL THREAT"→ “RUN AWAY" & “HERD CLUSTERING"→
“FATIGUE"→ “REST"→ “SURVIVAL THREAT". So both

(
0 0 0 1 0

)
and

(
0 1 0 1 0

)
lie in the same basin of attraction.

2.4 FCM Combination

FCMs mix through convex combination. Consider m FCMs. Let Si denote the set of
nodes from the ith FCM with edge matrix Ei. The node-set S for the combined N -
node FCM is the union S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sm. The N ×N matrix Ẽi pads Ei with
zero-rows and zero-columns corresponding to nodes in S − Si. The edge matrix E for
the combined FCM is

E =

m∑
i=1

wiẼi (4)

where the mixing weights wi are convex weights such that wi ≥ 0 and
∑m

i=1 wi = 1.
Then mixing causal edge matrices is closed: Mixed FCMs always produce an FCM

because the mixed edge values remain in the bipolar interval [−1, 1] if the original edge
values were bipolar. This crucially holds when mixing or combining augmented edge
matrices as we illustrate below.

FCM mixing allows FCMs to combine knowledge from multiple experts because it
allows experts to build construct causal models using different or overlapping concept
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Fig. 4. Limit cycles from the Dolphin FCM. The time step is along the x-axis. The
nodes are along the y-axis. The images have 5 rows of pixels because the FCM has 5
nodes and each row represents the time evolution of one node. The color of the node
represents its value. A bright color corresponds to a high value. White nodes have value
1. Black nodes have value 0. The top figure starts with the initial state

(
0 0 0 1 0

)
and

the bottom figure starts with the initial state
(
0 1 0 1 0

)
. They both fall into the same

limit cycle:
(
0 0 0 1 0

)
→

(
1 0 0 0 1

)
→

(
0 1 0 0 0

)
→

(
0 0 1 0 0

)
→

(
0 0 0 1 0

)
. The

middle figure starts with initial state
(
0 0 0 1 1

)
and falls into a different limit cycle:(

1 0 0 1 0
)
→

(
1 1 0 0 1

)
→

(
0 1 1 0 0

)
→

(
0 0 1 1 0

)
→

(
1 0 0 1 0

)
.

nodes. The experts construct FCMs based on their understanding of the dynamical
system and the causal variables involved in it. We can then combine their weighted
FCMs where the weights can reflect expert credibility values or test scores or any other
nonnegative weights. Again we assume here that the weights are convex coefficients and
so act as proper probability-like mixture weights. Ideally the combined FCM should
also converge to or near the sampled underlying dynamical system with enough similar
experts through some form of the law of large numbers [25].

FCM mixing contrasts with mixing finite augmented Markov chains because then
the mixed stochastic matrices of the Markov chains need not produce a stochastic
matrix. Markov chains can model causality with feedback but they weight their edges
with transition probabilities. Their edge matrices need to be stochastic matrices whose
rows consist of nonnegative numbers that sum to unity. So Markov matrices cannot
directly model negative causality or causal decrease as can the negative causal edge
values in a FCM’s causal edge matrix. The key point for knowledge representation is
that FCM edge matrices are closed under general convex combination but the mixture
of concept-similar stochastic matrices need not always produce a stochastic matrix.

Markov-chain mixing is closed in the special case where all the mixed Markov
chains use the exact same set of nodes. The famous Birkhoff Theorem even shows
that every doubly stochastic matrix is a convex mixture of permutation matrices. But
mixing Markov chains with different sets of nodes does not give back a Markov chain
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in general. Augmenting the chain matrices to include all n nodes requires that for each
stochastic matrix we add a zero-padded row and column for each missing node. The
resulting augmented n-by-n matrices are no longer stochastic matrices. And they do
not mix to become a stochastic matrix or new Markov chain as we now illustrate.

Consider 3 Markov chains with 2 nodes each for a total of 3 distinct nodes A, B,
and C. Suppose the first Markov chains has nodes A and B and thus has a 2 × 2
stochastic matrix where A and B index both its 2 rows and 2 columns. The second
Markov chain has nodes B and C. The third Markov chain has nodes A and C. Define
their respective stochastic edge matrices E1, E2, and E3 as

E1 =

(
PAA PAB

PBA PBB

)
=

(
.2 .8
.7 .3

)
(5)

E2 =

(
PBB PBC

PCB PCC

)
=

(
.5 .5
.9 .1

)
(6)

E3 =

(
PAA PAC

PCA PCC

)
=

(
.4 .6
.2 .8

)
(7)

where Pij denotes the transition probability of going from state i to state j.
Now augment these 3 nonconforming 2 × 2 matrices into 3 respective conforming

3 × 3 edge matrices. So add zero rows and zero columns for each missing node. This
gives the 3 3× 3 matrices Ẽ1, Ẽ2, and Ẽ3:

Ẽ1 =

.2 .8 0
.7 .3 0
0 0 0

 , Ẽ2 =

.5 0 .5
0 0 0
.9 0 .1

 , Ẽ3 =

0 0 0
0 .4 .6
0 .2 .8

 . (8)

Then mix these 3 augmented edge matrices with the respective convex mixing weights
0.3, 0.4, and 0.3 to give a non-stochastic matrix E:

E = 0.3

.2 .8 0
.7 .3 0
0 0 0

+ 0.4

.5 0 .5
0 0 0
.9 0 .1

+ 0.3

0 0 0
0 .4 .6
0 .2 .8

 (9)

=

.26 .24 .20
.21 .21 .18
.36 .06 .28

 (10)

No row in the combined matrix E sums to unity. So E is not a stochastic matrix. It
is in this sense of combining augmented Markov chains that they are not closed under
mixing.

Consider in the alternative mixing 3 nonconforming FCMs after augmenting their
causal edge matrices. The first FCM with nodes C1, C2, C3, and C4 has the edge matrix
E1. The second FCM with nodes C1, C2, C4, and C5 has the edge matrix E2. The third
FCM with nodes C2, C3, C4, and C5 has the edge matrix E3.

E1 =


0 1 0 0
0 0 −1 1
0 0 0 1
−1 0 0 0

 , E2 =


0 1 0 1
0 0 1 0
−1 0 0 0
0 0 1 0

 , E3 =


0 −1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

 . (11)
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Augment these nonconforming 4× 4 matrices with zero-rows and zero columns to
give the respective 5× 5 comfromable matrices Ẽ1, Ẽ2, and Ẽ3:

Ẽ1 =


0 1 0 0 0
0 0 −1 1 0
0 0 0 1 0
−1 0 0 0 0
0 0 0 0 0

 , Ẽ2 =


0 1 0 0 1
0 0 0 1 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 1 0

 , Ẽ3 =


0 0 0 0 0
0 0 −1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

 . (12)

These matrices then combine with respective convex coefficients 0.4, 0.3, and 0.3
to give edge matrix E of the FCM-mixture:

E = 0.4


0 1 0 0 0
0 0 −1 1 0
0 0 0 1 0
−1 0 0 0 0
0 0 0 0 0

+ 0.3


0 1 0 0 1
0 0 0 1 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 1 0

+ 0.3


0 0 0 0 0
0 0 −1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

 (13)

=


0 .7 0 0 .3
0 0 −.7 1 0
0 0 0 .7 0

−.7 0 0 0 0
0 0 0 .6 0

 (14)

Every edge of the FCM-mixture is bipolar: (E)ij ∈ [−1, 1]. Mixing FCMs gives back
FCMs.

FCM-mixing also contrasts Bayesian Belief Networks (BBNs). BBNs model causal-
ity with Directed Acyclic Graphs (DAGs) with conditional probability weighing the
edges[16]. But conditional probability is not transitive and DAGs are not closed un-
der mixing. Let A, B, and C be three events. The conditional probability P (C|A) is
not always equal to the product P (C|B)P (B|A). Intransitive conditional probability
may not model transitive causality well. BBNs also assume joint probability distribu-
tion functions over their nodes. BBN inference needs NP-hard marginalization[7, 23]
through message-passing algorithms such as belief propagation[27, 15] or more general
junction tree algorithm[26]. This makes BBNs hard to scale. BBN learning from data
is a NP-complete problem in general[5, 6]. Also: Convex combinations of DAGs are
not always DAGs[18]. This prevents BBNs from mixing and does not allow knowledge
combination.

3 Phantom Nodes in FCMs
Augmented FCM matrices suggest a way to address the general problem of missing
causal variables in a model. An expert may not account for every causal variable in a
dynamical system. Experts construct FCMs to model causal dynamical systems based
on their understanding of the system. There is no way of knowing if there are causal
variables in the system that the experts do not know about or forgot to account for.
These causal variables do not appear as nodes on the FCMs but they are present in
the system and causally affect the variables in the FCM.

Phantom nodes are these hidden causal variables present in the system that the
expert did not account for when constructing the FCM. The dynamical system feels
their presence even though they do not appear on the FCM. This resembles how an



10 Akash Kumar Panda and Bart Kosko

amputee hallucinates phantom pain in their missing limb. Phantom nodes can augment
the expert’s FCM and approximate the limit cycles of the underlying dynamical system
that the FCM models. The new edge EPH matrix for the augmented FCM pads the
FCMs edge matrix E with extra rows and columns corresponding to the phantom
nodes. The estimates of edges between these phantom nodes and visible nodes may
suggest to the expert what these hidden causal variables are.

Figure 5 gives an example of a FCM with a phantom node. The expert did not
account for the dolphins’ “SURVIVAL THREAT" behavior. So node C4 appears on
the FCM as a phantom node. It is not visible but it still causally affects nodes C1, C3,
and C5.

Fig. 5. The Dolphin FCM with a phantom node C4 that corresponds to survival threats
like sharks. The domain expert or causal learning system does not observe C4 or know
the edges that correspond to C4.

3.1 Effect of Phantom Nodes

Phantom nodes do not appear on the FCM but they do causally affect the nodes of
the FCM. This may lead to limit cycles in the dynamical system that differ from those
predicted by the FCM model. It may appear as if the FCM is hallucinating these
limit cycles for some unknown reason. These differences in the limit cycles indicate the
presence of phantom nodes.

Figure 6 shows the effect of a phantom node. The actual dolphin behavior does
not match the equilibrium of the expert’s FCM. The expert’s FCM is missing the
node “SURVIVAL THREAT". It predicts that the dolphins will keep resting because it
does not account for the presence of sharks. But sharks do causally affect the dolphin
behavior as a phantom node. The dolphins go through a cycle of “HERD CLUSTER-
ING", “FATIGUE", & “RUN AWAY"→ “FATIGUE" & “REST"→ “REST", & “SUR-
VIVAL THREAT"→ “HERD CLUSTERING" & “SURVIVAL THREAT"→ “HERD CLUS-
TERING", “FATIGUE", & “RUN AWAY". The expert FCM cannot explain this be-
havior and might interpret it as a hallucination.
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Fig. 6. Dolphin FCM limit cycles with and without phantom nodes. (a) Limit cycle of
the Dolphin FCM with “SURVIVAL THREAT" as a phantom node. The FCM starts at
the initial state

(
0 1 1 0 0

)
and then goes through the cycle

(
0 1 1 0 0

)
→

(
0 0 1 1 0

)
→(

1 0 0 1 0
)
→

(
1 1 0 1 0

)
→

(
0 1 1 0 0

)
. (b) This limit cycle corresponds to the cycle

of the dolphins as they rest from fatigue, face a survival threat while resting, cluster
in a herd to evade the threat, and get tired again from running away in a herd. (c)
The limit cycle of the Dolphin FCM without the “SURVIVAL THREAT" phantom
node. The FCM starts at the same initial state

(
0 1 1 0

)
. But it goes through the state(

0 0 1 0
)

and then gets stuck at the fixed-point state
(
0 0 0 0

)
. (d) This corresponds

to the dolphins staying at rest because there is no threat.

3.2 Phantom Node Estimation

The equilibrium attractors characterize a dynamical system. FCMs that model the
dynamical system should approximate its equilibrium behavior. The difference in the
FCM’s limit cycles and those of the dynamical system indicates the presence of phantom
nodes. Phantom nodes can augment the FCM and approximate the dynamical system’s
limit cycles.

The edge matrix EPH of this augmented FCM will have 4 blocks. The edge matrix
E denotes all the edges in the expert’s FCM, the matrix EOP denotes all the edges
going from observable nodes to the phantom nodes, the matrix EPO denotes all the
edges going from the phantom nodes to the observable nodes, and the matrix EPP

denotes all the edges between phantom nodes. Then the edge matrix EPH of the
phantom-node-augmented FCM is

EPH =

(
EPP EPO

EPO E

)
(15)

The phantom-node-augmented FCM trains by sampling from the limit cycles of
the dynamical system. It compares its limit cycles to those of the dynamical system
and finds the error between them. This error could simply be squared-error or it could
be some kind of entropic error. A gradient-based learning algorithm can then estimate
the edges between the FCM nodes and the phantom nodes by minimizing the error.

Consider the k steps C(1), C(2), . . . , C(k) of the limit cycle of the causal dynamical
system. Let ˜C(1), ˜C(2), . . . , ˜C(k) denote the limit cycle of the FCM when augmented
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with the phantom nodes. The squared-error loss L between the limit cycles is

L =

k∑
t=1

||C(t)− ˜C(t)||2. (16)

The edge matrix E after τ epochs of training is

EPH(τ + 1) = EPH(τ)−∇EPhL (17)

This may not learn the exact phantom node or the exact causal edge between the
phantom node and the rest of the FCM. But it will learn phantom nodes and edges
that produce approximately same limit cycles as the dynamical system.

Dolphin FCM with 4 visible nodes C2, C3, C4, and C5 and 1 phantom node C1

ran with 10,000 random initial conditions. The phantom-edge approximator trained by
sampling the first 2 steps from the resulting limit cycles and estimated EPH :

EPH =


0 .6685 .4392 .0066 .8296

.6685 0 1 0 −1

.4392 −1 0 1 −1

.0066 0 −1 0 1

.8296 1 0 −1 0

 . (18)

The edges do not match the edges on the original dolphin FCM but figure 7 shows that
the augmented FCM approximates the limit cycles of the target dynamical system.

Fig. 7. The approximated limit cycles through phantom-node causal learning. The
time step is along the x-axis. The 4 observable nodes lie along the y-axis. The color
of the node represents its value. Bright color represents high value. Yellow nodes have
value 1. Purple nodes have value 0. The initial state is

(
1 1 0 0

)
and converges to limit

cycles in both FCMs. These approximated limit cycles are similar to the limit cycles
of the Dolphin FCM.

The learning algorithm may also use an entropic loss function

L = −
k∑

t=1

n∑
i=1

[
Ci(t) lnCi(t) +

(
1− Ci(t)

)
ln

(
1− Ci(t)

)]
(19)
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4 Mixture Combination of Phantom-augmented FCMs
Multiple experts may model the same causal dynamical system differently. Some ex-
perts may account for causal variables that the other experts did not account for. There
will in general also be causal variables that none of the experts accounted for. Then
the mixed or combined FCM from all the experts will likely still not itself account
for all the relevant causal variables in the system. But accounting for phantom nodes
in the individual FCMs before combining them may better approximate the dynami-
cal system. We now explore this divide-and-conquer-then-mix strategy for estimating
phantom nodes.

Consider m expert FCMs that model the same causal dynamical system. Let Ei

denote the edge matrix of the ith FCM. The phantom nodes of the ith FCM augment
it with their associated matrices EPP

i , EPO
i , and EOP

i to give

EPH
i =

(
EPP

i EPO
i

EPO
i Ei

)
. (20)

Equations 16 and 17 can learn this phantom-node-augmented edge matrix EPH
i . We

then pad EPH
i with zero-rows and zero-columns corresponding to the nodes present in

the other EPH
j matrices but absent in EPH

i to give the new edge matrix ẼPH
i . This

makes all ẼPH
i s conformable for matrix addition. Then equation 4 combines these

augmented-FCMs to give the edge matrix E of the combined FCM:

E =

m∑
i=1

wiẼ
PH
i (21)

This mixture gives a way to represent and combine multiple hidden causal factors
in parallel.

5 Experimental Results
Consider the 5-node dolphin FCM as the causal dynamical system that the experts
want to model. Three experts each come up with a 4-node FCM to explain the
dolphin behavior. The first expert does not account for node C1 corresponding to
“HERD CLUSTERING", the second expert forgets to account for C2 corresponding to
“FATIGUE", and the third experts does not account for the node C4 corresponding to
“SURVIVAL THREAT". All three FCMs run from 10,000 random initial conditions.
The corresponding edge matrices are

E1 =


0 1 0 −1
−1 0 1 −1
0 −1 0 1
1 0 −1 0

 , E2 =


0 0 −1 0
0 0 1 −1
1 −1 0 1
−1 0 −1 0

 , E3 =


0 1 0 0
0 0 1 −1
0 −1 0 −1
−1 1 0 0

 . (22)

We then augment each 4-node FCM with one phantom node each. The augmented
FCMs then train by sampling the first two steps of the limit cycles from the 10,000
runs. This gives 3 5-node FCMs with edge matrices EPH

1 , EPH
2 , and EPH

3 :

EPH
1 =


0 .6685 .4392 .0066 .8296

.6685 0 1 0 −1

.4392 −1 0 1 −1

.0066 0 −1 0 1

.8296 1 0 −1 0

 , (23)



14 Akash Kumar Panda and Bart Kosko

EPH
2 =


0 .8601 .6264 .9446 .4425

.8601 0 0 −1 0

.6264 0 0 1 −1

.9446 1 −1 0 1

.4425 −1 0 −1 0

 , (24)

EPH
3 =


0 .7535 .4866 .8142 .0701

.7535 0 1 0 0

.4866 0 0 1 −1

.8142 0 −1 0 −1

.0701 −1 1 0 0

 . (25)

The combined FCM will have 5 observable nodes and 3 phantom nodes. So we pad the
5× 5 EPH

i matrices with zero-rows and zero-columns to get three 8× 8 matrices ẼPH
i :

ẼPH
1 =



0 0 0 0 .6685 .4392 .0066 .8296
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.6685 0 0 0 0 1 0 −1

.4392 0 0 0 −1 0 1 −1

.0066 0 0 0 0 −1 0 1

.8296 0 0 0 1 0 −1 0


, (26)

ẼPH
2 =



0 0 0 0 0 0 0 0
0 0 0 .8601 0 .6264 .9446 .4425
0 0 0 0 0 0 0 0
0 .8601 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 .6264 0 0 0 0 1 −1
0 .9446 0 1 0 −1 0 1
0 .4425 0 −1 0 0 −1 0


, (27)

ẼPH
3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 .7535 .4866 .8142 0 .0701
0 0 .7535 0 1 0 0 0
0 0 .4866 0 0 1 0 −1
0 0 .8142 0 −1 0 0 −1
0 0 0 0 0 0 0 0
0 0 .0701 −1 1 0 0 0


. (28)
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These 8-node FCMs then mix through convex combination to give the edge matrix
E of the combined FCM. We weight the experts equally so w1 = w2 = w3 = 1/3. So

E =



0 0 0 0 .22 .01 .00 .28
0 0 0 .29 0 .21 .31 .15
0 0 0 .25 .16 .27 0 .02
0 .29 .25 0 .67 0 −.67 0
.22 0 .16 0 0 .67 0 −.67
.01 .21 .27 0 −.67 0 .67 −1
.00 .31 0 .67 0 −.67 0 .67
.28 .15 .02 −.67 .67 0 −.67 0


(29)

This FCM mixture predicts limit cycles that are close to the Limit cycles of the
dolphin FCM. Figure 8 shows an instance of limit cycle approximation.

Fig. 8. The approximated limit cycles through phantom-node-augmented FCM mix-
ture. The time step is along the x-axis. The 5 observable nodes lie along the y-axis.
The color of the node represents its value. Bright color represents high value. Yellow
nodes have value 1. Purple nodes have value 0. The FCM mixture combines 3 FCMs
with 4 observable nodes and 1 phantom node each. The initial state is

(
1 0 0 1 1

)
and

converges to limit cycles in both FCMs. These approximated limit cycles are similar
to the limit cycles of the Dolphin FCM.

The augmented-FCM mixture approximates the dolphin limit cycles accurately
even when a component FCM does not. The third FCM EPH

3 does not learn its phantom
node C4 perfectly. Figure 9 shows that it converges to a fixed point when it should be
converging to a limit cycle. But the other phantom nodes in the FCM-mixture counter
its causal effect such that the mixture correctly predicts the dolphin limit cycles. The
performance improves with the number of components in this big-knowledge mixture.

6 Conclusion

Estimating missing or phantom nodes in a causal model remains a hard problem be-
cause at root the task is to estimate the unknown unknowns that affect dynamical
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Fig. 9. The limit cycles with phantom node C4. The time step is along the x-axis.
The 4 observable nodes lie along the y-axis. The color of the node represents its value.
Bright color represents high value. Yellow nodes have value 1. Purple nodes have value
0. The FCM EPH

3 learns the wrong phantom node C4 and fails to approximate the
dolphin limit cycles. It converges to a fixed point instead of the dolphin FCM’s limit
cycle with the same initial state

(
1 0 0 1

)
.

equilibria. The direct estimate of a single phantom node in a feedback fuzzy cogni-
tive map can be computationally heavy. The computational burden greatly increases
with the number of phantom nodes. Adapting mixed individual FCMs where each has
a single estimated phantom node is comparatively tractable when the user knows at
least the rough form of some of the equilibrium limit cycles or fixed-point attractors.
Future algorithms can extend these techniques to multiple phantom nodes per expert
and to multivariable feedback systems with richer equilibria and perhaps even chaotic
equilibria.
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