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Abstract 

Additive fuzzy systems can control the velocity and the gap between cars in single-lane platoons. The overall system 
consists of throttle and brake controllers. We first designed and tested a throttle-only fuzzy system on a validated car 
model and then with a real car on highway 1-15 in California. We used this controller to drive the "smart" car on the 
highway in a two-car platoon. Then we designed a throttle and brake controller. The combined system controls the 
platoon on downhill parts of the freeway and as it decelerates to slower speeds. We modeled the brake controller using 
the real test data from the brake system. A logic switch for throttle and brake decides which system to use. The gap 
controller uses data only from its own sensors and there is no communication among cars. The simulation results show 
that follower cars with a combined brake/throttle controller can maintain a constant gap when the platoon goes downhill 
and slows. An adaptive throttle controller uses neural systems to learn the fuzzy rules for different vehicle types. 

Keywords." Adaptive fuzzy systems; Smart-car platoons; Model-free control; Ellipsoidal rules; Unsupervised clustering; 
Supervised gradient descent; Standard additive model; Function approximation 

1. Introduction 

Traffic clogs highways a round  the world. Plat- 
oons of  cars can increase the flow and mean speed 
on freeways. A pla toon is a g roup  of cars with 
a lead car and one or  more  follower cars that travel 
in the same lane. Electronic links tie the cars to- 
gether. Compute r  control  speeds their response 
times to road hazards so that the cars can travel 
more  safely on their own or  in p la toon groups. The 
lead car plans the course for the platoon. It picks 
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the velocity and car spacing and picks which ma-  
neuvers to perform. Pla toons  use four maneuvers:  
merge, split, velocity change, and lane change 
[10, 11]. A merge combines two pla toons into one. 
A split splits one pla toon into two. A lane change 
moves a single car into an adjacent lane. Combined 
maneuvers  help cars move through traffic. 

S tandard  control  systems use an inpu t -ou tpu t  
math  model  of  the car "plant"  and its environment.  
Fuzzy systems do not  use an inpu t -ou tpu t  math  
model or  exact car parameters.  A fuzzy system 
F : R "  ---, R p is a set of  fuzzy rules that maps  inputs 
to outputs  [14]. Fuzzy  systems give a model-free 
estimate of a nonlinear  control  function. They 
compute  a condit ional  mean as Appendix A 
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shows: F ( x ) =  E [ Y I X  = x]. The fuzzy platoon 
controller uses rules that act like the skills of a hu- 
man driver. The rules have the form "If input con- 
ditions hold to some degree then output conditions 
hold to some degree" or "If  X is A then Y is B'" for 
multivalued or "fuzzy" sets A and B. Each fuzzy 
rule defines a fuzzy patch or a Cartesian product 
A x B in the input output state space X x Y : A × 
B c X x Y. To approximate a function f the fuzzy 
system F covers the graph o f f  with fuzzy patches 
and averages patches that overlap [15]. 

The fuzzy platoon controller drives a car in or 
out of the platoon and acts as a distributed control 
system for future freeways. It includes an integrated 
maneuver controller for course selection and an 
individual vehicle controller for throttle, brake, and 
steering control as shown in Fig. 1. We imple- 
mented the individual vehicle controller only. 

We designed a fuzzy controller for gap control 
using throttle only. The gap controller gets data 
from its own sensors. We tested the fuzzy gap 
controller on Interstate-15 in Escondido, California. 
The controlled car followed the lead car as it 
changed speed and went over hills. The system 
performed smoothly in all cases. But when it went 
downhill the controlled car got close to the leader. 

We next designed a throttle and brake controller. 
The combined system lets us control platoons on 
downhill parts of the freeway and during deceler- 
ations to slower speeds. We simulated the brake 
controller using the real test data from the brake 
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Fig. 1. Block diagram of the fuzzy platoon controller. 

system. A logic switch for throttle and brake picks 
when to use each system. This logic switch avoids 
frequent oscillations between the throttle and the 
brake controller. Simulation results showed that 
the follower car using throttle only could not slow 
down enough to avoid hitting the leader car on the 
downhill grade. The follower car with a combined 
brake/throttle controller did not collide with the 
lead car. 

We hand tuned the fuzzy sets and rules for the 
gap controller. Neural learning can also find the 
rules from system input-output  data. We used 
a neural-fuzzy system that tuned the fuzzy rules for 
the velocity controller with unsupervised and 
supervised learning. A hybrid system [4] used un- 
supervised learning to quickly pick the first set of 
ellipsoidal fuzzy rules. Then supervised learning 
tuned the rules using gradient descent. Each rule 
defines a fuzzy subset or connected region of state 
space and thus relates throttle response, acceler- 
ation, and velocity. Section 3 describes the hybrid 
ellipsoidal learning system. The appendices for- 
mally derive the general fuzzy system and its learn- 
ing laws. 

2. Additive fuzzy systems 

A scalar-valued fuzzy system F : R " - *  R stores 
m rules of the word from "If X = Aj then Y = Bj" 

or the patch form Aj × By ~ X x Y = R" × R. The 
if-part fuzzy sets Aj  ~ R" and then-part fuzzy sets 
Bj ~ R have arbitrary set functions a i : R "  ~ [0, 1] 
and b j : R  ~ [0, 1]. The system can use the joint set 
function aj or some factored form such as 

1 aj(x) = aj (x l )  ."  a~(x,) or aj(x) = m i n ( a ) ( x l )  . . . . .  
a~(x,)) or any other conjunctive form for input 
vector x = (x ~ . . . . .  x,) e R". Our fuzzy systems (like 
most) use min to form a i from the coordinate set 
functions a i. Product tends to work better for ex- ,1" 

ponential or Gaussian set functions. 
An additive fuzzy system [14, 15] sums the un- 

weighted "fired" then-part sets B}: 

B =  a,Ixt , Ilt 
j = l  i - 1  

Fig. 2 shows the parallel fire-and-sum structure of 
the SAM system. A vector input x matches or 
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Fig. 2. Architecture of an additive fuzzy system F : R" --, R p with m rules. Each input xo e R" enters the system F as a numerical vector, 
At the set level x o acts as a delta pulse 6 ( X - X o )  that combs the if-part fuzzy sets A t and gives the m set values a /xo) :  
aj(xo) = ~R° 6(x - xo)a~(x)dx. The set values "fire" the then-part fuzzy sets Bj to give Bj. A standard additive model (SAM) scales each Bj 
with aj(x). The system then sums the Bj sets to give B. The system output  F(x~) is the centroid of B. 
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Fig. 3. Each fuzzy rule defines a Cartesian-product patch or 
fuzzy subset of the input -output  state space. The fuzzy system 
approximates a function as it covers its graph with rule patches. 
Lone optimal rule patches cover extrema. 

"fires" the if-part sets A t of each rule. The system 
sums the scaled then-part sets Bj and takes the 
centroid of the summed sets to give the output F(x). 
These systems can uniformly approximate any con- 
tinuous (or bounded measurable) function f on 
a compact domain [15]. 

Fig. 3 shows how three rule patches can cover 
part of the graph of a scalar function f : R - - ,  R. 
The patch cover shows that all fuzzy systems 
F : R "  ~ R p suffer from rule explosion in high di- 
mensions. A fuzzy system F needs on the order of 
kn+p- 1 rules to cover the graph and thus to approx- 
imate a vector function f :R" - - ,  R p where k is the 
number of sets in each dimension. Optimal rules 
can help deal with the exponential rule explosion. 
Lone or local mean-squared optimal rule patches 
cover the extrema [16] of the approximated f -  they 
"patch the bumps". Better learning schemes move 
rule patches to or near extrema and then fill in 
between extrema with extra rule patches as the rule 
budget allows. 

The scaling choice B~ = ai(x)B j gives a standard 
additive model or SAM. Appendix A shows that 
taking the centroid of B in (1) gives [14--17] the 
SAM ratio 

ret 

F(x) = 2i= m 1 aj(x) V'jc i (2) 
Ei=  at(x) 

V i is the nonzero volume or area of the then-part 
set B i. c i is the centroid of B~ or its center of mass. 
The ratio (2) reduces to the "center of gravity" 
model of Sugeno [21] and others if V1 . . . . .  
V,, > 0. 
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The SAM theorem (2) implies that the fuzzy 
structure of the then-part sets Bj does not matter. 
The ratio depends on just the volume Vj and loca- 
tion cj of the then-part sets Bj. We need to pick the 
scalar conters cj and the volumes Vj. Appendix 
B uses gradient descent to derive the supervised 
learning laws that tune the SAM parameters a j, Vj, 
and c~. The next section shows how to apply these 
general learning schemes for egg-shaped or ellip- 
soidal fuzzy rules. 

3. Learning fuzzy rules 

Fuzzy rules can come from brains or brain-like 
systems. We can ask an expert for the if-then rules 
or we can act as the experts ourselves and try to 
state the rules and tune them [9]. Or we can use 
a neural (statistical) system to learn the rules from 
training data. This section describes a neural-fuzzy 
system that learns fuzzy rules with both unsuper- 
vised and supervised learning shown in Fig. 4. 

3.1. Unsupervised rule estimation with competitive 
learning 

A fuzzy rule patch can take the form of an ellip- 
soid [4]. This trades the generality of fuzzy rule 
patches for the mathematical simplicity of quad- 
ratic forms. A positive definite matrix P defines an 
ellipsoid in the q-dimensional input-output state 
space where q = n + p (Fig. 5). The ellipsoid is the 
locus of all z that satisfy [2] 

cd = (z - m)T p ( z  -- m), (3) 

9y 

Y "t . . . . . . . . . . . . . . . . .  

I c y  

u 

C x 

Px 

Fig. 5. A positive definite matrix defines an ellipsoid about the 
center m of the ellipsoid. The eigenvalues of the matrix define the 
length of the axes. The projections of the ellipsoid onto the axes 
define the input and output fuzzy sets A and B. Px and py are the 
lengths of the ellipsoid's projections onto the x and y axes. 

where c~ is a positive real number and m is the center 
of the ellipsoid in R q. P has eigenvalues )~1 . . . .  ,2q. 
The eigenvalues define the ellipsoid axes. The 
Euclidean half-lengths of the axes equal :~ /~1  . . . . .  
:~/x~q. To simplify the math we used a hyperrec- 
tangle to circumscribe the ellipsoid. The projections 
onto the input axes form the fuzzy sets. We used 
symmetric triangular sets centered at m to approx- 
imate these ellipsoidal "shadows". The unit eigen- 
vectors define direction cosines for each axis of the 
ellipse. The direction cosine cos Yk~j is the angle 
between the jth eigenvector and the ith axis for the 
kth ellipsoid. The projection of the kth hyperrec- 
tangle onto the ith axis has length Pki: 

Initialize Rules Initial or Rough Expert or Tuned 
Rules Rules 

to Data Points~ Unsupervised ~ - ~  

Learning "] Lemling I 

Fig. 4. A neural-fuzzy system can learn and tune the fuzzy rules 
with a hybrid of unsupervised and supervised learning. 
Unsupervised competitive learning initializes the supervised 
gradient descent search for rules that locally minimize the mean- 
squared error of the function approximation. 

Ok/= 2c~ ~ I cos 7,~jr 
) "=I ~ k j  

(4) 

Adaptive vector quantization (AVQ) systems 
adaptively cluster pattern data in a state space. An 
autoassociative AVQ system combines the input 
x and the output y of the data to form zT= 
]-xTlyT]. Competitive learning estimates the first- 
and second-order statistics of the data with the 
stochastic difference equations for the winning 
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neuron [14] 

qj(t + 1) = qj(t) + #t[z(t) -- qj(t)], 

Kj(t  + 1) 

(5) 

= K j ( t ) +  v t [ ( z ( t )  - -  q j ( t ) ) ( z ( t )  - -  q j ( t ) )  T - -  K j ( t ) ] .  

(6) 

The coefficients #t and v, must satisfy the conver- 
gence conditions of stochastic approximation [14]. 
In practice/~ ~ l i t  and v, ,~ 1/t. Appendix B gives 
the details of this learning method. 

3.2. Supervised ellipsoidal learning 

A supervised neural system learns the ellipsoidal 
rules as it locally minimizes the mean-squared error 
of the function approximation. The neural system 
learns the size and shape of the fuzzy rule patches 
that minimize the error. The gradient descent algo- 
rithm [14] takes the gradient of the instantaneous 
mean-squared error SEk: 

(7) SEk = ½(dk - F(Xk))  2. 

Here dk is the desired output of the system. F(Xk) is 
the output of the additive fuzzy system with input 
x~. Gradient descent estimates the eigenvalues, ro- 
tation angles, and centroids of the ellipsoidal 
patches [4]. 

We assume that the fuzzy sets are the triangular 
projections of the bounding hyperrectangles 
around the ellipsoids on the axes of the state 
space. The volume of the ith triangular output set 
is V~: 

(8) 
I cos ','k~j I 

Vi ~- ½ Diq = O~ 
j = l  ~ k j  

Piq is the base of the ith fuzzy rule patch projection 
on the qth or output axis in (4) and 7kU are the 
direction cosines. The f i t  (fuzzy unit) value aj(x) is 
the degree to which input x belongs to the ith fuzzy 
set: 

is the triangular input fuzzy set for the ith ellip- aj 

soid projected on the jth axis: 

a~(~)=  
1 Ix -Cx,~12 

for Ix - c~,, I ~ Pu/2, 
Po 

0 else. 
(10) 

The supervised algorithm uses an iterative form 
of gradient descent: 

Ei(k + 1) = Ei(k) + A~AE, SEk. (l l)  

E~(k) is a concatenated vector of the ith ellipsoid's 
parameters. A~, is a diagonal matrix of decreasing 
learning coefficients. E~(k) contains the eigenvalues, 
the centroid vector, and the independent orienta- 
tion angles of the ith ellipsoid. 

The chain rule of differential calculus gives the 
supervised ellipsoidal algorithm 

0SEk 0SEk [(?Fk ?Jag OFk ~V~] 
8),ij(k)- ~2~j - ?~Fk LOaf ~ a v /  (~;4J' 

(12) 

8c~,(k) - 

fic~,,(k) - 

~'SEk 0SEk 63Fk Oa k 

~c~,(k) OFk Oa f OQ(k)' 
(13) 

OSEk k k V i a i  
r ~cy,(k) - (dk -- Fk) ~j=l  vjaj"k k, (14) 

?'SEk 0SEkFOTQF [, 3ak OFk c~V~] 

(15) 

The partial derivatives [4] in (12)-(15) have the 
SAM form 

0 S E  k 
- -  = - - ( d k  - -  F D ,  ( 1 6 )  
~Fk 

r k k k ( k  ~')F k vik~j~j=l V j a j ( C y , -  :y,) 
- -  Trk kx2 ' Oak (2~=1 v j  a j) 

(17) 

~Fk a ik~=l  k k .k C k V;aj(c~, -- ~j) 
aj(x) = min(@(x)). (9) OV~ (2~=~ vj aj~ • , k  ~ , z  , ( 1 8 )  
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c~a~ 

2 ~ i l  X - -  %11 cos w.jl 
- -  2 ~ if Ix -- Cx,,] ~< pit~2, 

= p l t%/ /@ 

0 if ] x - cx, ' ] > Pit~2, 

(19) 

Oa, ~ 

ac~,., 

av~ =[  
c~7~ _ _  

am~ 

2 
- -  if O < x - c x , < ~ p i j 2 ,  
Pit 

0 else, 
2 

if - -Pi t /2  < X -- Cx, ~ O, 
Pit 

~i sin 7i,~j 
if I~'~vl ~< n/2, 

¢ei sin Yiqj if 17iq;I > n/2, 

4cqlx - % I sin Yitj 

if I x  - Cx, L <~ pu /2  and 17,jl ~ n/2, 

4c t i l x  - cx,, [sin 7,; 

if I x - Cx, I <~ p , / 2  and I ?uj[ ~< n/2, 

0 if Ix - %1 > plj2, 

(20) 

(21) 

(22) 

0V~ ~;Icosy~vl 
c~2~s = 2 ~  

(23) 

4. C o n t r o l l e r  s t ruc ture  

This section presents a velocity controller for the 
lead car and a gap controller that keeps the fol- 
lower cars at a constant distance from the leader. 

4.1. Veloci ty  c o n t r o l l e r  

In a platoon each car tries to travel at the desired 
platoon velocity and maintain the correct spacing. 
The leader car chooses the desired platoon velocity. 
When the platoon travels at a constant velocity 
each car uses its own velocity controller to main- 
tain the desired platoon velocity. These systems use 
the velocity and acceleration data that the car 
measures. The system output is the change in 
throttle angle. 

The velocity controller for the ith car in the 
platoon has two inputs: 

A ~ ) i ( t )  = b ' p l a t o o  n - -  vi(t), (24) 

ai(t) = ai(t) ,  (25) 

The output is the change in throttle angle ~throttle' 
So the fuzzy system defines the map F: R2--+ R. 
One fuzzy rule is IF (a~(t) is zero (ZE)) AND (Avi( t )  

is medium negative (MN)) T H E N  (C~hrott~e is 
medium negative (MN)). The velocity difference 
and the acceleration each have 7 if-part fuzzy sets. 
The number of fuzzy rules for the velocity control- 
ler is 7 x 7 = 49. Figs. 6 and 7 show the fuzzy sets 
and rules for this controller [6]. 

4.2. Gap  con t ro l l e r  

Fig. 8 shows the block diagram of the fuzzy gap 
controller. It consists of a throttle controller and 
a brake controller. The gap controller maintains 
a constant distance between vehicles. The gap con- 
troller for platoon followers uses the differences in 
acceleration and velocity between cars and the dis- 
tance error to achieve a constant gap. The distance 
error Adi(k) is the difference between the desired 
gap between the cars and the actual gap. A range- 
finding system on each car in the platoon measured 
the distance between the cars. The inputs to the gap 
controller for the throttle in the ith car are 

A d i ( k )  = ddesired --  di(k),  (26) 

Avi (k )  = v i -  l (k) - vi(k), (27) 

Aai (k )  = a i -  l(k) - ai(k). (28) 

So the fuzzy system defines the map F : R 3 ~ R .  
One fuzzy rule is IF (Aai (k)  is ZE) AND (Av i (k )  is 
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Fig. 6. Fuzzy sets for velocity' controller .  
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Fig. 7. Fuzzy rules for veloci ty controller .  

MN) AND (Adi(k) is ZE) T H E N  (0throttle is MP). 
Figs. 9 11 show the fuzzy set values for the gap 
controller fuzzy variables Adi, Avi, and Aai. 

The distance error and the velocity difference 
each have 7 if-part fuzzy sets. The number of rules 
for the throttle controller is 7 × 7 × 3 = 147. These 
rules let a platoon maintain the desired gap. 

The gap controller had only 3 fuzzy sets of accel- 
eration difference as shown in Fig. 11. More accel- 
eration sets would better predict the car response 
and give smoother control. But more sets result in 
a larger rulebase. We implemented the acceleration 

Tnr0ttle 

Desi~d Gap ~ . U ~ ~  Chang e A0 

_ I f°rth~tlel t - " I Brakeforce 
and brake [ J~'-r:~e--'-] Change AF 

VelodtyDiffereslce L ~  v[ Con~ll~ t 
Gap Distatx'e 

Radar 
Data 

Fig. 8. Block d i ag ram of the fuzzy gap  cont ro l le r  that  uses the 

brake  and thrott le.  

input by using the estimated acceleration difference 
as described below. Figs. 12 and 13 show the con- 
trol surfaces for different values of the distance 
error Adi. 

The throttle actuator had a mechanical delay of 
0.25 s. Closed-loop systems with time delays in the 
loops tend to have more stability problems than 
systems without delays [18]. Our controller used 
the acceleration data to predict the car's motion to 
compensate for this delay. The vehicle sensors did 
not measure the acceleration difference directly. We 
can estimate the acceleration by differentiating the 
velocity. But this method is susceptible to noise 
since even small changes in velocity make the 
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Fig. 9, If-part fuzzy set functions for distance difference input for 
the gap controller. The narrower sets near ZERO give finer 
control near the desired or equilibrium position. 
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Fig. 12. Gap control surface when the distance difference is 
large negative (LN). Acceleration difference is m/s 2, velocity 
difference is m/s, and throttle change unit is 0.02 per sampling 
time. 

a(x) 
1 

0.8 

0.6 

0.4 

0.2 

0 

ZE 
LN MN SN 

-6  -4  -2  0 

SP M P  LP 

2 4 6 

velocity difference (m/sec) 

Fig. 10. If-part fuzzy set functions for velocity difference input 
for the gap controller. 
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Fig. 11. If-part fuzzy set functions for acceleration difference 
input for the gap controller. 
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Fig. 13. Gap  control surface when the distance difference is 
large positive (LP). 

acceleration difference change greatly. It also cre- 
ates high frequency terms of throttle change. 

We instead approximate the acceleration input 
in (28) as the difference of the velocity measurements: 

A a i ( k )  = s i g n ( A v i ( k )  - A v i ( k  - 1))c, (29) 

where constant c depends on the sampling time. 
A a i ( k )  can take only the 3 values - c, 0, or c. This 
approximation prevents the acceleration difference 
from drifting in the presence of noise. We used 
0.05 s for the sampling time and c = 20 × 0.03048 
= 0.6096. 

The output of the throttle controller in the ith car 
is the change in throttle angle A0i(k). The input to 
the car is 0i(k): 

O~(k) = O~(k - 1) + A0~(k), (30) 
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f r e q u e n c y  

Fig. 14. Frequency response of the low-pass filter HLp(Z). 
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where Oi(k - 1) is the prior input to the car. A low- 
pass filter HLe(z), 

H L p ( Z )  = 3 
1 - - 2 Z - 1 '  ( 3 1 )  

smooths Oi(k). So (31) gives 

0pP (k)  = -~ O~e(k - 1) + ½0~(k), (32) 

where O~e(k) is the filtered output. Fig. 14 shows the 
frequency response of our filter HLp(Z). Putting (30) 
into (32) gives 

O~P(k) = OLP(k -- l) + ~AO,(k) (33) 

since O i ( k -  l) in (30) becomes O ~ P ( k -  1). We 
stored the fuzzy throttle controller as a look-up 
table based on the fuzzy sets and rules [8]. We 
scaled the output of the look-up table by ½ to 
decrease round-off errors. 

4.3. Brake controller 

The gap controller can also use the brakes. The 
fuzzy brake controller outputs change in brake 
actuator level. It was 513 levels from 0 to 512. Then 
a brake model converts this level into a change in 
brake force for the simulation. Fig. 15 shows the 
block diagram of the brake controller. There are 
two inputs to the brake controller for the ith car: 

Ad,(k) = ddesire d - -  d,(k), (34) 

Avi(k) = vi-  1 (k) - vi(k ). (35) 

Veloc i ty  D i f f e r e n c e  _ [ F u z z y  [ C h a n g e  in b r a k e  
a c t u a t o r  s l g n a r ' -  B r a k e  C o n t r o l l e r  [ G a p  d i f f e r e n c e  - ~  

Fig. 15. Block diagram of brake controller. 

a(Ad) 

Z~ 
1 __ 

0 -b 

SP MP LP EP 

6 12 18 24 

Distance difference Ad in feet 

Fig. 16. If-part fuzzy set functions for distance difference input 
to the brake controller. 

Figs. 16 and 17 show the fuzzy set values for the brake 
controller fuzzy variables zXdi and Avi. One brake rule 
is IF Ad is Medium Positive (MP) and Av is Medium 
Negative (MN) THEN the change in brake actuator 
is Medium Small (MS). Fig. 18 shows the 6 then- 
part sets for the output fuzzy variable Abe. The sets 
do not have the same area and thus do not have the 
same Vj terms in the SAM equation (2) for F(x).  

The brake controller has 5 x 5  = 2 5  fuzzy 
rules. Fig. 19 shows the fuzzy rules for the brake 
controller. Nine fuzzy sets quantize the fuzzy vari- 
ables Adl and Avi. 

EP: Extreme Positive 
LP: Large Positive 
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Velocity difference Av in 0. I feet per second 

Fig. 17. If-part fuzzy set functions for velocity difference input to 
the brake controller. 

a(Ab) 
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Brake actuator level change Ab 

Fig. 18. Then-part fuzzy set functions for the brake actuator 
change. The fuzzy system F uses just the centroids cj and the 
areas or volumes Vj of the 6 then-part sets to compute the 
output F(x). Appendix A gives the details of this computation. 
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Fig. 19. Fuzzy rules for the brake controller. The if-part fuzzy 
sets are Av and Ad. The then-part sets give the change Ab in the 
brake actuator signal. 

MP: Medium Positive 
SP: Small Positive 
ZE: Zero 
SN: Small Negative 

~20-1 

30 ~ 15 
" 1 0  

-50 0 

Fig. 20. Control snrface for fuzzy brake controller. The output 
unit is OAF change for the brake pedal. 

MN: Medium Negative 
LN: Large Negative 
EN: Extreme Negative 

Fig. 20 shows the control surface of the brake 
controller. The brakes are on only when the dis- 
tance difference is positive (when the follower car is 
too close) and the relative velocity is negative (when 
the follower car goes faster than the lead car). 

We combined the throttle and brake outputs 
using a logic switch that transitions between the 
brake and the throttle. Fig. 21 shows how the 
system used the brake and the throttle for different 
distance errors and velocity differences. The brake 
region shows when the brake is on and the throttle 
is off. The brake comes on only when the car is 
closer than the desired distance and the follower car 
goes faster than the car ahead. 

A "neutral region" [12] can help avoid frequent 
transitions between the throttle and brake fuzzy 
systems. The brake control signal does not change 
and the throttle is off when the inputs are in the 
neutral region. Fig. 21 shows the neutral region for 
the fuzzy brake-controller. The neutral region 
covers small values of the inputs Av and Ad. The 
neutral region is that part of the control surface in 
Fig. 20 that equals zero. 

The hardware on the test car had limited mem- 
ory and used only integer operations. It stored the 
fuzzy gap controller as a look-up table based on the 
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dinal car model. The Ford Motor Company 
designed this model and we used it to test our 
controllers. 

5.1. Car models 

The second-order car model [19] had two equa- 
tions of motion: 

miai = mini - K a v {  - din,-  miy  sin/3i, (36) 

1~ i 
~ i -  ~_i + (37) 

"ci(vi) miri(vi)" 

Fig. 21. Domain of the look-up table for the fuzzy gap con- 
troller. 

fuzzy sets and rules for throttle and brake control. 
Fig. 21 shows the domain for the look-up table. The 
rectangle shows the control region for the gap con- 
troller look-up table. The white region shows the 
throttle system. The shaded region shows the brake 
system. And the black region shows the neutral 
region. The horizontal axis gives the distance differ- 
ence in feet (ft). The vertical axis gives the velocity 
difference in ~ ft/s. We thresholded all inputs out- 
side these limits to the maximum or minimum 
values of the domain. The fourth quadrant shows 
the brake look-up table. One fuzzy rule for this case 
has the form IF (Avi(k) is MN) AND (Adi(k) is MP) 
T H E N  ( t ~ b r a k  e is MS). 

The look-up table for the throttle system had 
3 x 49 x 97 = 14 259 entries. The distance difference 
varied from - 24 ft to 24 ft in 1 ft units and had 49 
entries. The velocity difference had 97 entries as it 
varied from - 4.8 ft/s to 4.8 ft/s in 1/10 ft/s units. 
The look-up table for the brake system had 
25 x 49 = 1225 entries since it applied only in the 
fourth quadrant. 

5. Car models and sensor system 

We used two car models to test our fuzzy velocity 
and gap controllers. The first model was a second- 
order car model that we used to check our con- 
troller design and to test the fuzzy rules. The 
second model was a nonlinear "validated" longitu- 

The force law (36) comes from Newton's second law 
of motion F = ma. The term mini is the tractive 
engine force that the wheels apply to the road. The 
variables a~ and v; stand for acceleration and ve- 
locity. Key 2 and dm~ give the aerodynamic and 
mechanical drag forces, m~ is the total mass of the 
car and cargo and ri is the engine time lag. The term 
mi9 sin/3~ gives the acceleration due to gravity. [~ is 
the inclination of the hill from the horizontal and 
9 is the acceleration due to gravity of 9.8 m/s z. The 
throttle angle u~ is the input to the system and 
changes the "jerk" or rate of acceleration. We used 
the coefficients [6] z~ = 0.2 seconds, Kd, = 0.44 kg/m, 
and d,,, = 352 kgm/s 2. 

Fig. 22 shows the basic subsystems of the 
validated longitudinal car model that we used to 
design and test our controllers. Each block of the 

Throttle 
Angle 

,q, 
DrivetrainLoad [ E n g i n e  [ 

Engine 
Torque ~1¢ ~ ~ 

[ T r a n s m i s s i o n  [ 
[ ~.[Transmission 

~l?orque, Gear st 
Brake Torque 

Aerodynamics Dr ive t r a in  
Car Mass 

Road 
Conditions Car + ~ Car 

Acceleration Speed 

tt e 

Fig. 22. Validated car model from the Ford Motor Company. 



brake force table model is a car subsystem. The engine torque is the 
output of the engine subsystem. The engine torque 
is a nonlinear function of the air/fuel ratio, the 
exhaust gas recirculation, the cylinder total mass 
charge, the spark advance, the engine speed, the 
drivetrain load, and the throttle angle [12]. The 
output of the transmission subsystem is the trans- 
mission torque and gear state. The drivetrain sys- 
tem computes the car's velocity and acceleration 
based on the road conditions and the car loading. 
Ford Motor  Company [12] "validated" or tested 
and tuned this proprietary math model. The inputs 
to this model are the throttle angle and the 
brake force. The outputs are the car's speed and 
acceleration. 

Each car has a radar system above its front 
bumper. The radar measures the distance and 
the velocity difference between the computer- 
controlled car and the car ahead. 

20OO 

o 

i 
1 0 0 0  

,oo ~ ,;o ,;o s~o 
b~t v a l u e  
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6OO 

Fig. 23. Brake force as a function of the actuator bit value. 

bit value using F = ma and (38) with brake data 
from the Lincoln Town Car. 

5.2. Brake models 6. Simulation and test results 

We modeled the brake to test the fuzzy brake 
controller. The Ford-tuned car model in Fig. 22 
needs an input brake torque. The brake controller 
gives as output a bit value to the brake actuator. 

We modeled the brake using brake data from 
VORAD Incorporated. The test car was a Lincoln 
Town Car. The data gave the deceleration based on 
the brake actuator bit input value and the car 
velocity. Newton's second law F = ma gave the 
total force that equals the input bit value for the 
mass m of 4031 lb. 

The nonlinear validated longitudinal car model 
gave a total drag force Y in lb: 

Y = 50 + 0.819 x V + 0.0192 x V z. (38) 

V is the car velocity in miles per hour (mph). Sub- 
tracting the drag force from the total force gives the 
brake force that corresponds to the brake actuator 
input bit value: 

f b = F - Y -- O. (39) 

Fb is the brake force and D is the force from an 
external disturbance such as a hill. We interpolated 
between data points to get the curve in Fig. 23. It 
shows the brake force with respect to the actuator 

6. I. Learning fuzzy  rules 

We used the hybrid learning system described in 
Section 3 to learn the fuzzy sets and rules for the 
velocity controller. Unsupervised learning gave the 
first set of rules. Then we tuned these rules to 
improve the controller's response. The training 
data came from the car model in (36) and (37) [19]. 
The leader velocity controller in [6] gave 7500 
training samples in 200 trajectories for a sports 
utility car. The training vectors (a, Av, 0thro,,e) de- 
fined points in the 3-D input-output  space. Un- 
supervised ellipsoid covariance learning clustered 
the data and computed its local statistics. The 
adaptive vector quantization system had 450 
synaptic vectors or local pattern classes as dis- 
cussed in Appendix B. The sum of the ellipsoid 
projections onto each axis of the state space gave 
a histogram of the density of the pattern classes. We 
chose 7 if-part subsets of each of the input axes. The 
center of each fuzzy set matched a peak in the 
histogram. 

We partitioned the state space into a grid of rule 
patches. To find the rules we counted the number of 
synaptic vectors in each cell. Clusters of synaptic 
vectors in fuzzy rule cells defined the rules [14]. 
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Appendix B gives the details of this unsupervised 
product space clustering. 

Then supervised learning tuned the rules to min- 
imize the mean-squared error for the training data. 
There were 49 rules. The supervised system used 
30 000 cycles to tune the 49 rules. Fig. 24 compares 
the platoon velocity for the lone unsupervised and 
hybrid controllers. The desired velocity was 25 m/s. 
The hybrid controller accelerated faster than did 

,9 

Fig. 24. Comparison of the velocity controller performance 
after lone unsupervised learning and after hybrid learning with 
unsupervised clustering and supervised gradient descent. The 
hybrid controller gave a faster response and had no overshoot. 
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Fig. 25. Simulation results for the second follower car in a three-car platoon. The car changes speed in the presence of hills. It tends to 
maintain the desired gap of 9 m between it and the platoon leader. The throttle actuator had a mechanical delay of 0.25 s. 
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the unsupervised learning system. The hybrid con- 
troller had no overshoot at the desired speed. 

6.2. Gap controller with throttle only 

The hardware on the test car had limited mem- 
ory and used only integer operations. We stored the 
fuzzy controller as a look-up table based on the 
fuzzy sets and rules in Section 4.2. We simulated 
small platoons over a range of velocity changes. 
The throttle actuator had a mechanical delay of 
0.25 s. We used the validated car model Fig. 22 for 
these simulations. Figs. 25 and 26 show the results 
for a three-car platoon that changes velocity due to 
terrain changes such as hills. The desired gap dis- 

tance was 9 m. The follower cars maintained the 
desired gap distance except for the transients at the 
start of the simulation. 

We also simulated cases where additive measure- 
ment noise corrupted the sensor input Avi(k). The 
single-to-noise ratio (SNR) 

0 - 2  
x 

SNR = 1 0 1 o g l o ~ d b  (40) 

measured the uncertainty in the sensor data. Here 
a2 and or. 2 stand for the variance of the velocity 
difference signal Avl and the variance of the 
measurement noise. Figs. 27 and 28 show that 
the fuzzy throttle system gave robust control in the 
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Fig. 26. S imula t ion  results  for the th i rd  fol lower car in a three-car  p la toon.  The third car tends to m a i n t a i n  the desired gap  of 9 m 

between it and  the second car but  it does so wi th  more  variabi l i ty .  
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Fig. 27. Simulation results for the follower car in a two-car platoon when the signal-to-noise ratio is 27 db. The gap error due to noise 
never exceeds 1 m. 

presence of noise. The noise had little effect on 
the velocity of the follower car in the two-car  pla- 
toon. The noise did make the gap jiggle but never 
by more  than 1 m. 

6.3. Roadway  tests )Cor throttle controller 

We tested the gap controller  on highwar 1-15 in 
Escondido,  California. We put our  controller  in 
a Lincoln Town  Car  from V O R A D  Incorporated.  
The follower car got data f rom the radar  system on 
the front of  the car. 

The radar  measured the distance and the velocity 
difference between the computer-control led  car and 
the car ahead. The radar  tracked the car ahead and 

had a measurement  delay of 0.05 s. Fig. 29(a) shows 
the follower car gap as the p la toon accelerated. 
Fig. 29(b) shows the closing rate between the cars. 
Fig. 29(c) shows the throttle value as the car 
accelerated. The desired gap was 125 ft. The fol- 
lower car dropped back because the initial gap was 
too short. 

The platoon went up and down hills in the sec- 
ond test. The desired gap was again 125 ft. The 
follower car dropped back as the p la toon started 
up the hill. Fig. 30(a) shows the gap distance as the 
pla toon went up a hill. The follower dropped  back 
and then moved to the right gap. Fig. 30(b) shows 
the closing rate between the cars. The spike at 15 s 
occurred when the radar  sensor briefly lost the lead 
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Fig. 28. Simulation results for the follower car in a two-car platoon when the signal-to-noise ratio is 11 db. The additive noise has less 
effect on the car's velocity than on the gap it tries to maintain with the lead car. 

car  in  the p l a toon .  T h e  fo l lower  car  m a i n t a i n e d  
a c o n s t a n t  th ro t t l e  un t i l  the  sensor  detec ted  a new 
target .  Fig.  30(c) shows  the th ro t t l e  va lue  as the car  

wen t  up  the  hill. 

6.4. Gap controller with throttle and brake 

T h e  gap  con t ro l l e r  m u s t  use the b rakes  to slow 
the car  if the  eng ine  t o r q u e  is n o t  sufficient. W e  
s im u la t ed  cases where  b r a k i n g  can  av o i d  a co l l i s ion  
as w h e n  the p l a t o o n  mo v es  up  a n d  d o w n  hills or  

w h e n  the  p l a t o o n  slows d o wn .  
W e  s i m u l a t e d  hills as ex te rna l  d i s tu rbances .  

Fig. 31 shows the leader  car ' s  veloci ty  profi le  a n d  

the ex te rna l  d i s tu rbances .  These  d i s t u r b a n c e s  cor-  
r e s p o n d  to a 5 %  grade  b o t h  uphi l l  a n d  downhi l l .  
Fig. 32 shows the s i m u l a t i o n  resul ts  wi th  the 
t h ro t t l e -on ly  gap  cont ro l le r .  The  car  c a n n o t  avo id  

a co l l i s ion  w i t h o u t  b r a k i n g  due  to the s teep d o w n -  

hill  grades.  
Fig. 33 shows the s i m u l a t i o n  resul ts  for a gap  

con t ro l l e r  tha t  uses b o t h  the  b r a k e  a n d  throt t le .  
The  fol lower  car  appl ies  the b rakes  so tha t  it will  
n o t  hit  the leader.  The  gap  decreases  to 5 m before 

the  car  slows to the des i red speed of  60 mph .  
The  fol lower  cars  also need  b r ake  con t ro l  w h e n  

the p l a t o o n  slows down .  Fig.  34 shows the s imu la -  
t ion  resul ts  w i t h o u t  u s ing  a b r ake  w h e n  the p l a t o o n  
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Fig. 29. Follower car data as a two-car platoon accelerates on the highway. (a) shows the gap. (b) shows the closing rate between the 
cars. (c) shows the throttle values for the follower cars. The follower car drops back because the initial gap was less than the desired gap 
of 125 ft. The radar had a measurement delay of 0.05 s. 

decelerates. The leader car decelerates from 70 to 
50 mph starting at t = 160 s. The leader car main- 
tains 50mph at t = 170s. The deceleration at 
t = 160 s forced the follower car to brake to avoid 
a collision. Engine torque cannot slow the car 
down enough. Fig. 35 shows the simulation results 
of the combined throttle and brake system. The 
combined system avoids the collision and does not 
oscillate between the throttle and brake. 

7. Conclusion 

Additive fuzzy systems can control the velocity 
and the gap of cars in single-lane platoons. We used 
this controller to drive the smart car on the high- 
way in a two-car platoon. We first designed and 
tested the controller using throttle only with a 
validated car model and then with a real car on 
highway 1-15 in California. Then we added the 
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Fig. 30. Follower car data as a two-car platoon climbs a hill. (a) shows the gap. (b) shows the closing rate between the cars. The spike at 
15 s shows where the radar sensor briefly lost the lead car in the platoon. (c) shows the throttle values for the follower cars as the platoon 

went uphill. 

brake controller and simulated it. The next phase of 
the fuzzy platoon controller will add the steering 
controllers so the platoon can maneuver on the 
highway. 

The controller worked well for coupled systems 
where a series of objects must track and predict the 
object in front of it. Networks of these controllers 
could control the rate of message or car traffic flow 
through electronic and physical intersections. The 
coupled system can differ. The distributed structure 

of the fuzzy controller could apply to factory as- 
sembly lines or to robotic limb control. 

Unsupervised ellipsoidal learning tuned the 
fuzzy rules and sets for cars of different sizes and 
engine types. This gives a new way to find a fuzzy 
system using only data from a human driver or 
other controller. Supervised learning further tuned 
the rules. Ellipsoidal learning can tune any control 
system if it has access to input-output  data as in the 
control of many biological or economic processes. 
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Fig. 31. Profile of the leader car in a two-car platoon. External forces model hills. The triangles model both a 5% grade uphill and 
downhill. 

On-line adaptive fuzzy control systems with ellip- 
soidal learning can adapt the system over time as 
engine parameters and road conditions change. 
Future learning schemes may tune the ellipsoidal 
rules with techniques other than gradient descent 
or may use rules of other shapes that give a better 
function approximation. 
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Appendix A: SAM theorem 

Theorem. Suppose the fuzzy  system F : R n ~  R p 
is a standard additive model (SAM): F ( x ) =  
Centroid(B) = Centroid()~  1 aj(x)Bj). Then F(x) 
is a convex sum of the m then-part set centroids: 

" aj(x)Vjcj 
F(x) = XJml  = pj(x)Cj .  (A.1) 

Ej  = 1 aj(x) V~ j= 1 

The convex coefficients or discrete probability 
weights pl(x) . . . . .  p,,(x) depend on the input 
x through 

aj(x) Vj 
m pj(x)  = Yk  = 1 a , (x )  Vs" (A.2) 
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Fig. 32. Simulation results for the follower car using the throttle only for going uphill and downhill. The follower car cannot slow down 
enough to avoid hitting the lead car on the downhill grade (t ~ 170 s). 

V j is the f in i te  posi t ive volume (or area zfp = 1) and c~ 
is the centroid o f  the then-part  set  Bj: 

b j ( y , ,  ... , ' yp)dy l  ... dyp > 0, (A.3) v,= 
OR p 

5w' y b j ( y l  . . . .  , yp)dy~ ... dyp (A.4) 
cj = 5R,'ba(Yl . . . .  , y p ) d y l  "'" dyp " 

P r o o f i  There  is n o  toss of genera l i ty  to prove  the 
theorem for the sca la r -ou tpu t  case p = 1 when 
F : R ' ~  R p. This simplifies the nota t ion .  We need 
but  replace the scalar  integrals  over  R with the 
p-mul t ip le  or  volume integrals  over  R p in the p roo f  
to prove  the general  case. The  s c a l a r  case p = 1 

gives (A.3) and  (A.4) as 

V i = bj(y) dy, (A.5) 
- -  JC 

~ f ,  Y b i ( Y ) d y  (A.6) 
cj - .[ 2 ~ hi(y) dy  

Then the theorem follows by expand ing  the cen- 
t ro id  of B and invoking  the S A M  assumpt ion  
F(x )  = Cent ro id(B)  = C e n t r o i d ( y . ~ '  l aj(x)B2) to 
rear range  terms: 

F(x) = C e n t r o i d ( B )  ( A . 7 )  

_ ~ y b ( y ) d y  (A.8) 
~:: b ( y ) d y  
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Fig. 33. Simulation results for the follower car with a gap controller that combines throttle and brakes. The cars follow the velocity and 
terrain profile in Fig. 24. The follower car approaches the leader but does not collide with it. 

m 

m 

m ~ ~ }~./=1 b}(y)dy  
(A.9) 

= ~ f2 ~ y 5~'=~ aj(x) bj(y) dy (A. 10) 
??1 

~,~ 2j=1 ai (x)bj (y)dy  

We can  fur ther  weight  each rule with a scalar  

weight  w i to give 

= (i~ wjai(x)Bi) F(x) C e n t r o i d  (A.14) 

m 2~ m 

_ _  ~ j = l  a J ( X ) ~ - o c  Ybj(y)dy  - Xj=l aj(x)~-,~, b i ( y ) d y  (A.11) _ 2 j =  1 wfi j (x)Vicj  
m - 3~"j21 wiai(x)Vi (A.15) 

g 2 "  aj(x) 2(~_~ vbj(y}dy)/Vj 
= J=~ ,, " (A.12) 2j=, ai(x) v1 

2 j m l  aj(x) VFj  
[ ]  (A.13) m E j=, a/x) vj 

The  weight  wj has the same  form as the a rea  or  
v o l u m e  weight  Vi. We  use wl . . . . .  Wm > 0 in the 
paper .  So the weighted  s u m  (A.15) reduces  to (A.1). 
The  cen t ro ida l  s t ruc ture  (A.7) a n d  (A.8) of the fuzzy 
sys tem shows that  all cen t ro ida l  fuzzy sys tems 
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Fig. 34. Simulation results using throttle only for a lead car deceleration of 0.099. The follower car collides with the leader at t ~ 165 s. 

compute  a condi t ional  expectation: 

F(x) S ~  yb(x, y)dy (a.16) 
= S-~ oo b (x, y) dy 

= yp(y[x)dy (A.17) 
oo, 

= El-Y IX = x] (A.18) 

since 

b(x, y) (A.19) 
p(ylx)  = ~_~ b(x, y)dy 

defines a condi t ional  probabi l i ty  density even 
though b(x, y ) >  1 may  hold for the integrable 
function b >/O. 

The  SAM ratio (A.1) reduces to Sugeno's  1-21] 
"center of gravi ty"  model  

rtl 

F(x) = }~j=l~ aj(x)Pj (A.20) 
E j  =1 aj(x) 

if the peaks  Pj of the then-par t  sets Bj equal the 
then-par t  set centroids c~ and if all then-par t  sets 
Bj have the same nonzero  area  or  volume Vj: 
Pj = cj and V1 . . . . .  Vm > O. 

A p p e n d i x  B. Learning  in S A M s :  unsupervised 
c lustering and supervised gradient  descent  

A fuzzy system learns if and only if its rule 
patches move  or change shape in the i n p u t - o u t p u t  
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Fig. 35. Simulation results combining the throttle and brake controllers for a platoon deceleration of 0.09¢]. The follower car approaches 
the leader but does not collide with it. 

product space X x Y. Learning might change the 
centers or widths of triangle or trapezoidal sets. 
These changing sets then change the shape or posi- 
tion of the Cartesian rule patches built out of them. 
The mean-value theorem and the calculus of vari- 
ations show [16] that optimal lone rules cover the 
extrema or bumps of the approximand. Good 
learning schemes [4, 5] tend to quickly move rule 
patches to these bumps and then move extra rule 
patches between them as the rule budget allows. 
Hybrid schemes use unsupervised clustering to 
learn the positions and number of the first set of 
fuzzy rule patches and to initialize the gradient 
descents of supervised learning (see Fig. 4). 

Learning changes system parameters with data. 
Unsupervised learning amounts to blind clustering 
in the system product space X x Y to learn and 
tune the m fuzzy rules or the sets that compose 
them. Then k quantization vectors qj E X x Y move 
in the product space to filter or approximate the 
stream of incoming data pairs (x(t),y(t)) or the 
concatenated data points z(t)= [x(t)ly(t)] T. The 
simplest form of such product space clustering [14] 
centers a rule patch at each data point and thus puts 
k = m. In general both the data and the quantizing 
vectors greatly outnumber the rules and so k >> m. 

A natural way to grow and tune rules is to 
identify a rule patch with the uncertainty ellipsoid 
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[3, 4] that forms around each quantizing vector 
qj from the inverse of its positive definite covariance 
matrix Kj. Then sparse or noisy data grow a patch 
larger and thus a less certain rule than does denser 
or less noisy data. Unsupervised competitive learn- 
ing [14] can learn these ellipsoidal rules in three 
steps: 

II z( t )  - qj(t)  II 

= min(llz(t) - q~(t)II . . . . .  [I z(t)  - qk(t)H), (B.1) 

f qj( t)  + I t t[z( t )  - qj(t)] if i = j ,  
qi(t + 1) (13.2) 

[q~(t) if i # j ,  

K~(t + 1) 

K2(t)  + v ,[ (z ( t )  - q j ( t ) )T(z( t )  -- q~(t) -- K~(t)] 

= if i = j ,  (B.3) 
K~(t) if i # j  

2 for the Euclidean norm ]1 z [I 2 2 + ... + z,+v. = - Z  1 

The first step (B.1) is the competitive step. It picks 
the nearest quantizing vector qj to the incoming 
data vector z( t)  and ignores the rest. Some schemes 
may count nearby vectors as lying in the winning 
subset. We used just one winner per datum. This 
correlation matching approximates a great deal of 
the competitive dynamics of nonlinear neural net- 
works. The second step updates the winning quant- 
ization or "synaptic" vector and drives it toward 
the centroid of the sampled data pattern class [13]. 
The third step updates the covariance matrix of the 
winning quantization vector. We initialize the 
quantization vector with sample data (qi(O) = z(i)) 
to avoid skewed groupings and to initialize the 
covariance matrix with small positive numbers on 
its diagonal to keep it positive definite. Projection 
schemes [3-7] can then convert the ellipsoids into 
coordinate fuzzy sets. Other schemes can use the 
unfactored joint set function directly. Supervised 
learning can also tune the eigenvalue parameters of 
the rule ellipsoids. 

The sequences of learning coefficients {p,} and 
{vt} should decrease slowly [14] in the sense of 
~ = x P t  = ~ but not too slowly in the sense of 
}~t= 1/~ < oo. In practice #t ~ 1/t. The covariance 
coefficients obey a like constraint as in our choice 
of vt = 0.211 - t /1.2 N ]  where N is the total num- 

ber of data points. The supervised learning schemes 
below also use a like sequence {/2,} of decreasing 
learning coefficients. 

Supervised learning changes SAM parameters 
with error data. The error at each time t is the 
desired system output minus the actual SAM out- 
put: e,~ = d~ - F(x~).  Unsupervised learning uses the 
blind data point z(t)  instead of the desired or 
labeled value dr. The teacher or supervisor super- 
vises the learning process by giving the desired 
value d, at each training time t. Most supervised 
learning schemes perform stochastic gradient de- 
scent on the squared error and do so through 
iterated use of the chain rule of differential calculus. 

Supervised gradient descent can learn or tune 
SAM systems [7, 17] by changing the rule weights 
wj in (BAh the then-part volumes Vj, the then-part 
centroids c j, or parameters of the if-part set func- 
tions a i. The rule weight wj enters the ratio form of 
the general SAM system 

F ( x )  = y j''- l w j a j ( x )  V j c j  (B.4) 
E5"-i w ia j (x )  Vj  

in the same way as does the then-part volume Vj in 
the SAM theorem. Both cancel from (A.13) if they 
have the same value if wl . . . . .  w m > O o r i f  
V~ . . . . .  V,, > 0. So both have the same learn- 
ing law if we replace the nonzero weight wj with the 
nonzero volume Vj or V;: 

¢q E t 
wj(t + 1) = wj(t)  - IXt Owj (B.5) 

OEt OF 
= w2(t) - txt OF Owj (B.6) 

Ittet p j (x t )  = wj tO  + ' 7 j ~ t )  [c~ - F i x , ) ]  (B.7) 

for instantaneous squared error E, = ½(d, - F ( x t ) )  2 

with desired-minus-actual error e, = dt - F(x t ) .  We 
include the rule weights here for completeness. Our 
fuzzy systems were unweighted and thus used 
wl . . . . .  W m >  0. The volumes then change in 
the same way if they are independent of the weights 
(which they may not be in some ellipsoidal learning 
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schemes): 

~? Et 
v a t  + 1) = v~(t) - ~, ~vi  ( B . 8 )  

p~(x,) [c~ - F(xD]. (B.9) : Vitt) + ~ ' ~ ' ~ / t )  

The learning law (B.7) follows since ~Ejc~w~ = - e  
and since 

~F 

c~w j 

%y"]_, w~aL~) V, w~a~(x) v, 

_ p~(x) [c~ - F ( x ) ]  
wj  

from the SAM theorem. 
The  centroid c~ in 

simplest learning law: 

(B.10) 

27'___, y,a,(~) V,_____2"~] 
77- , w a,(x) V~ J 

( R l l )  

(B.12) 

the SAM theorem has the 

OEt ?F 
cj(t  + 1) = cj(t) - tt, OF ~c~ (B.13) 

= cj(t) + l~,g,pj(xt). (B.14) 

So the terms w j, V~, and cj do not change when 
pj ~ 0 and thus when the j t h  if-part set barely fires: 
a & , )  .~ O. 

Tuning the if-part sets involves more  compu ta -  
t ion since the update  law contains an extra-part ia l  
derivative. Suppose  the if-part set function a~ is 
a function of / parameters :  aj = aj (m)  . . . . .  mS). 
Then we can update  each pa rame te r  with 

c~E, ~F c~aj 
m~(t + 1) = m~(t) -- p, c.~F (~a.l Om~ 

pj(x,) 
= m~(t) + l a , e t ~  kcj - F ( x , ) ]  - -  

(B.15) 

0aj 
[~m k" 

t8.16) 

The exponent ia l  if-part set functions can re- 
duce the learning complexity.  They have the 

form a~ = e £"< ..... '<) and obey caJcmj3 ,~ k : 

a it?Ji(m ) . . . . .  m}) /&n k. Then the pa rame te r  update  
(B.16) simplifies to 

~.~g 
m~(t + 1) = m~(t) + p, gtpa(x,)[ca -- F(xt)] ~m~jk :. 

(8.17) 

This can arise for independent exponential  or Gaus-  
sian sets aj(x) = [Ii=1" exp{.~.i(xi)} = exp.{ 32i=l)',(x,)~ " 7 . 
= exp{fj(x)}.  The exponential  set function aj(x)  

n i ~i = exp{ ~i=1 ua(t~ - xi)} has partial  derivatives 
k ?fj /?u~ = v k - Xk(t) and ~[j/~v~ = uj .  

The Gauss ian  set function 

a j ( x ) = e x p  - 2 i : , \ ~ .  / J 

has mean part ial  derivative c?)}/~m~ = ( : q -  m~)/  
(a~) 2 and variance partial  derivative ~ / { ? a ~  = 
(X k k 2 k 3 - m  j) ~(a j) . Such Gauss ian  set functions re- 
duce the SAM model  to Specht 's  [20] radial 
basis function network.  We can use the smooth  
update  law (B.17) to update  nondifferentiable tri- 
angles or t rapezoids  or other  sets by viewing their 
centers and widths as the Gauss ian  means  and 
variances. 
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