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Global Stability of Generalized
Additive Fuzzy Systems
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Abstract—This paper explores the stability of a class of feed-
back fuzzy systems. The class consists of generalized additive
fuzzy systems that compute a system output as a convex sum
of linear operators. Continuous versions of these systems are
globally asymptotically stable if all rule matrices are stable
(negative definite). So local rule stability leads to global sys-
tem stability. This relationship between local and global system
stability does not hold for the better known discrete versions
of feedback fuzzy systems. A corollary shows that it does hold
for the discrete versions in the special but practical case of
diagonal rule matrices. The paper first reviews additive fuzzy
systems and then extends them to the class of generalized additive
fuzzy systems. The Appendix derives the basic ratio structure of
additive fuzzy systems and shows how supervised learning can
tune their parameters.

Index Terms— Feedback stability, function approximation,
fuzzy systems, learning, neural networks, radial basis functions,
rule explosion.

I. FEEDBACK FUZZY SYSTEMS AND RULE EXPLOSION

FEEDBACK fuzzy systems take their own output as input.
They use a set of if–then rules to define continuous or

discrete autonomous dynamical systems on a real vector space

(1)

(2)

The feedback fuzzy system is a vector field
that has the origin as a fixed point: . Feedback fuzzy
systems can arise in control [3], [11], [38]–[41], [44], [45],
in signal processing [4], [40], or in models of complex social
or medical processes [2], [5], [14]–[16], [29]–[31], [35], [36],
[53], where subsystems affect one another in closed causal
loops.

The feedback structure often arises because a feedforward
fuzzy system suffers from rule explosion in high
dimensions [18]–[19]. Fuzzy systems are universal function
approximators [17] as are feedforward neural networks [7]–[8].
But fuzzy systems need on the order of rules to uni-
formly (and “blindly”) approximate a continuous or bounded
measurable function on a compact domain. Fig. 1
shows how a few fuzzy rule patches can cover the graph of
a simple scalar function.

Most fuzzy systems in practice have been simple feedfor-
ward fuzzy systems of low dimension. These scalar maps
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Fig. 1. Fuzzy systemF approximates a functionf : Rn ! Rp by covering
its graph with rule patches. Each rule patch is a fuzzy Cartesian product
Aj �Bj � Rn

�Rp of an if-part fuzzy setAj � Rn and a then-part fuzzy
setBj � Rp: The number of rule patches in the cover grows exponentially
on the order ofkn+p�1 as the dimensionsn andp grow linearly. Learning
schemes move and shape the patches. Lone optimal rule patches cover the
extrema of the function.

convert a vector input of sensor measurements
into a scalar control output The Appendix derives the
formal structure of this mapping. This shows how to convert a
set of linguistic if–then rules into a closed-form equation. Few
electronics applications have required dedicated hardware. The
math of such fuzzy systems is simple enough that engineers
need only reprogram the microprocessor chip that already
controls a microwave oven, washing machine, subway braking
system, camcorder lens, or a car transmission [18].

Engineers design these rule-based systems in four steps.
They first pick the system’s input and output variables. They
define fuzzy subsets of these variables. They relate these
fuzzy sets into I/O rules. Then they tune the fuzzy system
with test data. Engineers tuned the first fuzzy systems by
trial and error. Modern systems use neural networks, genetic
algorithms, or other statistical learning schemes to tune the
fuzzy sets and fuzzy rules. Such automated techniques become
more important for fuzzy systems that use more than three
input variables both because of the exponential growth in the
number of rules and because humans do not guess well either
at rules or equations that describe multivariable systems.

Consider a feedforward fuzzy system that controls a car’s
air conditioner (AC). Suppose the fuzzy AC system measures
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the air temperature and humidity and then adjusts the blower
or fan. A simple fuzzy system might use these three rules.

IF the air iscool anddry THEN set the blower toslow.
IF the air iswarm and medium dryTHEN set the blower
to fast.
IF the air ishot and low dry THEN set the blower toblast.

The input variable air temperature might have the fuzzy
subsetscold, cool, medium, warm, andhot. The input variable
air humidity might have the fuzzy subsetslow dry, medium
dry, and dry. The output variable blower speed might have
the fuzzy subsetsstop, slow, medium, fast, and blast. Then
the fuzzy system converts paired numerical measurements

of air temperature and air humidity into an
output numerical blast speed .

A curve or triangle-like fuzzy set might define what
the user or engineer means by cool air. Each measured air
temperature is bothcool to degree andnot
cool to degree This is the sense in which fuzzy
systems are “fuzzy” or vague—concepts are deterministic but
multivalued. Human judgment or statistical learning must pick
the shape of these sets. The set shapes may change or the sets
may shift along their variable’s axis when new users ride in
the car or when the old user’s tastes change. Engineers seek
efficient learning schemes to tune these set shapes and thus to
approximate optimal rules.

Optimal rules offer the best way to deal with a fixed-rule
budget. Optimal rules define fuzzy rule patches in the I/O
state space that cover the extrema ofand the extrema of
the approximation error function [19]. This still
holds after the rule patches of have covered all of the
extrema of . Then adding one more rule to gives the new
fuzzy system of rules or rule patches. The best place
to put this new rule patch is where it covers the largest bump
of the new residual error curve . The supervised
learning schemes in the Appendix tend to move rule patches
toward these optimal positions in the I/O state space.

Optimal rules do not prevent rule explosion. They ease
its computational burden as well as any rules can for a
given shape of if-part fuzzy sets . The popular symmetric
triangular if-part sets give only a piecewise-linear fuzzy system

. Gaussian and Cauchy and other bell curve if-part sets give
richer and smoother fuzzy systems. The Appendix shows
how to derive learning laws that tune fuzzy sets with these
and other shapes. We assume throughout that the user picks
the shape of the if-part sets with no knowledge or use of
the functional form of the approximand.

More complex if-part sets can prevent rule explosion if they
depend on the approximand. The exponential rule complex-
ity of blind approximation reduces to linear complexity in the
rare case where we know the exact form of the approximand
and where the rules reflect the knownin the structure of their
if-part fuzzy sets [49]. But we do not knowin practice. If we
did there would be no need to approximate it. The search for
optimal rules allows us in practice to guess only at the turning
points of and thus not have to guess at all ofitself. This
converts the search for optimal rule patches to a search for the
zeroes of the derivative map .

Feedback fuzzy systems offer a way to approximate dynam-
ical systems with a fixed set of rules. But feedback leads to far
more complex dynamics and can end in chaos or instability.
Most feedback systems are unstable. System trajectories need
not converge to fixed points or to any region of the state
space near them. Gradient systems are an exception. Gradient
systems have the form and are stable because
the scalar potential acts as a Lyapunov function for the
system. Most stable neural systems are gradient systems with
quadratic potentials [16], [25] but such systems are rare in the
space of nonlinear dynamical systems. Feedback fuzzy systems
of the form are not gradient systems.

Most research on stable fuzzy systems has used Lyapunov
functions to give a sufficient condition for system stability.
DeGlas [3] fuzzified the LaSalle invariance sets of stable
equilibrium points to extend the usual results on Lyapunov
stability [9]. Kiska and Gupta [11] put forth a nonquadratic
energy function for feedback fuzzy systems based on min–max
operators. They did not show if it acts as a Lyapunov function
for a fuzzy system. Tong [45] observed that no scheme to
control or stabilize a fuzzy system has yet shown how to
measure fuzzy degrees of stability. That remains true today.

Recent results still apply the standard bivalent definitions
of stability to well-defined feedback fuzzy systems. Tanaka
[38]–[41] simplified an additive fuzzy system to give the
discrete feedback system in (2) as a convex sum of standard
linear control systems. He then found a quadratic function
that acts as a Lyapunov function for the system. But the odds
of finding such a Lyapunov function fall as the number of
rules grows. We review this result below in Theorem 2. Wang
[48] used simple Gaussian additive systems (which have the
same form as neural radial-basis function networks [24], [32])
to approximate stable control systems along the lines that
Polycarpou and Ioannou [28] followed when they used neural
approximators for the same task.

This paper gives sufficient conditions for the stability of
(1) and (2) when the feedback fuzzy systemis a simple
type of additive fuzzy system [16]. These nonlinear systems
compute the global output as a convex sum of the
rule outputs: . The square matrix
or linear operator defines the then-part of theth if-
part rule “If then .” Each rule acts as a
linear subsystem as in the feedback scheme of Tanaka and
Sugeno [38]. The system itself is nonlinear because the convex
coefficents change with each input or state
vector . The system becomes a standard linear system [46]
in the special case when the system has just one rule (when

. The stability results below hold for all if-part fuzzy
sets of all shapes.

Theorem 1 below proves that the continuous system (1) is
globally asymptotically stable if each rule matrix is negative
definite and thus if each local subsystem is stable. Tanaka
[38]–[41] has shown that this result does not hold in the
discrete case (2). Stable subsystems can still lead to global
instability. Tanaka has applied his feedback model to the
neural-fuzzy test problem of backing up a truck and one or
more trailers [6], [13], [26], [40], [43]. We present Tanaka’s
result in the framework of a generalized additive system and
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prove a corollary that gives a practical criterion for global
stability of the discrete feedback fuzzy system (2).

The next section reviews standard additive fuzzy models and
extends them to generalized additive models. The third section
proves sufficient conditions for global asymptotic stability of
these generalized additive models. The last section looks at
the limits of these results and suggests other areas and other
feedback fuzzy systems that future research might explore.
The Appendix shows how supervised learning can tune the
parameters of a standard additive model and tune the if-part
and rule-weight parameters of a generalized additive fuzzy
system. It derives the general update laws for if-part set
parameters and exact learning laws to tune exponential and
other bell-curve if-part sets.

II. GENERALIZED ADDITIVE FUZZY SYSTEMS

An additive fuzzy system [16], [21] stores
rules of the form “If then ” and adds the
“fired” then-parts to give the output set

(3)

for scalar rule weights . The system is “fuzzy” [51],
[52] or “vague” [1] because the rules relate multivalued
subsets of the input and output spaces.

A fuzzy or multivalued set has a multivalued
indicator function We call this map a
set function or a “membership” [51] function because
measures the degree to which the object belongs
to the set . The then-part set

has a like set function . A finite
discrete space has continuum many fuzzy
subsets in the form of fuzzy unit orfit [16] vectors

. Then we can write for the
discrete set function . So each fuzzy set or fit
vector defines a unique point in the unit hypercube . This
cube or sets-as-points framework [16] extends to countable
spaces . A rule patch has set function

. This defines a fuzzy matrix in
the finite case. The value of a rule patch most often equals
a simple product of fit values at each point in the I/O state
space: .

The second sum in (3) states that the additive model
is standard because it expands the fired then-part set

with product scaling or correlation-product encoding:
for then-part set . This implies the

product patch structure .
Simple fuzzy systems use a fixed then-part fuzzy set. A

generalizedfuzzy system views as an arbitrary linear or
nonlinear mapping . We will restrict to the
linear or matrix map on the input space . Then

is a state vector in the input state space.
The th if-part fuzzy set has joint set function

. The joint set function may factor intoscalar
or marginal set functions
to give the factored set function or

or any other combination

of the scalar set functions. Most if-part combiners act asand
or conjunctive combiners [12]. The product combiner remains
sensitive to changes in the scalar values that the min combiner
tends to ignore.

Joint set functions preserve correlations among input com-
ponents. This reflects the topological fact that we cannot factor
most fuzzy subsets into the Cartesian product

for scalar fuzzy sets with set
functions . Rectangular and joint Gaussian set
functions are rare exceptions that not only factor but factor
into scalar rectangles and Gaussian bell curves. Normalized
distance measures can define joint set functions that preserve
input correlations and that have a simple closed form [10].
Neural “competitive” learning schemes can form these joint
set functions as ellipsoidal rule patches in the I/O space [4].

The stability theorems below hold for all joint set functions
. We assume only that each vector input

fires at least one rule and thus belongs to at least
one if-part set to nonzero degree: . This just
means that the fuzzy systemis a well-defined function over
some domain space.

The simplest then-part sets or operatorsare fixed fuzzy
subsets of a then-part vector space. Then theth then-part
fuzzy set has integrable set function
with finite positive volume or area and centroid

(4)

(5)

We can extend the fixed then-part sets to point-to-set maps
or fuzzy sets that may change with each vector

input . Then the then-part set function defines a map from
a product space to real numbers or .
Each input picks out a new then-part fuzzy set
through the restricted set function . These
variable then-part set functions must replace the fixed then-part
functions in (4) and (5) to give the variable then-part volumes

and centroids .
The Appendix shows that the sum (3) leads to a SAM or

standard additive modelif the system output computes
the centroid of the output set when it “defuzzifies”
or maps the fuzzy set to a scalar or vector [50]

Centroid (6)

(7)

(8)
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for the convex coefficients

(9)

Note that for each input there must be at least one positive
convex coefficient: . This holds becausebelongs to
at least one of the if-part sets to nonzero degree: .
The proof of Theorem 1 below depends on this fact.

The SAM system gives the global output as the convex
sum of local outputs or centroids. This convex structure holds
for all additive fuzzy systems [16]–[17]. The Appendix also
shows how supervised learning or gradient descent can tune
the four SAM parameters in (7).

The SAM system can also take a fuzzy set as
input and still compute a vector or point output . A
correlation achieves this and extends the if-part set functions in
a natural way [21]: This replaces
the convolved delta pulse or binary “singleton” set
with the set function in the fit-valued integral

. Then the proof of the
SAM theorem still goes through and gives the set-SAM output

.
A problem occurs if we try to extend the SAM fuzzy

dynamical system to a set-SAM dynamical system
of the form . The set SAM still gives a convex sum
of then-part centroids and thus a vector. Its centroidal structure
does not give a set as output. We could view the vector output
as the center of a set or use it in some otherad hocscheme
to produce a final output set . But there is no direct way
to convert a set SAM into a dynamical system. We will work
instead with dynamical systems on point spaces. Yet even here
we have to extend the SAM framework to a generalized SAM
to ensure practical conditions for global stability.

We now derive a like SAM theorem for a fully generalized
SAM. We will use a special form of this model to define the
fuzzy dynamical systems (1) and (2). The key idea is to replace
the generalized “set function” with a Kroeneker delta
pulse in the discrete case and with a Dirac delta function in
the continuous case.

Suppose is an arbitrary map from the input vector space
to the output vector space . The map is

again just an -by- matrix in the linear case we will arrive
at. The map is a nonlinear operator in general. It maps each

to a new output vector . The output vector
depends on as . We omit this notation for simplicity.
We can view this nonlinear-operator case as a special case of
the above point-to-set case if we view the
discrete then-part fuzzy set as the singleton set .
This gives a unit pulse or binary set function

if
if

(10)

An exercise shows that (10) gives a discrete version of the
SAM Theorem. Here the summable count

replaces the volume in (4).

The continuous case requires that we replace the
singleton set with a delta pulse

(11)

Then each gives a generalized “set” with unit volume
and with a new spike or range point for its centroid

(12)

(13)

Then the additive combiner in (3) further reduces to

(14)

and leads to the generalized SAM Theorem in (19)

Centroid (15)

(16)

(17)

(18)

(19)

(20)

(21)

for the variable convex coefficients

(22)
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The convex sum (21) defines a nonlinear map
if and thus if the system has two or more rules.
This holds even if each then-part set is a linear map or
matrix. No one has yet found a stability result for these general
nonlinear-operator systems.

We next reverse the arrow of generality and briefly re-
view special cases of the generalized SAM model in (21).
These range from feedback models to the popular but often
ad hoc“center of gravity” (COG) model of feedforward fuzzy
systems.

Tanaka [38]–[41] has explored the special case of (21) when
the operator is not only a matrix but an -by- square
matrix. Tanaka ignores the rule weights in his ad hocSAM
model. So he implicity assumes that they all equal the same
positive value: . Then the rule weights
cancel from the SAM ratio in (19). Tanaka uses this simple
SAM system to define the discrete autonomous dynamical
system in (2) as a convex sum of vector-matrix products

(23)

(24)

The square matrix can house the coefficients of a
piecewise-polynomial or more complex set function[38].
Triangles and trapezoids are examples of such continuous
piecewise-polynomial set functions. The square matrix
can also house a separate control or forcing function .
The continuous case gives the feedback fuzzy system in (1)
as a like convex sum

(25)

The next section gives sufficient conditions for global asymp-
totic stability of the dynamical systems in (24) and (25).

A still less-general SAM case is the so-called TSK or TS
case [34], [37]. Sugeno [33] and Terano [42] call this the “third
inference method” for how a fuzzy systemmaps an input
to an output . This method replaces with a piecewise
linear map or appropriate-by- matrix operator in the
unweighted SAM equation. This gives the feedforward fuzzy
system as a convex sum of linear functions

(26)

(27)

(28)

in Sugeno’s notation [33]. Then theth rule has the form

(29)

where the then-part term describes a piecewise linear set
function such as a triangle or trapezoid. Least squares or
a Kalman filter can use sample data to pick and tune the
coefficients [33]. The first SAM model (7) should technically
apply here because the piecewise-linear sets have different
areas or volumes and centroids and because these
volumes and centroids change with each inputThe varying
volumes affect both the linguistic “meaning” of the
then-part sets and how they weight the SAM output .

The simpler and more popular SAM’s replace the then-part
operator with a simple and fixed fuzzy set

or . Then (21) and (7) reduce to the
simple but popular fixed-parameter SAM system

(30)

This model reduces to the still more popular COG fuzzy model

(31)

if the modes or “peaks” of the then-part sets equal
the then-part set centroids and if the then-part sets all
have the same areas or volumesand the same rule weights

and
Mamdani [22]–[23] first put forth the COG model as an

ad hoc way to convert discrete fuzzy if-then rules into
a simple control system . The model isad hoc because
Mamdani and other engineers use a simple additive ratio like
(31) but claim that they combine rules not with a sum but
with pairwise maximum or union in accord with the so-called
“extension principle” [33], [42], [52]. The centroid of the
output set does not give
the SAM ratio (30) or (31) or any other tractable form. Indeed
such pairwise maxima drive toward a fixed rectangle or
cube as the number of overlapping then-part sets grows
[17]. So the centroid of the output set tends toward a
constant value as grows.

The trouble with the COG model is that it ignores the area
or volume of the then-part set functions . Then we can
always replace the fuzzy sets with nonfuzzy rectangles or
cubes that have the same centroids or even with Kroeneker
delta pulses or Dirac delta functions centered at the centroids.
The latter switch amounts to putting
for continuous fuzzy sets . Then the SAM Theorem goes
through as in the more general case of (12)–(21) above.

Learning or hand tuning can change the centroids and
volumes of the then-part sets . The COG model does
not permit this. Some engineers have extended thead hoc
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COG model to include a then-part variance parameter to act
like a volume or rule weight. Suppose the then-part sets

are scalar Gaussian bell curves. Then their set functions
have unit area or . But we may still want to punish
rules or give them less weight if their then-part bell-curve
has a larger variance . The SAM model (30) reduces to this
weighted Gaussian COG model [48] if .

The COG SAM reduces in turn to the popular radial basis
function (RBF) systems of neural network theory. A simple
Gaussian SAM gives both a COG model and the popular RBF
model of Moody [24] and Specht [32]. Wang and Mendel [47]
have recently restated this RBF model in fuzzy notation as a
simple scalar Gaussian SAM

(32)

The SAM (30) reduces to (32) for independent Gaussian sets
with product combination of if-part set functions of the form
with scaling constant in the unit interval and for the following
identifications:

(33)

(34)

(35)

(36)

The unity volume follows in (35) since the then-part
Gaussian sets extend over all of. Equation (36) follows
because the mode of a Gaussian set equals its centroid and
Wang and Mendel use the mode definition “is the point in

at which achieves its maximum value.” They further
call the SAM convex coefficients “fuzzy basis functions”
in this Gaussian case even though they are not orthogonal.
These new names add no new content to the RBF SAM in
(32) or to the weighted RBF SAM with .

Specht [32] arrived at the RBF model (32) as a special case
of a Parzen probability density estimator. He observed that
(32) had the form of a Gaussian conditional expectation. A
like result holds for all of the above SAM models

Centroid (37)

(38)

(39)

(40)

for each This holds because the ratio in (38) of the
joint distribution to the marginal defines a proper conditional

probability density

(41)

even though may hold for integrable . This
result proves thatall centroidal fuzzy systems are probabilistic
systems [17], [21], [27].

The result also shows that the structure of the then-part sets
matters. A conditional variance describes

the uncertainty in each fuzzy system output . Define the
then-part probability density as the normalized set function:

. This gives the then-part variance as
. This leads in turn to a

measure of the SAM uncertainty [20]–[21]

(42)

The second term in (42) acts as a penalty term for rule
interpolation in a SAM. The system output has the most
confidence if only one of the rules fires dead on. The COG
case reduces the first term in (42) to the lone value. Two
COG’s can have the same first-order or values if they
have the same if-part sets and if they have then-part sets with
the same centroids. But their outputs will differ in their system
variance if the then-part set volumes or variances differ.

All of these additive fuzzy systems follow from the additive
assumption . This additive scheme can
also combine any number of feedforward or feedback fuzzy
systems [20]. We just view the output set of the th
fuzzy system as a fired then-part set and weight
it with a new system weight . The new weights
need not sum to unity but they often do in practice [21]. This
gives the total system output as the weighted sum of all rule
firings: . Then the centroid of gives
the total system output as a higher order SAM ratio.
The fuzzy systems need not each be additive in
structure.

III. STABILITY OF GENERALIZED

ADDITIVE DYNAMICAL SYSTEMS

We first prove the asymptotic global stability of the unforced
continuous generalized additive fuzzy system

(43)

from (25). A control input column vector can steer the
generalized SAM feedback system (43) throughcontrol
matrices

(44)
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A like convex sum holds for the forced discrete generalized
SAM in (24)

(45)

The unforced case assumes and lets us look at the
stability of the equilibrium vector if it
exists. We take the equilibrium vector to be the origin: .

The equilibrium point is stablein the sense of Lyapunov
if small changes in the initial conditions lead to only small
changes in the state trajectory [9], [46]: for all and all

there is a such that implies
for all . The norm is the Euclidean

norm: . The point is asymptotically
stable if it is stable and if it attracts the state trajectory:
for all there is a such that
implies . The equilibrium is
globallyasymptotically stable if we can pick to be arbitrarily
large. When these results hold they hold uniformly for the
autonomous system (43) and its discrete version in (51).

We seek a smoothLyapunov function for the
continuous feedback SAM model (43) that is positive definite

when and that obeys when
and that grows to infinity as the vector squared norm
grows to infinity: as . This holds if
we take as the quadratic form or as the more general
quadratic form for some -by- positive definite matrix

. Then standard results in Lyapunov stability theory [9] imply
that the dynamical system (43) has a stable equilibrium
if and has a globally asymptotically stable equilibrium

if along system trajectories for all . A
discrete Lyapunov function leads to stability for the
unforced version of the discrete unforced dynamical system in
(51) if and to global asymptotic stability if
along system trajectories.

We can now prove the main result of this paper. The
generalized SAM in (43) is globally asymptotically stable if
all the local rule matrices are stable. A stable matrix
in the continuous case means that is negative definite:

for all nonnull state vectors . This result
extends the usual stability result for linear systems and reduces
to it in the one-rule case when .

Theorem 1 (Continuous SAM Stability):The generalized
feedback SAM system

(46)

with convex coefficients

(47)

is globally asymptotically stable if each then-part rule matrix
is negative definite.

Proof: Choose the Lyapunov function as the quadratic
form . Then

(48)

(49)

(50)

At all times there is at least one convex coefficient that
obeys . So along trajectories if each
then-part matrix is negative definite.

The proof of Theorem 1 extends the stability proof of the
continuous-time linear system or one-rule case. The feedback
SAM in (43) is nonlinear since the convex coefficients
change with each input. The fact that at each timeat least
one term obeys lets us treat the convex sum of
matrices as if it were a simple sum with constant coefficients.
This does not hold in the discrete case.

We next look at the stability of the unforced discrete
feedback fuzzy systems in (44)

(51)

A stable matrix in this discrete case means that the linear
subsystem is asymptotically stable and thus
that all eigenvalues of lie in the unit circle in
the complex -plane: if for all .

A key question is whether the discrete system (51) is stable
if each rule matrix is stable. Tanaka [38]–[39] first showed
that the answer is no for a slightly simpler unweighted SAM
model. But we show below that the answer is yes in the special
case where each rule matrix is not only stable but diagonal.
Tanaka showed that stability did not hold for a simple two-rule
system with the two then-part “set” matrices

Matrix has the two eigenvalues , and has
the two eigenvalues . All four eigenvalues lie
in the unit circle. So both matrices or linear subsystems are
stable. Tanaka showed that the unweighted convex sum (51) is
unstable for trapezoidal then-part setsand and constant
or unity rule weights . He did find a sufficient
condition for stability of (51). We restate it here in the more
general SAM case without proof.
Theorem 2 [Discrete SAM Stability (Tanaka)]:The gener-
alized discrete-time feedback SAM system

(52)

with convex coefficients

(53)
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is globally asymptotically stable if there exists a common
positive definite matrix such that all of the then-part
matrices are negative definite.

There is no known way to find such a common positive
definite matrix . The odds of finding such a fall with each
new rule we add to the system. Exponential rule explosion
offers little hope of finding such a for large-scale systems.

We next present a corollary to Theorem 2 that gives a
sufficient condition for the identity choice . Then the
discrete system (52) will be globally asymptotically stable if
each rule matrix is stable and if each is diagonalwith
real coefficients

Corollary (Discrete Diagonal SAM Stability): The general-
ized discrete-time feedback SAM system

(54)

is globally asymptotically stable if all then-part matrices
are diagonal and stable.
Proof: The diagonal matrix

is symmetric and lists its eigenvalues along its main
diagonal. So the choice in Theorem 2 gives

(55)

The diagonal matrix is negative definite iff all of its
eigenvalues are negative. This holds iff each diagonal entry
obeys iff iff The
last condition holds for all and thus for all
eigenvalues of the matrix This is just the definition of
stability for matrix

This practical result holds for any positive definite matrix
of the form with constant . For then

. So the diagonal condition
still leads to the stability condition .

IV. CONCLUSIONS

We have shown that the global asymptotic stability of
generalized additive fuzzy systems can depend on the matrix
structure of the rules. The same proofs do not go through if
we replace the matrices with fuzzy set functions as in the
SAM system in (7) or with more general nonlinear operators.
The stability of these dynamical systems remains an open and
active area of research.

Fuzzy research has also yet to produce a practical definition
for the partial stability of fuzzy or nonfuzzy dynamical sys-
tems. Other research [3], [11], [45] has raised this question but
not answered it. A frequency approach might take this measure
of stability as some limiting proportion of initial conditions in
a region that lead to standard stability. A qualitative approach
might cast the measure in terms of statistical robustness
or relax the binary constructs that lie beneath the standard
definition of system stability.

Still broader research questions involve the stability and ap-
proximation power of fuzzy (autonomous) dynamical systems

that consist of a knowledge net of interlocking
rules or rule cycles. Fuzzy cognitive maps [2], [5], [14]–[16],
[29]–[31], [35]–[36], [53] offer one such class of knowledge or

causal networks. These dynamical networks have node dynam-
ics that resemble the neuronal dynamics of some asymmetric
feedback neural networks. But cognitive maps combine in
nonneural ways and learn with causal laws that differ from
synaptic learning laws. They involve few stability results when
causal learning laws change their rule structure [15]–[16].
More complex cognitive maps result when feedforward fuzzy
systems like SAM’s or other cognitive maps define the I/O
structure of a cognitive map’s nodes or fuzzy sets. No one has
found a stability result for such hierarchical fuzzy dynamical
systems.

These knowledge networks offer one way to combat fuzzy
rule explosion in dynamical approximation. But they do so at
the risk of instability, computational intractability, and system
inscrutability. These knowledge networks use a
fixed number of rules or edges to approximate a dynamical
system The fuzzy nodes or sets of fuzzy
cognitive maps and other knowledge networks define their
global system trajectory as a path in the-dimensional unit
hypercube . Each parameter choice carves this fuzzy
cube [21] into attractors that can differ in shape as well as in
type. A repeller boundary may separate an attractor basin that
contains a fixed point or limit cycle or limit torus from a basin
that contains an aperiodic equilibrium or chaotic attractor. We
may want the fuzzy knowledge network and its fixed
number of nodes or rules to approximate both qualitative and
quantitative aspects of some known or unknown dynamical
system

Simple mean-squared approximation is not likely to
ensure that the fuzzy dynamical approximatorhas the same
qualitative structure as the approximand dynamical system
has. The attractors in the fuzzy system should ap-
proximate the number, shape, and type of the attractors in the
approximand dynamical system . This can involve
the search for system embeddings and mutual information or
the search for Lyapunov exponents and fractal dimensions and
other invariants of the system’s orbits and attractors. Research
in temporal neural networks [25], [28] has not solved or
even often addressed the like problems of neural dynamical
approximation. Fuzzy dynamical approximation promises to
remain an open research area well into the next century if not
well into the next millennium.

APPENDIX

SAM THEOREM AND SUPERVISED LEARNING

This appendix presents and derives the basic SAM Theorem
used in Section II. It also shows how supervised gradient
descent can tune or learn the parameters in the SAM The-
orem. The last part of the Appendix derives scalar learning
laws for simple but popular fuzzy set functions. Simulations
have shown that these adaptive set functions can quickly
approximate a wide range of sampled functions.

The SAM theorem assumes that the fuzzy system
stores if–then rules. The then-part sets

can change with each input vectorand thus so can
the then-part volumes and centroids .
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SAM Theorem: Suppose the fuzzy system
is a SAM: Centroid Centroid

. Then is a convex sum of the then-part
set centroids

(A1)

(A2)

The convex coefficients or discrete probability weights
depend on the input through the ratios

(A3)

is the finite positive volume (or area if in the range
space , and is the centroid of then-part set

(A4)

(A5)

The popular scalar case of reduces (A4) and (A5) to

(A6)

(A7)

Proof: The theorem follows by expanding the centroid
of the combined output set and invoking the SAM
assumption in the hypothesis of the theorem to rearrange terms

Centroid (A8)

(A9)

(A10)

(A11)

(A12)

(A13)

Supervised learning changes SAM parameters with error
data. The error at each timeis the desired system output
minus the actual SAM output: . Then
supervised gradient descent can learn or tune SAM systems
[21] by changing the rule weights in (A14) below. Or it can
change the then-part volumes, the then-part set centroids

, or the parameters of the if-part set functions. The rule
weight enters the ratio form of the weighted SAM system

(A14)

in the same way as does the then-part volumein (A1). So
both have the same learning law if we replace the nonzero
weight with the nonzero volume

(A15)

(A16)

(A17)

for instantaneous squared error with
desired-minus-actual error . Then the volumes
change in the same way if they do not depend on the weights
(which they do in most ellipsoidal learning schemes [4], [21])

(A18)

(A19)

for some decreasing sequence of learning weights . The
learning law (A17) follows since and since
(A20)–(A22) (shown at the bottom of the next page) from the
SAM Theorem.
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The centroid in the SAM Theorem has the simplest
learning law

(A23)

(A24)

So the terms and do not change when and
thus when the th if-part set barely fires: . The
centroid learning law (A24) is a convex-weighted version of
the classical Widrow–Hoff LMS learning law [16].

Tuning the if-part sets involves more computation since
the update law contains at least one extra partial derivative.
Suppose if-part set function is a function of parameters

Then we can update each parameter
with

(A25)

(A26)

Factored joint if-part sets further
complicate the learning law. Here each joint set factors into

scalar fuzzy sets. Each scalar fuzzy set function depends
for simplicity only on its two mean-like and dispersion-like
parameters and . Then the chain of partial derivatives
in (A25) gains a fourth term

(A27)

Product factorization gives this new term as
. This new term multiplies the second term on

the right-hand side of (A26). It also reflects how factorization
assumes that the if-part components do not correlate but
combine independently of one another.

Exponential if-part set functions can reduce the learning
complexity. They have the form and obey

. Then the parameter

update law (A26) simplifies to

(A28)

This can arise for independent exponential or Gaussian sets
The exponen-

tial has parameter partial derivatives
and . This gives the

exponential learning laws

(A29)

(A30)

for vector inputs .
The Gaussian has mean

partial derivative and variance
partial derivative . This gives
the Gaussian learning laws

(A31)

(A32)

These Gaussian laws are the familiar learning laws of RBF’s.
Gaussian set functions reduce the SAM model to Specht’s [32]
RBF network or “generalized regression neural network.” The
Gaussian learning laws offer a good way to cheat when tuning
the much simpler (but nondifferentiable) triangle if-part sets
found in many applications. We can use the smooth update
laws (A31) and (A32) to update triangles or trapezoids or other
sets by viewing their centers and widths as the Gaussian means
and variances. We can also derive direct piecewise learning
laws for these simple if-part set functions.

We can derive other supervised SAM learning laws from
other set functions. These include two strong competitors to

(A20)

(A21)

(A22)
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the Gaussian SAM laws. The first is the set of Cauchy SAM
learning laws

(A33)

(A34)

These laws tune the “mean” and dispersion terms of the
generalized Cauchy set functions of the form

(A35)

Cauchy and Gaussian probability densities belong to the
same family of alpha-stable densities [10], [21]. But Cauchy
variables do not have finite variances or higher moments. They
do have nearly the same bell-curve shape as the Gaussian bell
curves. Their ratio form gives an easier set of if-part sets to
compute with than do the exponentials of Gaussians.

The other set of learning laws are the sinc SAM learning
laws

(A36)

(A37)

(A38)

These laws tune the popular sinc function of signal processing:

(A39)

Simulations show that sinc SAM’s tend to converge faster and
more accurately than do Gaussian or Cauchy SAM’s. SAM
systems that use factored joint sinc or Cauchy set functions
must include the fourth partial derivative in (A27) in their
learning laws. Sinc set functions have an extended range that
lets them take on negative values. These values and the infinite
lobes in the sinc function may have no linguistic “meaning.”
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