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A general answer is given to what one should conclude from disagreeing experts. The
answer is generalized further to incorporate the experts’ credibility weights. The answer
rests on a wide range of intuitively based epistemic axioms, scientific and philosophical
conjectures, and formal mathematical relationships. A recurring theme is the making of
Bellman—Zadeh fuzzy decisions, wherein a decision is the intersection of fuzzy goal and
fuzzy constraint subsets of some space of alternatives. Another result is that measures of
central tendency, such as the arithmetic mean, make poor knowledge combination opera-
tors. Formally, fuzzy knowledge combination operators are sought. The function space of
knowledge combination operators ¢: K" — K is shrunk by imposing successive axioms. The
final shrunken set is said to consist of admissible knowledge combination operators. Some
of its mathematical properties are explored and a simple admissible operator is finally
chosen. Knowledge sources X;: § — K are mappings from epistemic stimuli or questions
into a knowledge response set K. The uncertainty of the underlying epistemic situations is
captured by the cardinality of K and by the fuzziness of its partial ordering. Admissible
knowledge combination operators aggregate knowledge responses in some desirable way.
The arithmetic mean is not admissible. Nor in general is a probabilistic framework even
definable in the abstract poset setting employed by this theory. The fuzzy knowledge
combination theory is extended by associating general credibility weights with the knowl-
edge sources. A new set of weighting axioms is required to satisfy certain intuitions and to
satisfy the admissibility axioms. General weighting functions are obtained and thereby
weighted admissible operators are obtained. The weighted mean still proves inadmissible.
Appendix I contains a technical glossary and summary of the proposed fuzzy knowledge
combination theory. Appendix II contains proofs of the probabilistic uncertainty theorems
required for the uncertainty testbed used in the theory.

I. THE FUZZY KNOWLEDGE COMBINATION PROBLEM

How can a decision be reached when experts disagree? Take a mean? What if
one expert says yes and the other says no? Take a weighted mean? Use thresholds
of acceptance? Assume a (certain) structure on the expert uncertainty—assume a
probability distribution on the experts’ responses?

All knowledge-combination strategies ultimately rest on some epistemologi-
cal assumptions packed into the assumed knowledge-representation framework
or the combination technique. The mathematico—epistemological theory devel-
oped in this article rests entirely on uncertainty (fuzzy or random) intuitions. A
probabilistic model is explicitly avoided; yet some of the intuitions used are
captured in probabilistic relationships and proved to hold almost surely. Some of
the intuitions are fuzzy mathematical translations of conservative epistemic be-
liefs. And some of the intuitions rest on nonparametric statistical biases: Would
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you bet more often on the mean or the median? Like all assumptions, these
assumptions are ultimately accepted or not on their perceived reasonability—on
faith. No attempt is made to persuade the reader of the reasonability of these
grounding intuitions other than mathematically elucidating them as clearly as
possible and pointing out some of the consequences of denying them.

The fuzzy knowledge-combination problem can be cast as a function-space
search. Let S be a set of query stimuli. Let K be a partially ordered set of
knowledge responses. Define knowledge sources X, . . . , X, as functions from
query stimuli to knowledge responses, i.e., X;: S — K. The fuzziness of the matter
is, as always, captured by the common range set K; i.e., the cardinality of K
indicates the (worst-case) fuzziness of the knowledge sources: a two-element K
indicates certainty and in general an n-element K indicates more fuzziness the
larger nis. The partial order on K is assumed to make K suitable for mathematical
operations and should not be conceded unquestioningly. More generally, K need
only be endowed with a fuzzy partial order; this seems the minimal structural
requirement. Pick some query stimulus s € S. Let X(s) = (X,(s), . . ., X,.(5))
denote the knowledge response vector. Let k ¢ K denote the knowledge of the
epistemic situation (s, X(s)). Note we assume a point, not interval, estimate of
knowledge. The fuzziness of K softens this assumption (which is surely partly why
fuzziness culturally evolved). Then the fuzzy knowledge combination problem is
to find some knowledge-combination function ¢: K" — K such that ¢(X(s)) = k.

II. SHRINKING THE FUNCTION SPACE

Knowledge up, search down goes the Al slogan. We will employ this ““intelli-
gent’” problem solving strategy to find a fuzzy knowledge combination function @.
# will be trapped between lower and upper knowledge bounds that are intuitively
determined. Uncertainty intuitions are invoked to further delimit @’s behavior
between the knowledge bounds. This surround-and-march approach amounts to
defining a fuzzy decision' on the function space of (K-valued) functionals on K".
The epistemic requirements are goal or constraint sets of functionals. Their
successive intersection is what is meant by shrinking the function space.

The combination function ultimately selected in this article is not unique. The
epistemic requirements imposed simply do not contain enough structure, a price
often paid for generality. A fundamental epistemological question is whether
there exists further functional structure compatible with all maps from a cartesian
product of a (fuzzy) partial order into itself. Still, the selected knowledge combi-
nation function exhibits two properties that surely must be required of general
combination operators. First, it is in no way similar to the arithmetic mean of the
knowledge responses X(s), which we take as the ever-present benchmark of
parametric statistics. In fact the mean is easily barred from candidacy in the class
of reasonable knowledge combination functions; indeed it is barred by the very
limit theorems that have popularized it. Second, the selected @ turns out to be a
generalized confluence operator’ and hence reduces the Bellman—Zadeh deci-
sion theory. The reduction itself is trivial; seeing that such a reduction has
occurred is the hard part. This difficulty dissipates, and the reason for requiring
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such a reduction congeals, when combining knowledge is seen as making an
epistemic decision. Knowledge sources, objects that emit knowledge responses
when queried, actually are point-to-set mappings. For a given piece of knowledge
k depicts some set of actions or some states of affairs, i.e., it forbids some actions
or contradicts descriptions about some states of affairs and permits or is consistent
with others. The fuzzier the knowledge k, the fuzzier the depicted sets. The act of
combining fuzzy knowledge is some act of combining these fuzzy sets, and in the
simplest case this means taking their fuzzy intersection, which is precisely the
definition of a Bellman—Zadeh fuzzy decision.

Fuzzy decision theory also provides useful geometrical intuitions for combin-
ing fuzzy knowledge. To see this, let us begin the function-space search by
supposing that a query stimulus s has produced n-many knowledge sets via n-many
knowledge sources. What are the natural ways to combine such sets? One way is
to take the fuzzy set union. This is a very optimistic act of knowledge combination.
An equally intuitive way is pessimistic: take the fuzzy set intersection. Which shall
it be? At this point we do not have enough structure assumed to decide, but we do
have enough to state the first knowledge combination requirement. That require-
ment is boundedness: [ C C C U, i.e., the combined knowledge set C contains the
intersection / and is contained in the union U, i.e., the knowledge lies in the
middle. The lower bound [ is justified simply because it contains exactly the
knowledge elements common to all the knowledge sets. The upper bound U is
justified because every element of its complement, U¢, is uncommon to all the
knowledge sets and because U is minimal with respect to this property, i.e.,
because U is the intersection of all the sets with this property. These epistemic
intuitions remain essentially intact when the knowledge sets involved are fuzzy
and the standard fuzzy set operations are used. More precisely, the exactness of
the intuitions blurs according to the fuzziness of the knowledge sets.

We return from set to function intuitions, ever aware of their mutual translat-
ability. Let / and m denote the minimum (infimum) and maximum (supremum),
respectively, of the knowledge response vector X(s) components:

)

m.in Xi(s)’

m = max Xi(s),
where the dependence of the functions I(s) and m(s) on the query stimulus s has
been suppressed in the notation for convenience.

The boundedness assumption is that we know at least | and at most m. We
pack this into the first, most plausible, and least binding function space re-
quirement.

(A,) BOUNDEDNESS: [<g<m.

The inequalities in A, presuppose that the knowledge response set K is not
just partially ordered but numerically so. This loss of generality (excluding, for
instance, the linguistic quantities of everyday discourse) is only temporary. The ¢
eventually selected extends to most posets, depending on how negation (order



296 KOSKO

reversal) is defined. For the moment we identify K with the unit interval /,i.e., K
= [. This is also required to define an arithmetic mean A of the knowledge
responses:

1
A= —r; Z Xi(s),

where again A’s dependence on s has been suppressed in the notation.

The space of possible knowledge combination functions delimited by A is
obviously too large to determine @. The usefulness of A, is to focus attention on /
and m, defined on every poset, and to invoke it as a test criterion for candidate
combination functions. For instance, in the fashion of independent joint probabil-
ity density functions, the product

H Xi(s)

is immediately denied candidacy in the set of admissible knowledge combination
functions—as we shall call (and define!) them—except in the degenerate case
when all the knowledge responses are equal. The product is too pessimistic; in
particular, it ignores the upper bound m in the sense that it is always bounded from
above by / (of course m is always a factor in the product) and it tends monotoni-
cally toward zero as the number of nonunity knowledge responses increases.
Turning from the field operation of multiplication to (normalized) addition of
knowledge responses, we see that A; is compatible with the mean A since

1 1
==Y i<A<- - m.
HZ an m

Another candidate combination function compatible with A, is the median of the
knowledge responses—the benchmark of nonparametric statistics. It turns out, as
will be shortly seen, that the median and the mean are judged inadmissable in the
same stroke. / and m are also candidates compatible with A,; in fact any order
statistic is. Though / and m seem trivial candidates, this entire theory of fuzzy
knowledge combination turns on how the hypothetical question “*Should ¢ = [ or
¢ = m?” (where “or” is exclusive) is answered.

The second function space requirement is that ¢ must be invariant under
permutations of its knowledge response arguments. Note that this is not a veiled
assumption of equal likelihood of knowledge response occurrence. It is more an
assumption of simultaneity of knowledge source behavior. It simply says that it
should not matter how the knowledge sources are labeled. Let P(n) be the
symmetric group on n—the set of all permutations of 1,2, . . . , n—and letp =
(Pt, . - -, pa) € P(n) be a permutation. Let X,(s) = (X, (s), ..., X, (s)) be a
shuffle of the knowledge response vector components, i.¢., the result of exchang-
ing Xi(s) with X, (s). Then A, can be stated.

(A,) SYMMETRY: 8(X(s)) = 8(X,(s)) forall p e P(n).

A, is compatible with all ¢ candidates mentioned so far. It plays a little role in
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the mathematico—epistemological theory developed in this article, namely sepa-
rating mathematical notation from philosophical disposition. Yet A, does rule out
continuum-many ¢ candidates, e.g., weighted subtractions of X(s) components.

The next epistemic requirement concerns the knowledge gap m — 1. This
function is a raw measure of the uncertainty in the epistemic situation (s, X(s)).
Eventually it will be taken as the only measure of uncertainty. As the knowledge
gap varies from 0 to 1, the uncertainty varies from minimal to maximal;e.g., when
0=/=<9=<m=1occurs, we know nothing. Hence 1l — (m —)=1—m + lisa
rough measure of what we know. This simple observation proves to be fundamen-
tal when ultimately selecting ¢. One final note, condition A, and the identification
of m — [ as the knowledge gap is sure to strike some readers as similar to the
popular Dempster—Shafer theory of combining evidence. In particular, A, is
akin to Dempster’s>® original notion of multivalued-map-induced probability
measures and /and m are interpreted, respectively, as the Support and Plausibility
of proposition Q by Shafer.* A deeper connection is found in the functional
similarity of the relationships

Plausibility(Q) = 1 — Support(not-Q)
and

m(s) =1 — mjn(l - Xi(s)).

There seems to be no further conspicuous connections between the present
probability-free theory and the quasi-Bayes Dempster—Shafer theory.

The key epistemic question of the present theory is how should ¢ vary as the
knowledge gap m — [ varies? The forthcoming answer is motivated by answering an
easier question. If ¢ = / and @ = m, pure epistemic pessimism and optimism, are
the only choices for all possible stimulus environments, then which should be
chosen? A wide range of intuitions, suspicions, and evolved behaviors dictate the
conservative answer ¢ = /, and this is the answer assumed by this theory. Unfortu-
nately, arguments for epistemic conservatism are scarce. For instance, it is stan-
dard in statistical decision theory to simply state the maximin risk criterion, the
archetype of epistemic conservatism, as one criterion among many. A notable
exception, and source of unending argumentation, is the debate in social choice
theory over philosopher John Rawls’s proposal’ for a maximin policy of social
justice, i.e., for designing social institutions and redistribution schemes so as to
maximally improve the lot of those worse off socio—economically. Rawls claims
thatif you voted on social policy while sitting behind a perfect “veil of ignorance,”
where you knew neither your future place in society nor your capabilities (i.e.,
m — = 1insome sense in all stimulus environments), then in fact you would vote
for maximin social policies. The thrust of Rawls’s argument, and most of the many
counterarguments, has to do with correctly or incorrectly placing odds on per-
fectly uncertain environments, namely that maximin is the correct placement.
This amounts to arguing over which probability distribution ought be assumed on
nature, an old subject, and therefore is ignored (unintuited) by this nonpro-
babilistic epistemic theory.
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Epistemic conservatism is central to this theory of fuzzy knowledge combina-
tion. Therefore some argument for the choice ¢ = /is in order, even if speculative.
The present argument appeals to evolutionary biology, to genes, and provides
some fuzzy justification for maximin sentiments generally. We cite what zoologist
E. O. Wilson® calls the principle of stringency in population biology. This princi-
ple is the ubiquitous induction that the time-energy budgets of organisms evolve
only in light of worst-case, or most stringent, environmental parameters, i.e., that
expected survival drives adaptation rather than, say, expected reproduction. The
principle of stringency explains why predators often ignore killable prey, why
foragers often ignore food, and why in general wildly gluttonous, wildly reproduc-
tive behavior does not prevail. As Wilson says, ‘“‘animals and societies do not
always live in the midst of plenty” (Ref. 6, p. 143). The claim is that organisms
acting to the contrary do not, all else constant, house genes that increase in
frequency in the population—extinction too easily occurs. This empirical claim,
perhaps the only genetic explanation for laziness, is a conservative minimax claim
in the sense that enduring genes abound in organisms who minimize the chance of
experiencing maximum loss (death before reproduction). The breadth of the
principle of stringency becomes clearer when it is realized that the principle
presumably operates on all organisms, plant or animal (et al.). For present
purposes, we venture that the principal of stringency underlies the observed
epistemic conservatism of human individual and group judgment: for instance,
the deeply entrenched operative principle that truth = concurrence, i.c., that the
working combined knowledge set is the intersection of informed knowledge
source sets i.e., that people are fuzzy decision makers in the Bellman—Zadeh
sense. Hence g = [.

Again let the knowledge gap m — I measure the uncertainty in the epistemic
situation (s, X(s)). The previous choice of @ = [/ over @ = m can be restated as
follows. As the query stimulus variable s ranges over S, all possible stimulus
environments, the maximum uncertainty case m — [ = 1can be expected to occur,
and when it does we know nothing (0 < ¢ < 1), and thus k = ¢(X(s)) = O in this
case. But when m — [ = 1,/ = 0, and thus ¢(X(s)) = /. Further, in the least
uncertain case, whenm — [ = 0orm = [, we know it all (¢ = m), and again ¢(X(s))
= [. Let us make explicit that we are focusing on an abstract sequence of epistemic
situations (s, X(s)) indexed by query stimuli s € S. Intuitively it may help to think
of s as a continuous parameter. Without loss of generality, let us further suppose
that § is ordered so that as s ranges through it the knowledge gap ranges from
minimal to maximal,i.e., fromm ~ [ =0tom — [ = 1. Then, finally, where should
¢ tend, if anywhere, when m — [ increases from 0 to 1? How does ¢ respond
to uncertainty?

Of course ¢ should tend to / as m — [ increases; that is the import of choosing
¢ = lin the most uncertain case and ¢ = m (= ) in the least uncertain case. The
continuous intuition is that  monotonically decreases to / as the knowledge gap
increases, i.e., uncertainty promotes scepticism. Put another way, the more
uncertain the environment, the more we tend to play minimax strategies—the
more we tend to play hardball. We now cast this uncertainty intuition as the third
function space constraint.

(A;)  CONSERVATISM: o1 as m—111
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Note that in A3, as in A; and A,, the relevant constituents only depend on
the partial order on K.

Ajzimplies that any admissible knowledge combination operator is a general-
ized confluence operator and hence reduces the Bellman—Zadeh fuzzy decision
theory in the limiting uncertain case. We recall that a fuzzy decision is confluence
of goals and constraints, where the goals and constraints depict fuzzy subsets of
some space of alternatives and confluence is interpreted as fuzzy set intersection.
Hence D=G N...NG,NC,N...NC,withthe obvious notation. Therefore
the fuzzy set membership function of the fuzzy decision set D is

mp = min {mg, m¢} = I,
if
whence knowledge source response sets are equated with the (epistemic) goal and
constraint sets. [More formally, my(s) = X(s), and where we recall that X(s)
picks out some abstract knowledge set, consistent world state descriptions for
instance, which can be taken as some fuzzy subset of K.] Hence ¢ | m,, as
claimed.

Aj also implies that m and the median of the knowledge responses are
inadmissible. For obviously the choice ¢ = m violates A;. The median is disbarred
because in general it is independent of the knowledge gap dispersion. The median
need tend nowhere as m — [ increases. A similar fate befalls all other order
statistics except /, which is obviously admissible. Note that we are saying that
a candidate knowledge combination operator is admissible only if it satisfies
A| - A}. ’

Requirement A3 admits a random interpretation. As detailed in Appendix
IT, suppose the knowledge sources X, X5, . . . are unit-interval valued random
variables (measurable with respect to, say, 2°) on the stimulus space S. We use
this random framework to model worst-case behavior of knowledge combination
operators, and we use randomness rather than fuzziness here because the avail-
able probabilistic theory is so much better explored.

Intuitively, perfectly random knowledge responses represent maximal epi-
stemic entropy. It corresponds to all the queried experts ignoring and shouting at
each other. This situation can be largely captured with a random sampling
framework. Thus let X, X;, . . . be independent and identically distributed
(i.i.d.). As demonstrated in Appendix 1, it turns out we must also assume that the
knowledge-source random variables have density functions and that these density
functions are nondegenerate (positive on sets of nonzero Lebesgue measure, a
type of compact-support property), a painless assumption to rule out pathologies
and one that is satisfied by most popular densities, including the normal density.
Judicious application of the Borel—Cantelli Lemma then takes us where we ex-
pect to go, and in fact even further. In particular, in the random case we expect to
know nothing: 0 < ¢ =< 1 and, further, ¢ = 0. As the number » of knowledge
sources increases, / should monotonically tend to 0 and m should monotonically
tend to 1. Let us call this random version of A; requirement A;*:

(A3*) o |l as i— o in the random (i.i.d.) case.

Theorem 1in Appendix II shows that / and m tend to the endpoints of the unit
interval with probability one. Indeed Theorem 1 shows much more. It not only
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shows with probability one that at least one knowledge source will respond with a
one and at least one will respond with a zero, but that the knowledge response one
will be emitted infinitely often and the knowledge response zero will not be value
of / at most finitely often. Since Theorem 1 applies to any nondegenerate subset of
the unitinterval, it in essence says that in perfect random sampling all the values in
the unit interval will be emitted as knowledge responses, infinitely often, and with
probability one. For fuzzy theorists, Theorem 1 (and Theorems 2 and 3) amounts
to an asymptotic property of the fundamental fuzzy operators supremum and
infimum.

Now let us examine the behavior of the arithmetic mean A with respect to A;
and A5*. Does A tend to [ as the sample size grows? Does A tend anywhere? The
answer 1s immediate, unambiguous, and robust. No tampering with the random
sampling framework will change it. The answer is no. By the Kolmogorov Strong
Law of Large Numbers, with probability one A converges to the distribution mean
of the knowledge-source random variables. And, in general, the distribution
mean is independent of / and m; moreover, in general it is not zero (3 seems the
more intuitive guess), and hence A; and A;* are violated.

Animmediate hint that A is not a general knowledge combination operator is
that it requires real numbers for its definition. It is not even a closed operator on
the set of integers. And it certainly does not generalize to arbitrary partially
ordered sets. Much of the problem lies in the normalization factor 1/n. It requires
a division operation and hence divisible quantities, and it amounts to implicitly
giving each quantity equal rank. The latter property is largely responsible for the
Strong Law of Large Numbers, at least intuitively, in that as n increases each
quantity eventually becomes smaller relative to » until each quantity becomes
virtually negligible, and all the quantities have left are their shared distribution
properties.

Lest one think A; artificially rules out the mean by choosing ¢ = [ over ¢ = m,
suppose ¢ = m were chosen instead. Then the corresponding A;-like condition
would still rule out the mean (and median), and for the same reason A, does,
namely because the Strong Law sends A somewhere dependent only on the
underlying probability distribution and in general different from m. A more
robust claim can be made. If an admissible knowledge combination operator is at
all a function of the epistemic uncertainty of the epistemic situation (s, X(s)),i.e.,
if it depends at all on the knowledge gap m — [, the arithmetic mean and like
measures of central tendency are inadmissible. The point is dispersion prevails
because it measures uncertainty and central tendency does not. And uncertainty
measures must surely be incorporated in admissible combination operators.

The next function space constraint summarizes the disposition that all we
ever really know about the epistemic situation (s, X(s)) is the knowledge gap
m ~ [. We feel good if it is small, bad if it is large. More generally, given any poset
K, the only variables of interest—at any rate the only variables we can trust—are
the lower and upper bounds / and m. This strong nonparametric (distribution-
free) assumption is akin to the special case of picking (betting on) the median over
the mean for arbitrary stimulus environments if those are the only two choices.
Intuitions accustomed to mean-squared-error benchmarks, for example, will find
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it too stringent. On the other hand, nonparametric intuitions accustomed to order
statistics frequently proving to be sufficient statistics should find it quite natural.
In any event, we codify it as function space assumption A,.

(As)  NONPARAMETRICISM:  ¢(X(s)) = o(l, m).

Of course A4 rules out the mean A (and the median) immediately. For that
reason it is listed after A,, which in principle could follow A, in decreasing
plausibility and increasing tractability. For it is important to see that limit proper-
ties such as the Strong Law of Large Numbers, not epistemic gerrymandering,
preclude A’s admissibility.

But upon reflection it appears a new mean may be admissible, namely the
operator / + m / 2. More generally, consider the family of convex combinations
M+ (1 = N)m where 0 < A < 1; we denote this family of functions, which has the
cardinality of the continuum, by C. Clearly every element of C satisfies A, and
A;. Buthow about A;? Again we invoke Theorem 1 from the Appendix. Since, in
the random setting, / tends to 0 and m tends to 1, it follows that any convex
combination tends to 1 — X, and hence is inadmissible according to A5/ A5, even
though A, is clearly satisfied.

There is final property of knowledge combination operators that needs to be
mentioned but will not be assumed as a function space constraint. (Hence this
mathematico—epistemological theory defines a knowledge combination operator
as admissible if and only if it satisfies A; — A,.) It can be called the preferred
endpoint property. This property holds that one endpoint of the knowledge
response set K is preferred to the other, and in fact m is preferred to /. The raw
intuition is that we care about nonfalse propositions and nonempty sets more than
their opposites, even though logic does not care (about anything for that mat-
ter)—i.e., if the unit interval, say, is taken as the set of truth values or the set of
degrees of fuzzy set membership, then more attention is paid to quantities near 1
than 0, and in general it should cost functional procedures more to yield results
near 1 than 0. For current purposes this means that how the knowledge gap m — [
affects ¢ should depend on how close m and / are to sup K, e.g., on how small
1 — m + lis. The closer m is to 1, the more @ should tend toward /. Likewise,
the closer m is to 0, the more ¢ should tend toward m and thus be more
lenient, since then there is in some sense less to lose with optimism. We call this
preferred endpoint property leniency in the present context.

LENIENCY: o(l,m) T m as 1 —-—m 1 1.

A less general, more intuitive version of the leniency condition is the follow-
ing rejoinder to As:

g Tm a m—1]0.

Note that the above condition does not imply A, or vice versa. Note also the
stringency of the leniency condition: it rules out all knowledge combination
candidates so far discussed, except possibly m, which is ruled out by As.
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III. SELECTING A KNOWLEDGE COMBINATION OPERATOR

The function space ® of admissible knowledge combination operators—i.e.,
those maps ¢: K" — K that satisfy conditions A;— A, of Section I1—is still too
large to easily and uniquely select a ¢. So we must guess a ¢ €  and see how it
behaves. But then the problem arises over which guess is best.

We assume the simplest guess is best justified. And the simplest guess is just
¢ = I. Indeed @ = [/ enjoys a distinguished status in ® because of its equivalence
with the Bellman—Zadeh fuzzy decision operator and because / is the upper
bound on two function spaces of triangular or -norms, to be defined shortly,
namely those n-placed r-norms defined on K" and those two-placed f-norms
defined on all (I, m) pairs of K. But ¢ = [ is to simple. It ignores the uncertainty
measured by the knowledge gap m — L.

So let us guess as follows. Since m — [ is a rough measure of what we do not
know, let us take its negation 1 — m + [ as a rough measure of what we do know,
i.e., guess ¢ = 1 — m + [. This operator satisfies A, since it satisfies A4. More
importantly, this operator satisfies A5, and satisfies it linearly, since it is inversely
related to the knowledge gap m — [. A3* is likewise satisfied, as application of
Theorem 1 of Appendix Il immediately shows. A problem occurs, though, with
the boundedness condition A,. For if (/, m) = (0.2,0.4),say, then1 - 0.4 + 0.2 =
0.8 > 0.4, and this cannot be.

Forl —m+[/<m,8 =1— m+ | behaves as desired. The simplest way to
deal with the offending cases is to put ¢ = m in those cases. Hence we are led to
select the following knowledge combination operator:

o(l, m) = min(m, 1 — m + 1).

Does this @ satisfy the rest of the boundedness condition? Does @ = [ always hold?
Suppose not: ¢ < [. Then 1 — m + [ < [. Subtracting / from both sides then gives
m > 1, a contradiction. Hence & ¢ ®.

@’s behavior on the unit square is displayed in Table 1. ¢ is lenient because it
penalizes more for the same absolute difference in the knowledge gap m — /
occurring nearer 1 than nearer0: e.g., both (0.1,0.4) and (0.6, 0.9) have a 0.3 gap,
but (0.1, 0.4) = 0.4 while ¢ (0.6, 0.9) = 0.7. Underlying this observed leniency is
a fundamental decomposition of ¢. Recall from elementary real analysis the
identity min(x, y) = ¥(x + y — |x — y|) for real numbers x and y. Hence #(/, m) =
Y1+1-2m— (1 +D)]). Henceiftm =41+ ), then2m — (1 + )| =2m -1 -
otherwise, [2m — (1 + 1)| = 1 + [ — 2m. Hence

l-m+1 ifm=41+1
if m<¥1+1).

The leniency of ¢ is due to putting ¢ = m when m < (1 + /). More generally
we may wish to exploit the knowledge gap behavior when m < 1 — m and thus we
may select ¢*:

o(l, m) =

min(m, 1l —-—m+1[) fm=1-m

o*(l, m) = {

min(/, m — [) ifms<1-m.
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Table I. Behavior of ¢(1, m) = min(m, 1 — m + [) on the unit square.

m
o(l, m) 0 01 02 03 04 05 06 0.7 0.8 09 1
0 0 01 02 03 04 05 0.4 03 0.2 0.1 0
0.1 * 0.1 02 03 04 05 0.5 04 03 0.2 0.1
0.2 * * 02 03 0.4 05 0.6 0.5 04 03 0.2
0.3 * * * 0.3 04 05 0.6 06 05 0.4 0.3
0.4 * * * * 04 05 0.6 0.7 0.6 0.5 0.4
! 05 * * * * * 0.5 0.6 0.7 07 06 05
0.6 * * * * * * 0.6 0.7 0.8 07 0.6
0.7 * * * * * * * 0.7 0.8 0.8 0.7
0.8 * * * * * * * * 0.8 09 08
0.9 * * * * * * * * * 09 09
1 * * * * * * * * * k 1

*Indicates that ¢ is undefined on (I, m) pairs where / > m.

Note that @ = | — m + [ if m = 31 + ), and @ = m if not. Note further that ¢ = m
when m < | — m, and hence when m < ’}_- Finally, the piecewise continuity of ¢ implies that
¢ values between consecutive row or column entries are between those entries (except on rows where
@ changes direction at the midpoint between two consecutive and equal entries).

The dual-like portion max(/, m — 1) allows the knowledge gap to be taken as the
knowledge k of the epistemic situation (s, X(s)) except when it falls below the
lower bound /. Note that ¢* satisfies A, since if max({, m — I) > m, then /< m
implies that m — [ > m, which implies that / < 0, impossible. Note further that
¢* < ¢. Does this property generalize? Is ¢ the upper bound on ®?

Let us replace the minimum with product in g to get ¢**(/,m) = m — m*> + ml.
Then p** < ¢ trivally. Admissibility follows since, first, m — m* + ml > m implies
[ > m and, second, m — m* + ml < [implies m(1 — m) < I(1 — m) and thus, for
positive m, implies m < [, absurd. (A; follows since in the uncertain limit ¢** = 1
— 1+ 0=0byTheorem 1.) This result is further evidence for the conjecture that ¢
is the largest of all admissible knowledge combination operators.

But the conjecture is false. A less general version is true, though. For let
O/, m) = min(m,V1 — m + [). Then O is admissible since if ® </, then1 — m +
| < P, and then 1 — m < (I — 1) <0, which implies m > 1, impossible. But note
that ¢(0.04, 1) = 0.04 < 0.2 = 6(0.04, 1).

The difference between ¢** and @ is that ¢** modified the operation ¢ used
on its arguments while ® modified its arguments. The distinction is critical. We
will show variations such as ¢** that are reasonable in the sense of being f-norms
always lic between our simpliest guesses that ¢ = /and ¢ = min(m, 1 — m + [).
This theorem will complete the first part of this theory of knowledge combination;
the second part will be completed when this theorem is extended to account for
weighted knowledge sources. The first task is to give a working definition of
t-norms and ¢t-conorms.

A triangular norm or t-norm T is an n-to-1 function T: K" — K that general-
izes minimum (infimum) on K. For present purposes we will restrict ourselves to
the two-dimensional case (the n-dimensional case is an immediate extension of
notation) and to the poset /, the unit interval, the case most extensively studied in
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the t-norm literature. Then a r-norm T: I — I generalizes min in that it satisfies
Tl - T4:

(T,) BOUNDARY: T(x, 1) = x,

(T;) SYMMETRY: T(x, y) = T(y, x),

(T;) MONOTONICITY: T(x,z) < T(y,z) ifx=y,
(Ts) ASSOCIATIVITY: T(x, T(y, z)) = T(T(x, y), 2)

forallx,y,zel. Atconorms$: I?— I generalizes max by satisfying S| — S4, where
S, is S(x,0) = x and S, — S, are identical with T, — T, when T'is replaced by S in
the definitions.

All t-norms and t-conorms satisfy two general properties. First, they are,
respectively, bounded above and below by min and max:

T(x, y) < min(x, y) < max(x, y) < S(x, y)

for all T and S. A simple proof of this fact is given in Yager.” Recall that, most
generally considered, negation is an order-reversing operation on a poset. (In
Klement.® several unit-interval characterizations of negation are surveyed.) On /
the most popular negation operator N: I — [ is simply N(x) = 1 — x, where it
happens that N is the identity operator. The second property is that, for every
negation operator, every f-norm 7 and t-conorm § has associated with it a De
Morgan dual t-conorm S’ and -norm T", respectively, given by

S§'(x, y) = N(T(N(x), N(y)))

and
T'(x, y) = N(S(N(x), N(y)))-

The proof is trivial and essentially amounts, in the case of §’, to using the
order-reversing property of N on T; to give S'(x, 0) = x instead of T}, and
similarly in the case of T". (Note here, though, that N?(x) = x must hold.) This
property is simply a generalization of the relationship min(x, y) = 1 — max(1 — x,
1 — y) and similarly for max. The important consequence is that a De Morgan-
dual relationship in general does not hold between arbitrary t-norms and
f-conorms.

Before exploring the function space of f-norms let us observe two properties
of ¢ = L. First, consider the space of all (/, m) pairs in I?, i.e., the upper triangular
region of the unit square. Then there is exactly one &-norm on this space that
satisfies A, namely @ = /, since T(x, y) < min(x, y) = [ for all -norms. Next, let us
return to the knowledge response vector X(s) and its associated product space K".
Then by a direct extension to n-place t-norms of the above two-place argument,
T(X:1(s), . . ., X,(s)) = lis again the only admissible +norm. This motivates the
conjecture that ¢ = [ enjoys a special status in ®.

What is the smallest +-norm on I°? The smallest t-norm T is, as expected,
always zero except when one of the -norm axioms T, — T, must be satisfied, and
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the only axiom that is not satisfied in the zero-degenerate case is the boundary
condition T;. Hence

min(x, y) if max(x, y) =1

To(x,y) =
(x 9) {() if max(x, y) < 1.

Then clearly for every t-norm T, T, =< T < min holds. But this function space of
t-norms is too large for our purposes. For it includes discontinuous #-norms like
T, i.e., when ¢ is [-valued, it must be a continuous function of its arguments.
More generally, whenever our poset K is equipped with a metric, small changes
in the knowledge response vector X(s) should only produce small changes in
B(X(s)), i.e., c(X, X') small should imply d(s(X), ¢(X")) small where d is the
poset metric and ¢ is a compound metric defined in terms of d.

So what is the smallest continuous t-norm T,.? As discussed in Goodman and
Nguyen,’ T, is given by

T.(x,y) = max(0,x + y — 1).

T, is quite ubiquitous. It is not only the lower bound on the continuous -norms,
but is also the lower bound on the two-place copulas, which are essentially
bivariate distribution functions with uniform marginal distributions (again see
Ref. 9). Copulas are essentially continuous t-norms that are not associative but
instead satisfy a positive increasing monotone property; they, like continuous
-norms, are natural phenomena on probabilistic metric spaces, where prefuzzy
theory mathematicians first studied both (see, for instance, the pioneering works
of Menger,'” Schweizer and Sklar,'"'* and Ling'?*). Then there are the Frank
t-norms. Noting thatx + y = min(x, y) + max(x, y) holds for all real x and y, Frank
showed,'* among other things, that the class of t-norms that satisfy x + y =
T(x,y)+ S'(x,y), where §’ is the De Morgan dual of T, are bounded according to
T.< T < min. As Prade points out,'” Frank t-norms are required for probability-
functional operators of probabilistic conjunctions, i.e.,

Prob(A and B) = T(Prob(A4), Prob(B)).
Then there are the Yager t-norms 7, defined by
Tp(x,y) = 1 = min(L, [(1 = x)” + (1 = y)’]'/?)

and parametrized by p = 0. Note that T}, = T,. by De Morgan’s Law. Moreover, as
discussed in Yager,'® the T, are increasing with p;infact, T, =T, < T,< T, =
min (indeed T, decreases to T as p decreases to 0), again revealing T,’s esteemed
status in the space of f-norms.

Decompose the function space of r-norms I' on /7 into the following two
components:

Iy =A{T: T(x, y) 2 max(0, x + y — 1)}
and

[ =A{T: T(x, y) <max(0, x + y — 1)}.
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In what follows we are only concerned with --norms taking mand 1 — m + [ as their
arguments. The t-norms need not be continuous; the point of the previous
paragraph was to focus attention on T as a pivotal t-norm. Further, the following
theorem, which says that I} is admissible and I'; is inadmissible, is understood as
counting copula operators as admissible.

THEOREM.

IF the t-norms in I" take only m and 1 — m + [ as arguments,
THEN Iy C ®and I, C ¢°.

PROOF. For all Te I', A, is satisfied by assumption. Hence A, is satisfied.

Next, note that the monotonicity condition T3 implies that as the knowledge
gapincreases, T | T.forTel' and T | T,for TeI';. The thrust of the proofis the
following equality:

T.=max(0,m+1-m+1[—-1)=max(0,/) =L

Thus in one stroke all I'; t-norms satisfy A, and A; and no I'; t-norms do, and the
result follows. Q.E.D.

Hence all “interesting” knowledge combination t-norms T are such that/< T
< min(m, 1 — m + [). The robustness of this claim depends on the extent to which
the difference operator “—" generalizes to different K posets.

Finally, a fuzzy-set interpretation of the selected knowledge combination
operator ¢(/, m) = min(m, 1 — m + [) is instructive. Let L and M represent the
intersection and union of knowledge sets as defined by membership functions /
and m. Then

o(L,M)y=MN (M - L)
=MnNMnN L)
=MNOMUL)
=MNM)YUL sinceMNL=L.

Henceo | LasM 1 X,where X isthe entire space (e.g., X = S), again exhibiting
subsumption of the Bellman—Zadeh fuzzy decision theory. This result is only
interesting for fuzzy sets since only then can M N M¢ # @ occur. The smaller M is
relative to M¢, the greater contribution M makes to ¢. Again the generality of this
argument depends on the generality of the fuzzy set difference operator.

1IV. WEIGHTING THE KNOWLEDGE SOURCES

Some knowledge sources are more credible than others. Every knowledge
combination theory must deal with this. On the present theory, all knowledge
sources X, . . . , X, have been assumed equally (and maximally) credible. And
this heroic assumption presents immediate problems. For instance, if there are
50 knowledge sources and 49 respond with a 0.9 but one responds 0.1, then
$(0.1,0.9) = 0.2—a sort of rotten apple property, or so it appears. In practice one
expects such outliers to have very high or, usually, very low credibility. We
require of course that low-credibility knowledge responses make proportionately
less contribution to ¢ than high-credibility knowledge sources. But, in passing, let
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it be clear that the popular heuristic of equally weighting knowledge sources in
uncertain environments is a justifiably expensive heuristic. For this amounts to
making experts of everyone. Increasing numbers of knowledge source responses
can be expected to produce increasing epistemic entropy, and from expert en-
tropy nothing follows (what if one doctor says operate and a second says other-
wise?), i.e., @ | O just as surely as if coins were flipped.

Let w; € K denote the weight of X; and let w = (w(, . . . , w,) denote the
knowledge source weight vector. Then how should X and w be combined by
¢?7—i.e., what is ¢"?

The present theory assumes ¢"(/, m) = ¢(/*, m"). Hence the task is to find
weighting functions for / and m. This has the consequence of leaving the Theorem
of the previous section intact. We further assume the following problem formula-
tion. We seek weighting functions f. and f7* such that

i m.in f[,(W,‘, X,‘),

mw m_axf;"(wi’ Xi)v
i

where again dependence on s £ § has been suppressed in the notation for conve-
nience. These assumptions have the virtues of simplicity and (apparent!) tractabil-
ity; they also permit immediate generalization of the previous knowledge combi-
nation results.

Once again we engage in a function space search. And once again we appeal
to smoothly varying intuitions. In particular, where should f! and f" tend as w;
traverses the partial order, especially as w; moves across /? Surely at maximal
credibility, when w; = 1, we require f = f" = X, and this relationship should be
approached as w; approaches 1. Call this requirement W,.

D) fﬁ(Wh X)) — X; and f['(w;, X;) > X;asw; 1 1.

The situation is more delicate as w; tends to its lower bound. Consider f/.
When w; = 0, fi(w;, X,) should make no contribution to [* (unless w; = 0 for all i)
since knowledge source X is literally incredible. But since /" is a minimum
operator, we must have fi{w;, X;) = 1 to annihilate its effect on /. More
generally, as the credibility w; of X; decreases, we require that the weighted
response fi(w;, X;) increases so that it makes progressively less contribution to /"
Hence

(W2) filwi, X)) 1 Lasw; | 0.
For sake of generality, and for simplicity, let us restrict the constituent terms
of fi(w;, X;) to w;, X; min, max, and negation. More specific terms can be

substituted—e.g., f-norms for min and V w; for w,—without in general violating
W,. Then a simple examination of cases leads to the following specification for fi:

filwi, Xp) = max(1 — w;, X)),
where we take 1 — w; for not-w; for ease of examples. Clearly this f! satisfies W,

and W,. Suppose, however, min(1 — w;, X;) were chosen instead. Then neither
W, nor W, is satisfied. Suppose, as many are apt to guess in general for a
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weighting function, the choice is min(w;, X;). Then f! tends to X; as w; tends to 1
in accord with W/, but f!follows w, to 0 in violation of W,. The latter consequence
is a genuine bad apple property: it implies that if any knowledge source is
incredible, they all are in the sense that then / = 0. Suppose next that the choice
is max(w;, X;). Then neither W, nor W, is satisfied.

The choice fi(w;, X;) = max(1 — w;, X;) has been arrived at in a different
way in a related context by Yager.!” Yager is concerned with how to condition
C(0), the degree to which decision object O satisfies constraint or criterion C, on
w(C), the weight of the constraint. Yager simply interprets this conditioning
process as asserting the conditional IF w(C), THEN C(O) in a fuzzy logic. A
classical material-implication interpretation of the conditional leads to not-w(C)
OR C(0), which in turn leads to the Kleene'® implication operator max(not-
w(C), C(0)), or max(1 — w(C), C(0)) on I, which is just fi. In Ref. 17 Yager
points out several interesting properties of this weighting function; in particular,
it behaves as a thresholding function in the fashion of classroom grading
schemes—no discrimination of grades occurs below the D-minus grade, i.e., F
grades. Yager then forms the fuzzy weighted decision function mp’(O) = min;
max(1 — w(C;), C,(0)). Hence mp’ = [, Further, according to the immediate
weighted extension of As, call it A3”, ¢ | mp’, subsuming Yager's generalized
Bellman—Zadeh fuzzy decision theory.

The next task is to select f7. Again let w; tend to its lower bound. Symmetric
with f/, when w; = 0, f7(w;, X;) should make no contribution to m"”. Since m" is
a maximum operator, this means f;'(w;, X;) = 0 must hold since then and only
then the weighted response is ignored by m”. More generally, as w; decreases,
F7 should decrease as well and thus make progressively less contribution to m".
Hence

(W3) f'(wi, X)) | Oasw; | 0.
Examination of cases quickly leads to the selection
f'(wi, X3) = min(w;, X).

Suppose we chose f7* as we chose fi: f™(w;, X;) = max(1 — w;, X;). Then W, is
satisfied but W is not. The latter violation is a symmetric bad apple property: a
single w; = 0 forces m" = 1, and the lower any knowledge source’s credibility, the
more m" tends to 1. The remaining general choices for f” are ruled out because,
similar to the alternative choices for f}, they violate W, or W. Finally, note that
now m" generalizes the common procedure of weighted combination, namely
multiplying knowledge responses by their credibility weights as in the weighted
mean

AY =

I | e

> w;i X

Observe that the unweighted knowledge combination theory is subsumed as
the special case whenw = (1,1, . . ., 1), or more generally when w is the vector of
all maximal values in the poset K. This follows of course since f/ and f}” satisfy
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W,. Let us explore an example. Suppose we are given the unweighted (i.c.,
maximally weighted) knowledge response vector X = (0.2, 0.6, 0.7, 0.6, 0.8) in
response to some query. Then the knowledge gap is 0.6 and ¢(0.2, 0.8) = 0.4.
Here the sample mean A is 0.58 with a (biased) sample deviation of 0.20396 or
roughly 0.2. Knowledge source X is the outlier here. Suppose we find out X, has
little credibility, is particular, suppose we are now givenw = (0.3,0.8,1,0.7,0.9).
Then the weighted knowledge gap is 0.2, significantly less than the unweighted
case, since [ = min(0.7,0.6,0.7,0.6,0.8) = 0.6 and m" = max(0.2,0.6,0.7, 0.6,
0.8). Hence ¢* = 0.8. But A" = 0.476, strictly less than A, with an associated
sample deviation of roughly 0.24, which is strictly more than in the unweighted
case and which further suggests that the variance, defined in terms of A, is an
inaccurate measure of epistemic uncertainty. These peculiarities arise from the
mean’s delicate definition in terms of the special field operations of addition and
multiplication (division).

Problems arise as the weight vector w approaches the zero vector. For
suppose w = (0,0, . . .,0). Then /* > m™! The problem can already be seen, as
can its solution, in the previous example where X is assigned the relatively low
weight of 0.3 and consequently fliwy, X1) > fi"(w,, X;). Yet in the example
I < m". The explanation of course is that the weighting scheme of " depends on
sample size. This sample size dependency is packed into assumptions W, — W,
The smaller the number n of knowledge sources in the epistemic situation, the less
chance the min/ and max m have to discount low-credibility responses. Now it will
always be the case that ¢” < m" holds, but the underlying knowledge-gap
arguments still require that A;" hold: [ =< ¢" < m". We need a limit theorem.

Theorem 2 in Appendix II guarantees that A," holds for large numbers of
knowledge sources when ¢* = min(m"™, 1 — m" + ). For it says that in the
random sampling (i.i.d.) case, [ tends to 0 and m" tends to 1 with probability
one, and hence in the limit the weighted knowledge gap is always positive. This
requires some interpretation. In Theorem 2 the Borel—Cantelli Lemma is used to
show that, with probability one, the event min((w,, Xx) = 1 occurs infinitely
often and the event max(1 — w;, X;) = Ofails to occur at most finitely often. These
are extremely strong probabilistic statements and it takes a result as solid and
fundamental as the Borel —Cantelli Lemma to prove them. Theorem 3 generalizes
this to weighting schemes of the form min(wg, w, . . ., wi X)) and max(w!,
wl, ..., W X;), where any of the weights w! or w/ can be of the form w; or 1 —
w; for any finite m. Theorem 3 of course subsumes Theorems 1 and 2 when all w; =
wi = 1 (Y; = 1). These are new random sampling theorems involving infinite
matrices of i.i.d. (and nondegenerate density) random variables. The thrust of the
theorems is that the intuitive endpoint-degeneracy property per row of Theorem 1
seeps over to any new sequence of random variables formed by taking pairwise
min or max combinations of finitely many rows in the m-by-c matrix of i.i.d.
random variables, and this occurs infinitely often with probability one. Put
another way, the biggest of the pairwise smallest weighted random responses will
be one and the smallest of the pairwise biggest will be zero. As discussed in
Appendix 11, these theorems can be generalized by dropping the needlessly strong
condition of identical distribution from the i.i.d. framework provided the se-
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quence of integrated density functions diverges; independence, however, must be
maintained to invoke the Borel—Cantelli Lemma or even, perhaps, the Kol-
mogorov Zero-One Law (which, without further hypotheses, only says that the
functions lim inf X; and lim sup X; will be constants in the tail sigma-algebra).

Some remarks are also in order about the weighted mean A", First, from the
previous example we already see that A" violates A" since there 4" = 0.476 <
0.6 =1". A", 0"(X(s)) = o(I", m"), is also immediately violated by definition
of A™. Likewise, A," is immediately satisfied by the commutativity of multiplica-
tion and addition. A3" is violated because ultimately A" behaves independently
of the weighted knowledge gap m" — I'. The Kolmogorov Strong Law of Large
Numbers, and several variations of it, can be applied both to the sequence of
weighted i.i.d. (finite-variance) random variables w;X;, w.X,, . .. or to the
sequence of product i.i.d. random variables W, X,, W,X,, . . . to show prob-
ability-one convergence to a weight-adjusted mean or to a joint-distribution
mean, etc. Yet another mean-related convergence can be observed from the
cross-correlation ergodicity of the stochastic processes W; and X; if they are
jointly stationary processes. But weighted central tendency still ignores weighted
dispersion.

Finally, the f-norm Theorem of the previous section is unaffected by weight-
ing the knowledge sources according to f! and f7'. For instance, we still have
max(0,x +y — 1) = " whenm" and 1 — m" + [ are substituted for x and y. The
reason is simply that the f-norms (and copulas) in question modify how ¢"
combines its weighted arguments, not how the arguments are weighted. Positive
weighted knowledge gap limit behavior is assumed.

V. CONCLUSIONS

The epistemic uncertainty of an epistemic situation is captured by the cardi-
nality of the knowledge response set K that the knowledge sources map into when
queried and by the fuzziness of the partial order on K. The larger K’s cardinality or
the less precise its partial order, the more uncertain the sequence of epistemic
situations {(s, X(s))};.s. Throughout this article we have assumed that K’s partial
order is crisp (nonfuzzy). This is seldom the case in daily discourse; humans are
habitually inconsistent and intransitive in their utterances and somewhat less so in
their dispositions. The theory of fuzzy n-place relations (see Ref. 19) is the only
mathematical theory currently available for directly representing vague posets; in
particular, it naturally permits degrees of reflexivity, anti-symmetry, and transi-
tivity in the fuzzy binary relation case. Most of the present theory remainsintact in
this general setting since it is built upon the poset structure of K. If a difference
operator can be defined, then fuzzy knowledge gaps can be defined and axioms A,
and A;*, and their weighted extensions, will be in force. Otherwise, @ = I, or ¢* =
[*, must do, i.e., even here, where knowledge responses such as “I tend to
somewhat recommend it” abound, the Bellman—Zadeh fuzzy decision theory
applies.

Pushing the level of abstraction further, into the domain of analytic philoso-
phy, how does knowledge relate to truth? The dominant view in modern philoso-
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phy, indeed one of its few (near) invariants, is the logical empiricist view that
knowledge is justified true belief.>*~>* Debates center around justification, truth,
and belief—and primarily just these three notions—in philosophical epistemol-
ogy. Justification is seen as scientific practice, truth as a property of statements or
utterances, and beliefs as biological dispositions,”>* or as Russell put it,?’ as
suspended reactions. The present theory does not commit to this view. It simply,
and abstractly, associates a knowledge quantity k with every epistemic situation
(s, X(s)). There are two ties with truth, though. First, the primacy of the
Bellman—Zadeh fuzzy decision theory can be viewed as encapsulating the opera-
tive doctrine that degree of truth corresponds to degree of concurrence among
informed knowledge sources in a particular problem domain. This conventional-
ism is exalted into a lone secular commandment by the influential philosophical
logician Willard Van Orman Quine in his *“‘naturalized epistemology,”® and
generally abounds in the epistemology and philosophy of science literature. The
second tie with truth is that ¢(/, m) = min(m, 1 — m + I) can be viewed as a
generalized Lukasiewicz implication (continuous truth) operator.? In the multi-
valued truth framework where #(S) € / is the amount of truth of statement S and A
and B are statements, the truth of the conditional statement C,“IFA, THEN B,”
can be given by #(C) = min(1, 1 — #(A) + #(B)). The recurring requirement of any
fuzzy truth operator is that the truth of the antecedent be bounded by the truth of
the consequent, i.e., {(A) < «(B), i.e., truth cannot imply falschood, in the old
tongue. If m and / are interpreted as statements, then we only have complete truth
in the certain case where m = I since otherwise m > /. Finally, the philosophical
setting provides an opportunity to examine the ontological consequences of a
statistical interpretation of knowledge. Here the point estimation framework™
views the knowledge responses as values taken on by random variables (some-
thing we have already done to construct an uncertainty testbed). The random
variables have associated distribution functions or probability measures. The
family of joint probability (finite product) measures is then assumed indexed by
some knowledge parameter k. The point-estimation task is to estimate the param-
eter k. This is related to truth directly in terms of how accurately £ is estimated,
but k itself is not truth. & is, as Quine>! might call it, some absolute fact of the
epistemic matter, some privileged translation manual for going from question—
answer pairs (epistemic situations) to a single answer in any environment, i.c.,
knowledge k exists, hanging in the air like a Platonic solid.

Now let us turn to the practical aspects of this knowledge combination
theory. The immediate utility of this approach is that it permits multiple domain
experts to contribute to the knowledge engineering tasks of knowledge acquisi-
tion, representation, and, of course, combination in the expert system paradigm.
It equally facilitates multiperson multiobjective decision making, but here we
limit the discussion to knowledge base building. This utility stems from the poset
generality and computational simplicity of this approach. It allows arbitrary many
knowledge sources with arbitrary levels of credibility to participate in the knowl-
edge base building process. (If, in a sequence of epistemic situations, some
knowledge source X; does not participate, then f; = 1 and f" = 0'in /* and m"".)
The only operations that need be used are min, max, and negation, which are
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computationally simpler than multiplication, addition, and difference. This poset
generality allows more knowledge sources to be queried and queried in a meta-
language closer to the fuzzy object language of the knowledge sources. This in
turn allows knowledge responses to be more easily acquired and, further, greater
knowledge source concurrence can be expected (since, for instance, in terms of
quantifiers the nonfuzzy quantifier a// implies the fuzzy quantifer most but not
conversely, see Zadeh™ for further examples). The standard interrogation of the
single domain expert by the knowledge engineer can be substantially generalized.
Mass-mailing of questionnaires or expert document transcribing, for instance, can
replace one-on-one verbal interrogation, or at least supplement it.

Standard expert systems consist of a collection of condition-action rules or
implications with associated uncertainty factors (and other peripheral units!). A
powerful application of the present fuzzy knowledge combination theory is
to allow several weighted experts, not just one, to determine the uncertainty
weights. Different subsets of experts with different credibility weights can be used
for different rules. Again the generality obtained from a poset structure tends to
increase expert concurrence. And multiple weighted experts concurring on an
if-then relationship offers a partial answer, perhaps the best available, to the
recurrent expert-system question ““Where do the uncertainty numbers come
from?”’ a question that drives many Al researchers to despair.**-** Some of the
advantages of acquiring knowledge from multiple experts have recently been
reported by Dym and Mittal.*

This fuzzy knowledge combination theory is especially useful for combining
arbitrary fuzzy cognitive maps.>® In fact, this theory was initiated by just this
application. The idea s to let knowledge sources draw and amend causal pictures,
and have them drawn and amended for them, to form huge connected knowledge
bases in arbitrary problem domains. A fragment of such a fuzzy causal picture
from the soft knowledge domain of international sociology might be:

PRICE
INFLATION
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Here the nodes represent variables causal concept nodes, or simply fuzzy sets. A
variable quantity like SOCIAL STABILITY can be a node but SOCIETY cannot
be (this can be relaxed). Arbitrary data, like newspaper reports, activate all the
nodes to different degrees. The directed fuzzy edges represent causality. Fuzzy
poset values or weights like usually indicate degree of causality. Plus (+) indicates
causal increase and minus (—) indicates causal decrease (e.g., if price inflation
increases, then social stability usually decreases; if price inflation decreases, then
social stability usually increases). On a numeric restriction on the fuzzy causal
weights, dynamic (adaptive feedback) fuzzy cognitive maps obey a non-Hebbian
learning law and further subsume standard rule-set inference engine and neural
net models.””** Dynamic fuzzy cognitive maps also exhibit many associative
memory properties. Some of these applications, including a general application of
the present fuzzy knowledge combination theory, often require that negative
causality be transformed into positive causality by introducing dis-concepts™®
(e.g., replace “‘Price inflation usually decreases social stability” with ““Price infla-
tion usually increases social instability”). If arbitrary many knowledge sources,
suitably weighted, are queried about the strengths of arbitrary causal connections,
then the present fuzzy knowledge combination theory can be applied to quickly
produce a single fuzzy cognitive map. Such maps can easily possess millions, even
billions, of causal concept nodes and orders of magnitude more causal connec-
tions. They can further be augmented and modified as more knowledge sources
respond, as they change their responses in light of evidence or other responses, or
as they are dynamically reweighted. At this point, fuzzy poset versions of many
artificial neural system™~*' properties—adaptive resonance, avalanche activa-
tion, rapid spatiotemporal pattern classification—can occur, often without any
one mind (or computer) perceiving their occurrence. In principle the knowledge
of the ages could be stored in such huge fuzzy cognitive maps. Indeed such
knowledge would only initiate, not culminate, the dynamic map learning process.

And this brings us finally to the popular Al topic of conditioning hypotheses
on evidence. For if the knowledge of the ages can be dynamically stored and
dynamically modified in fuzzy cognitive map structures, then surely conditioning
somewhere occurs. In fact it occurs in several places but we restrict attention to
the following. When it is realized that conditioning is nothing more than making
one thing a function of another, then the act of combining weighted knowledge
responses is a generic act of conditioning. For if the epistemic situation (s, X(s))
occurs, then we get k = ¢(X(s)). More generally, if (s, X(s)) occurs and we are
given weight vector w, then we get k = ¢"(X(s)). Standard conditioning then
results if the antecedent of the latter conditional is interpreted as a description of
evidence and the consequent is interpreted as the going hypothesis.

This article is the result of a multiknowledge-source dialectical process. The
author is especially grateful for the responses from lan Abramson. David
Brown, Gaston Jennet, Allan McKenzie, and Rod Taber.
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APPENDIX I: TECHNICAL GLOSSARY AND SUMMARY

Glossary

S = set of query stimuli, questions

s = an element of §, a question

K = partially ordered set (poset) of knowledge responses, of answers
X; = ith knowledge source, X;: § — K

X(s) = (Xi(s), . . . , X,(s)), the knowledge response vector

(s, X(s)) = an epistemic situation (e.g., question—answer pair)

k ¢ K = the knowledge of the epistemic situation (s, X(s))

¢: K" — K = a knowledge combination function such that ¢(X(s)) = k
I = intersection of given knowledge sets

C = combination of given knowledge sets

U = union of given knowledge sets

{ = min X(s), the least operator

m = max X(s), the most operator
i
1 : :
A == X{s) the arithmetic mean
n -

{(s) = product of the knowledge responses
X prod f the knowledg p

P(n) = the symmetric group on n, all permutations of {1, 2, . . . , n}
p = (P1,. - ., Pn) e P(n), a permutation
X,(s) = (X,,(5), . - ., Xp(5)), a shuffle of X(s)

m — [ = the knowledge gap

D=Gin...NnG,NnCyN...NC, aBellman—Zadeh fuzzy decision
C; = ith constraint set, subset of some space of alternatives

G, = jth goal set, subset of some space of alternatives

mp = min {m¢,, mc}, fuzzy decision membership function

iid. = ilndependent and identically distributed (random variables)
® = set of admissible knowledge combination operators
1=10,1]
T: P — I = a triangular norm or t-norm if T;— T, hold:
(T) BOUNDARY: T(x,1) =x,
(T;) SYMMETRY: T(x,y) = T(y, x),
(T;) MONOTONICITY: T(x,z) < T(y,z) if x=<y,
(Ty) ASSOCIATIVITY: T(x, T(y, z)) = T(T(x, y), 2)
S: P > I = a t-conorm
N: I — I = a negation operator (e.g., N(x) =1 — x)
I =A{T: T(x, y) = max(0, x + y — 1)}
I, = {T: T(x, y) < max(0, x + y — 1)]
w; ¢ K = credibility weight of knowledge source X;
w=(Wy,...,w)
#"” = weighted knowledge combination operator
I* = weighted least operator = min fi(w;, X))
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m" = weighted most operator = max f*(w;, X;)
i

f = weighted knowledge response in I
7" = weighted knowledge response in m"

12 .
A¥ == w; X; the weighted mean

n !
— " = the weighted knowledge gap

w

Summary of the Fuzzy Knowledge Combination Theory

(1) Fuzzy Knowledge Combination Problem: Find ¢ (that is admissible)
(2) ¢ ¢ @, i.e., @ is admissible if and only if A; — A4 hold:

(A,) BOUNDEDNESS: [ < ¢ < m,

(A2) SYMMETRY: ¢(X(s)) = ¢(X,(s)) for all p € P(n),
(A) CONSERVATISM: ¢ | lasm — [ 1 1,

(As*) ¢ | lasi—> «in the random (i.i.d.) case,

(A,) NONPARAMETRICISM: a(X(s)) = @(/,m).

(3) Itisdesirablebutnotrequiredthatany admissible @ be lenientinone ofthe
following two ways:

LENIENCY: ¢(I,m) t mas1-m 1 1,
ot masm—1] 0.

(4) We choose ¢ as ¢(I,m) = min(m, 1 — m + 1).
(5) THEOREM.

IF the t-norms in I' take only m and 1 — m + [ as arguments,
THENT, C ® and I';, C ®“.

(6) Weight ¢ according to ¢" (I, m) = o(I*, m").
(7) Weight I and m separately:

I* = min filwi, X)),
m” = max fI'(wi, X)).
i

(8) Choose f! and 7" so that W;—Wj; hold:
(W1)  fiwi, X)) = X; and f7'(w;, X;) = X; as w; 11,
(W2) fiwi, X)) 1 Lasw; | 0,
(W3) fl'(wi, X)) | Oasw; | 0.

(9) Select fi(w;, X;) = max(1 — w;, X;) and f™(w;, X;) = min(w;, X)).
(10) Hence /' = min max (1 — w;, X)),

m"” = max min(w;, X;),

¢"(l, m) = min(m®, 1 — m” + I*).
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APPENDIX II: PROOFS OF PROBABILISTIC UNCERTAINTY THEO-
REMS

If Xi(w) is the response of the ith knowledge source to evidence or query o,
then worst-case properties of knowledge combination schemes used to build
knowledge bases can be modeled by viewing X, Xo, . . . as independent identi-
cally distributed (i.i.d.) random variables. Independence reflects knowledge
source individuality. Identical distribution reflects problem domain focus. Ran-
domness reflects professed knowledge.

More generally, associated with knowledge source X; is some credibility
measure Y,. The sequence Y, Y,, ... can also be viewed, for worst-case
analysis, as i.i.d. random variables with similar interpretations of independence,
identical distribution, and randomness. The problem, which is both a stochastic
and artificial intelligence problem, is to determine the worst-case behavior of the
acquired knowledge when the (X, Y;) pairs are combined.

Knowledge responses can be combined in many ways. Whatever the combi-
nation technique, the combined responses will have some sort of lower and upper
bound. The present view is that these bounds are the limits inferior and superior of
the response sequence. We know at least the lim inf, at most the lim sup. So if the
X, take their values in [0, 1], then surely lim inf X; = O and lim sup X; = 1, i.e., in

the random case we know nothing. When will this be true? More generally, if, in
the fashion of fuzzy set theory and logic knowledge source X;’s credibility Y, is
incorporatedinto X;’sknowledge response in min/max manner, as X;/\ Y;oras X;\/
Y;, then when will lim inf X;\/ Y; = 0 and lim sup X; /\ Y; = 1 almost surely?

The conditions and proofs needed to answer the questions are surprisingly
nontrivial. i.i.d. is not sufficient for almost-sure convergence. Some type of
positivity is needed on X;’s and Y;’s distributions. The Borel—Cantelli Lemma
then leads to the results. The first question is answered in Theorem 1, the second
in Theorem 2, and a generalized question in Theorem 3. Although the answer to
the third question answers the second, and the second answers the first, it is easier
to prove the theorems in the other direction.

THEOREM 1. IF (X;)7-; is a sequence of random variables on some
probability space (€2, o, P) such that for all i:

1) X: 02— [0, 1],

(2) the (X,)7-; are independent and identically distributed,

(3) the corresponding sequence of probability density functions

(f)i-1 obeys J fx)dx >0,
!

where integration is with respect to Lebesque measure, for every interval I of the
form [k, 1] or [0, 1 — k] for every k ¢ (0, 1),
THEN (A) lim sup X; = 1 almost surely,

—x

(B) lim inf X; = 0 almost surely.

—
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PROOF. By the Borel—Cantelli Lemma, if (E;)7-, is a sequence of inde-
pendents events in o, then

P(lim sup E;) = P( N U E,-) =1 if Y P(E) = .
=1 i=j i=1

i—>x

Since, by (2), the X; are identically distributed, it follows from (3) that

x

Zfﬁmw=w
1

=1
So, for I = [k, 1], (A) follows by putting

E, ={we Q: X{o) ¢ I},
and thus

P(E) = J filx)dx.
!

(B) follows from (A) by applying the identity
lim inf X; = —lim sup —X;

and using the reflected sequence (—X,;)7-;. Q.E.D.
THEOREM 2. IF the sequences of random variables (X;)7—; and (Y,)7_,
each satisfy the hypotheses of Theorem 1 and are pairwise independent,*
THEN (A) lim sup X; /A Y; = 1 almost surely,

(B) lim inf X;\/ Y; = 0 almost surely.
PROOF. Let Z,' = X,/\ Y,‘, H,’(x) = P(Z,' Sx) = {) h,(W)dW, F,'(x) - P(X, =
x), and Gi{x) = P(Y; = x). For convenience put F{S) = [s dF; and similarly for
Gi(S). Then

H{x) = P(Z; = x)

1-P(Z >x)

1 - P(X;>x AND Y, > x)

1 — P(X; > x) P(Y; > x) by independence,
= (1= Fx) (1 = Gix)).

i

So
hix) = fi(x)(1 — Gi(x)) + g(x)(1 — Fi(x))
= fix)Gilx, 1] + gdx)Fi(x,1].

*Else Y; = 1 — X, yields a counterexample.
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Hence the series

i J hi(x)dx = é J flx)Gx, 1]dx + i f gi(x)Fi(x, 1]dx
I / =

i=1 i=1 /

converges only if

lim j f{x)Gix, 1]dx = 0,
; /

{—>

which contradicts the assumptions of identical distribution and

j fi{x)dx > 0.
/

So, as in the proof of Theorem 1, the Borel—Cantelli Lemma implies (A) if
E;={oeQ: Z{w) e I}
and thus

P(E)) =J hi(x)dx.

(B) follows from (A) using the reflected sequences (—X,)7, and
(- Y;)i= and the relationship
liminf X;\/ Y; = —limsup -X; A\ — Y,. Q.E.D.
A direct extension of the proof of Theorem 2 yields the following general
result.
THEOREM 3. IF the pairwise independent sequences of random variables

(X})Di=lv (Xlz)a;=ls s (X7)37=|

each satisfy the hypotheses of Theorem 1 with (1) generalized to X}: Q — [a, b]
(and the interval [ suitably modified),
THEN (A) lim sup X; A\ X7 ... /A X7 = b almost surely.

(B) lim inf X} \/ X7 . . . \/ X7 = a almost surely.

The infinitely often endpoint degeneracy of Theorem 3 fails for n = =, since
as n gets large the n-factor product in each summed integral in the joint density’s
decomposition gets arbitrarily small. The hypotheses of Theorem 3 can be weak-
ened by dropping the requirement of identical distribution in (2) (as stated in
Theorem 1) and replacing condition (3) with

20

> j hi(x)dx = .

i=1

To use the Borel—Cantelli Lemma, the latter condition and independence are
necessary.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

FUZZY KNOWLEDGE COMBINATION 319

References

. R. E. Bellman and L.A. Zadeh, “‘Decision making in a fuzzy environment,” Manage-

ment Science, 17, 141—164 (1970).

A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping.,”

Annals of Mathematical Statistics, 38, 325—-339 (1967).

A. P. Dempster, “A generalization of Bayesian inference,” Journal of the Royal

Statistical Society-B, 30, 205—247 (1968).

G. Shafer, A -Mathematical Theory of Evidence, Princeton University Press, Prince-

ton, NJ, 1976.

J. Rawls, A Theory of Justice, Harvard University Press, Cambridge, MA, 1971.

E. O. Wilson, Sociobiology: The New Synthesis, Belknap Press of Harvard University

Press, Cambridge, MA, 1975.

. R. R. Yager, “A note on textured sets,” I[EEE Transactions on Systems, Man, and
Cybernetics, SMC-11, 730—731 (1981).

. E. P. Klement, “Operations on fuzzy sets and fuzzy numbers related to triangular
norms,” Proceedings of the 11th International Symposium on Multi-Valued Logic,
1981, 218-225.

. I. R. Goodman and H. T. Nguyen, Uncertainty Models for Knowledge-Based Systems:

A Unified Approach to the Measurement of Uncertainty, North-Holland, New York,

1985.

K. Menger, “Statistical metric spaces,” Proceedings of the National Academy of

Sciences-USA, USA 28, 1942, 535—537.

B. Schweizer and A. Sklar, ““Statistical metric spaces,” Pacific Journal of Mathematics,

10, 313-334 (1960).

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York,

1983.

C. H. Ling, “‘Representation of associative functions,” Publ. Math. Debrecen, 12,

189—-212 (1965).

M. J. Frank, “On the simultaneous associativity of F(x, y) and x + y — F(x, y).”

Aequat. Math., 19, 194—226 (1979).

H. Prade, “A computational approach to approximate and plausible reasoning with

applications to expert systems,” IEEE Transaction on Pattern Analysis and Machine

Intelligence, PAMI-7(3), 260—283 (1985).

R. R. Yager, ““Some procedures for selecting operators for fuzzy operations,” Tech.

Rep. RRY-79-05, Iona College, New Rochelle, NY, 1979.

R. R. Yager, ““A new methodology for ordinal multiobjective decisions based on fuzzy

sets,” Decision Sciences, 12(4), 589—600 (October 1981).

B. R. Gaines, “Foundations of fuzzy reasoning,” International Journal of Man—

Machine Studies, 8, 623—688 (1976).

A. Kaufmann, Introdution to the Theory of Fuzzy Subsets—Volume I. Academic, New

York, 1975.

A.J. Ayer, “Philosophy and knowledge,” in The Problem of Knowledge, The Chaucer

Press, London, England, 1956, Chap. 1.

E. Gettier, “‘Is justified true belief knowledge?” Analysis, XXII1.6(96), 121123

(June 1963).

B. Skyrms, ““The explication of ‘X knows that p’,” The Journal of Philosophy,

LXIV(12), 373—389 (June 1967).

R. Chisholm, “Knowledge,”” in Theory of Knowledge, 2nd ed., Prentice-Hall, Engle-

wood Cliffs, NJ, 1977, Chap. 6. ]

M. Kaplan, “It’s not what you know that counts,” The Journal of Philosophy,

LXXXII(7), 350—363 (July 1985).

P. M. Churchiand, “Eliminative materialism and propositional attitudes,” Journal of

Philosophy, LXXVII(2), 67—90 (February 1981).



320

26.
27.
28.
29.

30.
31.

32.
33.
34.
35.
36.
37.
38.

39.

40.
41.

KOSKO

W. V. O. “States of mind,” The Journal of Philosophy, LXXXII(1), 5—8 (January
1985).

B. Russell, Human Knowledge: Its Scope and Limits, Simon and Schuster, New York,
1948.

W.V.0. Quine, “Epistemology naturalized,” in Ontological Relativity & Other Es-
says, Columbia University Press, New York, 1969, Chap. 3.

W. Bandler, and L. Kohout, “Fuzzy power sets and fuzzy implication operators,”
Fuzzy Sets and Systems, 4, 13—30 (1980).

E. L. Lehmann, Theory of Point Estimation, Wiley, New York, 1983.

W. V. O. Quine, “Translation and meaning.,” in Word and Object, M.1.T. Press,
Cambridge, MA, 1960, Chap. II.

L. A. Zadeh, A theory of commonsense knowledge,” in Aspects of Vagueness, Skala,
Termini, and Trillas, Eds., Reidel, Dordrecht, The Netherlands, 1984, 257—295.
J. Doyle, “Methodological simplicity in expert system construction: the case of judg-
ments and reasoned assumptions,” Al Magazine 3(2), 39—43 (1984).

P. R. Cohen and M. Sullivan, ““An endorsement-based plan recognition program,”
Proceedings of the IICAI-85, Los Angeles, CA, 1985, 475-479.

C. L. Dym and S. Mittal, “Knowledge acquisition from multiple experts,” Al Maga-
zine, 6(2) (1985).

B. Kosko, “Fuzzy cognitive maps,” International Journal of Man— Machine Studies,
24, 65-75 (1986).

B. Kosko, ““Adaptive inference,” in review.

B. Kosko and J. S. Limm, **Vision as causal activation and association,” Proceedings
of the SPIE (Society for Photo-optical Instrumentation Engineers) Conference on
Intelligent Robots and Computer Vision, September 1985, volume 579, 104—109.

S. Grossberg, “*Adaptive Resonance in Development, Perception, and Cognition.” in
Mathematical Psychology and Psychophysiology, S. Grossberg, Ed., American
Mathematical Society, Providence, RI, 1981.

R. Hecht-Nielsen, “Neural analog processing,” Proc. SPIE, 360, 180—189 (1983).
R. Hecht-Nielsen, ‘“Nearest matched filter classification of spatiotemporal patterns,”
Applied Optics (in press).



	Untitled-1.pdf
	Untitled-2.pdf
	Untitled-3.pdf
	Untitled-4.pdf
	Untitled-5.pdf
	Untitled-6.pdf
	Untitled-7.pdf
	Untitled-8.pdf
	Untitled-9.pdf
	Untitled-10.pdf
	Untitled-11.pdf
	Untitled-12.pdf
	Untitled-13.pdf
	Untitled-14.pdf
	Untitled-15.pdf
	Untitled-16.pdf
	Untitled-17.pdf
	Untitled-18.pdf
	Untitled-19.pdf
	Untitled-20.pdf
	Untitled-21.pdf
	Untitled-22.pdf
	Untitled-23.pdf
	Untitled-24.pdf
	Untitled-25.pdf
	Untitled-26.pdf
	Untitled-27.pdf
	Untitled-28.pdf

