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Abstract
We extend the classical forbidden-interval theorems for a stochastic-resonance
noise benefit in a nonlinear system to a quantum-optical communication model
and a continuous-variable quantum key distribution model. Each quantum
forbidden-interval theorem gives a necessary and sufficient condition that
determines whether stochastic resonance occurs in quantum communication of
classical messages. The quantum theorems apply to any quantum noise source
that has finite variance or that comes from the family of infinite-variance alpha-
stable probability densities. Simulations show the predicted noise benefits for
the basic quantum communication model and the continuous-variable quantum
key distribution model.

PACS numbers: 03.67.−a, 03.67.Hk, 42.50.Dv, 05.45.Vx, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

Stochastic resonance (SR) occurs in a nonlinear system when noise benefits the system
[1–6]. SR can occur in both classical and quantum systems [4, 7] that use noise to help detect
faint signals. The footprint of SR is a nonmonotonic curve that results when the system perfor-
mance measure depends on the intensity of the noise source. Figure 1 shows such an SR surface
for a quantum-optical communication system with both additive channel noise and squeezing
noise. Mutual information measures the noise benefits of SR in bits [8–15].

The classical SR forbidden-interval theorems give necessary and sufficient conditions
for an SR noise benefit when the system nonlinearity is a threshold [10, 11, 16] or is a
soft threshold in a suitable stochastic differential equation [17]. The noise benefit turns on
whether the noise mean or location a lies in an interval that depends on the threshold θ and the
bipolar subthreshold signals A and −A: SR occurs if and only if a /∈ (θ − A, θ + A) where
−A < A < θ . This result holds for all finite-variance noise and all infinite-variance stable
noise. But it guarantees only that some SR noise benefit occurs in the system for the given
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Figure 1. Stochastic resonance in quantum-optical communication with Gaussian noise. The
sender Alice encodes coherent states with amplitude A = 1.1. The receiver Bob decodes with
threshold θ = 1.6. The graph shows the smoothed mutual information as a function of the standard
deviation σ of the quantum Gaussian noise and the squeezing strength r for 100 simulation runs.
Each run generated 10 000 input–output signal pairs to estimate the mutual information. The
SR effect occurs because the channel noise mean μ = 0 and lies outside the forbidden interval
(0.5, 2.7).

choice of parameters. SR stochastic learning algorithms [15, 16, 18, 19] can then search for
the optimal noise level.

This paper generalizes the classical forbidden-interval theorems to quantum-optical
communication with squeezed light [20, 21]. The quantum forbidden-interval theorems
give necessary and sufficient conditions for a noise benefit and include the strength of light
squeezing as a parameter. The quantum-optical system in figure 1 produces SR because the
noise mean is zero and so does not lie in the system’s forbidden interval (0.5, 2.7). We also
show that modified versions of the quantum forbidden-interval theorems hold in continuous-
variable quantum key distribution with thresholding [22, 23]. These quantum SR systems still
transmit classical binary information rather than quantum superposition or entanglement.

We structure this paper as follows. Section 1.1 presents the model of quantum
communication with continuous variables. Section 1.2 briefly discusses how alpha-stable
noise might occur in a quantum communication system. We prove two quantum forbidden-
interval theorems in section 1.3 that apply to the model for quantum communication in
section 1.1. The first theorem applies to the case of finite-variance noise and the second
theorem applies to the case of infinite-variance alpha-stable noise. We introduce the model
from [22, 23] for continuous-variable quantum key distribution (CVQKD) and include two
strategies that an attacker may employ. We prove two quantum forbidden-interval theorems
for the CVQKD model and conclude in section 3.

1. SR in continuous-variable quantum communication

1.1. Model for quantum-optical thresholding system

We first develop the basic quantum-optical communication protocol. We present the sender
Alice’s encoding operations, the effect of the noisy quantum channel on Alice’s transmission,
and the receiver Bob’s detection scheme.
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We describe our model in the Heisenberg picture. The protocol begins with Alice
possessing a vacuum mode. Let x̂ denote the position-quadrature operator of Alice’s vacuum
mode where x̂ = (â+ â†)/

√
2 and â is the annihilation operator for her vacuum mode [21]. We

consider only the position-quadrature operator’s evolution. Her vacuum state collapses to a
zero-mean 1/2-variance Gaussian random variable X if she measures it with an ideal position-
quadrature homodyne detector. Suppose that Alice does not measure it. Suppose instead
that she sends her mode through a position-quadrature squeezer. Suppose further that she
can control the strength of squeezing with a squeezing parameter r. The position-quadrature
squeezer is the unitary operator Ŝ(r) ≡ exp{r(â2 − (â†)2)} [21]. Her operator x̂ evolves under
the squeezer as Ŝ†(r)x̂Ŝ(r) = x̂e−r . She encodes a message bit S ∈ {0, 1} by displacing
her state by α ∈ C if S = 1 or by −α if S = 0. The displacement is the unitary operator
D̂(α) ≡ exp{αâ† − α∗â} [21]. Let αS be the conditional displacement αS = (−1)S+1α. The
Heisenberg-picture observable evolves under the displacement D̂(αS) as

D̂†(αS)x̂D̂(αS) = x̂e−r + (−1)S+1αx, (1)

where αx = Re{α} and the annihilation and creation operators in D̂(αS) equal respectively
â cosh r − â† sinh r and â† cosh r − â sinh r . The above equality gives the Heisenberg-picture
observable that corresponds to Alice’s mode before she sends it over the noisy channel. The
message bit S appears as a displacement in (1).

Alice sends her mode to Bob over an additive noisy bosonic channel [24] that adds
a random displacement ν ∈ C to its input state. The channel randomly displaces any
annihilation operator â as D̂†(ν)âD̂(ν) = â + ν. This is the quantum-channel analog to
a classical continuous additive noisy channel [25]. The term x̂e−r + (−1)S+1αx + νx is
the Heisenberg-picture position-quadrature observable that corresponds to the state that Bob
receives after Alice sends her mode over the noisy channel. Random variable νx = Re{ν} and
corresponds to the position-quadrature noise.

Bob detects the information that Alice encodes by performing position-quadrature
homodyne detection with inefficient photodetectors. We model this non-ideal homodyne
detection as lossy transmission through a material with linear absorption (a beamsplitter with
transmittivity η) [26]. Then the Heisenberg-picture observable after the lossy beamsplitter is

√
η((−1)S+1αx + x̂e−r + νx) +

√
1 − ηx̂H , (2)

where x̂H is the position quadrature operator of an input vacuum mode. Bob measures the
position quadrature observable and the state collapses to the random variable

√
η((−1)S+1αx + Xe−r + νx) +

√
1 − ηXH . (3)

XH is a zero-mean 1/2-variance Gaussian random variable that corresponds to the vacuum
observable x̂H . Random variables Xe−r , νx , and XH are independent because random variable
Xe−r comes from the vacuum fluctuations of Alice’s original mode, because νx is Bob’s
(continuous) loss of knowledge due to the state’s propagation through a noisy quantum channel,
and because XH comes from the vacuum contributions of non-ideal position-quadrature
homodyne detection. Let random variable N sum all noise terms:

N ≡ √
η(Xe−r + νx) +

√
1 − ηXH . (4)

The density pN(n) of random variable N is

pN(n) = (p√
ηXe−r ∗ p√

ηνx
∗ p√

1−ηXH
)(n), (5)

where p√
ηXe−r (n) is the density of a zero-mean ηe−2r/2-variance Gaussian random variable,

p√
ηνx

(n) is the density of
√

ηνx , p√
1−ηXH

(n) is the density of a zero-mean (1−η)/2-variance
Gaussian random variable, and ∗ denotes convolution. The density pN(n) is a convolution

3



J. Phys. A: Math. Theor. 42 (2009) 465309 M M Wilde and B Kosko

because random variables Xe−r , νx and XH are independent. So Bob’s received signal using (3)
and (4) is

√
η(−1)S+1αx + N . Bob thresholds the result of the non-ideal homodyne detection

with a threshold θ to retrieve a random bit Y where

Y ≡ u(
√

η(−1)S+1αx + N − θ) (6)

and u is the step function defined as u(x) = 1 if x � 0 and u(x) = 0 if x < 0. Bob’s detected
bit Y should be the message bit S that Alice first sent.

We can also describe the above model in the Schrödinger picture. Alice sends either
D̂(α)Ŝ(r)|0〉 or D̂(−α)Ŝ(r)|0〉. The noisy channel is the following completely positive trace-
preserving map:

ρ →
∫

p(ν)D̂(ν)ρD̂†(ν) dν,

where p(ν) is the density of the noise. The positive measurement operators for ideal homodyne
detection for Bob are as follows:

�x<θ =
∫

x<θ

|x〉〈x| dx,

�x�θ =
∫

x�θ

|x〉〈x| dx.

The results that one gets are the same as in the Heisenberg picture. But we use the Heisenberg
picture because the analysis is more straightforward.

1.2. Quantum alpha-stable noise

The noise random variable νx need not have a finite second moment or finite higher-order
moments. Some researchers argue that quantum-optical noise arises from a large number of
independent random effects and thus that it is Gaussian because of the central limit theorem
[27, 28]. But these random effects need not converge to a Gaussian random variable even
though they converge to a random variable with a bell-curve density. The generalized
central limit theorem states that all and only normalized stable random variables converge
in distribution to a stable random variable [29]. So an impulsive quantum noise source may
have a limiting alpha-stable density through aggregation or directly through transformation as
when the Cauchy density arises from the tangent of uniform noise.

Alpha-stable noise models diverse physical phenomena such as impulsive interrupts
in phone lines, underwater acoustics, low-frequency atmospheric signals, and gravitational
fluctuations [30]. The parameter α (different from ‘coherent state’ α) lies in (0, 2] and
parametrizes the thickness of the curve’s tails. The curve’s tail thickness increases as α

decreases: α = 1 corresponds to the thick-tailed Cauchy random variable and α = 2
corresponds to the familiar thin-tailed Gaussian random variable. The characteristic function
ϕ(ω) of a general alpha-stable random variable is

ϕ(ω) = exp{iaω − γ |ω|α(1 + iβsign(ω) tan(απ/2))},
for α 	= 1 and

ϕ(ω) = exp{iaω − γ |ω|(1 − 2iβsign(ω) ln(|ω|)/π)},
for α = 1 where sign(ω) = u(ω) − u(−ω), i = √−1, 0 < α � 2, −1 � β � 1, and γ > 0.
Parameter β is a skewness parameter such that β = 0 gives a symmetric density. Parameter γ

controls the dispersion of the alpha-stable density around its location parameter a.
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1.3. Quantum forbidden-interval theorems

Theorems 1 and 2 below show that any finite-variance quantum noise (not necessarily
Gaussian) or any infinite-variance alpha-stable noise produces the SR effect. Theorem 1
states that the SR effect occurs for finite-variance noise if and only if the noise mean μνx

falls
outside the forbidden interval (θ − αx, θ + αx). The noise location a replaces the noise mean
in the forbidden-interval condition for infinite-variance noise in theorem 2. So adding noise
in the form of squeezing noise, channel noise, and detector inefficiency noise can enhance
performance. Figure 1 shows a simulation instance of the if-part of theorem 1.

The theorem states that the mutual information I (S, Y ) between sender and receiver tends
to zero as all noise parameters decrease to zero. The mutual information I (S, Y ) is as follows
[25]:

I (S, Y ) ≡
∑
s,y

pS,Y (s, y) log

(
pS,Y (s, y)

pS(s)pY (y)

)
.

The theorem assumes that the input and output signals are statistically dependent so that
I (S, Y ) > 0 [25]. So the SR effect occurs because the mutual information I (S, Y ) must
increase away from zero as we add noise to the system: what goes down must go up.

Theorem 1. Suppose the position quadrature νx of the noise has finite variance σ 2
νx

and
mean μνx

. Suppose the input signal’s position quadrature is subthreshold: αx < θ . Suppose
there is statistical dependence between input signal S and output signal Y so that the mutual
information obeys I (S, Y ) > 0. Then the quantum-optical system exhibits the nonmonotone
SR effect if and only if the position quadrature of the noise mean does not lie in the forbidden
interval: μνx

/∈ (θ −αx, θ + αx). The nonmonotone SR effect is that I (S, Y ) → 0 as σ 2
νx

→ 0,
as r → ∞, and as η → 1.

Proof. The proof for sufficiency and necessity is similar to the respective proofs in [10, 11]
if pN(n) is the noise density. Slight modifications of the proofs account for the homodyne
efficiency η. See Appendix A.1. �

Theorem 2. Suppose the position quadrature νx of the noise has dispersion γ and location
a. Suppose the input signal’s position quadrature is subthreshold: αx < θ . Suppose there
is statistical dependence between input signal S and output signal Y so that the mutual
information obeys I (S, Y ) > 0. Then the quantum-optical system exhibits the nonmonotone
SR effect if and only if the position quadrature of the noise location does not lie in the forbidden
interval: a /∈ (θ − αx, θ + αx). The nonmonotone SR effect is that I (S, Y ) → 0 as γ → 0, as
r → ∞, and as η → 1.

Proof. The infinite-variance proof is similar to the respective α-stable proofs in [10,
11] if we use pN(n) as the noise density and if νx is an alpha-stable random variable.
Slight modifications of the proofs again account for the homodyne efficiency η. See
Appendix A.2. �

2. SR in continuous-variable quantum key distribution

Bennett and Brassard developed quantum key distribution as a way for two parties to establish
a secret key [31]. Quantum key distribution has been the focus of much effort in quantum
information processing for over 20 years. The recent review article by Scarani et al gives a
broad overview of the current status of the field [32].

5



J. Phys. A: Math. Theor. 42 (2009) 465309 M M Wilde and B Kosko

The original Bennett–Brassard proposal encoded information into discrete quantum
variables. The authors have since extended this proposal to continuous quantum variables
[32]. In particular, some authors have also shown that it is possible to create a ‘mixed-signal’
quantum key distribution protocol by thresholding a continuous quantum variable with a
homodyne measurement to give a discrete-variable secret key [22, 23].

We show in this section that the SR effect occurs in the continuous-variable quantum key
distribution (CVQKD) scenario from [22, 23]. We modify the form of the above forbidden-
interval theorem to include the subtleties of the CVQKD model.

2.1. Model for CVQKD

We first present the model for CVQKD from [22, 23] without including the attacker Eve.
Alice wants to send a secret bit S to Bob. Alice randomly sends one of four coherent states
to Bob: {|α〉, |iα〉, | − α〉, | − iα〉} where α ∈ R

+. Random bit S = 0 if she sends | − α〉
or | − iα〉 and S = 1 if she sends |α〉 or |iα〉. Bob randomly measures the state’s position
quadrature or momentum quadrature. Alice and Bob communicate classically after quantum
communication ends. They divide the measurement results into ‘correct-basis’ and ‘incorrect-
basis’. The data are correct-basis if Bob measures the position quadrature when Alice sends
{|α〉, | − α〉} or if Bob measures the momentum quadrature when Alice sends {|iα〉, | − iα〉}.
The data are incorrect-basis if it is not correct-basis. Alice and Bob keep only correct-basis
data. Let x ∈ R be the result of Bob’s measurement. Bob sets a threshold θ and assigns a bit
value Y where Y = 1 if x � θ , Y = 0 if x � −θ , and Y = ε otherwise. Symbol ε represents
an inconclusive result.

Our analysis below corresponds only to correct-basis data because these data are crucial
for determining the resulting performance of the protocol. We present the analysis only for the
position-quadrature basis case. The same analysis holds for the momentum-quadrature case.

We now present a Heisenberg-picture analysis of the above model and include strategies
that the attacker Eve can employ. The first few steps begin in the same way as the basic
protocol above with Eve controlling the noisy channel. Then x̂e−r + (−1)S+1αx + νx is the
position-quadrature observable for the state that Eve possesses. She performs an amplifier-
beamsplitter attack [33] by first passing the state through a phase-insensitive linear amplifier
with gain G � 1 [34]. She then leaks a fraction 1 − ηE of the state through a beamsplitter
so that Bob receives the fraction ηE . The Heisenberg-picture observable that corresponds to
Bob’s state is √

ηEGx̂s +
√

ηE(G − 1)x̂E1 +
√

1 − ηEx̂E2 (7)

where x̂s = x̂e−r + (−1)S+1α + νx . Modes x̂E1 and x̂E2 are vacuum modes resulting from
the amplifier and beamsplitter and correspond to zero-mean 1/2-variance Gaussian random
variables upon measurement. Bob then measures the above operator by non-ideal position-
quadrature homodyne detection. It collapses to the random variable N +

√
ηEηBG(−1)S+1α

where N sums all noise terms,

N ≡
√

ηEηBG(Xe−r + νx) +
√

ηEηB(G − 1)XE1 +
√

ηB(1 − ηE)XE2 +
√

1 − ηBXH ,

ηB is the efficiency of Bob’s homodyne detection, and XH is a zero-mean 1/2-variance Gaussian
random variable that arises from homodyne detection noise. The density pN(n) of random
variable N is

pN(n) = (pN (0,σ 2) ∗ p√
ηEηBGνx

)(n), (8)

where pN (0,σ 2) is the density of a zero-mean Gaussian random variable with variance

(ηB(ηEGe−2r + ηE(G − 1) + (1 − ηE)) + 1 − ηB)/2
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Figure 2. SR in continuous-variable quantum key distribution. Alice encodes coherent states with
amplitude A = 1.1 and Bob decodes with threshold θ = 1.6. The graph shows the smoothed
mutual information as a function of the dispersion γ of infinite-variance quantum Cauchy noise
and squeezing strength r for 100 simulation runs. We do not include amplifier, beamsplitter, or
photodetector inefficiency noise. Each run generated 10 000 input–output signal pairs to estimate
the mutual information. The SR effect occurs because the channel noise location a = 0 and so a
lies outside the forbidden interval (−2.7,−0.5) ∪ (0.5, 2.7).

and p√
ηEηBGνx

is the density of
√

ηEηBGνx . Bob decodes with a threshold θ and gets a random
bit Y where

Y =
⎧⎨
⎩

1 : N +
√

ηEηBG(−1)S+1α � θ

0 : N +
√

ηEηBG(−1)S+1α � −θ

ε : else
. (9)

2.2. Quantum forbidden-interval theorems for SR in CVQKD

Protagonists Alice and Bob and antagonist Eve all play a role in the SR effect in CVQKD
with thresholding. Alice adds Heisenberg noise in the form of squeezing. Eve adds channel,
amplifier, and leakage noise in her attack. Bob adds photodetector inefficiency noise. The
modified quantum forbidden-interval theorems characterize this interplay and give a necessary
and sufficient condition for the SR effect for both finite-variance noise and infinite-variance
alpha-stable noise. Figure 2 shows a simulation instance of the if-part of theorem 4.

Theorem 3. Suppose the channel noise position quadrature has finite variance σ 2
νx

and mean
μνx

. Suppose the input signal’s amplitude α is subthreshold: α < θ and −α > −θ . Suppose
there is some statistical dependence between input signal S and output signal Y so that the
mutual information obeys I (S, Y ) > 0. Then the quantum key distribution system exhibits the
nonmonotone SR effect if and only if the position quadrature of the noise mean does not lie in
the forbidden interval: μνx

/∈ (−θ − α,−θ + α) ∪ (θ − α, θ + α). The nonmonotone SR effect
is that I (S, Y ) → 0 as σ 2

νx
→ 0, as r → ∞, as G → 1, as ηE → 1, and as ηB → 1.

Proof. The proof method follows the proof of theorem 1 using pN(n) in (8). The proof
requires three cases rather than two because the CVQKD model differs from the basic model.
See Appendix B.1. �
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Theorem 4. Suppose the channel noise position quadrature has finite variance dispersion γ

and location a. Suppose the input signal’s amplitude α is subthreshold: α < θ and −α > −θ .
Suppose there is some statistical dependence between input signal S and output signal Y so
that the mutual information obeys I (S, Y ) > 0. Then the quantum key distribution system
exhibits the nonmonotone SR effect if and only if the position quadrature of the noise location
does not lie in the forbidden interval: a /∈ (−θ −α,−θ +α)∪(θ −α, θ +α). The nonmonotone
SR effect is that I (S, Y ) → 0 as γ → 0, as r → ∞, as G → 1, as ηE → 1, and as ηB → 1.

Proof. The proof method follows the proof of theorem 1 using pN(n) in (8). The proof
requires three cases rather than two because the CVQKD model differs from the basic model.
See Appendix B.2. �

3. Conclusion

Our quantum forbidden-interval theorems guarantee only that the nonmonotone SR effect
occurs. They do not give the optimal combination of channel noise, squeezing, and photode-
tector noise. Nor do they guarantee a large increase in mutual information. The theorems
also may not appear realistic because their proof requires infinite squeezing in the limit. But
the theorems guarantee that the SR effect occurs for some finite squeezing. The simulations
in both figures display the full nonmonotone SR signature for plausible squeezing values and
for realistic channel noise levels.

The theorems may not appear ‘quantum’ because their proofs resemble those of the
classical theorems. But they are ‘quantum’ because they use the non-classical effect of
quantum squeezing and noise from a quantum source. The HSW coding theorem [35] likewise
does not lose its ‘quantum’ status because its proof uses Shannon-theoretic techniques.

The SR result for CVQKD may also not appear practical. But what appears impractical
today may be practical in the future when technology can better approximate the conditions
of the theorem. The result shows that the CVQKD enjoys the SR effect because its nonlinear
threshold structure resembles that of the model in theorem 1.

One may think that Alice and Bob should operate their CVQKD system with parameters
that maximize their mutual information even for an optimal attack of the eavesdropper. But
that may not be the best way for Alice and Bob to maximize their mutual information when
the quantum channel is noisy because then noise can increase the QKD security [36].

Forbidden interval theorems may hold for more complex quantum systems. The quantum
systems in this paper use noisy quantum processing to produce a mutual-information benefit
between two classical variables. Other systems might use noise to enhance the coherence of
a quantum state. The performance measure would be the coherent information [35]. The
coherent information also relates to the capacity for sending private classical information [37].
This suggests further connections between SR and QKD and the potential for new learning
algorithms that can locate noise optima.
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Appendix A

Appendix A.1. Proof of theorem 1 (finite variance)

The proofs for sufficiency and necessity follow the respective proof methods in [10, 11] if we
use (5) as the noise density.

Calculate first the four conditional probabilities pY |S(0|0), pY |S(0|1), pY |S(1|0), pY |S(1|1)

pY |S(0|0) = Pr{u(
√

η(−1)S+1αx + N − θ) = 0 | S = 0}
= Pr{√η(−1)S+1αx + N − θ < 0 | S = 0}
= Pr{−√

ηαx + N < θ} = Pr{N < θ +
√

ηαx}

=
∫ θ+

√
ηαx

−∞
pN(n) dn. (A.1)

The other conditional probabilities follow from similar calculations:

pY |S(0|1) =
∫ θ−√

ηαx

−∞
pN(n) dn, (A.2)

pY |S(1|0) =
∫ ∞

θ+
√

ηαx

pN(n) dn, (A.3)

pY |S(1|1) =
∫ ∞

θ−√
ηαx

pN(n) dn. (A.4)

Proof (Sufficiency). Assume that 0 < pS(s) < 1 to avoid triviality when pS(s) = 0 or 1.
I (S, Y ) = 0 if and only if S and Y are statistically independent [25]. We show that S and Y
are asymptotically independent: I (S, Y ) → 0 as σ 2

νx
→ 0, as r → ∞, and as η → 1. The

following definition holds for the proofs that follows:

σ 2 ≡ η(e−2r/2 + σ 2
νx

) + (1 − η)/2 (A.5)

We need to show that pY |S(y|s) = pY (y) as σ 2
νx

→ 0, as r → ∞, and as η → 1 for
s, y ∈ {0, 1}. Consider an algebraic manipulation using the law of total probability:

pY (y) =
∑

s

pY |S(y|s) pS(s) (A.6)

= pY |S(y|0) pS(0) + pY |S(y|1) pS(1)

= pY |S(y|0) pS(0) + pY |S(y|1) (1 − pS(0))

= (pY |S(y|0) − pY |S(y|1))pS(0) + pY |S(y|1).

We can show by a similar method that

pY (y) = (pY |S(y|1) − pY |S(y|0))pS(1) + pY |S(y|0).

So pY (y) → pY |S(y|1) and pY (y) → pY |S(y|0) as pY |S(y|1) − pY |S(y|0) → 0. Consider the
case where y = 0

pY |S(0|0) − pY |S(0|1) =
∫ θ+

√
ηαx

θ−√
ηαx

pN(n) dn.

Consider the case where y = 1:

pY |S(1|0) − pY |S(1|1) = −
∫ θ+

√
ηαx

θ−√
ηαx

pN(n) dn.

9
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So the result follows if∫ θ+
√

ηαx

θ−√
ηαx

pN(n) dn → 0 (A.7)

as σ 2
νx

→ 0, as r → ∞, and as η → 1. Now

μνx
/∈ (θ − αx, θ + αx)

by hypothesis. We ignore the zero-measure cases where μνx
= θ − αx or μνx

= θ + αx .

Case 1. Suppose first that μνx
< θ − αx . So μνx

+ αx < θ and thus
√

η(μνx
+ αx) � μνx

+ αx < θ

for any η ∈ (0, 1]. Pick

ε = 1

2
(θ − √

ηαx − √
ημνx

) > 0.

So θ − √
ηαx − ε = √

ημx + ε. Then∫ θ+
√

ηαx

θ−√
ηαx

pN(n) dn �
∫ ∞

θ−√
ηαx

pN(n) dn

�
∫ ∞

θ−√
ηαx−ε

pN(n) dn

�
∫ ∞

√
ημνx +ε

pN(n) dn

= Pr{N � √
ημνx

+ ε}
= Pr{N � μ + ε}
= Pr{N − μ � ε}
� Pr{|N − μ| � ε}
� σ 2

ε2

by the Chebyshev inequality.
So the result follows when μνx

< θ −αx because pY |S(0|0)−pY |S(0|1) → 0 as σ 2
νx

→ 0,
as r → ∞, and as η → 1.

Case 2. Suppose next that μνx
> θ + αx so that μνx

− αx > θ > 0. Choose
√

η large enough
so that

√
η > θ/(μνx

− αx).

So
√

η(μνx
− αx) > θ . Pick

ε = 1

2
(
√

ημνx
− θ − √

ηαx) > 0.

So θ +
√

ηαx + ε = √
ημνx

− ε. Then∫ θ+
√

ηαx

θ−√
ηαx

pN(n) dn �
∫ θ+

√
ηαx

−∞
pN(n) dn

�
∫ θ+

√
ηαx+ε

−∞
pN(n) dn

�
∫ √

ημνx −ε

−∞
pN(n) dn

10
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= Pr{N � √
ημνx

− ε}
= Pr{N � μ − ε}
= Pr{N − μ � −ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So pY |S(0|0) − pY |S(0|1) → 0 as σ 2
νx

→ 0, as r → ∞, and as η → 1 when μνx
> θ + αx .

Thus

μνx
/∈ (θ − αx, θ + αx)

is a sufficient condition for the nonmonotone SR effect to occur. �

Proof (Necessity). The system does not exhibit the nonmonotone SR effect if μνx
∈

(θ − αx, θ + αx) in the sense that I(S,Y) is maximum as σ 2
νx

→ 0, as r → ∞, and as
η → 1. I (S, Y ) → H(Y) = H(S) as σ 2

νx
→ 0, as r → ∞, and as η → 1. Assume that

0 < pS(s) < 1 to avoid triviality when pS(s) = 0 or 1. We show that H(Y) → H(S) and
H(Y |S) → 0 as σ 2

νx
→ 0, as r → ∞, and as η → 1. It is maximum in this limit because

I (S, Y ) = H(Y) − H(Y |S) and I (S, Y ) � H(S) by the data processing inequality for a
Markov chain [25]. Consider the conditional entropy H(Y |S):

H(Y |S) = −
∑
s,y

pY,S(y, s) log2 pY |S(y|s)

= −
∑

s

pS(s)
∑

y

pY |S(y|s) log2 pY |S(y|s). (A.8)

Suppose for now that pY |S(y|s) → 1 or 0 for all s, y ∈ {0, 1} as σ 2
νx

→ 0, as r → ∞, and as
η → 1. Then H(Y |S) → 0 by inspecting (A.8) and applying 1 log2 1 = 0 and 0 log2 0 = 0
by L’Hôspital’s rule. So we will prove that each of the conditional probabilities vanishes or
approaches 1 in the above limit if μνx

∈ (θ − αx, θ + αx). Consider first pY |S(0|0). Pick any
μνx

∈ (θ − αx, θ + αx). Then θ + αx − μνx
> 0 and θ > μνx

− αx . Then θ >
√

η(μνx
− αx)

for any η ∈ (0, 1]. Pick ε = 1
2 (θ +

√
ηαx − √

ημνx
) > 0 so that θ +

√
ηαx − ε = √

ημνx
+ ε:

pY |S(0|0) =
∫ θ+

√
ηαx

−∞
pN(n) dn

�
∫ θ+

√
ηαx−ε

−∞
pN(n) dn

=
∫ √

ημνx +ε

−∞
pN(n) dn

= 1 −
∫ ∞

√
ημνx +ε

pN(n) dn

= 1 − Pr{N � √
ημνx

+ ε}
= 1 − Pr{N � μ + ε}
= 1 − Pr{N − μ � ε}
� 1 − Pr{|N − μ| � ε}
� 1 − σ 2

ε2

→ 1

11
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as σ 2
νx

→ 0, as r → ∞, and as η → 1. We prove the result similarly for pY |S(1|1). Pick any
μνx

∈ (θ − αx, θ + αx). Then μνx
> θ − αx and μνx

+ αx > θ > 0. Suppose that η is large
enough so that

√
η > θ/(μνx

+ αx). Then
√

η(μνx
+ αx) > θ and

√
ημνx

+
√

ηαx − θ > 0.
Pick ε = 1

2 (
√

ημνx
+

√
ηαx − θ) > 0 so that θ − √

ηαx + ε = √
ημνx

− ε.

pY |S(1|1) =
∫ ∞

θ−√
ηαx

pN(n) dn

�
∫ ∞

θ−√
ηαx+ε

pN(n) dn

=
∫ ∞

√
ημνx −ε

pN(n) dn

= 1 −
∫ √

ημνx −ε

−∞
pN(n) dn

= 1 − Pr{N � √
ημνx

− ε}
= 1 − Pr{N � μ − ε}
= 1 − Pr{N − μ � −ε}
� 1 − Pr{|N − μ| � ε}
� 1 − σ 2

ε2

→ 1

as σ 2
νx

→ 0, as r → ∞, and as η → 1. So pY |S(0|0) → 1, pY |S(1|1) → 1, pY |S(1|0) → 0,

and pY |S(0|1) → 0 as σ 2
νx

→ 0, as r → ∞, and as η → 1. The system does not display the
nonmonotone SR effect. �

Appendix A.2. Proof of theorem 2 (infinite variance)

The proofs for sufficiency and necessity follow the respective stable proof methods in [10, 11]
if we use (5) as the noise density and if νx is an alpha-stable random variable.

The characteristic function ϕνx
(ω) of an alpha-stable noise source with density pνx

(n) is
as follows:

ϕνx
(ω) = exp

{
iaω − γ |ω|α

(
1 + iβsign(ω) tan

(απ

2

))}
, (A.9)

where α is the characteristic exponent and β is a skewness parameter. So the characteristic
function of pN(n) is as follows:

ϕN(ω) = (ϕ√
ηXe−r · ϕ√

ηνx
· ϕ√

1−ηXH
)(ω)

= exp

{
−ηe−2rω2

4

}
ϕνx

(
√

ηω) exp

{
− (1 − η)ω2

4

}

= ϕνx
(
√

ηω) exp

{
− (ηe−2r + 1 − η)ω2

4

}
(A.10)

from (5) and the convolution theorem because the random variables are independent.

Proof (Sufficiency). Take the limit of the characteristic function ϕN(ω) as the dispersion
γ → 0, as squeezing parameter r → ∞, and as homodyne efficiency η → 1 to obtain the
following characteristic function:

lim
r→∞,γ→0,η→1

ϕN(ω) = exp{iaω}. (A.11)

12
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The probability density pN(n) then approaches a translated delta function

lim
r→∞,γ→0,η→1

pN(n) = δ(n − a). (A.12)

The conditional probability difference obeys

pY |S(0|0) − pY |S(0|1) =
∫ θ+

√
ηαx

θ−√
ηαx

pN(n) dn (A.13)

�
∫ θ+αx

θ−αx

pN(n) dn. (A.14)

Pick a /∈ (θ − αx, θ + αx). Consider the following limit:

lim
r→∞,γ→0,η→1

pY |S(0|0) − pY |S(0|1) (A.15)

� lim
r→∞,γ→0,η→1

∫ θ+αx

θ−αx

pN(n) dn (A.16)

=
∫ θ+αx

θ−αx

δ(n − a) dn = 0 (A.17)

because a /∈ (θ − αx, θ + αx). �

Proof (Necessity). Choose a ∈ (θ − αx, θ + αx). Then

pY |S(0|0) =
∫ θ+

√
ηαx

−∞
pN(n) dn (A.18)

=
∫ θ

−∞
pN(n +

√
ηαx) dn (A.19)

→
∫ θ

−∞
δ(n − a + αx) dn (A.20)

=
∫ θ+αx

−∞
δ(n − a) dn = 1 (A.21)

as γ → 0, as r → ∞, and as η → 1 (A.22)

pY |S(1|1) =
∫ ∞

θ−√
ηαx

pN(n) dn (A.23)

=
∫ ∞

θ

pN(n − √
ηαx) dn (A.24)

→
∫ ∞

θ

δ(n − ax − αx) dn (A.25)

=
∫ ∞

θ−αx

δ(n − ax) dn = 1 (A.26)

as γ → 0, as r → ∞, and as η → 1. (A.27)

�
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Appendix B

Appendix B.1. Proof of theorem 3 (finite variance)

Use the following shorthand for the proofs that follow:

η ≡ ηEηBG.

The proofs use this shorthand when we take a limit in the parameters ηE , ηB and G. The mean
μ and variance σ 2 of noise random variable N are μ = √

ημνx
and

σ 2 = ησ 2
νx

+

(
ηB

(
ηEGe−2r + ηE(G − 1)

+ (1 − ηE)

)
+ 1 − ηB

) /
2. (B.1)

We compute the six conditional probabilities: pY |S(0|0), pY |S(0|1), pY |S(1|0), pY |S(1|1),
pY |S(ε|0), and pY |S(ε|1)

pY |S(0|0) = Pr{N +
√

η(−1)S+1α � −θ | S = 0}
= Pr{−√

ηα + N � −θ}
= Pr{N < −θ +

√
ηα}

=
∫ −θ+

√
ηα

−∞
pN(n) dn. (B.2)

The other conditional probabilities follow from similar reasoning:

pY |S(0|1) =
∫ −θ−√

ηα

−∞
pN(n) dn, (B.3)

pY |S(1|0) =
∫ ∞

θ+
√

ηα

pN(n) dn, (B.4)

pY |S(1|1) =
∫ ∞

θ−√
ηα

pN(n) dn, (B.5)

pY |S(ε|0) = 1 − pY |S(0|0) − pY |S(1|0)

=
∫ θ+

√
ηα

−θ+
√

ηα

pN(n) dn, (B.6)

pY |S(ε|1) = 1 − pY |S(0|1) − pY |S(1|1)

=
∫ θ−√

ηα

−θ−√
ηα

pN(n) dn. (B.7)

Proof (Sufficiency). We follow the proof method of theorem 1 with some modifications.
Note that the conditions ηE, ηB � 1 and G � 1 constrain how we take both limits to one.
This constrains the values that the root of their product

√
η may take for any given value of

the noise mean μνx
. Assume these constraints when considering the limit in the proofs that

follow.
Assume that 0 < pS(s) < 1 to avoid triviality when pS(s) = 0 or 1. I (S, Y ) = 0 if and

only if S and Y are statistically independent [25]. We show that S and Y are asymptotically
independent: I (S, Y ) → 0 as σ 2

νx
→ 0, as r → ∞, as η → 1, and as G → 1. We need to show

that pY |S(y|s) → pY (y) as σ 2
νx

→ 0, as r → ∞, as η → 1, and as G → 1 for s, y ∈ {0, 1}.
We do not consider pY |S(y|ε) because the probability pS(ε) is zero and so the probability

14
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pY (ε) is also zero. Consider the expansion in (A.6) using the law of total probability.
The expansion is the same even when including symbol ε because ε has zero probability:
pS(ε) = 0. So pY (y) → pY |S(y|1) and pY (y) → pY |S(y|0) as pY |S(0|0) − pY |S(0|1) → 0
and pY |S(1|1) − pY |S(1|0) → 0. Consider the case where y = 0:

pY |S(0|0) − pY |S(0|1) =
∫ −θ+

√
ηα

−θ−√
ηα

pN(n) dn. (B.8)

Consider the case where y = 1:

pY |S(1|1) − pY |S(1|0) =
∫ θ+

√
ηα

θ−√
ηα

pN(n) dn. (B.9)

So the result follows if both of the above conditional probability differences vanish as
σ 2

νx
→ 0, as r → ∞, as ηE, ηB → 1, and as G → 1. Suppose the mean μνx

/∈
(−θ − α,−θ + α) ∪ (θ − α, θ + α) by hypothesis. We ignore the zero-measure cases where
μνx

= θ − α, μνx
= θ + α, μνx

= −θ + α, or μνx
= −θ − α.

Case 1. Suppose first that μνx
< −θ −α. So μνx

+α < −θ and thus
√

η(μνx
+α) � μνx

+α <

−θ whenever
√

η > −θ/(μνx
+ α) = θ/|μνx

+ α|. Pick ε = 1
2 (−θ − √

ηα − √
ημνx

) > 0. So
−θ − √

ηα − ε = √
ημνx

+ ε. Then∫ −θ+
√

ηα

−θ−√
ηα

pN(n) dn �
∫ ∞

−θ−√
ηα

pN(n) dn

�
∫ ∞

−θ−√
ηα−ε

pN(n) dn

�
∫ ∞

√
ημνx +ε

pN(n) dn

= Pr{N � √
ημνx

+ ε}
= Pr{N � μ + ε}
= Pr{N − μ � ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So the conditional probability difference in (B.8) vanishes as σ 2
νx

→ 0, as r → ∞, as
ηE, ηB → 1, and as G → 1 when μνx

< −θ − α. We now prove that the conditional
probability difference in (B.9) vanishes when μνx

< −θ − α. It follows that μνx
< θ − α if

μνx
< −θ −α. So μνx

+ α < θ and thus
√

η(μνx
+ α) � μνx

+ α < θ for any
√

η � 0 because
μνx

+ α < 0. Pick ε = 1
2 (θ − √

ηα − √
ημνx

) > 0. So θ − √
ηα − ε = √

ημνx
+ ε. Then∫ θ+

√
ηα

θ−√
ηα

pN(n) dn �
∫ ∞

θ−√
ηα

pN(n) dn

�
∫ ∞

θ−√
ηα−ε

pN(n) dn

�
∫ ∞

√
ημνx +ε

pN(n) dn

= Pr{N � √
ημνx

+ ε}
= Pr{N � μ + ε}
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= Pr{N − μ � ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So the conditional probability difference in (B.9) vanishes as σ 2
νx

→ 0, as r → ∞, as
ηE, ηB → 1, and as G → 1 when μνx

< −θ − α and with constraint
√

η > θ/|μνx
+ α|.

Case 2. Suppose next that −θ+α < μνx
< θ−α. We first prove that the conditional probability

difference in (B.8) vanishes as σ 2
νx

→ 0, as r → ∞, as ηE, ηB → 1, and as G → 1. So
μνx

− α > −θ if −θ + α < μνx
< θ − α. Thus

√
η(μνx

− α) � μνx
− α > −θ whenever√

η < θ/|μνx
− α|. Pick ε = 1

2 (θ − √
ηα +

√
ημνx

) > 0. So −θ +
√

ηα + ε = √
ημνx

− ε.
Then

∫ −θ+
√

ηα

−θ−√
ηα

pN(n) dn �
∫ −θ+

√
ηα

−∞
pN(n) dn

�
∫ −θ+

√
ηα+ε

−∞
pN(n) dn

�
∫ √

ημνx −ε

−∞
pN(n) dn

= Pr{N � √
ημνx

− ε}
= Pr{N � μ − ε}
= Pr{N − μ � −ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So the conditional probability difference in (B.8) vanishes as σ 2
νx

→ 0, as r → ∞, as
ηE, ηB → 1, and as G → 1 when −θ + α < μνx

< θ − α. We now prove that the conditional
probability difference in (B.9) vanishes as σ 2

νx
→ 0, as r → ∞, as ηE, ηB → 1, and as G → 1.

So μνx
+ α < θ if −θ + α < μνx

< θ − α. Thus
√

η(μνx
+ α) � μνx

+ α < θ whenever√
η < θ/|μνx

+ α|. Pick ε = 1
2 (θ − √

ηα − √
ημνx

) > 0. So θ − √
ηα − ε = √

ημνx
+ ε

∫ θ+
√

ηα

θ−√
ηα

pN(n) dn �
∫ ∞

θ−√
ηα

pN(n) dn

�
∫ ∞

θ−√
ηα−ε

pN(n) dn

�
∫ ∞

√
ημνx +ε

pN(n) dn

= Pr{N � √
ημνx

+ ε}
= Pr{N � μ + ε}
= Pr{N − μ � ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.
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So the conditional probability difference in (B.9) vanishes as σ 2
νx

→ 0, as r → ∞, as
ηE, ηB → 1, and as G → 1 when −θ + α < μνx

< θ − α and with the constraint√
η � min(θ/|μνx

+ α|, θ/|μνx
− α|).

Case 3. Suppose next that μνx
> θ + α so that μνx

− α > θ > 0. We first prove that the
conditional probability difference in (B.8) vanishes as σ 2

νx
→ 0, as r → ∞, as ηE, ηB → 1

and as G → 1. So μνx
> −θ + α if μνx

> θ + α. Thus μνx
> −θ + α and μνx

− α > −θ

and
√

η(μνx
− α) > −θ for any

√
η � 0. Pick ε = 1

2 (
√

ημνx
+ θ − √

ηα) > 0. So
−θ +

√
ηα + ε = √

ημνx
− ε. Then

∫ −θ+
√

ηα

−θ−√
ηα

pN(n) dn �
∫ −θ+

√
ηα

−∞
pN(n) dn

�
∫ −θ+

√
ηα+ε

−∞
pN(n) dn

�
∫ √

ημνx −ε

−∞
pN(n) dn

= Pr{N � √
ημνx

− ε}
= Pr{N � μ − ε}
= Pr{N − μ � −ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So the conditional probability difference in (B.8) vanishes as σ 2
νx

→ 0, as r → ∞, as
ηE, ηB → 1, and as G → 1 when μνx

> θ + α. We prove last that the conditional
probability difference in (B.9) vanishes as σ 2

νx
→ 0, as r → ∞, as ηE, ηB → 1, and as

G → 1 when μνx
> θ + α. So

√
η(μνx

− α) > θ whenever
√

η > θ/(μνx
− α). Pick

ε = 1
2 (

√
ημνx

− θ − √
ηα) > 0. So θ +

√
ηα + ε = √

ημνx
− ε. Then

∫ θ+
√

ηα

θ−√
ηα

pN(n) dn �
∫ θ+

√
ηα

−∞
pN(n) dn

�
∫ θ+

√
ηα+ε

−∞
pN(n) dn

�
∫ √

ημνx −ε

−∞
pN(n) dn

= Pr{N � √
ημνx

− ε}
= Pr{N � μ − ε}
= Pr{N − μ � −ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So the conditional probability difference in (B.9) as σ 2
νx

→ 0, as r → ∞, and as
ηE, ηB → 1 when μνx

> θ + α and with the constraint
√

η > θ/(μνx
− α). Thus

μνx
/∈ (−θ − α,−θ + α) ∪ (θ − α, θ + α) is a sufficient condition for the nonmonotone

SR effect to occur with the given constraints on the product
√

η. �
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Proof (Necessity). We prove that the SR effect does not occur when μνx
∈ (−θ − α,−θ +

α) ∪ (θ − α, θ + α).

Case 1. Suppose first that μνx
∈ (−θ − α,−θ + α). We prove with a similar Chebyshev

bound that the conditional probabilities pY |S(0|0) → 1 and pY |S(ε|1) → 1 as σ 2
νx

→ 0, as
r → ∞, as ηE, ηB → 1, and as G → 1. Then the mutual information I(S,Y) approaches its
maximum H(S) as all noise vanish. Consider pY |S(0|0). Pick any μνx

∈ (−θ − α,−θ + α).
Then −θ + α > μνx

and α−μνx
> θ . Then −θ >

√
η(μνx

−α) whenever
√

η > θ/|α−μνx
|.

Pick ε = 1
2 (−θ +

√
ηα − √

ημνx
) > 0 so that −θ +

√
ηα − ε = √

ημνx
+ ε. Then

pY |S(0|0) =
∫ −θ+

√
ηα

−∞
pN(n) dn

�
∫ −θ+

√
ηα−ε

−∞
pN(n) dn

=
∫ √

ημνx +ε

−∞
pN(n) dn

= 1 −
∫ ∞

√
ημνx +ε

pN(n) dn

= 1 − Pr{N � √
ημνx

+ ε}
= 1 − Pr{N � μ + ε}
= 1 − Pr{N − μ � ε}
� 1 − Pr{|N − μ| � ε}
� 1 − σ 2

ε2

→ 1

as σ 2
νx

→ 0, as r → ∞, as ηE, ηB → 1, and as G → 1. We prove the result similarly for
pY |S(ε|1). We show that pY |S(0|1) → 0 and pY |S(1|1) → 0 so that pY |S(ε|1) → 1. Pick any
μνx

∈ (−θ − α,−θ + α). Then μνx
> −θ − α and μνx

+ α > −θ .
√

η(μνx
+ α) > −θ and√

ημνx
+

√
ηα + θ > 0 whenever

√
η < θ/|μνx

+ α|. Pick ε = 1
2 (

√
ημνx

+
√

ηα + θ) > 0 so
that −θ − √

ηα + ε = √
ημνx

− ε. Then

pY |S(0|1) =
∫ −θ−√

ηα

−∞
pN(n) dn

�
∫ −θ−√

ηα+ε

−∞
pN(n) dn

=
∫ √

ημνx −ε

−∞
pN(n) dn

= Pr{N � √
ημνx

− ε}
= Pr{N � μ − ε}
= Pr{N − μ � −ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

Pick any μνx
∈ (−θ −α,−θ +α). Then μνx

< −θ +α and θ < α−μνx
.
√

ηG(μνx
−α) < −θ

and −√
ημνx

+
√

ηα−θ > 0 whenever
√

η > θ/|α−μνx
|. Pick ε = 1

2 (−√
ημνx

+
√

ηα−θ) > 0

18
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so that −θ +
√

ηα − ε = √
ημνx

+ ε. Then

pY |S(1|1) =
∫ ∞

θ−√
ηα

pN(n) dn

�
∫ ∞

−θ+
√

ηα

pN(n) dn

�
∫ ∞

−θ+
√

ηα−ε

pN(n) dn

=
∫ ∞

√
ημνx +ε

pN(n) dn

= Pr{N � √
ημνx

+ ε}
= Pr{N � μ + ε}
= Pr{N − μ � ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So pY |S(ε|1) → 1 because pY |S(0|1) → 0 and pY |S(1|1) → 0 as σ 2
νx

→ 0, as r → ∞, as
ηE, ηB → 1, and as G → 1 and with constraint θ/|α − μνx

| <
√

η < θ/|α + μνx
|.

Case 2. Now suppose that μνx
∈ (θ − α, θ + α). We prove that the conditional probabilities

pY |S(ε|0) → 1 and pY |S(1|1) → 1 as σ 2
νx

→ 0, as r → ∞, as ηE, ηB → 1, and as G → 1.
We first prove that pY |S(ε|0) → 1 in the limit of zero noise. We prove this by showing
that pY |S(0|0) → 0 and pY |S(1|0) → 0 in the limit. Pick any μνx

∈ (θ − α, θ + α). Then
μνx

> θ − α and μνx
+ α > θ .

√
η(μνx

+ α) > θ and
√

ημνx
+

√
ηα − θ > 0 whenever√

η > θ/(μνx
+ α). Pick ε = 1

2 (
√

ημνx
+

√
ηα − θ) > 0 so that θ − √

ηα + ε = √
ημνx

− ε:

pY |S(0|0) =
∫ −θ+

√
ηα

−∞
pN(n) dn

�
∫ θ−√

ηα

−∞
pN(n) dn

�
∫ θ−√

ηα+ε

−∞
pN(n) dn

=
∫ √

ημνx −ε

−∞
pN(n) dn

= Pr{N � √
ημνx

− ε}
= Pr{N � μ − ε}
= Pr{N − μ � −ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

Pick any μνx
∈ (θ − α, θ + α). Then μνx

< θ + α and μνx
− α < θ .

√
η(μνx

− α) < θ and
−√

ημνx
+

√
ηα + θ > 0 whenever

√
η < θ/|μνx

− α|. Pick ε = 1
2 (−√

ημνx
+

√
ηα + θ) > 0

so that θ +
√

ηα − ε = √
ημνx

+ ε. Then

pY |S(1|0) =
∫ ∞

θ+
√

ηα

pN(n) dn
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�
∫ ∞

θ+
√

ηα−ε

pN(n) dn

=
∫ ∞

√
ημνx +ε

pN(n) dn

= Pr{N � √
ημνx

+ ε}
= Pr{N � μ + ε}
= Pr{N − μ � ε}
� Pr{|N − μ| � ε}
� σ 2

ε2
.

So pY |S(ε|0) → 1 because pY |S(0|0) → 0 and pY |S(1|0) → 0 as σ 2
νx

→ 0, as r → ∞,
as ηE, ηB → 1, and as G → 1. Now we prove that pY |S(1|1) → 1 as σ 2

νx
→ 0, as

r → ∞, as ηE, ηB → 1, and as G → 1 whenever μνx
∈ (θ − α, θ + α). Pick any

μνx
∈ (θ − α, θ + α). Then μνx

< θ + α and μνx
− α < θ .

√
η(μνx

− α) < θ and
−√

ημνx
+

√
ηα + θ > 0 whenever

√
η < θ/|μνx

− α|. Pick ε = 1
2 (−√

ημνx
+

√
ηα + θ) > 0

so that θ − √
ηα + ε = √

ημνx
− ε. Then

pY |S(1|1) =
∫ ∞

θ−√
ηα

pN(n) dn

�
∫ ∞

θ−√
ηα+ε

pN(n) dn

=
∫ ∞

√
ημνx −ε

pN(n) dn

= 1 −
∫ √

ημνx −ε

−∞
pN(n) dn

= 1 − Pr{N � √
ημνx

− ε}
= 1 − Pr{N � μ − ε}
= 1 − Pr{N − μ � −ε}
� 1 − Pr{|N − μ| � ε}
� 1 − σ 2

ε2
.

So pY |S(1|1) → 1 as σ 2
νx

→ 0, as r → ∞, as ηE, ηB → 1, and as G → 1 whenever
μνx

∈ (θ − α, θ + α) and with constraint θ/(μνx
+ α) <

√
η < θ/|μνx

− α|. The mutual
information I(S,Y) approaches its maximum H(S) as all noises vanish. The SR effect does not
occur for Alice’s and Bob’s mutual information whenever μνx

∈ (−θ−α,−θ+α)∪(θ−α, θ+α)

with the above constraints on the product
√

η. �

Appendix B.2. Proof of theorem 4 (infinite variance)

The proof for sufficiency and necessity follows the same stable proof method with some
modifications. We use the same characteristic function ϕνx

(ω) in (A.9) for alpha-stable
random variable νx . Suppose

σ 2
N =

(
ηB

(
ηEGe−2r + ηE(G − 1)

+ (1 − ηE)

)
+ 1 − ηB

) /
2. (B.10)
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The characteristic function ϕN(ω) of pN(n) is as follows:

ϕN(ω) = ϕνx
(
√

ηω) exp

{
−σ 2

Nω2

2

}
(B.11)

from (5) and the convolution theorem.

Proof (Sufficiency). Take the limit of the characteristic function ϕN(ω) as γ → 0, as
r → ∞, as G → 1, and as ηE, ηB → 1 to obtain the following characteristic function:

lim
r→∞,γ→0,

G→1,ηE ,ηB →1

ϕN(ω) = exp{iaω}. (B.12)

The probability density pN(n) then approaches a translated delta function

lim
r→∞,γ→0,ηE,ηB→1

pN(n) = δ(n − a). (B.13)

Suppose that a /∈ (−θ − α,−θ + α) ∪ (θ − α, θ + α). Consider the case where y = 0. Then

lim
r→∞,γ→0,

G→1,ηE ,ηB →1

pY |S(0|0) − pY |S(0|1) (B.14)

= lim
r→∞,γ→0,

G→1,ηE ,ηB →1

∫ −θ+
√

ηα

−θ−√
ηα

pN(n) dn (B.15)

→
∫ −θ+α

−θ−α

δ(n − a) dn = 0 (B.16)

because a /∈ (−θ − α,−θ + α). Consider the case where y = 1:

lim
r→∞,γ→0,

G→1,ηE ,ηB →1

pY |S(1|1) − pY |S(1|0) (B.17)

= lim
r→∞,γ→0,

G→1,ηE ,ηB →1

∫ θ+
√

ηα

θ−√
ηα

pN(n) dn (B.18)

→
∫ θ+α

θ−α

δ(n − a) dn = 0 (B.19)

because a /∈ (θ − α, θ + α). �

Proof (Necessity). Suppose that a ∈ (−θ − α,−θ + α) ∪ (θ − α, θ + α).

Case 1. Pick a ∈ (−θ − α,−θ + α). We show that pY |S(0|0) → 1 and pY |S(ε|1) → 1. Then

pY |S(0|0) =
∫ −θ+

√
ηαx

−∞
pN(n) dn (B.20)

=
∫ −θ

−∞
pN(n +

√
ηαx) dn (B.21)

→
∫ −θ

−∞
δ(n − a + α) dn (B.22)

=
∫ −θ+α

−∞
δ(n − a) dn = 1 (B.23)
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pY |S(ε|1) =
∫ θ−√

ηα

−θ−√
ηα

pN(n) dn (B.24)

→
∫ θ−α

−θ−α

δ(n − a) dn (B.25)

= 1. (B.26)

Case 2. Pick a ∈ (θ − α, θ + α). We show that pY |S(1|1) → 1 and pY |S(ε|0) → 1. Then

pY |S(1|1) =
∫ ∞

θ−√
ηα

pN(n) dn (B.27)

=
∫ ∞

θ

pN(n − √
ηαx) dn (B.28)

→
∫ ∞

θ

δ(n − a − α) dn (B.29)

=
∫ ∞

θ−α

δ(n − a) dn = 1. (B.30)

pY |S(ε|0) =
∫ θ+

√
ηα

−θ+
√

ηα

pN(n) dn (B.31)

→
∫ θ+α

−θ+α

δ(n − a) dn (B.32)

= 1. (B.33)

�
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