
Training Deep Neural Classifiers with Soft
Diamond Regularizers

Olaoluwa Adigun
Signal and Image Processing Institute

Department of Electrical and Computer Engineering
Los Angeles, California 90089-2564

adigun@usc.edu

Bart Kosko
Signal and Image Processing Institute

Department of Electrical and Computer Engineering
Los Angeles, California 90089-2564

kosko@usc.edu

Abstract—We introduce new soft diamond regularizers that
both improve synaptic sparsity and maintain classification accu-
racy in deep neural networks. These parametrized regularizers
outperform the state-of-the-art hard-diamond Laplacian regu-
larizer of Lasso regression and classification. They use thick-
tailed symmetric alpha-stable (SαS) bell-curve synaptic weight
priors that are not Gaussian and so have thicker tails. The
geometry of the diamond-shaped constraint set varies from a
circle to a star depending on the tail thickness and dispersion
of the prior probability density function. Training directly with
these priors is computationally intensive because almost all
SαS probability densities lack a closed form. A precomputed
look-up table removed this computational bottleneck. We tested
the new soft diamond regularizers with deep neural classifiers
on the three datasets CIFAR-10, CIFAR-100, and Caltech-256.
The regularizers improved the accuracy of the classifiers. The
improvements included 4.57% on CIFAR-10, 4.27% on CIFAR-
100, and 6.69% on Caltech-256. They also outperformed L2

regularizers on all the test cases. Soft diamond regularizers
also outperformed L1 lasso or Laplace regularizers because they
better increased sparsity while improving classification accuracy.
Soft-diamond priors substantially improved accuracy on CIFAR-
10 when combined with dropout, batch, or data-augmentation
regularization.

Index Terms—Symmetric alpha-stable probability, sparsity,
regularizer, soft diamond, Laplace regularizer, lasso regression.

I. SOFT-DIAMOND REGULARIZERS FROM STABLE PRIORS

We present new soft-diamond synaptic regularizers based
on symmetric alpha-stable SαS bell-curve weight priors for
deep neural classifier training. This family of parametrized
bell curves offers an efficient alternative to standard ridge
(Gaussian) and lasso (Laplacian) regularizers. Figure 1 shows
4 types of SαS bell curves and their plots of white noise.
Ridge regressors [1], [2] form a spherical constraint shape
while lasso regularizers [3], [4] form a hard diamond.

The new family of stable-bell-curve regularizers gives a
constraint set with a soft-diamond shape as in Figure 2. These
new SαS weight priors combine with the backpropagation
(BP) algorithm to train deep neural classifiers. Table I shows
that these soft-diamond priors outperformed ridge and lasso
regularizers on CIFAR-10, CIFAR-100, and Caltech-256. Ta-
ble II shows that these new SαS priors further improved
classification accuracy on CIFAR-10 when combined with
dropout, batch, or data-augmentation regularizers.

BP training seeks the parameter vector or array θ∗ that
maximizes the neural network’s forward likelihood p(y|x, θ):

θ∗ = argmax
θ

p(y|x, θ) = argmax
θ

ln p(y|x, θ). (1)

This minimizes the cross-entropy between the target vector
and the classifier’s output activation vector ay . BP training
iteratively updates the synaptic weights as it propagates the
approximation error from the output layer back through the
hidden layers to the input layer [5]–[7].

Bayesian BP is the generalized form of BP training that
maximizes the network posterior p(θ|y, x). It penalizes or reg-
ularizes the BP training and tends to give better performance
but at slightly higher computational cost. Bayesian BP adds a
scaled log-prior (or penalty term) to the log-likelihood:

θ̂ = argmax
θ

ln p(y|x, θ)︸ ︷︷ ︸
Log-likelihood

+ c ln p(θ|x)︸ ︷︷ ︸
Log-prior

(2)

where p(θ|x) denotes the weight prior and c > 0. The
Bayesian framework also extends to the bidirectional BP
training method. Bidirectional BP minimizes the directional
errors for the forward and backward signal flow over a deep
network [8]. Bayesian bidirectional BP adds a scaled log-prior
to the sum of forward and backward log-likelihoods [9].

Adding weight priors to Bayesian BP tends to improve
the performance of deep neural network models. The benefits
include better generalization [10], [11], stable and robust train-
ing [12], [13], weight sparsity [14]–[16], and faster training.
Weight priors also improves the performance of deep networks
with post-training weight pruning. Han et. al [17] found that
using L1 or L2 regularization improves the performance of
deep neural classification with post-training weight pruning.

Gaussian priors (L2 regularizers) and Laplacian priors (L1

regularizers) remain widely used parametric weight priors in
BP training. We here explore SαS bell-curve parametric priors
as alternatives to Gaussian and Laplacian priors.

We first review the underlying thick-tailed symmetric alpha-
stable bell curves. The characteristic function for an alpha
stable distribution with stability α ∈ (0, 2], symmetry β ∈
[−1, 1], location µ ∈ R, and dispersion γ ∈ R+ is

φ(ω;α, β, µ, γ) = eiωµ−|γω|α
(
1−iβ sgn(ω)Φ

)
(3)

1538

2024 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/24/$31.00 ©2024 IEEE
DOI 10.1109/ICMLA61862.2024.00237

where

Φ =

{
tan

(
πα
2

)
, α ̸= 1

− 2
π log |ω|, α = 1

. (4)

The only two symmetric closed-form bell curves in this
family are the Gaussian (α = 2) with thin exponential tails and
the Cauchy (α = 1) with thick power-law tails. Tail thickness
increases as the parameter α falls from 2 to just above 0.
Figure 1(a) shows four such bell curves. Figure 1(c) shows
the corresponding white-noise plots. The noise fluctuations
increase substantially as the parameter α falls. Figure 1(b)
shows three α = 1.5 bell curves with different widths or
dispersions. All stable bell curves have a finite dispersion but
only the Gaussian has finite variance.

Most SαS densities do not have a closed form. There are
exceptions [18]–[21] as in the above symmetric Gaussian and
Cauchy densities and the asymmetric Levy stable density. This
lack of a closed form for SαS priors makes it hard to compute
the derivative of log-priors.

We found that a simple lookup table overcame this problem.
We tested the new soft-diamond regularizers on classifi-

cation accuracy and post-pruning behavior. Weight pruning
favored the α = 1.5 soft diamond. The Cauchy and α = 0.5
soft diamonds performed best for high sparsity and accuracy
without post-training pruning.

II. BAYESIAN BACKPROPAGATION WITH SαS PRIORS

Our Bayesian BP training adds a scaled log-prior to the log-
likelihood as in (2) but now where the prior p(θ|x) is SαS.
Training maximizes the sum of the log-likelihood and scaled
log-prior using stochastic gradient ascent:

θ(t+1) = θ(t) + λt

(
∇θ ln p(y|x, θ) + c ∇θ ln p(θ|x)

)∣∣∣∣∣
θ=θ(t)

(5)

if θ(t) and λt are the respective weights and learning rate after
t training iterations for c > 0 and where p′(θ|x) = ∇θ p(θ|x)
.

The stable probability density h(θ) equals the Fourier
transform of its characteristic function φ(ω;α, β, µ, γ) in (3):

h(θ) =
1

2π

∫ ∞

−∞
φ(ω;α, β, µ, γ)e−iωθdω. (6)

The symmetry β equals 0 for SαS densities. So

φ(ω;α, β = 0, µ, γ) = eiωµ−|γω|α (7)

and this gives

h(θ) =
1

2π

∫ ∞

−∞
eiωµ−|γω|α e−iωθ dω . (8)

Figure 2 shows the shape of the weight constraint set
for SαS priors with squared-error optimization. The priors
that give a soft-diamond shape promote sparsity because the
sharper diamond ”points” with a smaller α favor zeroing-out
weight parameters. Figure 3 compares the geometry of the
weight constraint sets for different SαS priors. The constraints

follow from lnh(θ1)+lnh(θ2) = κ where κ is a constant and
h is the corresponding prior. Figure 4 shows how the value
of γ affects the geometry of the weight constraint. This paper
uses SαS priors with µ = 0.

The next section addresses the problem that the derivative
of most SαS densities also lacks any known closed form.

III. APPROXIMATING THE DERIVATIVE OF SαS
This section presents an efficient way to compute the log-

prior derivative of SαS densities using the finite difference
method. The approach defines a lookup table for the values of
the derivative of the log-priors. The central finite difference
estimates the derivative over a set of fixed points. These
values approximate the derivative over the entire domain of
the parameter space.

Define f as a real-valued function on closed interval [a, b].
Then the quotient for any x ∈ [a, b] is

ϕ(t) =
f(t)− f(x)

t− x
(9)

where a < t < b andwhere t ̸= x is such that

f ′(x) =
df(x)

dx
= lim

t→x

f(t)− f(x)

t− x
= lim

t→x
ϕ(t). (10)

Put g(θ) = ln p(θ|x) for g(θ). Then use the central finite
difference method to approximate the derivative of g at θ [22]:

g′(θ) =
dg(θ)

dθ
≈ g(θ + δ)− g(θ − δ)

2δ
. (11)

The approximation error is O(δ2) [23], [24].
Define a bounded region [−ϵ, ϵ] and divide it into 2Ng steps

where ϵ ∈ R+ and Ng ∈ Z+. So the step size δ is

δ =
ϵ

Ng
. (12)

Figure 5 shows these steps over the interval [−1, 1] for the
standard Cauchy SαS density with α = 1.0 and σ = 1.0.

The key TK for θ ∈ R takes on a value from
{−Ng, .., 0, .., Ng}:

TK(θ) =

−Ng, −∞ < θ ≤ −Ng

⌊ θ
ϵ ⌋, −Ng < θ ≤ Ng

Ng, Ng < θ < ∞
(13)

where ⌊a⌋ = max{n ∈ Z : n ≤ a}. The quantization of θ
yields keys restricted to the small finite interval [−ϵ, ϵ] instead
of to the whole domain (−∞,∞) of an SαS density.

Figure 6 shows the synaptic weight distribution for deep
neural classifiers before training and after training. The
weights use the Xavier uniform initialization method [25].
The graphs show that the interval [−0.03, 0.03] bounds the
synaptic weights in these two cases. The small finite bound
for θ suggests that we need only a small ϵ value to cover the
synaptic weight domain.

1539

−4 −2 0 2 4
θ

0.0

0.1

0.2

0.3

0.4

h
(θ
)

α = 0.7

α = 1.0

α = 1.5

α = 2.0

(a)

−4 −2 0 2 4
θ

0.0

0.1

0.2

0.3

0.4

h
(θ
)

γ = 0.7

γ = 1.0

γ = 1.5

(b)

0 200 400 600 800 1000
−5

0

5

α = 2.0

0 200 400 600 800 1000
−40

0

40
α = 1.5

0 200 400 600 800 1000
−500

0

500

α = 1.0

0 200 400 600 800 1000
−3000

0

3000

α = 0.7

(c)

Fig. 1: Symmetric alpha-stable SαS probability densities h(θ) with dispersion γ, stability α, and location µ = 0. (a) shows the 4 bell-curve
densites for γ = 1.0 and α ∈ {0.7, 1.0, 1.5, 2.0}. (b) shows the 3 densities for α = 1.5 and γ ∈ {0.7, 1.0, 1.5}. (c) shows 1,000 white-noise
samples from each SαS density with α ∈ {0.7, 1.0, 1.5, 2.0}, µ = 0, and γ = 1.0. The noise becomes much more impulsive as α falls.

−2.0 0.5 2.0 4.0
θ1

−2

0

2

4

θ 2

(a) α = 2.0

−2.0 0.5 2.0 4.0
θ1

−2

0

2

4

θ 2

(b) α = 1.5

−2.0 0.5 2.0 4.0
θ1

−2

0

2

4

θ 2

(c) α = 1.0

−2.0 0.5 2.0 4.0
θ1

−2

0

2

4

θ 2

(d) α = 0.5

−2.0 0.5 2.0 4.0
θ1

−2

0

2

4

θ 2

(e) Laplace (L1)

Fig. 2: Sparsity with soft-diamond SαS weight priors: The plots show the solutions of a least-squared-error model with SαS priors as
constraints. The weight sparsity grows as the bell-curve tail-thickness valueα value falls. (a) shows the solution with Gaussian value α = 2.0.
The constraint shape is a ball and the solution is θ1 = 0.6 and θ2 = 1.41. (b) shows the solution with α = 1.5. The constraint shape is
a soft diamond and the solution is θ1 = 0.35 and θ2 = 1.5. (c) shows the solution with Cauchy value α = 1.0. The constraint shape is a
much softer diamond and the solution is θ1 = 0.3 and θ2 = 1.52. (d) shows the solution with sub-Cauchy value α = 0.5. The constraint
shape is soft star and the solution is θ1 = 0.02 and θ2 = 1.8. (e) shows the solution with a non-SαS Laplacian prior. The constraint shape
is a hard diamond and the solution is θ1 = 0.15 and θ2 = 1.48.

The corresponding value TV (TK(θ)) for key TK(θ) assigns
an approximate derivative value to the key. Then the central
finite difference method gives

TV (TK(θ)) =
p(TK(θ) + δ|x)− p(TK(θ)− δ|x)

2δ p(TK(θ)|x) . (14)

where TK(θ) is as in (13). The estimate is a function of its
SαS density p(θ|x).

Using a lookup table reduced the computation to estimate
derivative of the SαS log-priors. We needed to compute
p(θ|x) only over a fixed set of points with the lookup table.
Ng could be as small as 100.

Algorithm 1 shows the pseudocode for training a deep
network with BP and a SαS weight prior. It combines BP
training with the lookup table to approximate the derivative of

1540

−2 0 2
θ1

−2

0

2

θ 2

−13.5

−9.5

−5.5

−1.5

(a) α = 2.0

−2 0 2
θ1

−2

0

2

θ 2

−10

−8

−6

−4

−2

(b) α = 1.5

−2 0 2
θ1

−2

0

2

θ 2

−8.8

−6.4

−4.0

−1.6

(c) α = 1.0

−2 0 2
θ1

−2

0

2

θ 2

−8.8

−6.4

−4.0

−1.6

(d) α = 0.5

Fig. 3: Shapes of SαS weight constraint sets for dispersion values γ = 1 wth µ = 0: A smaller α value or bell-curve thickness gives
sharper diamonds. The shape evolves from a ball in the Gaussian case α = 2 to a softer diamond in the Cauchy case α = 1 and on down
to a star in the sub-Cauchy case with α = 0.5.

−2 0 2
θ1

−2

0

2

θ 2

−14.0

−10.5

−7.0

−3.5

0.0

(a) γ = 0.3

−2 0 2
θ1

−2

0

2

θ 2

−12

−8

−4

0

(b) γ = 0.5

−2 0 2
θ1

−2

0

2

θ 2

−10

−8

−6

−4

−2

(c) γ = 1.0

−2 0 2
θ1

−2

0

2

θ 2

−7.8

−6.2

−4.6

−3.0

(d) γ = 1.5

Fig. 4: How dispersion values γ affect the shape of SαS weight constraint sets for bell curves with α = 1.5 and location µ = 0: The
shapes evolve from a star with γ = 0.3 to a soft diamond with γ = 1.0 and to a rounded square with γ = 1.5.

the synaptic-weight SαS log-priors.

IV. SIMULATIONS

This section explains the experimental setup that combined
tasks, datasets, model architectures, and training method.

A. Tasks

We trained deep neural classifiers on image datasets. The
classifiers mapped an input image to one of K possible target
vectors with K classes. We observed the effect of SαS weight
priors on the classification accuracy of the neural classifiers.
We also observed the sparsity of the weights after training. We
also observed the effect of unstructured weight pruning after
training deep neural classifiers with SαS priors.

B. Datasets

We used three classification datasets: CIFAR-10 [26],
CIFAR-100, and Caltech-256 [27].

CIFAR-10 dataset consists of 60,000 color images from 10
categories. It has 10 pattern categories (K = 10): airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
This dataset is balanced with 6,000 images per class: 5,000
training samples and 1,000 testing samples. Each image has
size 32× 32× 3.

CIFAR-100 is also a dataset of 60,000 color images with
image size 32×32×3. But the images come from 100 pattern

classes (K = 100) with 600 images per class. Each class
consists of 500 training images and 100 test images.

The Caltech-256 dataset has 30,607 images from 256 pattern
classes (K = 256) with image size 100×100×3. The number
of samples varies between 31 and 80 images. The 256 classes
consisted of the two superclasses animate and inanimate. The
animate superclass contained 69 pattern classes. The inanimate
superclass contained 187 pattern classes. We removed the
cluttered images and reduced the size of the dataset to 29,780
images.

We used image augmentation techniques on the training
images. These techniques include image flip, image cutout,
and channel normalization.

C. Model Architectures and Training

The neural classifiers each used a convolutional and residual
network architecture. Figure 7(a)−(d) show the modules for
building the deep neural classifiers. The input module, convo-
lution module, residual module, and output module.

The input module takes in the input image and applies 2D
convolution, batch normalization, and a nonlinear activation.
The convolution module transforms the hidden features. It is
similar in structure to the input module and includes a maxi-
mum pooling layer. The residual module is a concatenation of
two input modules into one and includes a skip connection. We
used rectified linear units or ReLUs as the hidden activations.

1541

TABLE I: Image classification with deep convolutional neural classifiers without post-training weight pruning: We used SαS weight priors
with location µ = 0. The baseline models used uniform weight prior (no regularizer) and their respective classification accuracy was 91.31%
for CIFAR-10, 72.74% for CIFAR-100, and 61.88% for Caltech-256. Each classifier trained over 50 epochs with the stochastic gradient
descent optimizer using Algorithm 1.

Dataset Prior
Classification Accuracy

γ = 0.1 γ = 0.3 γ = 0.5 γ = 1.0 γ = 1.5 γ = 2.0

CIFAR-10

Gaussian 94.64% 94.51% 95.11% 95.08% 94.81% 94.50%
SαS (α = 1.5) 94.60% 94.97% 95.88% 94.88% 94.89% 94.81%
SαS (α = 1.0) 94.33% 94.55% 94.52% 94.83% 94.97% 94.99%
SαS (α = 0.5) 94.66% 94.74% 94.75% 94.68% 94.76% 94.56%
SαS (α = 0.3) 94.72% 94.83% 94.71% 94.90% 94.72% 94.61%
Laplacian 93.82% 93.78% 93.64% 93.84% 93.51% 93.62%

CIFAR-100

Gaussian 74.63% 74.39% 75.50% 75.40% 75.62% 75.48%
SαS (α = 1.5) 76.29% 75.26% 75.11% 74.70% 75.37% 75.49%
SαS (α = 1.0) 76.60% 76.53% 75.31% 75.84% 75.09% 75.27%
SαS (α = 0.5) 76.31% 76.71% 77.01% 76.74% 76.93% 76.74%
SαS (α = 0.3) 73.73% 73.75% 73.96% 74.99% 75.01% 75.54%
Laplacian 76.66% 76.69% 76.49% 76.56% 76.79% 76.67%

Caltech-256

Gaussian 66.47% 66.55% 66.34% 66.71% 66.08% 66.50%
SαS (α = 1.5) 67.26% 66.47% 66.08% 66.87% 66.77% 66.92%
SαS (α = 1.0) 67.01% 66.89% 67.51% 66.08% 66.66% 66.30%
SαS (α = 0.5) 66.81% 68.57% 68.55% 68.28% 67.18% 67.08%
Laplacian 68.20% 67.39% 67.83% 67.95% 67.90% 67.80%

Algorithm 1 BP Training with a SαS prior using SGD
optimizer with momentum

Input: Data D = {x(i), y(i)}, symmetry α ∈ (0, 2], disper-
sion σ ∈ R+, prior coefficient c ∈ R+, prior bound
b ∈ R+, grid count Ng ∈ Z+, step size δ ∈ R+ ,
momentum m ∈ (0, 1], dampening τ ∈ [0, 1), and number
of training iterations NT

Output: Weight θ
Initialization : Weight θ(0) and learning rate λ0

1: Define the log-prior lookup table T = {TK , TV }
Use equations (13) and (14)

2: for t = 0 to NT − 1 do

3: Forward pass Nθ: ay = Nθ(x)

∣∣∣∣∣
θ=θ(t)

4: Update the weights:

gt =
d ln p(y|x, θ)

dθ

∣∣∣∣
θ=θ(t)

+ cTV (TK(θ(t)))

5: if (t = 0) then
6: θ(t+1) = θ(t) + λt gt; βt+1 = gt
7: else
8: βt+1 = m βt + (1− τ)gt; θ(t+1) = θ(t) + λtβt+1

9: end if
10: Update the learning rate
11: end for
12: return θ(NT)

Figure 7(e) shows the architecture of the neural classifiers
that trained on CIFAR-10 and CIFAR-100 datasets. Figure 7(f)
shows the architecture of the neural classifiers that trained on
Caltech-256.

Stochastic gradient descent trained the models with mo-
mentum [28]. Each model trained over 50 epochs. We used a

piecewise linear learning rate scheduler. We defined the lookup
table for training our classifiers with δ = 0.002 and Ng = 400.
Algorithm 1 details the training method. We trained the neural
classifiers on a V100 GPU.

V. RESULTS AND DISCUSSION

This section explains the experimental results and perfor-
mance of soft diamond regularizers. Table I compares the
performance of SαS weight priors on CIFAR-10 classifica-
tion. SαS priors improved the classification performance and
α = 1.0 performed best out of all the values we considered.
The L2 regularizer corresponds to using the Gaussian SαS
prior with α = 2. The L1 regularizer corresponds to using
a Laplace prior. Soft diamond regularizers outperformed both
the L1 and L2 regularizers.

A. Effect of the tail-thickness parameter α of SαS priors

Table I shows how the soft diamond regularizers performed
on CIFAR-10, CIFAR-100, and Caltech-256 classification
without post-training weight pruning. It shows the benefit of
using SαS weight priors as it outperforms L2 and L1. We
considered α ∈ {0.3, 0.5, 1.0, 1.5} The best α varied for the
datasets. It depended on the interaction with the dispersion
γ and the log-prior scale c. The sub-Cauchy prior α = 0.5
outperformed L2 and L1 on all the datasets. Table II shows
that the soft-diamond priors always improved the classification
accuracy of the popular dropout, batch normalization, and data
augmentation regularizers on the CIFAR-10 dataset.

Figure 10 shows that SαS weight-prior promotes sparsity.
The degree of sparsity increases as α decreases. Figure 8
shows the impact of soft regularizers on unstructured and post-
training weight pruning. They outperformed L2 regularizers on
the three test sets.

1542

−1.0 −0.5 0.0 0.5 1.0
θ

0.0

0.1

0.2

0.3

0.4
h
(θ
)

α = 1.0

(a) Probability density function h(θ)

−1.0 −0.5 0.0 0.5 1.0
θ

−2

−1

0

1

2

∂
ln
h
(θ
)

∂
θ

α = 1.0

(b) Derivative of lnh(θ)

Fig. 5: Step size for derivative lookup table with quantized interval
[−1, 1] for the standard Cauchy SαS density with α = 1.0 and γ =
1.0. The number of steps is 2Ng = 20 with step size is δ = 0.1. (a)
shows the quantized Cauchy density and (b) shows the approximated
derivative of the Cauchy log-prior.

B. Effect of the log-prior scale c

We ran experiments with c ∈ (0.0001, 100). We considered
15 values over this range. The results show that the best
value c∗ depends on the values of α and γ. c∗ increases
with an increase in dispersion γ for a fixed stability α. The
relationship between c and classification accuracy tends to
follow an inverted U-shape for a fixed α.

C. Effect of the step-size δ of the SαS lookup table

We define the step size δ (Algorithm 1) for training with
SαS weight priors. Figure 9 shows the effect of δ on the
performance of the deep neural classifier that used the priors.
Performance increased as δ decreased.

VI. CONCLUSIONS

Regularizers trade-off sparse representations of parameters
for accuracy. We found that the new family of symmetric-
alpha-stable soft-diamond regularizers gave a practical way to
greatly increase sparsity of synaptic values while maintaining
or even improving classification accuracy on several image
test sets. A precomputed table look-up overcame the lack of a
closed mathematical form for the bell-curve priors other than
the Gaussian and Cauchy stable curves. The Gaussian or L2

regularizer had no sparsity at all: Almost all trained synaptic

−0.0
4

−0.0
2

0.0
0

0.0
2

0.0
4

θ

0

15

30

45

60

D
en
si
ty

h
(θ
)

Pre-training

Post-training

(a) CIFAR-100

−0.0
4

−0.0
2

0.0
0

0.0
2

0.0
4

θ

0

15

30

45

60

D
en
si
ty

h
(θ
)

Pre-training

Post-training

(b) Caltech-256

Fig. 6: Weight distribution with uniform prior for deep neural
classifiers before training and after training over 50 training epochs.
The weight values fell between the values −0.03 and 0.03. (a)
shows the weight distribution before and after training on CIFAR-100
dataset. (b) shows the weight distribution before and after training on
Caltech-256 dataset.

weights are nonzero. The best of the tested soft-diamond
regularizers had better classification accuracy than did the
Gaussian regularizer. The Cauchy and α = 0.5 regularizers
had excellent weight sparsity and often the best classification
performance. The soft-diamond priors always further improved
the classification accuracy of dropout, batch normalization,
and data augmentation regularizers on the CIFAR-10 dataset.
Users should consider experimenting with these sparse regu-
larizers in other problems of deep classification or regression.

REFERENCES

[1] A. N. Tikhonov, “On the solution of ill-posed problems and the method
of regularization,” in Doklady akademii nauk, vol. 151, no. 3. Russian
Academy of Sciences, 1963, pp. 501–504.

[2] G. C. McDonald, “Ridge regression,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 1, no. 1, pp. 93–100, 2009.

[3] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[4] ——, “The lasso method for variable selection in the cox model,”
Statistics in medicine, vol. 16, no. 4, pp. 385–395, 1997.

[5] P. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” PhD thesis, Committee on Applied Mathe-
matics, Harvard University, Cambridge, MA, 1974.

1543

Fig. 7: Architectures of the tested deep neural classifiers. Each module’s number corresponds to the number of output channels where K
was number of class patterns. (a) is the input module. (b) is the output module. (c) is the convolution module. (d) is the residual module. (e)
is the full model architecture of the neural classifiers that trained on the CIFAR-10 and CIFAR-100 datasets. (f) is the full model architecture
of the neural classifiers that trained on the Caltech-256 dataset.

0 20 40 60 80
% of Pruned Weights

50

60

70

80

90

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

%

Uniform

Gaussian

α = 1.5

α = 1.0

(a) CIFAR-10

0 20 40 60 80
% of Pruned Weights

40

50

60

70

80

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

%

Uniform

Gaussian

α = 1.5

α = 1.0

(b) CIFAR-100

0 20 40 60 80
% of Pruned Weights

0

20

40

60

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

%

Uniform

Gaussian

α = 1.5

α = 1.0

(c) Caltech-256

Fig. 8: Weight pruning effects of SαS log-priors on deep neural classifiers after post-training weight pruning: SαS priors improved the
performance of deep neural classifiers with unstructured and post-training weight pruning.

TABLE II: Boosting dropout, batch normalization, and data acquisition regularization in CIFAR-10 classification: SαS weight priors always
improved the performance of these three regularization techniques. The classifiers trained over 100 epochs. The soft-diamond priors gave
the most benefit (93.83% accuracy) when combined with image augmentation.

Model Architecture
Classification Accuracy (%)

Batch size = 512 Batch size = 256 Batch size = 128 Batch size = 64 Batch size = 32

NN only 46.68% 55.36% 62.65% 67.37% 69.81%
NN + SαS 47.73% 57.60% 64.36% 67.49% 68.48%
NN + Dropout 61.58% 69.76% 69.09% 72.94% 75.73%
NN + Dropout + SαS 72.14% 77.08% 79.41% 78.18% 78.13%
NN + Image Aug. 88.93% 90.94% 92.02% 92.34% 91.48%
NN + Image Aug. + SαS 90.70% 92.27% 93.52% 93.83% 92.36%
NN + Batch Norm. 55.92% 57.73% 60.58% 62.47% 67.03%
NN + Batch Norm. + SαS 78.95% 77.56% 82.17% 80.96% 75.61%

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[7] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[8] O. Adigun and B. Kosko, “Bidirectional backpropagation,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 5, pp.

1982–1994, 2019.
[9] ——, “Bayesian bidirectional backpropagation learning,” in 2021 Inter-

national Joint Conference on Neural Networks (IJCNN). IEEE, 2021,
pp. 1–7.

[10] J. Larsen and L. K. Hansen, “Generalization performance of regularized
neural network models,” in Proceedings of IEEE Workshop on Neural
Networks for Signal Processing. IEEE, 1994, pp. 42–51.

1544

0.002 0.005 0.01 0.02 0.1
Lookup step size δ

70

72

74

76
C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

%
α = 2.0

α = 1.0

α = 0.5

(a) CIFAR-10

0.002 0.005 0.01 0.02 0.1
Lookup step size δ

70

72

74

76

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

%

α = 2.0

α = 1.0

α = 0.5

(b) CIFAR-100

Fig. 9: Look-up table step size δ and SαS weight priors: The look-up
table T approximates the derivative of the corresponding log-priors.
Algorithm (1) combines T and Bayesian backpropagation to train
deep neural classifiers.

[11] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving
the generalizability of deep learning,” arXiv preprint arXiv:1705.10941,
2017.

[12] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training
of generative adversarial networks through regularization,” Advances in
neural information processing systems, vol. 30, 2017.

[13] P. Dey, K. Nag, T. Pal, and N. R. Pal, “Regularizing multilayer
perceptron for robustness,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 48, no. 8, pp. 1255–1266, 2017.

[14] P. M. Williams, “Bayesian regularization and pruning using a laplace
prior,” Neural computation, vol. 7, no. 1, pp. 117–143, 1995.

[15] R. Ma, J. Miao, L. Niu, and P. Zhang, “Transformed l1 regularization
for learning sparse deep neural networks,” Neural Networks, vol. 119,
pp. 286–298, 2019.

[16] S. Srinivas and R. V. Babu, “Learning neural network architectures using
backpropagation,” arXiv preprint arXiv:1511.05497, 2015.

[17] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

[18] J. P. Nolan, Stable distributions, 2012.
[19] G. Samorodnitsky, M. S. Taqqu, and R. Linde, “Stable non-gaussian

random processes: stochastic models with infinite variance,” Bulletin of
the London Mathematical Society, vol. 28, no. 134, pp. 554–555, 1996.

[20] K. Arias-Calluari, F. Alonso-Marroquin, and M. S. Harré, “Closed-form
solutions for the lévy-stable distribution,” Physical Review E, vol. 98,
no. 1, p. 012103, 2018.

[21] J. P. Nolan, “Financial modeling with heavy-tailed stable distributions,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 6, no. 1,
pp. 45–55, 2014.

−0.0
2

−0.0
1

0.0
0

0.0
1

0.0
2

θ

0

20

40

60

D
en
si
ty

h
(θ
)

α = 1.5

(a) SαS Prior: α = 1.5

−0.0
2

−0.0
1

0.0
0

0.0
1

0.0
2

θ

0

30

60

90

120

D
en
si
ty

h
(θ
)

α = 1.0

(b) SαS Prior: α = 1.0

−0.0
2

−0.0
1

0.0
0

0.0
1

0.0
2

θ

0

75

150

225

300

D
en
si
ty

h
(θ
)

α = 0.5

(c) SαS Prior: α = 0.5

−0.0
2

−0.0
1

0.0
0

0.0
1

0.0
2

θ

0

100

200

300

400

D
en
si
ty

h
(θ
)

α = 0.3

(d) SαS Prior: α = 0.3

Fig. 10: Distributions of weight parameters after training deep
neural classifiers with uniform or SαS hidden priors. The classifiers
trained on the CIFAR-10 dataset over 50 training epochs and used
a residual network architecture with convolutional layers. Weight
sparsity increased as the α of SαS tail-thickness parameter α
decreased.

[22] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1964, vol. 3.

[23] B. Jain and A. D. Sheng, “An exploration of the approximation of deriva-
tive functions via finite differences,” arXiv preprint arXiv:1006.1620,
2010.

[24] I. R. Khan and R. Ohba, “Closed-form expressions for the finite
difference approximations of first and higher derivatives based on taylor
series,” Journal of Computational and Applied Mathematics, vol. 107,
no. 2, pp. 179–193, 1999.

[25] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[26] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[27] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[28] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning. PMLR, 2013, pp. 1139–1147.

1545

