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A natural measure of probabilistic equality between sets leads to two measures of probabilistic
conditioning that form the endpoints of a conditioning interval. The interval’s lower bound is
the standard conditional probability or “subconditional” that describes the probability of a sub-
set relation. The upper bound is a new “superconditional” that describes the probability of the
corresponding superset relation. These dual conditioning operators correspond to dual set col-
lections and enjoy optimality relations with respect to these set collections. Fuzzy cubes illus-
trate these set-collection relations in the two-dimensional case. The subconditional operator
corresponds to the usual “power set” of a given set. The dual superconditional operator corre-
sponds to what we call the “superpower set” or the set of all supersets of the given set. The two
dual conditioning operators can eliminate each other through simple equalities. They obey dual
Bayes theorems but differ in how they respond to statistical independence. © 2004 Wiley Peri-
odicals, Inc.

There is no set corresponding to the inclusion relation between sets.
—Patrick Suppes, Axiomatic Set Theory

1. INTRODUCTION: SIMILARITY DRIVES THE SECOND-ORDER
UNCERTAINTY OF CONDITIONING

This article presents the new probabilistic conditioning interval ~P~H 6E !,
Q~H 6E !! from the perspective of similarity or partial equivalence: To what extent
does uncertain evidence E resemble an uncertain hypothesis H? The new inter-
val and its components depend on a natural measure or index P~E � H ! of how
similar or equivalent E is to H. The next section proposes the ratio definition
of uncertain equivalence P~H � E ! � P~H � E !/P~H � E ! and explores
its conceptual difficulties and its mathematical consequences. The equivalence
index P~E � H ! gives back both standard conditional probability P~H 6E ! and
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the new conditioning operator Q~H 6E ! as special cases of the partial equiva-
lence that holds between some set events. This introductory section illustrates
how such similarity affects standard or first-order conditioning and how it drives
the second-order uncertainty of the conditioning process. The simple numerical
example below shows that the probabilistic equality P~E � H ! and the condi-
tioning interval ~P~H 6E !,Q~H 6E !! can change to reflect changes in the uncer-
tainty relationship between the evidence E and the hypothesis H while the standard
conditional probability P~H 6E ! alone can ignore these changes.

The length of the interval ~P~H 6E !,Q~H 6E !! gives a rough measure of the
second-order uncertainty of the conditioning process. The lower bound P~H 6E !
describes only first-order uncertainty: It gives the user just one number that
describes how the given hypothesis H conditions on the given piece of evidence
E. But P~H 6E ! itself gives the user no information whatsoever about the confi-
dence of any one of these two endpoint numbers because it is just one of these
numbers. The new conditioning operator Q~H 6E ! does give the user such infor-
mation if the user applies Q jointly with P. The operator Q by itself gives no
second-order information for the same reason that P does not. So Q does not
offer an alternative to P. It also lacks some of P’s measure-theoretic properties
even though it is a formal dual to P. But P and Q together offer both a set of
duality relations and the new conditioning interval ~P~H 6E !,Q~H 6E !! that extend
the framework of probabilistic conditioning from first-order uncertainty descrip-
tions to second-order descriptions.

Consider first the components of the conditioning interval ~P~H 6E!,Q~H 6E!!.
Let the set H denote a hypothesis with positive prior probability P~H ! � 0.
Let the set E in the same sample space denote some evidence with probabil-
ity P~E ! � 0. Then the lower-bound operator P~H 6E ! is the usual conditional
probability P~H 6E ! � P~H � E !/P~E !. But the interval’s upper bound Q is a
new conditioning operator (not itself a probability measure) that we call a super-
conditional. It has the dual ratio form Q~H 6E ! � P~H !/P~H � E !. The next
section shows that both P and Q follow as special cases from the probabilistic
similarity or equality measure P~H � E ! � P~H � E !/P~H � E !. Each
operator can in turn eliminate the other through the dual “whole-in-the-part” iden-
tities P~H 6E ! � Q~H � E6E ! and Q~H 6E ! � P~H 6H � E !. Theorems 2
and 3 reveal the dual nature of P and Q based on their respective relationships to
collections of event subsets and supersets. A unit square or two-dimensional fuzzy
square gives an effective way to visualize (and generalize) these theorems and
related propositions.

The “interval theorem” below states that P~H 6E !� Q~H 6E ! and so justifies
the interval form ~P~H 6E !,Q~H 6E !!. This suggests using the conditioning gap
Q~H 6E ! � P~H 6E ! as a rough measure of the second-order uncertainty in the
interval because our confidence in any point value in the interval decreases as the
interval length increases. The upper bound Q gives a natural normalizer of this gap
or difference. Then the term 1 � P~H 6E !/Q~H 6E ! measures the uncertainty in
the interval. So its negation measures the confidence c~H 6E ! in the conditioning
interval itself: c~H 6E !� P~H 6E !/Q~H 6E !. There is no confidence in the condi-
tioning or c~H 6E ! � 0 in the extreme case when H and E are disjoint because
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then P~H 6E ! � 0. There is total confidence or c~H 6E ! � 1 in the other extreme
case when E � H or H � E because then P~H 6E ! � Q~H 6E !.

Now consider two cases of related probabilistic descriptions. The first case
assigns the evidence E and the hypothesis H the probabilities P~E ! � .7 and
P~H !� .6. It further assigns the joint events E � H and E � H the probabilities
P~E � H ! � .4 and P~E � H ! � .9. Note that these values obey the inequality
constraint P~E � H ! � min~P~E !, P~H !! � max~P~E !, P~H !! � P~E � H !.
Then the conditional probability of the hypothesis H given the evidence E is
P~H 6E !� 4

7
_ . The dual superconditional of H given E is Q~H 6E !� 2

3
_ . The proba-

bilistic equality between H and E is P~H � E ! � 4
9
_ or about 44%. This gives a

conditioning interval of ~P~H 6E !, Q~H 6E !! � ( 4
7
_ , 2

3
_ ) and a confidence value of

c~H 6E ! � P~H 6E !/Q~H 6E ! � 6
7
_ or about 86%.

Suppose next that the hypothesis H falls in probability from 60% to 50%. So
suppose in this second case that P~H !� .5 and further that the joint event E � H
suffers a like fall in probability from .9 to P~E � H ! � .8. The other two
probability values stay the same: P~E ! � .7 and P~E � H ! � .4. These four
probability values still obey the inequality constraint and further obey the equality
constraint of modularity: P~E ! � P~H ! � P~E � H ! � P~E � H !. Then the
probabilistic equality increases to P~H � E ! � 1

2
_ because now the events E and

H have more mass in common. The superconditional value decreases from 2
3
_ to

Q~H 6E ! � 5
8
_ or to about 63% whereas the conditional probability remains

unchanged at P~H 6E ! � 4
7
_ . These two conditioning values shrink the condition-

ing interval to ~P~H 6E !, Q~H 6E !! � ( 4
7
_ , 5

8
_ ) and thus increase the confidence

value to c~H 6E ! � P~H 6E !/Q~H 6E ! � 32
35
_ or about 91%. This simple example

shows that an increase in probabilistic similarity or equality can increase the
second-order confidence of conditioning. Focusing solely on the conditional prob-
ability P~H 6E ! ignores this change in the probabilistic relationship between E
and H because it ignores the set difference H � E.

2. PROBABLE EQUALITY AND CONDITIONING

What is the probability that two events are equal?
This is a simple but problematic question. Consider the probability space

~X, A, P ! where the set events A and B belong to the sigma-algebra A on the sam-
ple space X with probability measure P. Then either A � B holds or A � B holds
with binary certainty. We can assign some probability p in the first case and thus
assign 1 � p in the second. But just what defines p and how does p relate to the
measure P? The axiom of extensionality1,2 states that A and B are equal if they
have the same elements. But in general the measure of a lone element or a finite
set of elements is zero. And the uncountable nature of most event sigma-algebras
precludes defining p in terms of set frequencies.

The more immediate question is whether the probability p is trivial. The binary
nature of the equality A � B and the inequality A � B suggests that p should
itself be binary: Either p � 0 or p � 1 but we do not know which. Then the
uncertainty appears subjective.
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Random set theory shows how to resolve this problem but at the price of
increased abstraction. Consider the closely related problem of whether a popula-
tion mean m lies in a given confidence interval Z6 c for random variable Z and
positive constant c. Then either m � ~z � c, z � c! or m � ~z � c, z � c! for
any realization z of Z. So the probability p that m belongs to any such realized
interval is 1 or 0 according to whether m does or does not belong to the interval.
Indeed this problem accounts for the use of the awkward adjective “confidence”
rather than the more natural “probabilistic.” A standard solution views the confi-
dence interval as a random set3 or a measurable set-valued mapping from the prob-
ability space to some measurable space. The random set ~Z � c, Z � c! leaves
regular deterministic sets ~z � c, z � c! as realizations much as a foot leaves
footprints. The mean lies in some of the realized confidence intervals but not in
others and does so in each case with binary certainty. The frequency or probability
structure of the set realizations depends on the probability distribution of the ran-
dom variable Z and more generally on the distribution of the random set.

The same reasoning views the events A and B as random sets that leave set
realizations for each random “experiment.” Some of the experiments result in equal-
ity realizations A � B whereas the rest result in inequality realizations A � B.
Then the probability p describes the frequency or occurrence probability of the
equality realizations for some underlying but unknown random set and its proba-
bility distribution.

These conceptual difficulties involving the equality relation A � B stem
from the relation’s logical structure: It is a logical relation and not itself a set. This
is the import of the above Suppes epigraph. The intersection A � B and the union
A � B are sets whereas the set inclusion A � B and the set equality A � B are
not sets but logical relations between sets. Defining the equivalence probability p
as the term P~A � B! does not technically make sense because the probability
measure P applies only to sets. Random sets offer but one way to make formal
sense of such a term.

Another closely related research problem is how to make probabilistic sense
of the if–then conditional of classical binary logic.4,5 But formal efforts to add
related abstract “conditional elements” of the form “B 6A” to sigma-algebras have
ended in failure.6 One version7 of this so-called Lewis triviality theorem states
that the probability of a set-theoretic “conditional” P~A r B! equals the stan-
dard conditional probability P~B 6A! only if events A and B are independent under
P: P~A r B! � P~B 6A! implies P~A � B! � P~A!P~B!. So the proposed
probabilistic conditional does not condition at all except in a trivial sense because
then P~A r B! � P~B!.

One way around the Lewis triviality theorem is simply to abandon sigma-
algebras and work instead with conditional-event algebras8–13 or other Boolean
algebraic structures. We present a more conservative approach that works within
the set-theoretic confines of sigma-algebras and thus that preserves the standard
theory of finite positive measures.

We propose indices or measures of equality and conditioning based on logi-
cally equivalent set-theoretic relations. The starting point is the fact that the set
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relation A � B is logically equivalent to other set relations. Some of these rela-
tions allow a definition of probable equality that depends only on P and on events
in the sigma-algebra A. Equation 1 below captures just such a relation in a defini-
tion of probable equivalence.

The proposed defining set-theoretic relations are well-known logical equiva-
lents of the definition of set-theoretic equality. Recall that the relation A � B
holds if and only if A � B and B � A. This holds iff A � B � A � B—and this
is the only such biconditional for set equivalence that depends just on the sets A
and B and the basic dual operations of intersection and union. Other set equiva-
lences can produce very different results. The equivalent relation A � B � A � B
in turn leads to a natural normalized index or measure of probable equivalence
E~A, B!:

E~A, B! � P~A � B!�
P~A � B!

P~A � B!
(1)

The definition (1) implies that

P~A � B! � 1 � E~A, B!�
P~A � B!� P~A � B!

P~A � B!

We assume throughout that P~A! � 0 and P~B! � 0.
The defining ratio of probabilities (1) has the further advantage that research-

ers in diverse fields have independently arrived at some form of it as a measure of
equality or similarity. The ratio resembles the Tanimoto similarity measure in the
theory of pattern recognition.14 Fuzzy theorists have proposed the same ratio but
with finite fuzzy cardinalities in place of probabilities.15,16 And mathematical psy-
chologists have used a like ratio to measure perceptual similarity.17 An indirect
historical connection comes from the early work of logical positivist Rudolph Car-
nap. He grounded his observer-based logical world view or “methodological solip-
sism” on an undefined partial measure of equivalence or similarity coupled with
symbolic logic.18

The equality operator E~A, B! in (1) balances the elements common to the two
events A and B against the total elements in the two events. The operator gives at
once a new way to view the probability of any event A: P~A! is just the probability
that event A equals the entire sample space X because P~A � X ! � P~A!. This
probability equals 1 of course if P~A!� P~X !. The ratio (1) gives P~A � B!� 0
in the disjoint case A � B � �. It gives P~A � B! � 1 when A � B � A � B
and thus when A � B. The ratio also satisfies the monotone condition that any
reasonable measure of equality should satisfy15: A � B � C implies that E~A,C!�
E~B,C! because A � B iff A � B � A iff A � B � B.

Now consider the related concept of probable inclusion or subsethood.16,19–21

What is the probability that A � B? The logical relation A � B holds iff A �
B � A. The equality A � B � A allows (1) to measure the probability that A is
a subset of B:
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P~A � B! � P~A � B � A!� E~A, A � B! (2)

�
P~A � B!

P~A!
(3)

� P~B 6A! (4)

Hence probable equality gives back the familiar ratio (3) of conditional probabil-
ity P~B 6A!. Now the relation follows as a theorem and not as the usual ad hoc
definition. Note that P~A! � P~A6X ! or P~A! � P~X � A!.

But symmetry raises a like question about probable supersethood: What is
the probability that B � A? The dual relation B � A holds iff A � B � B. The
equality A � B � B also allows (1) to measure the probability that B is a superset
of A:

P~B � A! � P~A � B � B!� E~B, A � B! (5)

�
P~B!

P~A � B!
(6)

� Q~B 6A! (7)

Note that P~A!� Q~A6X ! or P~A!� P~A � X !. The ratio definition (1) and the
inequality P~A � B! � min~P~A!, P~B!! imply the upper bound P~A � B! �
min~Q~A6B!,Q~B 6A!! just as P~A � B! � max~P~A!, P~B!! implies P~A �
B!� min~P~A6B!, P~B 6A!!. This reflects that the biconditional nature of equality
is a stronger condition on sets A and B than is the extent to which either set con-
tains the other. We note that the operator Q~B 6A! has the same ratio form for set
events as one of the six conditioning operators that Walker22 independently pro-
posed in his study of conditional-event algebras of propositions (but with the severe
restriction that A and B be mutually exclusive).

The new conditioning operator Q~B 6A! is dual to the standard conditioning
measure P~B 6A!. Both the relationship of Q~B 6A! to supersets and the results in
the next section suggest that we call Q~B 6A! the superconditional probability. This
further suggests that we call P~B 6A! the subconditional probability. The latter ratio
uses the intersection of the two events whereas the former uses the union even
though both conditioning operators arise from a logical equivalence between set
relations. A like duality holds for the “whole in the part” eliminations P~B 6A!�
Q~A � B 6A! and Q~B 6A! � P~B 6A � B!. Theorem 1 below shows that the two
operators are not equal in general. And the subconditional is a proper probability
measure whereas the superconditional is not because Q~B 6A! � Q~Bc 6A! � 1.
This can occur when A � B.

All three operators behave similarly with respect to the contrapositive bicon-
ditional that states that A � B iff Bc � Ac . The inequality P~B 6A! � P~Ac 6Bc !
holds in general as do the inequalities Q~B 6A! � Q~Ac 6Bc ! and E~A, B! �
E ~Ac, Bc !. But equality does hold in all three cases in the special case when
P~A! � P~B! � 1.

Several equalities directly connect the three operators. Either one of the two
conditioning operators can eliminate the probable equivalence that gives rise to
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them: P~A � B 6A � B! � E~A, B! � Q~A � B 6A � B!. The familiar modu-
lar equality

P~A!� P~B! � P~A � B!� P~A � B! (8)

also implies that probable equivalence (1) reduces to a function of the subcondi-
tional (4):

E~A, B! �
P~A6B!P~B 6A!

P~A6B!� P~B 6A!� P~A6B!P~B 6A!
(9)

The modular equality also reduces probable equivalence to the superconditional (7):

E~A, B! � Q~A6B!� Q~B 6A!� 1 (10)

This gives a type of conservation law between subconditionals and super-
conditionals:

1

Q~A6B!� Q~B 6A!� 1
�

1

P~A6B!
�

1

P~B 6A!
� 1 (11)

The ratio definition (1) leads to the more intuitive relation:

E~A, B! � P~A6B!Q~B 6A!� P~B 6A!Q~A6B! (12)

These identities reflect the conjunctive nature of probable equality. It measures
how much A is a subset of B and how much B is a superset of A. The modular
equality further implies that the superconditional probability bounds the subcon-
ditional probability. This gives the following “interval theorem.”

Theorem 1.

P~B 6A! � Q~B 6A! with equality if A � B (13)

Proof. The deterministic inclusion A � B gives P~B 6A! � 1 � Q~B 6A!. And
(8) and the inequality P~A! � P~A � B! prove the result:

P~B 6A! �
P~A!� P~B!� P~A � B!

P~A!
(14)

� 1 �
P~A � B!� P~B!

P~A!
(15)

� 1 �
P~A � B!� P~B!

P~A � B!
(16)

� Q~B 6A! (17)

�

The converse conditioning operators also equal each other if the certain inclu-
sion A � B holds: P~A6B! � P~A!/P~B! � Q~A6B! � E~A, B!. The inequality
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in Theorem 1 justifies calling the interval ~P~B 6A!,Q~B 6A!! a conditioning inter-
val. This interval is always a deterministic subset of the unit interval [0, 1].

So defining the measure P~A � B! as the probable equivalence E~A, B! in
(1) gives back the standard definition of conditional probability and leads to a dual
conditioning operator. The last section shows that the new superconditional oper-
ator Q~B 6A! also obeys a Bayes theorem but differs from the subconditional oper-
ator P~B 6A! in how it responds to independent events. The two dual conditioning
operators define upper and lower bounds on conditioning and thus give rise to a
conditioning interval. The next two sections show that the two conditioning oper-
ators reflect the dual structure of their underlying set collections.

3. DUAL SET COLLECTIONS: SUBPOWER
AND SUPERPOWER SETS

The standard term “power set” reflects the combinatorial fact that if a set X
has n elements then its set of all subsets has 2n elements (because of the binomial
theorem). This has given rise to the superscripted notation 2X to denote this set
collection. The same symbol scheme applies to any subset A � X. If A has k � n
elements then its power set 2A contains 2k elements.

But what about all supersets of A in X? This set collection contains 2n�k

elements because each set in it is the union of A and one of the 2n�k subsets of its
complement Ac . Thus each pair A and Ac forms a type of set-theoretic basis for the
space X. This is the idea behind the proof of the next two propositions.

Proposition 1. Set A � X has 2n�k supersets if X contains n elements and if A
contains k � n elements.

Proof. Ac contains n � k elements because A contains k elements. So the power
set of Ac contains 2n�k subsets C � Ac . Now suppose D � X is a superset of A:
A � D. Then D has the form D � A � C where C is some subset of Ac . So the
power set of Ac enumerates the supersets of A. Thus A has 2n�k supersets. �

Proposition 1 shows that the set collection of A’s supersets equally warrants
the adjective “power” in its description. But what symbol denotes this set of all
supersets? There seems to be no standard symbol or even name for this set col-
lection even though mathematical concepts from convex hulls to generated sigma-
algebras depend on a set’s collection of supersets. Lattice theory uses symbols to
denote various classes of supersets but it does not use a dedicated symbol to
denote the class of all supersets.23 Yet this set collection is the dual collection
to the “power set” of subsets. The sample-space structure of probabilistic condi-
tioning lets us sidestep the delicate issue of when such a set collection exists in
general because specifying a sample space X ensures that there is a superset
“ceiling” for all set events A. This in turn ensures the existence of a collection of
supersets for any A. So we ignore whether there is a “set of all sets” or any other
sets “above” the ceiling X.2
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We will use the term superpower set to refer to the collection of all supersets
of a given set A � X. We defy common practice but maintain conceptual consis-
tency and denote the superpower set with the superscripted symbol 2A . Then sym-
metry requires that the term subpower set refer to the collection of all subsets and
that the subscripted symbol 2A denote this set collection.

The new notation simplifies the statement of many dual relations. The stan-
dard subset relation of contraposition that A � B iff Bc � Ac now has the form
A � 2B iff Ac � 2Bc

. This underlies the set-theoretic isomorphism between
subpower set 2A and the complement superpower set 2Ac

.

Proposition 2.

2A ; 2Ac
(18)

Proof. Consider the map f :2A r 2Ac
where f ~A' ! � Ac � A' for some subset

A' � A. The result follows if f is a bijection. We first show that f is one to one.
Suppose f ~A' ! � f ~A'' ! for any two subsets A' � 2A and A'' � 2A . Then Ac �
A' � Ac � A'' by the definition of f. So A � ~Ac � A' ! � A � ~Ac � A'' ! iff
A � A' � A � A'' iff A' � A'' because A' and A'' are subsets of A. So f is
one to one. We next show that f is onto. Pick any D � 2Ac

. So Ac � D. Then
D � Ac � A' for some subset A' � 2A . So D � f ~A' ! by the definition of f.
A like argument also shows that the dual map g:2Ac

r 2A is a bijection if g~A' !�
A � A' for superset A' � 2Ac

. �

The new notation states that now the null set’s superpower set 2� is the same
as the old “power set” of X: 2� � 2X . The subpower set 2� contains only the null
set � whereas the superpower set 2X contains only the whole space X. Note also
that now the dual to �C�2A

C � � is �C�2A C � X and that the reflexive relation
A � A implies �C�2A

C � �C�2A C � A. And note that the relation 2k �
2n�k � 2n holds for n � 3. The product relation 2k2n�k � 2n reflects the fact
that the global subpower set 2X is isomorphic to the product set 2A � 2A for any
set A.

The reflexive relation A � A leads at once to a characterization of any set
A � X in terms of its subpower and superpower sets.

Proposition 3.

A � 2A � 2A (19)

Proposition 3 has a simple geometry even in the case of n � 2—if we view its
generalization to multivalued or “fuzzy” sets. Standard binary sets admit no easy
visualization in low (or high) dimensions. Let a : X r $0,1% be the indicator
function of binary set A: a~x!� 1 if x � A and a~x!� 0 if x � A. Hence the 2n

sets in the subpower set 2X define the 2n vertices of the Boolean n-cube: 2X �
$0,1%n . The Boolean n-cube is in turn a subset of the n-dimensional unit hyper-
cube: $0,1%n � @0,1# n . The latter relation shows how finite fuzzy set theory for-
mally subsumes binary set theory: A is a vague or fuzzy subset of X iff A has a
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multivalued indicator function a : Xr @0,1# .24 Then we can view fuzzy set A as a
point in the “fuzzy cube” [0,1] n :16,20,21 A � ~a1, . . . , an ! � ~a~x1!, . . . , a~xn !! �
@0,1# n . This gives geometric content to the fact that A � B iff a~x!� b~x! for all
x � X because this biconditional holds for multivalued as well binary indicator
functions. So both all fuzzy subsets of A and all fuzzy supersets of A define a
hyperrectangle in [0,1] n or I n . Proposition 3 states that these two hyperrectangles
touch at exactly the point A � @0,1# n . Figure 1 shows these two touching rectan-
gles in the fuzzy 2-square for fuzzy set A � ~ 13

_ , 3
4
_ ! in which element x1 belongs to

A only partially (but deterministically) to degree 1
3
_ and element x2 belongs to A to

the higher degree 3
4
_ . We denote the fuzzy subpower set of A as IA and denote the

fuzzy superpower set of A as I A where I � [0, 1]. Then the reflexive fact that
A � A now gives the far more general result that A � IA � I A . The inclusion
A � A still holds for any fuzzy set because a~x! � a~x! holds trivially for all x
and for all possible set functions.

A like unit-square figure shows the geometric content of Proposition 2 for
fuzzy sets: Rotating the square by 1808 swaps the subpower-set rectangle IA with
the complement superpower-set rectangle I Ac

. This leads to a natural strengthen-
ing of Proposition 2 for all fuzzy or multivalued sets.

Proposition 4.

IA ; I Ac
(20)

Figure 1. Geometric content of A � IA � I A if A is a fuzzy subset of the binary set X �
~x1, x2 !� ~1,1!. Fuzzy set A � ~ 13

_ , 3
4
_ ! has fuzzy subpower set IA and fuzzy superpower set I A .

The simpler result in Proposition 3 that A � 2A � 2A for binary sets A describes set behavior
only at the cube vertices.
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Proof.

D � IA iff d~x! � a~x! ∀x (21)

iff 1 � a~x! � 1 � d~x! ∀x (22)

iff Ac � D c (23)

iff D c � I Ac
(24)

�

Figure 2 shows this symmetry between the subpower set of A and the superpower
set of Ac as the congruence of two solid rectangles.

4. OPTIMALITY OF SUBCONDITIONALS AND
SUPERCONDITIONALS

The next two theorems are duality theorems. They show that the subcondi-
tional P~A6B! bears an optimal relationship to the subpower set 2A and that the
superconditional Q~B 6A! bears a dual optimal relationship to the superpower
set 2A . The first theorem states these optimality relations in terms of probable
equality. The second theorem states them in terms of the pseudo-metric d~A, B!�
P~A � B! � P~A � B!.

Figure 2. Complement-based symmetry of the subpower set and superpower set in Proposi-
tion 4. The fuzzy subpower set IA of A is isomorphic to the fuzzy superpower set I Ac

of Ac for
any set A.
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Theorem 2 shows how an arbitrary measurable set B stands in relation to the
subpower set 2A and the superpower set 2A of some other arbitrary measurable set
A. Part (a) says that the subconditional probability P~A6B! maximizes P~C 6B!
over the subpower set 2A because no subset C � A is more like (or is more likely
to equal) the arbitrary set B than is the intersection subset A � B. Part (b) like-
wise says that the superconditional probability Q~B 6A! maximizes Q~B 6C! over
the superpower set 2A because no superset C � A is more like (or is more likely
to equal) the arbitrary set B than is the union superset A � B.

Theorem 2.

(a) P~A6B! � E~B, A � B!� P~C 6B!� E~B,C! for all C � 2A (25)

(b) Q~B 6A! � E~B, A � B!� Q~B 6C!� E~B,C! for all C � 2A (26)

Proof. (a) Pick C � 2A and thus C � A. Then P~C! � P~A! and B � C �
A � B for any (measurable) set B. Then P~A � B! � P~B � C! leads to

E~B, A � B! � P~A6B!�
P~A � B!

P~B!
�

P~B � C!

P~B!
�

P~B � C!

P~B � C!
� E~B,C!

(27)

because B � B � C.
(b) Pick C � 2A and thus A � C. Then A � B � B � C for any

(measurable) set B. So P~A � B! � P~B � C! and this gives

E~B, A � B! � Q~B 6A!�
P~B!

P~A � B!
�

P~B!

P~B � C!
�

P~B � C!

P~B � C!
� E~B,C!

(28)

because B � C � B. �

The next theorem looks more closely at the metrical structure of the subcon-
ditional and superconditional operators relative to the respective subpower and
superpower set collections. This requires applying a distance measure to these set
collections. So define the usual pseudo-metric d on the probabilistic symmetric
difference:

d~A, B! � P~ADB! (29)

� P~A � B!� P~A � B! (30)

The two-place set operation d is a pseudo-metric rather than a metric because
the zero case d~A, B! � 0 does not imply that A � B whereas a metric would.25

But the pseudo-metric does define a proper metric on the equivalence classes on
the subsets of X if we identify sets A and B when d~A, B!� 0. The pseudo-metric
also obeys the triangle inequality:

d~A, B! � d~A,C!� d~C, B! for any set C (31)
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Figure 3 shows that equality holds in (31) for the optimality conditions in
Theorem 3.

A simple argument motivates the use of the pseudo-metric d for probabilistic
comparisons among sets in subpower and superpower sets. Suppose C � 2A�B

and thus C � A � B. Then P~C! � P~A � B! by the monotonicity of P. Then

d~B, A � B! � P~B!� P~A � B! (32)

� P~B!� P~C! (33)

� P~B � C!� P~B � C! (34)

� d~B,C! (35)

because C � A � B implies that B � B � C and C � B � C for any such C.
So B is closer to the intersection A � B in the subpower set 2A�B � 2A than to
any other subset C in the subpowerset 2A�B . A symmetric argument shows that
d~B, A � B! � d~B,C! and thus that the same B is closer to the union A � B in
the superpower set 2A�B � 2A than to any other superset C in the superpower set

Figure 3. Geometric content of Theorem 3—metrical structure of how the subconditional oper-
ator P~B 6A! relates to the fuzzy subpower set IA and how the superconditional operator Q~B 6A!
relates to the fuzzy superpower set I A . Suppose fuzzy set B is not a proper subset of fuzzy set A
and thus B � IA . Suppose fuzzy set C is a subset of A and thus C � IA . Then the defining
intersection term A � B of the subconditional operator P~A6B! is closer to B than is any other
subset C or D. A dual relation holds if B is not a proper superset of A and thus if B � I A . Then
the defining union term A � B of the superconditional operator Q~B 6A! is closer to B than is
any other superset.
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2A�B . Theorem 3 extends these dual results to the entire subpower set 2A and to
the entire superpower set 2A .

The first pseudo-metrical part of Theorem 3 below extends the result d~B, A �
B! � d~B,C! from the subcollection 2A�B to the entire subpower set 2A . Thus it
shows the subpower-set optimal status that the subconditional P~A6B! enjoys
because of the defining intersection term A � B. The second pseudo-metrical part
of Theorem 3 extends d~B, A � B! � d~B,C! from the subcollection 2A�B to the
entire superpower set 2A . Thus it shows the dual superpower-set optimal status
that the superconditional Q~B 6A! enjoys because of its dual defining union term
A � B.

We first present two propositions that reveal the Pythagorean-type structure
of the pseudo-metrical relations involving the subpower sets and superpower sets.
Proposition 5 states two dual Pythagorean-like identities that follow from the mod-
ular equality. The first relates an arbitrary set B to the subpower set 2A . The second
relates B to the superpower set 2A .

Proposition 5.

(a) d~A, B! � d~A, A � B!� d~A � B, B! (36)

(b) d~A, B! � d~A, A � B!� d~A � B, B! (37)

Proof.

d~A, B! � P~A � B!� P~A � B! (38)

� P~A!� P~B!� P~A � B!� P~A � B! (39)

� @P~A!� P~A � B!#� @P~B!� P~A � B!# (40)

� d~A, A � B!� d~A � B, B! in (a) (41)

� P~A � B!� P~A!� P~B!� P~A � B! (42)

� @P~A � B!� P~A!#� @P~A � B!� P~B!# (43)

� d~A, A � B!� d~A � B, B! in (b) (44)

�

The next proposition extends Proposition 5 to arbitrary sets in the subpower
set 2A and not just the intersection A � B on its “border.” It likewise extends
Proposition 5(b) to sets in the superpower set 2A and not just the union A � B on
its “border.” These two sets in fact lie on the borders of the respective convex and
compact fuzzy subpower set IA and fuzzy superpower set I A as Figure 3 shows.

Proposition 6.

(a) d~B, B � C! � d~B, A � B!� d~A � B, B � C! if C � 2A (45)

(b) d~B, B � C! � d~B, A � B!� d~A � B, B � C! if C � 2A (46)
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Proof. (a) Suppose C � 2A . Then C � A and so C � A � C. Then B � C �
A � B � C. So

d~A � B, B � C! � d~A � B, A � B � C! (47)

� P~A � B!� P~A � B � C! (48)

because A � B � C � A � B. This implies that

d~B, A � B!� d~A � B, B � C! � P~B!� P~A � B!� P~A � B!

� P~A � B � C! (49)

� P~B!� P~A � B � C! (50)

� d~B, A � B � C! (51)

� d~B, B � C! (52)

because B � C � A � B � C. This proves part (a).
(b) The proof is dual to the proof of part (a): Suppose C � 2A . Then A � C

and so C � A � C. Then B � C � A � B � C. So

d~A � B, B � C! � d~A � B, A � B � C! (53)

� P~A � B � C!� P~A � B! (54)

because A � B � A � B � C. This implies that

d~B, A � B!� d~A � B, B � C! � P~A � B!� P~B!� P~A � B � C!

� P~A � B! (55)

� P~A � B � C!� P~B! (56)

� d~B, A � B � C! (57)

� d~B, B � C! (58)

because B � C � A � B � C. �

Theorem 3 reflects the straight-line geometry of the two-dimensional fuzzy
cube in Figure 3. The defining intersection term A � B of the subconditional
P~A6B! is closer to B than is any other subset C � A for any arbitrary set B that is
not a subset of A. The dual defining union term A � B of the superconditional
Q~B 6A! is closer to B than is any other superset C � A. Note also that part (a) of
Theorem 3 is trivial if B is a subset of A just as part (b) is trivial if B is a superset
of A. The proof of Theorem 3 follows the same dual lines as the does the proof of
Theorem 2.

Theorem 3.

(a) d~B, A � B! � d~B,C! for any subset C � 2A (59)

(b) d~B, A � B! � d~B,C! for any superset C � 2A (60)
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Proof. (a) Suppose first that C is a subset of A: C � 2A or C � A. Then
B � C � A � B and so P~B � C! � P~A � B!. Then

d~B, A � B! � P~B!� P~A � B! (61)

� P~B!� P~B � C! (62)

because P~B � C!� P~A � B!

� P~B � C!� P~B � C! (63)

because B � B � C

� d~B,C! (62)

(b) Suppose next that C is a superset of A: C � 2A or A � C. Then
A � B � B � C and so P~A � B! � P~B � C!. Then

d~B, A � B! � P~A � B!� P~B! (63)

� P~B � C!� P~B! (64)

because P~A � B!� P~B � C!

� P~B � C!� P~B � C! (65)

because B � C � B

� d~B,C! (66)

�

A like result holds pointwise in the more general finite fuzzy-set case for any
l p metric based on summed fit values or membership degrees. The compact and
convex structure of fuzzy hypercubes and their hyperrectangles leads to the result

l p~B, IA ! � min l p~B,C!� l p~B, A � B! (67)

where the minimum is over all subsets C � A. This optimality result reflects the
l p version of the n-dimensional Pythagorean theorem that holds on finite fuzzy
cubes and that holds pointwise in more general fuzzy spaces.16,20,21 The dual fuzzy
result is

l p~B, I A ! � min l p~B,C!� l p~B, A � B! (68)

where the minimum is over all supersets C � A.
The pseudo-metric d suggests an alternative way to define probable

equivalence—simply as the distance between two sets: P~A � B! � d~A, B! �
P~A � B! � P~A � B!. This differs from (1) by the normalization term
P~A � B!. It is also the set-level analogue of the equality measure that Gaines26

proposed at the statement level for probability logics. But this nonnormalized equal-
ity measure fails to give back the standard conditional probability measure
P~B 6A! � P~A � B!/P~A! because of the modular equality:
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P~B � A � B!� 1 � P~A � B!� P~B! (69)

� 1 � P~A!� P~A � B! (70)

� 1 � P~A � A � B! (71)

� P~A � A � B! (72)

So the nonnormalized equality measure equates the subconditional with the super-
conditional. But then P~A � A � B! � P~B 6A! because the term P~A � A � B!
lacks the normalizer P~A!. The normalized equality measure (1) avoids this prob-
lem but at the “expense” of creating the inequality condition P~B 6A!� Q~B 6A! of
Theorem 1.

5. A BAYES CONDITIONING INTERVAL AND THE PROBLEM
OF INDEPENDENCE

Bayes Theorem lies at the heart of the theory of classical conditional prob-
ability. It gives a simple way to find the conditional probability P~B 6A! as a
scaled version of the converse conditional probability P~A6B!. This in turn endows
probabilistic learning with a powerful way to find the conditional probability of
a set-based hypothesis H given set-based evidence E in terms of its converse—
P~H 6E ! in terms of P~E6H !. Theorem 4 shows that the superconditional opera-
tor Q~B 6A! enjoys the same converse relation and with the same update or
“learning” factor (the ratio of the prior probability of the hypothesis to the prob-
ability of the evidence).

Theorem 4.

(a) P~H 6E ! � P~E6H ! � P~H !

P~E ! � (73)

(b) Q~H 6E ! � Q~E6H ! � P~H !

P~E ! � (74)

Proof. Part (a) follows from the identity P~B 6A! � P~A � B!/P~A! either as
the standard definition of conditional probability or as the subconditional result in
(2). The dual result in part (b) follows likewise from the superconditional ratio in
(6) because

Q~B 6A! �
P~B!

P~A � B!

P~A!

P~A!
(75)

�
P~A!

P~A � B! � P~B!

P~A! � (76)

� Q~A6B! � P~B!

P~A! � (77)

�
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The so-called theorem on total probabilities of elementary probability theory
expands the denominator term P~E ! in the Bayes ratios of Theorem 4 into P~E !�
(k P~Hk !P~E6Hk ! if a denumerable collection of pairwise-disjoint and exhaus-
tive hypotheses $Hk % partitions the sample space X—if X � �k Hk and Hk �
Hj � � if k � j. Then Theorem 4 and the whole-in-part eliminations P~B 6A! �
Q~A � B 6A! and Q~B 6A! � P~B 6A � B! imply an immediate but complex-
looking corollary.

Corollary.

Q~Hj 6E ! �
P~Hj !Q~E6Hj !

(
k

P~Hk !Q~Hk � E6Hk !
if $Hk % partitions X (78)

Two conceptual points follow at once from the dual Bayes Theorems in Theo-
rem 4. The first is that Bayes Theorem is not unique to the standard conditional
probability P~B 6A!. The same Bayes properties of this subconditional operator
apply to the superconditional operator and perhaps to other probabilistic opera-
tors. The corollary does show that they differ in how they expand the evidence
probability over a partition of alternatives.

The second point is again that probabilistic conditioning on evidence E pro-
duces a conditioning interval ~P~H 6E !, Q~H 6E !!. The standard conditional
probability P~B 6A! is merely the lower bound of this conditioning interval. The
functional form of Bayes Theorem itself does not select this lower bound as the
unique conduit of conditional information. The interval structure suggests instead
that if there is a “real” or “true” conditional probability (or probability of a con-
ditional) then this quantity lies between the endpoint extremes. Or the interval
structure could mean that there is no unique point estimate of conditioning in
general. There is only the uncertainty interval itself.

The interval structure of ~P~H 6E !, Q~H 6E !! also resembles the lower and
upper probabilities of Dempster27 and the closely related belief and plausibility
bounds of Shafer’s probabilistic theory of evidence.28 The belief of event B sums a
nonnegative mass function over all subsets A of B whereas the more generous
plausibility sums it over all A that have nonempty intersection with B. But neither
this belief nor plausibility sum resembles the formal structure of the subcondi-
tional P~B 6A! or the superconditional Q~B 6A!.

A closer match lies in the related upper and lower uncertainty bounds of Paw-
lak’s rough set theory.29 This uncertainty theory uses the subset bound B* and the
superset bound B* in B* � B � B* . The subset bound B* is the union of all
subsets A � B in the set algebra. The superset bound B* is the intersection of all
supersets B � A in the algebra. Two sets B and C are equivalent if B* � C* and
B* � C * . Then rough sets are the equivalence classes of sets that arise from this
equivalence relation. But this relation still assumes that the set equivalence is cer-
tain. And the inclusion B* � B � B* relates sets whereas P~B 6A! and Q~B 6A!
involve only ratios of probabilities of sets.

The conditioning interval further suggests that the conditioning gap or
difference Q~H 6E ! � P~H 6E ! gives a rough measure of confidence in the
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conditioning process. Confidence in the conditioning accuracy should fall as this
gap grows. The inequality P~B 6A! � Q~B 6A! of Theorem 1 gives a normalized
confidence measure c:

c~H 6E ! �
P~H 6E !

Q~H 6E !
(79)

Conditioning confidence should grow directly with c~H 6E !. The ratio gives
maximal confidence in the rare equality case when P~H 6E !� Q~H 6E !. The ratio
also gives veto power to the standard conditional probability P~H 6E !when it equals
zero. This holds approximately when the prior hypothesis P~H ! is nearly zero or
when the evidence E is nearly the set complement of the hypothesis H.

There is no dual result for the concept of statistical independence. Sets A and
B are independent iff the joint probability factors into a product of marginals—
P~A � B! � P~A!P~B!. This occurs iff a more intuitive conditioning property
holds: P~B 6A! � P~B!. A related conditional characterization of statistical inde-
pendence is that A and B are independent iff P~B 6A! � P~B 6Ac !. Note that
c~B 6A!� P~A � B! if the events A and B are independent. This reflects how the
superconditional Q~B 6A! responds to factoring the joint probability into a product
of marginals.

The superconditional Q~B 6A! has its own independence-like conditioning rela-
tion: Q~B 6A! � P~B! iff P~A � B! � 1. This result is sure to occur if A is the
complement of event B: Q~B 6Bc ! � P~B!.

But the independence outcome Q~B 6Bc !� P~B! presents a conceptual prob-
lem. How can B occur with nonzero probability when its complement Bc occurs?
How can this happen when P~B 6Bc ! � 0 under the same conditions? Indepen-
dence compounds the problem because Q~B 6Bc ! � P~B! has the form of an
independence relation when the set B functionally depends on Bc through their
indicator functions. One response to this problem is simply that Q is not a proba-
bility measure. So this counterintuitive behavior may just be a nonmeasure artifact.

A more subtle response is that superconditionals may require a new intu-
ition about superset behavior. That intuition rests on the simple identity P~B! �
P~Bc ! � 1: Why can B not occur with some probability if Bc occurs only with
some probability? This differs from the certain occurrence of the two sets and
the resulting noncontradiction impossibility B � Bc � � or excluded-middle
necessity B � Bc � X.

The two certain outcomes Q~B 6Bc ! � 0 and Q~B 6Bc ! � 1 arguably make
sense as limiting cases of the probability magnitude P~B! because they occur respec-
tively when P~B! � 0 and when P~B! � 1. The certain outcome Q~B 6Bc ! � 0
occurs iff B is a measure-zero event and thus B is sure not to occur. So its comple-
ment Bc is a sure event and is sure to occur. We do not expect to observe an event
if we expect to observe its opposite. This intuition varies directly with the occur-
rence probability P~B! of event B. The other extreme outcome Q~B 6Bc ! � 1
corresponds to the symmetric intuition: We do expect to observe an event if we do
not expect to observe its opposite.

This argument for the superconditional result Q~B 6Bc ! � P~B! finds the
subconditional outcome P~B 6Bc ! � 0 problematic. Should the conditional
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probability P~B 6Bc ! be completely insensitive to the magnitude of the occurrence
probability P~B!? That insensitivity appears to be more an artifact of using inter-
section in the definition of P~B 6A! � P~A � B!/P~A! than the result of prior
intuitions about probabilistic conditioning. Note further that P~B 6Bc ! � 0 does
not hold in general for vague events because P~A � Ac ! � 0 holds in the general
case of the probability of a measurable fuzzy event A where P~A! � E @a# for
measurable set function a.30

A third response may be the most practical. The outcome Q~B 6Bc ! � P~B!
occurs iff c~B 6Bc ! � 0. So the veto power of the subconditional P~B 6A! in the
confidence measure (79) renders the issue moot. The same null confidence holds
in the more general case when A and B are disjoint.
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