
Neural Networks 120 (2019) 9–31

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2019 Special Issue

Noise-boosted bidirectional backpropagation and adversarial learning
Olaoluwa Adigun, Bart Kosko ∗
Department of Electrical and Computer Engineering, Signal and Image Processing Institute, University of Southern California, Los
Angeles, CA 90089-2564, USA

a r t i c l e i n f o

Article history:
Available online 17 October 2019

Keywords:
Bidirectional backpropagation
Neural networks
Noise benefit
Stochastic resonance
Expectation–Maximization algorithm
Bidirectional associative memory
Noise benefit

a b s t r a c t

Bidirectional backpropagation trains a neural network with backpropagation in both the backward
and forward directions using the same synaptic weights. Special injected noise can then improve the
algorithm’s training time and accuracy because backpropagation has a likelihood structure. Training
in each direction is a form of generalized expectation–maximization because backpropagation itself
is a form of generalized expectation–maximization. This requires backpropagation invariance in each
direction: The gradient log-likelihood in each direction must give back the original update equations of
the backpropagation algorithm. The special noise makes the current training signal more probable as
bidirectional backpropagation climbs the nearest hill of joint probability or log-likelihood. The noise for
injection differs for classification and regression even in the same network because of the constraint
of backpropagation invariance. The backward pass in a bidirectionally trained classifier estimates the
centroid of the input pattern class. So the feedback signal that arrives back at the input layer of
a classifier tends to estimate the local pattern-class centroid. Simulations show that noise speeded
convergence and improved the accuracy of bidirectional backpropagation on both the MNIST test set
of hand-written digits and the CIFAR-10 test set of images. The noise boost further applies to regular
and Wasserstein bidirectionally trained adversarial networks. Bidirectionality also greatly reduced the
problem of mode collapse in regular adversarial networks.

© 2019 Published by Elsevier Ltd.

1. Introduction: From adaptive resonance to noise-boosted
bidirectional backpropagation and adversarial learning

What is a feedback signal that arrives at the input layer of a
neural network?

Grossberg answered this question with his adaptive resonance
theory or ART: The feedback signal is an expectation (Gross-
berg, 1976, 1982, 1988). The neural network expects to see this
feedback signal or pattern given the current input signal that
stimulated the network and given the pattern associations that
it has learned. So any synaptic learning should depend on the
match or mismatch between the input signal and the feedback
expectation (Grossberg, 2017).

Grossberg gave this ART answer in the special case of a
2-layer neural network. The two layers defined the input and
output fields of neurons. The two layers can also define two
stacked contiguous layers of neurons in a larger network with
multiple such stacked layers (Bengio et al., 2009). The topological
point is that the neural signals flow bidirectionally between
the two layers. There are no hidden or intervening layers. The
synapses of the forward flow differ in general from the synapses
of the backward flow.

∗ Corresponding author.
E-mail address: kosko@usc.edu (B. Kosko).

A bidirectional associative memory or BAM results if the two
synaptic webs are the same (Kosko, 1987, 1988, 1990, 1991a).
A BAM is in this sense a minimal 2-layer neural network. The
input signal passes forward through a synaptic matrix M . Then
the backward signal passes through the transpose MT of the same
matrix M . This minimal BAM structure holds for stacked con-
tiguous layers that reverberate through the same weight matrix
M (Graves, Mohamed, & Hinton, 2013; Vincent, Larochelle, Lajoie,
Bengio, & Manzagol, 2010).

The basic BAM stability theorem results if the network uses
the transposeMT for the backward pass because then the forward
and backward network Lyapunov functions are equal. The BAM
theorem states that every real rectangular matrix M is bidirec-
tionally stable for threshold or sigmoidal neurons: Any input
stimulation quickly leads to an equilibrium or resonating bidirec-
tional fixed point of a fixed input vector and a fixed output vector.
This BAM stability holds for the wide class of Cohen-Grossberg
neuron nonlinearities (Cohen & Grossberg, 1983; Kosko, 1990,
1991a). It still holds even if the synaptic weights simultane-
ously change in accord with a Hebbian or competitive learning
law (Kosko, 1991a). It also holds for time-lags and for many other
recent extensions of the basic neuron models (Ali, Yogambigai,
Saravanan, & Elakkia, 2019; Bhatia & Golman, 2019; Maharajan,
Raja, Cao, Rajchakit, & Alsaedi, 2018; Wang, Chen, & Liu, 2018).

https://doi.org/10.1016/j.neunet.2019.09.016
0893-6080/© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.neunet.2019.09.016
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.09.016&domain=pdf
mailto:kosko@usc.edu
https://doi.org/10.1016/j.neunet.2019.09.016

10 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Fig. 1. Two bidirectional representations of the 4-bit bipolar permutation function in Table 1. (a) A 3-layer bidirectional associative memory (BAM) exactly represents
the permutation function and its inverse. The forward or left-to-right direction encodes the permutation mapping. The backward or right-to-left direction encodes
the inverse mapping. Noiseless bidirectional backpropagation trained the BAM network. The best set of weights and thresholds used a single hidden layer with
5 threshold neurons. (b) A noise-boosted 3-layer BAM that exactly represents the same permutation function and its inverse. Bidirectional backpropagation with
NEM-noise injection trained the network. The NEM noise boost reduced the number of hidden neurons from 5 to 4.

Simple fixed-point stability need not hold in general when the
BAM contains one or more hidden layers of nonlinear units. It
does hold for the two 3-layer BAM networks in Fig. 1 because
they represent the invertible permutation mapping in Table 1.
Simulations showed that such multilayer feedback BAMs still
often converged to fixed points. Fig. 3 and Tables 2–7 show how
this convergence behavior varied with the number of hidden
layers and the number of neurons per layer.

1.1. BAMs extend to multilayer networks

The ART and BAM concepts apply in the more general case
when the network has any number of hidden or intervening
neural layers between the input and output layers. This paper
considers just such generalized or extended ART–BAM networks
for supervised learning.

The extended BAM’s feedback structure depends on the neural
network’s reverse mapping NT

: RK
→ Rn from output vectors

y ∈ RK back to vectors x in the input pattern space Rn. Suppose
that the vector input pattern x ∈ Rn stimulates the multilayer
neural network N . It produces the vector output y = N(x) ∈ RK .
Then the feedback signal x′ is the signal NT (y) that the network
N produces when it maps back from the output y = N(x) through
its web of synapses to the input layer: x′ = NT (y) = NT (N(x)).

We use the notation NT (y) to denote this feedback signal.
The backward direction uses only the transpose matrices MT of
the synaptic matrices M that the network N uses in the for-
ward direction. So these deep networks define generalized BAM

Table 1
4-bit bipolar permutation function (self-bijection) and its inverse
that the 3-layer BAM networks represent in Figs. 1(a) and (b). The
inverse simply maps from the output y back to the corresponding
input x.
Input x Output y

[− − −−] [+ + −−]

[− − −+] [+ + +−]

[− − +−] [+ + ++]

[− − ++] [+ + −+]

[− + −−] [+ − −+]

[− + −+] [− + −+]

[− + +−] [+ − −−]

[− + ++] [− + −−]

[+ − −−] [+ − ++]

[+ − −+] [− + ++]

[+ − +−] [+ − +−]

[+ − ++] [− + +−]

[+ + −−] [− − +−]

[+ + −+] [− − −−]

[+ + +−] [− − −+]

[+ + ++] [− − ++]

networks with complete unidirectional sweeps from front to back
and vice versa.

The transpose notation NT also makes clear that the feedback
or backward signal NT (y) differs from the set-theoretic inverse or
pullback N−1(y). The pullback mapping N−1 : 2RK

→ 2Rn always
exists. It maps sets B in the output space to sets A in the input
space: A = N−1(B) = {x ∈ Rn

: N(x) ∈ B} if B ⊂ RK . So the

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 11

Table 2
BAM stability without training. The network used no hidden neurons. The input–output configuration was n←→ p.
There were n input threshold neurons and p output threshold neurons. We picked the BAM matrix values uniformly
from the bipolar interval [−1, 1].

Network configuration % of convergence Max run to converge Max period for non-convergence

Bipolar

5 ←→ 5 100% 5 runs 0
10 ←→ 10 100% 7 runs 0
50 ←→ 50 100% 15 runs 0
100 ←→ 100 100% 24 runs 0
500 ←→ 500 100% 60 runs 0

Binary

5 ←→ 5 100% 6 runs 0
10 ←→ 10 100% 10 runs 0
50 ←→ 50 100% 13 runs 0
100 ←→ 100 100% 20 runs 0
500 ←→ 500 100% 30 runs 0

Table 3
Stability of bidirectional associative memory (BAM) networks without training. We picked the synaptic weights uniformly in the bipolar interval [−1, 1]. The networks
used either one or two hidden layers of threshold neurons and so did not always yield a BAM fixed point. The network configuration was n ←→ h1 ←→ p for
networks with one hidden layer and n←→ h1 ←→ h2 ←→ p for networks with two hidden layers. The term n equaled the number of input neurons, h1 was the
size of the first hidden layer in terms of its threshold neurons, h2 was the size of the second hidden layer, and p was the number of output neurons. There were
50 hidden neurons in total.

Network configuration % of convergence Max run to converge Max run for non-convergence

Bipolar

5 ↔ 50↔ 5 89.6% 9 runs 5 runs
10 ↔ 50↔ 10 79.1% 15 runs 10 runs
50 ↔ 50↔ 50 43.4% 99 runs 100 runs
100 ↔ 50↔ 100 53.6% 85 runs 84 runs
500 ↔ 50↔ 500 99.4% 10 runs 2 runs

Binary

5 ↔ 50↔ 5 79.9% 9 runs 9 runs
10 ↔ 50↔ 10 62.5% 22 runs 19 runs
50 ↔ 50↔ 50 37.5% 99 runs 100 runs
100 ↔ 50↔ 100 57.8% 91 runs 99 runs
500 ↔ 50↔ 500 99.4% 10 runs 2 runs

Bipolar

5 ↔ 25↔ 25↔ 5 81.3% 8 runs 99 runs
10 ↔ 25↔ 25↔ 10 62.7% 14 runs 100 runs
50 ↔ 25↔ 25↔ 50 44.6% 44 runs 100 runs
100 ↔ 25↔ 25↔ 100 51.9% 30 runs 100 runs
500 ↔ 25↔ 25↔ 500 54.7% 26 runs 100 runs

Binary

5 ↔ 25↔ 25↔ 5 63.6% 11 runs 99 runs
10 ↔ 25↔ 25↔ 10 43.4% 34 runs 100 runs
50 ↔ 25↔ 25↔ 50 50.8% 71 runs 100 runs
100 ↔ 25↔ 25↔ 100 72.1% 38 runs 100 runs
500 ↔ 25↔ 25↔ 500 99.5% 12 runs 100 runs

set-theoretic inverse N−1(y) = N−1({y}) = A partitions the input
pattern space Rn into the two sets A and Ac . All pattern vectors x
in A map to y. All other inputs map elsewhere.

The point inverse N−1 : RK
→ Rn exists only in the rare

bijective case that the network N : Rn
→ RK is both one-to-one

and onto and n = K . The 3-layer BAM networks in Fig. 1(a)–(b)
are just such rare cases of bijective networks because they exactly
represent the permutation mapping in Table 1. The bidirectional
learning algorithms below do not require that the networks N
have a point inverse N−1.

Extending BAMs to multilayer networks entails relaxing BAM
fixed-point stability in general. Stability still holds between any
two contiguous fields that reverberate in isolation or subject
only to fixed or slowly changing inputs from adjoining neural
layers. Some of the figures below show how simple fixed-point
BAM stability tends to fall off as the number of hidden layers
increases. We often take as the network’s output its first forward
and backward results. We can also let the BAM reverberate in
multiple back-and-forth sweeps before we record an equilibrium
or quasi-equilibrium output.

1.2. The implicit bidirectionality of classifier networks

An important special case is the modern deep classifier net-
work (Bishop, 2006; Jordan & Mitchell, 2015; LeCun, Bengio, &
Hinton, 2015; Mohri, Rostamizadeh, & Talwalkar, 2018). These

feedforward networks map images or videos or other patterns
to K softmax output neurons. The input neurons are most often
identity functions because they act as data registers.

Classifier networks map patterns to probability vectors. A
softmax output activation has the ratio form of an exponential
divided by a sum of K such exponentials. So the output vector
y = N(x) defines a probability vector of length K . The network
output y is a point in the K -1-dimensional simplex SK−1 ⊂ RK .

Supervised learning for the classifier network uses 1-in-K
encoding for the K standard basis or unit bit vectors e1, . . . , eK .
Input pattern x ∈ Ck ⊂ Rn should map to the corresponding kth
unit bit vector ek ∈ SK−1 if Ck is the kth input pattern class. An
ideal classifier emits N(x) = ek if and only if x ∈ Ck. Then the K
set-theoretic pullbacks N−1(ek) of the K basis vectors ek partition
the input pattern space Rn into the K desired pattern classes Ck:
Rn
= ∪

n
k=1N

−1(ek) = ∪n
k=1Ck.

A classifier network defines a bidirectional feedback system
despite its feedforward mapping of patterns to probabilities. Most
users simply ignore the backward pass and thus ignore the overall
bidirectional structure. The reverse network NT

: SK−1 → Rn

can always map probability descriptions y back to patterns in
the input space through the reverse mapping NT by using the
transpose of all synaptic weight matrices. This holds even when
the classifier encodes time-varying patterns in simple recurrent
loops among their hidden layers (Hochreiter & Schmidhuber,
1997).

12 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Table 4
Stability of multilayered BAMs without training. We picked the synaptic weight values uniformly in the bipolar interval [−1, 1]. The networks used one or two
hidden layers of threshold neurons. The configuration was n ←→ h1 ←→ p for BAM networks with one hidden layer and n ←→ h1 ←→ h2 ←→ p for BAM
networks with two hidden layers. The term n equaled the number of input threshold neurons, h1 was the size of the first hidden layer in terms of its threshold
neurons, h2 was the size of the second hidden layer, and p was the number of output threshold neurons. There were 200 hidden neurons in total.

Network configuration % of convergence Max run to converge Max run for non-convergence

Bipolar

5 ↔ 200↔ 5 90.4% 7 runs 5 runs
10 ↔ 200↔ 10 77.4% 12 runs 8 runs
50 ↔ 200↔ 50 27.0% 99 runs 100 runs
100 ↔ 200↔ 100 2.0% 99 runs 100 runs
500 ↔ 200↔ 500 1.9% 99 runs 100 runs
1000 ↔ 200↔ 1000 54.5% 99 runs 100 runs

Binary

5 ↔ 200↔ 5 90.4% 8 runs 6 runs
10 ↔ 200↔ 10 61.7% 25 runs 12 runs
50 ↔ 200↔ 50 3.1% 98 runs 100 runs
100 ↔ 200↔ 100 0.0% No convergence 100 runs
500 ↔ 200↔ 500 1.8% 99 runs 100 runs
1000 ↔ 200↔ 1000 54.5% 99 runs 100 runs

Bipolar

5 ↔ 100↔ 100↔ 5 78.7% 9 runs 100 runs
10 ↔ 100↔ 100↔ 10 55.2% 13 runs 100 runs
50 ↔ 100↔ 100↔ 50 2.2% 90 runs 100 runs
100 ↔ 100↔ 100↔ 100 0.9% 96 runs 100 runs
500 ↔ 100↔ 100↔ 500 1.5% 96 runs 100 runs
1000 ↔ 100↔ 100↔ 1000 2.3% 99 runs 100 runs

Binary

5 ↔ 100↔ 100↔ 5 61.3% 11 runs 100 runs
10 ↔ 100↔ 100↔ 10 30.3% 30 runs 100 runs
50 ↔ 100↔ 100↔ 50 0.0% No convergence 100 runs
100 ↔ 100↔ 100↔ 100 0.0% No convergence 100 runs
500 ↔ 100↔ 100↔ 500 13.3% 99 runs 100 runs
1000 ↔ 100↔ 100↔ 1000 82.0% 89 runs 100 runs

Table 5
Classification accuracies of multilayer BAMs trained on the MNIST dataset of handwritten digits. We computed both the one-shot classification
accuracy and the long-shot accuracy over 100 bidirectional sweeps through the trained networks.

Hidden layer configuration One-shot accuracy Long-shot accuracy Long-shot squared error

Bipolar
1024 98.37% 98.21% 0.0
512 ←→ 512 98.15% 98.17% 0.0
256 ←→ 256←→ 256←→ 256 97.67% 97.35% 0.0

Binary
1024 98.47% 98.40% 0.0
512 ←→ 512 98.49% 98.45% 0.0
256 ←→ 256←→ 256←→ 256 97.90% 97.85% 0.0

Table 6
Classification accuracies of multilayer BAMs trained on the CIFAR-10 dataset. We computed both the one-shot accuracy and the long-shot accuracy
over 100 bidirectional sweeps through the trained networks.

Hidden layer configuration One-shot accuracy Long-shot accuracy Long-shot squared error

Bipolar
1024 55.65% 54.3% 2.1 ×10−6

512 ←→ 512 53.54% 42.27% 4.6 ×10−6

256 ←→ 256←→ 256←→ 256 50.38% 27.76% 2.8 ×10−5

Binary
1024 55.26% 52.61% 0.0
512 ←→ 512 52.28% 33.33% 5.3 ×10−6

256 ←→ 256←→ 256←→ 256 48.09% 26.02% 1.9 ×10−6

Table 7
Centroid analysis for the backward pass of a multilayered BAM with MNIST handwritten digits dataset. We compared the Euclidean distance d(t) between the backward-
pass vector x = NT (y) at time t and the sample class centroids over bidirectional sweeps through the trained network. The simulations used dmax = max

1⩽t⩽100
d(t) ,

dmin = min
1⩽t⩽100

d(t) , and d̄ = 1
N

∑100
t=1 d

(t) .

Hidden layer configuration Correct classification Misclassification

Min (dmin) Max (dmax) Mean (d̄) Min (dmin) Max (dmax) Mean (d̄)

Bipolar
1024 −1.0 ×10−2 2.4965 5.8 ×10−3 −0.2704 4.1620 2.3864
512 ←→ 512 −3.3 ×10−2 4.0669 3.0 ×10−3 −0.4219 3.4808 0.2280
256 ←→ 256←→ 256←→ 256 −2.1 ×10−2 0.9085 0.0014 ×10−3 −0.6152 2.7178 0.0856

Binary
1024 −2.1 ×10−2 3.6311 8.3 ×10−3 −3.2937 0.4729 −0.4167
512 ←→ 512 −8.1 ×10−3 5.0859 4.0 ×10−3 −1.8951 2.6759 −0.0700
256 ←→ 256←→ 256←→ 256 −7.2 ×10−3 4.3520 0.0052 ×10−3 −4.9765 1.3177 −3.1570

The reverse pass through NT can thereby answer why-type
causal questions: Why did this observed output occur? What type
of input pattern caused this result?

Pattern answers to these why-type questions are versions of
Grossberg’s network feedback expectations. The images in Fig. 5
show such answers or expectations from a deep BAM network

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 13

with 7 hidden layers. The bidirectional network trained on CIFAR-
10 images. The convolutional classifier in Fig. 6 shows similar
reverse-pass images NT (y) or NT (ek) from a deep convolutional
network in BAM mode. Simple unidirectional backpropagation
training produced the uninformative reverse-pass images in the
(b) panels of both figures. Proper bidirectional training with the
B-BP algorithm below produced reverse-pass images that closely
match the sample centroids of the pattern classes.

The forward pass through the network N answers compar-
atively simpler what-if questions: What happens if this input
stimulates the system? What effect will this input cause? Bidirec-
tional processing can help even here as many of the simulations
show. Modern unidirectional classifiers N simply ignore the re-
verse mapping information housed in the transpose matrices MT

of the reverse pass NT . The equilibrium forward pass through the
network N differs in general from the first forward pass through
N . Modern feedforward classifiers simply take this first forward
pass as the network’s final output.

This implied BAM feedback structure requires only that output
vectors y ∈ SK−1 pass back through the transpose matrices of all
the synaptic matrices that the forward pass used to produce a
given output from a given input. This backward pass also requires
a related backward pass through any windows or masks in con-
volutional classifiers (Fukushima, 1980; Krizhevsky, Sutskever,
& Hinton, 2012; LeCun, Bengio, et al., 1995). The last section
shows how the simulations passed output information backward
through the convolutional filters of deep convolutional networks.

Then even a convolutional classifier can produce a feedback
signal x′ = NT (y) at the input layer (and at any hidden layer). The
feedback signal x′ looks like a handwritten digit if the classifier
network trains on the MNIST digit data. It looks like some other
image if it trains on the CIFAR image test set. So we can train the
network in the backward direction NT if we compute some form
of error based on the triggering input pattern x ∈ Ck and based
on what the network expects to see x′ = NT (y) = NT (N(x)) in
the Grossberg sense of ART. This insight leads to the bidirectional
supervised learning algorithm below.

We also point out that the backward direction in such classi-
fiers performs a form of statistical regression. This holds because
the input neurons are identity units. It does not hold if the input
neurons have logistic or other nonlinear form. The regression
structure leads to an optimal mean-squared structure in the
backward direction as we explain below.

The regression structure in the backward direction dictates
both a different training regimen and a different noise-injection
algorithm from the forward classifier. The backward tendency
toward mean-squared estimation implies that such classifiers
estimate the K class centroids ck in the backward direction. So
the feedback signal x′ = NT (y) shows what the classifier network
expects to ‘‘see’’ or perceive at the input field given the current
pattern stimulus x: It shows what the network expects the local
class centroid to look like. That explains why the backward-pass
signals in Figs. 5 and 6 so closely match the sample class centroids
in their (a) panels.

1.3. Bidirectional backpropagation through BP invariance

The new bidirectional backpropagation (B-BP) algorithm ex-
tends these ART and BAM concepts to supervised learning in
multilayer networks (Adigun & Kosko, 2016, 2019). B-BP trains
the neural network in both the forward and backward directions
using the same weights. Using the same weights entails using the
matrix transposes MT in the backward direction for any synaptic
weight matrices M that the network N uses in the forward
direction. So this bidirectional processing through the backward-
pass network NT converts feedforward networks N into BAM

networks. The B-BP algorithm shows how to extend ordinary
unidirectional BP (Rumelhart, Hinton, & Williams, 1986; Werbos,
1974) without overwriting in either direction.

The added computational cost of B-BP is slight compared
with ordinary or forward-only BP. This holds because the time
complexity for BP in either direction is O(n) for n input–output
training samples. The complexity in the B-BP case remains O(n)
because O(n)+ O(n) = O(n).

Fig. 1 shows two such 3-layer BAM networks after B-BP train-
ing. All neurons are threshold on–off neurons with zero threshold.
Each feedback network exactly represents the same 4-bit bipolar
permutation mapping and its inverse from Table 1. Each network
maps a 4-bit vector x ∈ {−1, 1}4 to a 4-bit vector y ∈ {−1, 1}4.
Each network’s backward direction maps y back to the same input
x. So the input x = (−1, 1, 1, 1) maps to y = (−1, 1,−1,−1)
and conversely. So the vector pair (x, y) is a BAM fixed point of
each network. This holds for all 16 vector pairs in Table 1 for
each BAM network. There are more than 20 quadrillion such 4-bit
permutation mappings and associated inverse mappings because
there are 24

! or 16! ways to permute the 16 input vectors in
Table 1.

The two BAM networks differ both in their synaptic values
and in their number of hidden neurons. The BAM network in
Fig. 1(a) needs 5 hidden threshold neurons to learn the permuta-
tion mapping in Table 1 with B-BP. Simulations with 4 or fewer
hidden neurons failed to find a representation. The BAM network
in Fig. 1(b) needs only 4 hidden neurons because the proper
additive noise boosted the B-BP learning as we will show below.
The noise obeyed the sufficient condition for a B-BP noise boost
in Theorem 4. The neurons were steep logistic functions during
B-BP learning. We rounded them off to threshold neurons with
zero thresholds after learning.

An earlier theorem showed that a 3-layer threshold BAM net-
work can always exactly represent an n-bit permutation and its
inverse if the network uses 2n hidden threshold neurons (Adigun
& Kosko, 2016, 2019). That architecture would require 16 hidden
neurons in this case. So the B-BP algorithm reduced this exponen-
tial number of hidden neurons in n to a linear number of hidden
neurons.

The main problem with bidirectional learning is overwriting.
Learning in one direction tends to overwrite or undo learning
in the other direction. This may explain why users have applied
BP almost exclusively in the forward direction for classifiers or
regressors. Running simple BP in the backward direction will only
degrade the prior learning in the forward direction.

B-BP solves the overwriting problem with two performance
measures. Each direction gets its own performance measure
based on whether that direction performs classification or regres-
sion or some other task. B-BP sums the two error or log-likelihood
performance measures. The overall forward-and-backward
sweeps minimize the network’s total log-likelihood.

Fig. 2 shows how the two performance measures overcome
the problem of overwriting for the two 3-layer BAMs in Fig. 1. The
first two sub-figures in Fig. 2 show that learning in one direction
overwrites learning in the other direction with the same perfor-
mance measure. The third figure shows rapid learning in both
directions because it used the sum of the two correct performance
measures. The performance measures were correct in the sense
that they preserved the BP learning equations for a given choice
of output-neuron structure and directional functionality. We call
this backpropagation invariance.

BP invariance requires that the log-likelihoods must corre-
spond to the functions that the forward and backward passes
perform. A deep classifier gives a canonical example. It uses
a cross-entropy performance measure for its forward pass of

14 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Fig. 2. Backpropagation overwrites in one direction as it trains in the other direction if it uses a single performance measure or error function. Bidirectional
backpropagation avoids overwriting because it uses the sum of two error functions that match the terminal neuron structure and functionality of each direction.
Simulations used NEM noise injection in each direction for the 3-layer BAM network in Fig. 1(b) that learned the 4-bit bipolar permutation in Table 1 and its
inverse. The forward and backward performance measures were each a double cross entropy in Eq. (28) because the input and output neurons were logistic (later
rounded-off to threshold neurons). (a) Unidirectional BP training on the forward pass reduced the forward error but overwrites the learning of the inverse map in
the backward direction. (b) Unidirectional BP training on the backward pass reduced the backward training error but overwrites the learning of the permutation
map in the forward direction. (c) NEM noise injection with bidirectional BP trained the network in accord with the logistic NEM condition in Eq. (58) and with the
sum of the forward and backward cross entropies. There was no over-writing in either direction. The NEM noise injection speeded convergence in both directions.

Fig. 3. Maximum number of runs or iterations that a BAM needed to converge if it did converge. BAMs with no hidden layers always converged in accord with
the basic BAM theorem. We varied the size of the threshold BAM networks and compared bipolar encoding with binary encoding. We picked all synaptic weights
uniformly from the bipolar interval [−1, 1]. (a) No hidden layer (classical BAM). (b) One hidden layer of threshold neurons. (c). Two hidden layers of threshold
neurons.

classification. The classifier implicitly uses a squared-error per-
formance measure for its backward pass of regression. The over-
whelming number of classifiers in practice simply ignore this
backward-pass structure.

B-BP’s sum of performance measures stems from the bidi-
rectional network’s total log-likelihood structure. The forward
direction has the likelihood function p(y|x, Θ) for input vector x
and output vector y and all network parameters Θ . The backward
direction has the converse likelihood function p(x|y, Θ). This
likelihood structure holds in general at the layer level so long as
the layer neurons and performance measure obey BP invariance.

The back-and-forth structure of bidirectionality gives the joint
or total likelihood function as the product p(y|x, Θ)p(x|y, Θ). So
the network log-likelihood L is just the sum L = log p(y|x, Θ) +
log p(x|y, Θ). The negative log-likelihoods define the forward and
backward error functions or performance measures. Then the
gradient ∇L = ∇ log p(y|x, Θ) + ∇ log p(x|y, Θ) leads to the B-
BP algorithm and its noise-boost by way of the generalized EM
algorithm.

The forward direction of the classifier uses the cross-entropy
between the desired output target distribution and the actual K
softmax outputs. The cross-entropy is just the negative of the
logarithm of a one-trial multinomial probability density p(y|x, Θ).
So the statistical structure of the forward pass corresponds to
rolling a K -sided die. The backward pass uses the squared-error
at the input. This arises from taking the logarithm of a vector
normal distribution p(x|y, Θ). It also implies that the backward
learning estimates the kth local pattern-class centroid because
the centroid minimizes the squared error.

The key point is that BP invariance must hold for proper
bidirectional learning: The network can perform classification or
regression or any other function that leaves the backpropagation
likelihood structure invariant. The bidirectional network itself can
perform different functions in different directions. Its directional
likelihood structure then allows noise boosting in those different
directions.

1.4. NEM noise-boosted bidirectional backpropagation

We show that injecting carefully chosen noise (not blind
noise) into the input and output layers both speeds the con-
vergence of B-BP and improves its accuracy. This special noise
is just that noise that makes the signal more probable. It is
NEM or Noisy EM noise because the ordinary unidirectional
backpropagation algorithm turns out to be a special case of
the generalized expectation–maximization algorithm (Audhkhasi,
Osoba, & Kosko, 2016) and because this NEM noise always speeds
the EM algorithm’s ascent up the nearest hill of probability (Osoba
& Kosko, 2016). We can also inject NEM noise into hidden units.
This may involve more involved matrix transformations.

We develop below the NEM noise inequalities that apply to B-
BP training. These theoretical conditions follow the joint forward-
and-backward log-likelihood structure of B-BP itself. The NEM
noise is again just that noise n that makes the current signal y
more probable: p(y|n) ⩾ p(y) on average. This simple inequality
leads to an average likelihood ratio that suffices for an average
noise-boost. Boosting B-BP injects this noise into the output (or
hidden) neurons at each likelihood-gradient step for the joint or

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 15

bidirectional log-likelihood L = log p(y|x, Θ)+ log p(x|y, Θ). This
summed log-likelihood L also gives a general proof strategy for
B-BP results: Prove the result in each direction and then combine
directions. So we will review and extend the earlier unidirectional
results for BP (Audhkhasi et al., 2016; Kosko, Audkhasi, & Osoba,
2019) and then apply them as lemmas to B-BP.

We show last how to apply B-BP to generative adversarial
networks (GANs) and how to boost their performance with bidi-
rectional NEM noise. Adversarial networks combine at least two
networks that train while they try to deceive each other. The
generator network tends to generate ever better fake patterns
from training patterns while the discriminator network tries to
detect the fake patterns. We test these bidirectional results on
the standard vanilla and Wasserstein GANs using the MNIST and
CIFAR-10 image datasets. Bidirectional BP largely removed the
problem of mode collapse in the standard GANs. Mode collapse
is a type of training stutter where the network keeps emitting
the same pattern. Wasserstein GANs tend to avoid the problem
of mode collapse but at the cost of increased computation. NEM
noise further improved GAN performance.

The overall insight is that neural feedback matters. Feedback
can help a neural system as well as hurt it. The same is true of
noise. They both require careful analysis if a user wants to apply
them to a given nonlinear neural system.

2. Backpropagation and noise injection

The BP algorithm trains a neural network to approximate some
mapping from the input space X to the output space Y (Bishop,
2006; Hinton, Rumelhart, & Williams, 1986; Jordan & Mitchell,
2015; LeCun et al., 2015; Werbos, 1974). The mapping is a sim-
ple function for an ideal classifier. The BP algorithm is itself a
special case of generalized expectation–maximization (GEM) for
maximum-likelihood estimation with latent or hidden parame-
ters (Audhkhasi et al., 2016).

The reduction of GEM to BP follows from the key gradient
identity ∇ log p(y|x, Θ) = ∇Q (Θ|Θn) that we re-derive below in
(9). The BP noise benefit follows in turn from the EM-noise-boost
results in Osoba and Kosko (2016). These EM results show that in-
jecting noise helps the maximum-likelihood system bound faster
up the nearest hill of probability on average if the noise satisfies
a positivity condition that involves a likelihood ratio. We next
review these results and then extend them to the bidirectional
case.

2.1. Backpropagation invariance and expectation–maximization

BP training has a probabilistic structure based on maximum-
likelihood estimation. BP trains a network by iteratively minimiz-
ing some error or performance measure E(Θ) that depends on
the difference between the network’s actual or observed output
value y = N(x) and its desired or target t. The parameter vector Θ

describes the network’s current configuration of synaptic weights
and neuronal coefficients. There is some probability p(y|x, Θ)
that a neural network N with parameters Θ will emit output
y given input x. The probability p(y|x, Θ) defines the network’s
output-layer likelihood function.

BP invariance requires that the network error E(Θ) equals the
negative of the network’s log-likelihood function L: E(Θ) = −L =
− log p(y|x, Θ). Then minimizing the network error E(Θ) maxi-
mizes the network log-likelihood log p(y|x, Θ) and vice versa. So
BP performs maximum-likelihood estimation (Bishop, 2006):

Θ∗ = argmin
Θ

E(Θ) = argmax
Θ

log p(y|x, Θ). (1)

BP invariance helps explain why BP is a special case of gener-
alized expectation–maximization. EM itself generalizes maximum

likelihood to the case of hidden variables or missing data (Demp-
ster, Laird, & Rubin, 1977). EM iteratively climbs the nearest
hill of probability or log-likelihood as it alternates between a
forward expectation step and a backward maximization step.
The forward step computes or estimates an expectation with
respect to the posterior density of the hidden variables given the
current data and parameter estimates. The expectation defines a
surrogate likelihood function Q . The backward step maximizes
this surrogate likelihood given the current data and given the
current estimate of the parameters. Generalized EM replaces the
complete maximization of the surrogate with a gradient esti-
mate or partial maximization. So both BP and generalized EM
are back-and-forth gradient algorithms that find local maximum-
likelihood parameters. The formal argument below that BP equals
generalized EM shows how entropy minimization achieves this
result if BP invariance holds.

BP invariance holds in particular for the two common cases of
classification and regression. Classification requires both that the
error function E(Θ) be cross entropy and that the output neurons
have a softmax or other nonlinear form that produces a one-shot
multinomial likelihood p(y|x, Θ). Regression requires instead that
E(Θ) be squared error and that the output neurons are linear
or identity neurons. Then the likelihood p(y|x, Θ) must equal a
multidimensional Gaussian density. So its negative log-likelihood
−L just equals the squared error E(Θ). Then both the classifier
and regression networks have the same BP learning laws.

BP is a special case of the GEM algorithm because the gradient
of the network (layer) likelihood log p(y|x, Θ) equals the gradient
of EM’s surrogate likelihood function Q (Θ|Θn) (Audhkhasi et al.,
2016): ∇Θ log p(y|x, Θ (i)) = ∇ΘQ (Θ (i)

|Θ (i)) at each iteration i for
the network’s weight parameters Θ (i) and input x.

We now restate the recent BP-as-GEM theorem (Audhkhasi
et al., 2016) and then sketch its proof. The theorem states that the
backpropagation update equation for a differentiable likelihood
function p(y|x, Θ) at epoch i:

Θ (i+1)
= Θ (i)

+ η∇Θ log p(y|x, Θ)
⏐⏐⏐
Θ=Θ(i)

(2)

equals the GEM update equation at epoch i

Θ (i+1)
= Θ (i)

+ η∇ΘQ (Θ|Θ (i))
⏐⏐⏐
Θ=Θ(i)

(3)

if GEM uses the differentiable Q-function

Q (Θ|Θ i) = Eh|y,x,Θ i

[
log p(h, y|x, Θ)

]
. (4)

The EM algorithm takes the expectation of log p(y|x, Θ) with
respect to the hidden posterior p(h|y, x, Θ (i)). The ‘‘EM trick’’
rewrites the conditional probability p(h|y, x, Θ) = p(h,y|x,Θ)

p(y|x,Θ) as
p(y|x, Θ) = p(h,y|x,Θ)

p(h|y,x,Θ) . Then taking hidden-posterior expectations
of the log-likelihood log p(y|x, Θ) gives

log p(y|x, Θ) = Eh|y,x,Θ(i)

[
log p(y|x, Θ)

]
(5)

= Eh|y,x,Θ(i)

[
log

p(h, y|x, Θ)
p(h|y, x, Θ)

]
(6)

= Q (Θ|Θ (i))+ H(Θ|Θ (i)) (7)

if Q (Θ|Θ (i)) is the EM surrogate likelihood with cross entropy
H(Θ|Θ (i)) = −Eh|y,x,Θ(i) [log p(h|y, x, Θ)]. Taking gradients gives

∇ log p(y|x, Θ) = ∇Q
(
Θ|Θ (i))

+∇H
(
Θ|Θ (i)) . (8)

The entropy inequality H(Θ (i)
|Θ (i)) ⩽ H(Θ|Θ (i)) holds for all

Θ because Jensen’s inequality and the concavity of the logarithm
imply that Shannon entropy H(Θ (i)

|Θ (i)) minimizes the cross en-
tropy H(Θ|Θ (i)). Hence ∇H(Θ (i)

|Θ (i)) = 0. This gives the master

16 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

equation:

∇ log p(y|x, Θ (i)) = ∇Q
(
Θ (i)
|Θ (i)) . (9)

So the BP and GEM gradients are identical at each iteration i.
We remark that the master gradient equation (9) holds at

each hidden layer of the neural network. This allows NEM-noise
injection in hidden layers as well as in output layers (Kosko
et al., 2019). We focus on noise injection in output layers and
just summarize how the layer-level equation applies. Suppose
the network has k hidden layers hk, . . . ,h1. The numbering starts
in the forward direction with the first hidden layer h1 after the
input (identity) layer x. Then the total network likelihood is the
probability density p(y,hk, . . . ,h1, |x, Θ (i)). The ‘‘chain rule’’ or
multiplication theorem of probability factors this likelihood into
a product of layer likelihoods:

p(y,hk, . . . ,h1, |x, Θ (i)) = p(y|hk, . . . ,h1, x, Θ (i))×

p(hk|hk−1, . . . ,h1, x, Θ (i)) · · · p(h2|h1, x, Θ (i))p(h1|x, Θ (i)) (10)

where we assume the input-data prior p(x) = 1 for simplicity.
Taking logarithms at iteration i gives the total network log-
likelihood L(x) as the sum of the layer log-likelihoods:

L(x) = L(y|x)+ L(hk|x)+ · · · + L(h1|x) (11)

where L(hk|x) = log p(hk|hk−1, . . . ,h1, x, Θ (i)). Then the above
BP-as-GEM argument (5)–(9) applies at layer k if BP invariance
holds at that layer.

We next present the likelihood structure for three different
neural networks. The networks differ in the structure of their
terminal-layer neurons and in the function that these networks
perform. We consider three different likelihood structures based
on the output activation of the networks. The two main neural
models are classifiers and regressors. The third type of network
is the logistic network.

A regression network maps the input vector space RI to the
output space RK . I is the number of input neurons. K is the
number of output neurons. A regression network uses identity
activation functions at the output layer. The target vector t is
a Gaussian random vector. It has a mean vector at and has an
identity or white covariance matrix I (which can generalize to a
nonwhite covariance matrix):

t ∼ N (t|at , I). (12)

The likelihood preg (t|x, Θ) of a regression network is

preg (t|x, Θ) =
1

(2π)K/2 exp
{
−
∥t− at∥2

2

}
(13)

where ∥ · ∥ is the Euclidean norm. Then the log-likelihood Lreg of
the regression network is a constant plus the squared error:

Lreg = log preg (t|x, Θ) (14)

= log(2π)−
K
2 −
∥t− at∥2

2
(15)

= log(2π)−
K
2 −

1
2

K∑
k=1

(
tk − atk

)2
. (16)

So maximizing Lreg with respect to Θ minimizes the squared-
error Ereg of regression:

Ereg =
1
2

K∑
k=1

(
tk − atk

)2
. (17)

A classifier network maps the input space RI to a length-K
probability vector in [0, 1]K . The output neurons of a classification
network use a softmax or Gibbs activation function. So an output

neuron has the form of an exponential divided by K exponentials.
The target vector t is a unit bit vector. It has a 1 in the kth slot
and 0s elsewhere. The probability that the kth scalar component
tk equals 1 is

p(tk = 1|x, Θ) = ayk. (18)

The target t defines a one-shot multinomial or categorical
random variable. So the (output-layer) likelihood pclass(t|x, Θ) of
a classifier network is the multinomial product

pclass(t|x, Θ) =
K∏

k=1

(
atk
)tk . (19)

The log-likelihood Lclass is the negative cross-entropy:

Lclass = log pclass(t|x, Θ) (20)

= log
K∏

k=1

(
atk
)tk (21)

=

K∑
k=1

tk log
(
atk
)
. (22)

Maximizing the log-likelihood Lclass with respect to Θ minimizes
the output cross-entropy Eclass:

Eclass = −
K∑

k=1

tk log
(
atk
)
. (23)

A logistic network N maps the input space RI to the unit
hypercube [0, 1]K if K is the number of output logistic neurons.
Bipolar logistic output neurons map inputs to the bipolar hy-
percube [−1, 1]K by shifting and scaling the logistic activation
functions. The target vector t consists of K independent Bernoulli
variables. The probability that the kth output neuron tk equals 1 is
just the ordinary Bernoulli probability of getting heads after one
flip of a coin:

plog (tk = 1|x, Θ) = (atk)
tk (1− atk)

1−tk . (24)

The likelihood plog (t|x, Θ) of a logistic network equals the
product of the K independent Bernoulli variables. So it equals the
probability of flipping K independent coins:

plog (t|x, Θ) =
K∏

k=1

(atk)
tk (1− atk)

1−tk . (25)

Then the log-likelihood Llog of a logistic network equals the neg-
ative of the double cross entropy:

Llog = log plog (y|x, Θ) (26)

=

K∑
k=1

tk log (atk)+
K∑

k=1

(1− tk) log (1− atk). (27)

So maximizing the log-likelihood Llog minimizes the error func-
tion Elog or double cross entropy:

Elog = −
K∑

k=1

tk log (atk)−
K∑

k=1

(1− tk) log (1− atk). (28)

The BP algorithm uses gradient descent or its variants to up-
date a network’s weights and other parameters. The BP learning
laws remain invariant for all three networks (regression, classifi-
cation, and logistic) because taking the gradient of their network
likelihood gives the same partial derivatives for updating their
weights (Kosko et al., 2019).

Suppose that the neural network has just one hidden layer. All
results apply to any finite number of hidden layers. The weight

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 17

matrixW connects the input layer to the hidden layer. The weight
matrix U connects the hidden layer to the output layer. The
learning laws are the same for Lreg , Lclass, and Llog (Kosko et al.,
2019). Then the chain rule expands the partial derivative of the
log-likelihood L with respect to the synaptic weight ukj as

∂L
∂ukj
=

∂L
∂otk

∂otk
∂ukj

(29)

=
∂L
∂atk

∂atk
∂otk

∂otk
∂ukj

(30)

= (tk − atk)a
h
j (31)

if weight ukj connects the kth output neuron to the jth hidden
neuron. This holds because tk = 1 and tj = 0 for j ̸= k in 1-in-K
encoding. The term otk is the input or argument of the kth output
neuron. The term atk is the activation of the kth output neuron.
The term ahj is the activation of the jth hidden neuron.

The partial derivative of the log-likelihood L with respect to
the synaptic weight wji expands as

∂L
∂wji
=

∂L
∂ahj

∂ahj
∂ohj

∂ohj
∂wji

(32)

=

(K∑
k=1

∂L
∂otk

∂otk
∂ahj

)
∂ahj
∂ohj

∂ohj
∂wji

(33)

=

(K∑
k=1

(tk − atk)ukj

)
ahj (1− ahj)xi (34)

if weight wji connects the jth hidden neuron to the ith input
neuron. The term ohj is the input of the jth hidden neuron. The
term ahj is the logistic activation of the jth hidden neuron. The
activation xi is the (identity) activation of the ith input neuron.

2.2. Noisy expectation–maximization

The Noisy Expectation–Maximization (NEM) theorem states
the general sufficient condition for a noise benefit in the EM algo-
rithm. The theorem shows that noise injection can only shorten
the EM algorithm’s walk up the nearest hill of log-likelihood on
average if the noise satisfies the NEM positivity condition. It holds
for additive or multiplicative or any other type of measurable
noise injection (Osoba & Kosko, 2016). The noise is just the noise
that makes the current signal more probable.

The basic NEM theorem for additive noise states that a noise
benefit holds on average at each iteration i if the following posi-
tivity condition holds (Osoba, Mitaim, & Kosko, 2013):

Ex,h,n|Θ∗
[
log
(p(x+ n,h|Θ (i))

p(x,h|Θ (i))

)]
⩾ 0 . (35)

Then the EM noise benefit

Q (Θ (i)
|Θ∗) ⩽ QN (Θ (i)

|Θ∗) (36)

holds on average at iteration i:

Ex,N|Θ (i)

[
Q (Θ∗|Θ∗)− QN (Θ (i)

|Θ∗)
]

⩽ Ex|Θn

[
Q (Θ∗|Θ∗)− Q (Θ (i)

|Θ∗)
]

(37)

where Θ∗ denotes the maximum-likelihood vector of parameters,
QN (Θ (i)

|Θ∗) = Eh|y,n,Θ∗ [log p(x + n,h|Θ (i))], and Q (Θ (i)
|Θ∗) =

Eh|y,Θ∗ [log p(x,h|Θ (i))].
The intuition behind the NEM sufficient condition is that NEM

noise is just that added noise n that makes the current signal x
more probable on average: p(x + n|Θ) ⩾ p(x|Θ). Rearranging
and taking logarithms and expectations gives the NEM sufficient

condition (35). The noise-boosted likelihood is closer on average
at each iteration to the maximum-likelihood outcome than is
the noiseless likelihood (Adigun & Kosko, 2018; Osoba & Kosko,
2016). Kullback–Leibler divergence measures the closeness.

2.3. NEM noise benefits in backpropagation

We now present the basic NEM theorems for backpropagation.
These results inject noise only into the output layer of a neural
network. They extend to noise injection in the hidden layers as
well (Kosko et al., 2019). The first three noise-boost theorems
appear in Kosko et al. (2019). A version of the classification noise-
boost theorem also appeared in Audhkhasi et al. (2016). We
restate and briefly reprove these basic noise results. We then
extend these noise-boost results to the new and more general
case of bidirectional backpropagation. We then further extend
these results to the main types of adversarial networks.

The additive NEM-noise sufficient condition for BP training is
the average positive inequality

Et,h,n|x,Θ∗

[
log

p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

)]
⩾ 0 (38)

at each training iteration i where t is the output target, x is the
input vector, and n is the noise.

The next results instantiate the expectation in (38) based on
the network function and the demands of BP invariance. Then
we extend these unidirectional results to the bidirectional case
to obtain the corresponding NEM noise boosts for B-BP.

We start with the BP NEM-noise boost in a regression network.
BP invariance requires that the output neurons have identity
activations and that the network’s output performance measure
is squared error. The squared-error constraint corresponds to an
output likelihood structure that is a multidimensional normal
probability density.

Theorem 1 (NEM Noise Benefit for a Regression Network Kosko
et al., 2019). A backpropagation NEM noise benefit holds for a
regression network at iteration i with Gaussian target vector t ∼
N (at, I) if the injected noise n satisfies the inequality

Et,h,n|x,Θ∗

[
nT (2t− 2at + n

)]
⩽ 0 (39)

where at is the output activation vector.

Proof. A NEM noise benefit holds on average if the following
positivity condition from (38) holds at training iteration i:

Et,h,n|x,Θ∗

[
log

p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

)]
⩾ 0.

Rewrite the ratio of probability density functions as

p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

) =
p
(
t+ n|h, x, Θ (i)

)
p
(
h|x, Θ (i)

)
p
(
t|h, x, Θ (i)

)
p
(
h|x, Θ (i)

) (40)

=
p
(
t+ n|h, x, Θ (i)

)
p
(
t|h, x, Θ (i)

) . (41)

Taking logarithms gives

log
p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

) = log
p
(
t+ n|h, x, Θ (i)

)
p
(
t|h, x, Θ (i)

) (42)

= log p
(
t+ n|h, x, Θ (i))

− log p
(
t|h, x, Θ (i)) (43)

= log
[
2π−

K
2 exp

{
−
∥t+ n− at∥2

2

}]

18 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

− log
[
2π−

K
2 exp

{
−
∥t− at∥2

2

}]
(44)

=
∥t− at∥2

2
−
∥t+ n− at∥2

2
(45)

=
1
2

(
∥t∥2 + ∥at∥2 − 2tTat − ∥t∥2 − ∥at∥2

− ∥n∥2 − 2nT t+ 2tTat + 2nTat
)

(46)

=
nT

2

(
2at − 2t− n

)
. (47)

So the NEM sufficient condition becomes

Et,h,n|x,Θ∗
[nT

2

(
2at − 2t− n

)]
⩾ 0. (48)

The inequality has the equivalent form

Et,h,n|x,Θ∗

[
nT (2t− 2at + n

)]
⩽ 0. ■ (49)

The next BP NEM-noise boost applies to classifier networks
with softmax output neurons. BP invariance requires that the
output performance measure is the network cross entropy with
implied 1-in-K encoding of labeled patterns as unit bit vectors.
The cross-entropy constraint corresponds to an output likelihood
structure of a categorical or one-shot multinomial probability
density.

Theorem 2 (NEM Noise Benefit for a Classification Network (Au-
dhkhasi et al., 2016)). A backpropagation NEM noise benefit with
maximum-likelihood training (BP) holds for a softmax classification
network for a multinomial target vector t ∼ Multinoulli(pk = atk)
for k ∈ {1, 2, . . . , K } at iteration i if a hyperplane inequality holds
on average:

Et,h,n|x,Θ∗

[
nT log at

]
⩾ 0 (50)

where at is the output activation vector and where pk is the proba-
bility that a given pattern belongs to the kth class.

Proof. A NEM noise benefit holds on average at training iteration
i if

Et,h,n|x,Θ∗

[
log

p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

)]
⩾ 0.

Rewrite the ratio of the probability density functions as in (40)–
(43). Then the softmax/multinomial structure gives the NEM-
noise hyperplane condition:

log
p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

) = log
p
(
t+ n|h, x, Θ (i)

)
p
(
t|h, x, Θ (i)

) (51)

= log p
(
t+ n|h, x, Θ (i))

− log p
(
t|h, x, Θ (i)) (52)

= log
K∏

k=1

(
atk
)tk+nk

− log
K∏

k=1

(
atk
)tk (53)

=

K∑
k=1

(
tk + nk

)
log
(
atk
)
−

K∑
k=1

tk log
(
atk
)

(54)

=

K∑
k=1

nk log
(
atk
)

(55)

= nT log at . (56)

Taking a NEM-based expectation gives the final average form of
the hyperplane inequality:

Et,h,n|x,Θ∗
[
nT log at

]
⩾ 0. ■ (57)

The next BP NEM-noise boost applies to logistic networks.
These networks are important for bidirectional processing as
in the threshold networks of Figs. 1(a) and (b). BP invariance
requires that a layer of logistic neurons have a performance
measure that we call double cross entropy (28). It corresponds to
a likelihood structure that is a product of Bernoulli probabilities.
The output N(x) of a logistic network is not a discrete probability
density as in the case of the softmax classifier. The output N(x) is
instead a discrete fuzzy set (Kosko, 2018).

Theorem 3 (NEM Noise Benefit for a Logistic Network (Kosko
et al., 2019)). A backpropagation NEM noise benefit holds for
a logistic network with K independent Bernoulli target neurons
tk ∼ Bernoulli(pk = atk) at iteration i if the following inequality
holds:

Et,h,n|x,Θ∗

[
nT
(
log (at)− log (1− at)

)]
⩾ 0 (58)

where at is the output activation and where pk is the success
probability that the kth output neuron equals 1.

Proof. A NEM noise benefit holds on average if the following
positivity condition holds at each training iteration i:

Et,h,n|x,Θ∗

[
log

p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

)]
⩾ 0 .

Then rewriting the ratio of the probability density functions as in
(40)–(43) and using the product-Bernoulli (double-cross-entropy)
structure gives a noise hyperplane condition:

log
p
(
t+ n,h|x, Θ (i)

)
p
(
t,h|x, Θ (i)

) = log
p
(
t+ n|h, x, Θ (i)

)
p
(
t|h, x, Θ (i)

) (59)

= log p
(
t+ n|h, x, Θ (i))

− log p
(
t|h, x, Θ (i)) (60)

= log
K∏

k=1

(
atk
)tk+nk (1− atk

)1−tk−nk
− log

K∏
k=1

(
atk
)tk (1− atk

)1−tk (61)

=

K∑
k=1

(
tk + nk

)
log
(
atk
)
+
(
1− tk − nk

)
log
(
1− atk

)
−

K∑
k=1

tk log
(
atk
)
+
(
1− tk

)
log
(
1− atk

)
(62)

=

K∑
k=1

nk log
(
atk
)
− nk log

(
1− atk

)
(63)

= nT (log at − log (1− at)
)
. (64)

Taking NEM expectations gives the final form as

Et,n|x,Θ∗
[
nT (log at − log (1− at)

)]
⩾ 0. ■

Similar unidirectional NEM-noise benefits hold for recurrent
backpropagation when training recurrent neural networks with
time-varying patterns (Adigun & Kosko, 2017).

The next section extends the above unidirectional-BP results
to the more general case of bidirectionality. This culminates in
the general Theorem 4 that shows how we can derive families of
bidirectional NEM-noise benefits from network architectures that
obey BP invariance. These noise benefits include B-BP versions
of the unidirectional Theorems 1–3 among many others. We
omit their bidirectional proofs for simplicity because they directly
apply Theorem 4 to the proofs above.

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 19

3. Bidirectional backpropagation (B-BP)

The B-BP algorithm trains a multilayered neural network with
backpropagation in both directions over the same web of synaptic
connections (Adigun & Kosko, 2016, 2019). Algorithm 1 shows the
steps in the B-BP algorithm in the more general case if we inject
NEM noise into the input and output layers of a classifier network.
Similar steps can inject noise in hidden layers and in all the layers
of bidirectional regression networks.

B-BP is also a form of maximum likelihood estimation. The
forward pass maps the input x to the output N(x). The backward
pass maps the output y back through the network to NT (y)
given the current network parameters Θ . The algorithm jointly
maximizes the forward likelihood pf (y|x, Θ) and the backward
likelihood pb(x|y, Θ). So B-BP finds the weight or parameter
vector Θ∗ that maximizes the joint network likelihood:

Θ∗ = argmax
Θ

pf (y|x, Θ)pb(x|y, Θ). (65)

This likelihood structure holds more generally in terms of the
forward and backward layer likelihoods per (10).

This joint optimization is the same as the joint optimization
of the directional (and layer) log-likelihoods:

Θ∗ = argmax
Θ

log pf (y|x, Θ)+ log pb(x|y, Θ) (66)

because the logarithm is monotone increasing. The B-BP algo-
rithm also uses gradient descent or any of its variants to itera-
tively update the parameters.

3.1. B-BP likelihood functions

We next present four different B-BP structures based on the
corresponding likelihood structure of the network. The four struc-
tures are double regression, double classification, double logistic,
and the mixed case of classification and regression. Their function
and network structure dictates their log-likelihoods in accord
with BP invariance. BP invariance ensures that all the different
network structures still use the same BP updates on a given
directional training pass.

3.1.1. B-BP double regression
A bidirectional network is a double regression network if it

performs regression in both directions. So the input and output
layers both use identity activations. The output y is a Gaussian
random vector with mean ay and with identity or white covari-
ance matrix I. The input x is a also Gaussian random vector with
mean ax and identity or white covariance matrix I:

pf (y|x, Θ) =
1

(2π)K/2 exp

{
−
∥y− ay∥2

2

}
(67)

and

pb(x|y, Θ) =
1

(2π)I/2
exp

{
−
∥x− ax∥2

2

}
(68)

where I is the dimension of the input layer and K is the dimen-
sion of the output layer. The forward log-likelihood Lf (Θ) and
backward log-likelihood Lb(Θ) are

Lf (Θ) = log p(y|x, Θ) = log(2π)−
K
2 −
∥y− ay∥2

2
(69)

and

Lb(Θ) = log p(x|y, Θ) = log(2π)−
I
2 −
∥x− ax∥2

2
. (70)

The error functions are the squared-error Ef (Θ) for the for-
ward pass and squared error Eb(Θ) for the backward pass. B-BP
minimizes the joint error E(Θ):

E(Θ) = Ef (Θ)+ Eb(Θ) (71)

=
1
2

K∑
k=1

(
yk − ayk

)2
+

1
2

I∑
i=1

(
xi − axi

)2
. (72)

Then Adigun and Kosko (2019) give the detailed B-BP updates
rules for double regression.

3.1.2. B-BP double classification
A double classifier is a neural network that acts as a classifier

in both the forward and backward directions. So both the input
and output layers use softmax or Gibbs activations.

The output y with activation ayk defines the multinomial prob-
ability pf (yk = 1|x, Θ). The input x with axi defines the dual
multinomial probability pb(xi = 1|y, Θ):

pf (y|x, Θ) =
K∏

k=1

(
ayk
)yk (73)

and

pb(x|y, Θ) =
I∏

i=1

(
axi
)xi . (74)

Then the log-likelihoods Lf and Lb are negative cross entropies:

Lf (Θ) = log pf (y|x, Θ) =
K∑

k=1

yk log
(
ayk
)

(75)

and

Lb(Θ) = log pf (x|y, Θ) =
I∑

i=1

xi log
(
axi
)
. (76)

The forward error Ef (Θ) is the cross-entropy Ef (Θ). The back-
ward error Eb(Θ) is likewise the cross-entropy Eb(Θ). B-BP for
double classification minimizes this joint error E(Θ):

E(Θ) = Ef (Θ)+ Eb(Θ) (77)

= −

K∑
k=1

yk log
(
ayk
)
−

I∑
i=1

xi log
(
axi
)
. (78)

Adigun and Kosko (2019) give the update rules for B-BP with
double classification. Training in each direction applies ordinary
BP updates because of BP invariance. Training occurs in one
direction at a time.

3.1.3. B-BP double logistic networks
A double logistic network has logistic neurons at both the

input and output layers. Figs. 1(a) and (b) show such double
logistic networks where the logistic sigmoids are so steep as to
give threshold neurons.

The probability of the logistic-vector output y is a product of
K independent Bernoulli probabilities. The kth output activation
ayk is the probability pf (yk = 1|x, Θ). The probability of the
logistic-vector input x is a product of I independent Bernoulli
probabilities. So the ith input activation axi is the probability
pb(xi = 1|y, Θ). Logistic neurons can also map to the bipolar
interval [−1, 1] by simple scaling and translation of the usual
binary logistic function. We trained the bidirectional threshold
networks in Figs. 1(a) and (b) as double-logistic networks with
steep logistic sigmoid activations. Then we replaced the steep
logistics after B-BP training with threshold functions.

20 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

The forward likelihood pf (y|x, Θ) and the backward likelihood
pb(x|y, Θ) have the product-Bernoulli form

pf (y|x, Θ) =
K∏

k=1

(
ayk
)yk (1− ayk

)1−yk (79)

and

pb(x|y, Θ) =
I∏

i=1

(
axi
)xi(1− axi

)1−xi . (80)

The log-likelihoods Lf (Θ) and Lb(Θ) define double cross entropies:

Lf (Θ) = log pf (y|x, Θ) (81)

=

K∑
k=1

yk log
(
ayk
)
+ (1− yk) log

(
1− ayk

)
(82)

and

Lb(Θ) = log pf (x|y, Θ) (83)

=

I∑
i=1

xi log
(
axi
)
+ (1− xi) log

(
1− axi

)
. (84)

Then the joint error function E(Θ) for a double logistic network
is the sum

E(Θ) = Ef (Θ)+ Eb(Θ) (85)

= −

K∑
k=1

yk log
(
ayk
)
+ (1− yk) log

(
1− ayk

)
−

I∑
i=1

xi log
(
axi
)
+ (1− xi) log

(
1− axi

)
. (86)

The BP update rules for double-logistic training are the same as
for double classification because of BP invariance.

3.1.4. Mixed case: B-BP classification and regression
The mixed bidirectional case occurs when the forward pass is a

classifier and the backward pass is a regressor. This is the implied
structure of the modern neural classifier used only in the forward
direction because it maps identity neurons to output softmax
neurons. The forward pass through the network N estimates the
class membership of a given input pattern x. So the K output
neurons have softmax or Gibbs activations. The backward pass
through NT estimates the class centroid (in the common least-
squares case) given an output class-label unit bit vector or other
length-K probability vector y. So the input neurons use identity
or linear activations.

The forward likelihood is a multinomial random variable as
in the case of double classification. The backward likelihood is
a Gaussian random vector as in the case of double regression.
BP invariance holds for these likelihoods given the corresponding
softmax output neurons and identity input neurons.

The total mixed error E(Θ) sums the forward cross-entropy
Ef (Θ) and the backward squared-error Eb(Θ):

E(Θ) = Ef (Θ)+ Eb(Θ) (87)

= −

K∑
k=1

yk log
(
ayk
)
+

1
2

I∑
i=1

(
xi − axi

)2
. (88)

The original B-BP sources (Adigun & Kosko, 2016, 2019) give
the gradient update rules for B-BP in the mixed case as well for
double regression and double classification. BP invariance greatly
simplifies the forward and backward updates because then all
network types use the same BP updates.

3.2. B-BP algorithm for classifier networks

We first extend the B-BP algorithm to classifier networks for
bidirectional representation. The mapping from Y to X or vice
versa is not a well-defined point function in most cases. So the kth
unit basis vector y need not map back to a unique value. It maps
instead to a pre-image set f −1(y) as discussed above. The reverse
pass through NT gives a point x′ in the input pattern space Rn.
Then Adigun and Kosko (2019) shows that the regression back-
ward pass over the network N tends to map to the centroid of the
pre-image in a classification-regression bidirectional network.

The backward pass of a classifier network maps the class labels
or output K -length probability vectors back to the input pattern
space. The output space Y is the K -1 simplex SK−1 of K -length
probability vectors for a classifier network. This holds because the
network maps vector pattern inputs to K softmax neurons vectors
and uses 1-in-K encoding.

So the backward pass for bidirectional representation maps
any given y to a centroidal measure of its class. Let the mth
sample (x(m), t(m)) be a pair of sample input and target vectors
that belongs to the kth class Ck. B-BP trains the network along the
forward pass N(x(m)) with t(m) as the target. The forward error Ef
is the cross entropy between N(x(m)) and t(m).

Backward-pass training can in principle use any x′. The sim-
plest case uses the backward-emitted vector x′ = NT (y) after
the input x has emitted the output vector y in the forward
direction: y = N(x). Simulations show that somewhat better
performance tends to result if the backward pass replaces y with
the supervised class label k or the unit vector ek if the stimulating
input vector x belongs to the kth input class.

The backward pass can also use the kth class population cen-
troid ck of input pattern class Ck or its sample-mean estimate
ĉk:

ĉk =
1
Nk

∑
x(m)∈Ck

x(m) (89)

where Nk is the number of input sample patterns x(m) from class
Ck. Then the weak and strong laws of large numbers state that
the sample centroid ĉk converges to the population or true class
centroid ck in probability or with probability one if the sample
vectors are random samples (independent and identically dis-
tributed) with respective finite covariances or finite means (Hogg,
Mckean, & Craig, 2012). This ergodic result still holds in the
mean-squared sense when the sample vectors are correlated if
the random vectors are wide-sense stationary and if the finite
scalar covariances are asymptotically zero (Gubner, 2006). This
correlated result also holds in probability since convergence in
mean-square implies convergence in probability.

Using the centroid estimate ĉk makes sense in the backward
direction because locally the population centroid ck minimizes
the squared error of regression. It likewise minimizes the total
mean-squared error of vector quantization (Kosko, 1991b).

The K -means clustering algorithm is the standard way to esti-
mate K centroids from training data (Jain, 2010). This algorithm
is a form of competitive learning and sometimes called a self-
organizing map (Kohonen, 1990). K -means clustering enjoys a
NEM noise-boost because the algorithm is itself a special case
of the EM algorithm for tuning a Gaussian mixture model if the
class membership functions are binary indicator functions (Osoba
& Kosko, 2013).

The projection x̃k of the kth class centroid ĉk to the space of
training samples in Ck obeys

x̃k = argmin
x(m)∈Ck

∥x(m)
− ĉk∥2 (90)

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 21

where x̃k ∈ Ck. The sample centroid need not lie in the pattern
class Ck. We can compute the backward vector directly if it does
by taking the difference between the backward pass x′ and the
sample class centroid. We otherwise take the difference between
x′ and that training vector in Ck that lies closest to the sample
class centroid. Then the backward error Eb equals the squared
error between x′ = NT (y(m)) and the projection x̃k.

4. NEM noise-boosted B-BP learning

This section shows how NEM noise boosts the B-BP algorithm.
B-BP seeks to jointly maximize the log-likelihood of the network’s
forward pass and its backward pass. So B-BP is also a form of
maximum-likelihood estimation.

The above BP-as-GEM theorem states that the gradient of the
network log-likelihood equals the gradient of the EM surrogate
likelihood Q (Θ|Θn): ∇ log p = ∇Q . This gradient equality gives
in the bidirectional case

∇Θ log p(y|x, Θ)+∇Θ log p(x|y, Θ) =

∇ΘQf (Θ|Θ (i))+∇ΘQb(Θ|Θ (i)) (91)

if Qf (Θ|Θ (i)) and Qb(Θ|Θ (i)) are the surrogate likelihoods for the
respective forward pass and backward pass. So B-BP is also a
special case of generalized EM. These results also hold at the layer
level so long as the layer likelihood obeys BP invariance in each
direction.

The above gradient result also holds in general for any number
M of directions and for any neural-network structure so long
as the structure maintains BP invariance in each direction. We
consider next the special case of classification in the forward
direction because it is by far the most common neural network
in practice.

4.1. NEM-boosted B-BP for classifier networks

B-BP is a special case of GEM in each direction. So the injection
of noise that satisfies the NEM positivity condition improves the
average performance of B-BP. The noise can be additive or mul-
tiplicative or can have any other measurable form. The beneficial
NEM noise is just that noise nx and ny that makes the data more
probable on average.

The forward likelihood p(y|x, Θ) for a classifier network is
the one-shot multinomial probability density. So the classifier
uses softmax output neurons and a cross-entropy performance
measure. The backward likelihood p(x|y, Θ) is an I-dimensional
vector Gaussian density. So the implied backward regression net-
work uses identity input neurons (output neurons in the back-
ward direction) and a squared-error performance measure. Then
BP invariance holds: both passes use the same BP updates.

The NEM positivity condition holds for B-BP training of a
classifier network with noise injection nx in the input neurons
and with ny in the output neurons if the following NEM positivity
conditions hold:

Ey,h,n|x,Θ∗
[
nT
y log ay

]
⩾ 0 (92)

and

Ex,h,N|y,Θ∗
[
nT
x

(
2x̃− 2ax + nx

)]
⩽ 0 (93)

if x̃ is the sample class centroid, ay is the forward pass N(x),
and ax is the backward pass NT (y) through the classifier network.
Injecting the noise pair (nx, ny) that satisfies this condition at
the input and output layers produces the NEM noise benefit in
the B-BP training of the classifier (classifier-regression) network.

Data: {x(i), y(i)}Ni=1, batch size M , learning rate α, number of
epochs L, number of iterations T , annealing factor η, noise
variance σ , and other hyperparameters for optimization.

Result: Trained weight Θ .
Compute: The class centroids ck for all the K classes:

ck =
1
Nk

Nk∑
j=1

xk(j)

Compute: The projection x̃k of class centroids ck onto the class
sample set:

x̃k = argmin
x(i)∈Ck

||x(i) − ck||2

while epoch l : 1→ L do
while iteration t : 1→ T do
• Select a batch of M samples {x(m), y(m)

}
M
m=1

• Forward Pass : Compute the K -dimensional output
softmax activation vector ay(m):

ay(m)
= N(x(m))

• Backward Pass : Compute the I-dimensional input
identity activation vector ax(t):

ax(m)
= NT (y(m))

• Compute the projection x̃(m) for sample x(m)

x̃(m)
k = argmin

x̃k
||x̃k − x(m)

||
2

• Generate noise ny(m) for the output layer:
if nT

y(m) log ay(m) ⩾ 0 then

y(m)
← y(m)

+ ny(m)

end
• Generate noise nx(m) for the input layer:
if nT

x(m)

(
2x̃(m)

k − 2ax(m)
+ nx(m)

)
⩽ 0 then

x̃(m)
k ← x̃(m)

k + nx(m)

end
• Compute the cross-entropy Ef (Θ):

Ef (Θ) = −
1
M

M∑
m=1

y(m)T log ay(m)

• Compute the squared-error Eb(Θ):

Eb(Θ) =
1
M

M∑
m=1

⏐⏐⏐⏐⏐⏐ax(m)
− x̃(m)

k

⏐⏐⏐⏐⏐⏐2
• Back-propagate the error functions and update the
weights:

Θ (t+1)
= Θ (t)

− α∇ΘEf (Θ)− α∇ΘEb(Θ)

end
end
Algorithm 1: B-BP algorithm for NEM noise injection into the
output and input layers of a classifier neural network trained with
bidirectional backpropagation.

Algorithm 1 gives the update rule for the Ith epoch of NEM-

boosted B-BP training of such a classifier network.

22 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

4.2. B-BP NEM theorem

We now summarize the above noise-boosting results as the
B-BP NEM theorem. A joint NEM noise results if we inject noise
that satisfies the average positivity condition on both the forward
and backward passes of B-BP. This includes B-BP versions of the
unidirectional Theorems 1–3 above as special cases.

We first define the relevant surrogate likelihood functions for
generalized EM. The surrogate log-likelihood Qf (Θ|Θ∗) for the
forward pass of B-BP without noise injection is

Qf (Θ|Θ∗) = Eh|y,x,Θ∗
[
log p(y,h|x,Θ)

]
. (94)

Then the surrogate log-likelihood Q N
f (Θ|Θ∗) for the forward pass

of B-BP with noise injection is

Q N
f (Θ|Θ∗) = Eh|y,ny,x,Θ∗

[
log p(y+ ny,h|x, Θ)

]
(95)

if ny is the injected noise into the output layer. The surrogate log-
likelihood Qb(Θ|Θ∗) for the backward pass of B-BP without noise
injection is

Qb(Θ|Θ∗) = Eh|y,x,Θ∗
[
log p(x,h|y,Θ)

]
. (96)

The surrogate log-likelihood Q N
b (Θ|Θ∗) for the backward pass of

B-BP with noise injection is

Q N
b (Θ|Θ∗) = Eh|y,nx,x,Θ∗

[
log p(x+ nx,h|y,Θ)

]
(97)

if nx is the injected noise into the input layer. We can now state
and prove the general noise-benefit theorem for B-BP.

Theorem 4 (NEM Noise Benefit with B-BP). Suppose the forward
positivity condition holds on average at iteration i :

Ey,h,ny|Θ∗

[
log

pf (y+ ny,h|x,Θ)
pf (y,h|x,Θ)

]
⩾ 0. (98)

Suppose further that the backward positivity condition also holds on
average at iteration i:

Ex,h,nx|Θ∗

[
log

pb(x+ nx,h|y,Θ)
pb(x,h|y,Θ)

]
⩾ 0. (99)

Then the bidirectional EM noise benefits

Qf
(
Θ (i)
|Θ∗

)
⩽ Q N

f

(
Θ (i)
|Θ∗

)
(100)

and

Qb
(
Θ (i)
|Θ∗

)
⩽ Q N

b

(
Θ (i)
|Θ∗

)
(101)

hold on average at each iteration i:

Ey,ny|Θ (i)

[
Qf
(
Θ∗|Θ∗

)
− Q N

f (Θ (i)
|Θ∗)

]
⩽

Ey|Θ (i)

[
Qf (Θ∗|Θ∗)− Qf (Θ (i)

|Θ∗)
]

(102)

Ex,nx|Θ (i)

[
Qb(Θ∗|Θ∗)− Q N

b (Θ (i)
|Θ∗)

]
⩽

Ex|Θ (i)

[
Qb(Θ∗|Θ∗)− Q N

b (Θ (i)
|Θ∗)

]
. (103)

The joint EM noise benefit also holds on average at iteration i:

Ey,ny|Θ (i)

[
Q N
f (Θ (i)

|Θ∗)
]
+ Ex,nx|Θ (i)

[
Q N
b (Θ (i)

|Θ∗)
]
⩾

Ey|Θ (i)

[
Qf (Θ (i)

|Θ∗)
]
+ Ex|Θ (i)

[
Qb(Θ (i)

|Θ∗)
]
. (104)

Proof. We show that B-BP training maximizes the sum of the
surrogate log-likelihoods Qf (Θ|Θ (n)) and Qb(Θ|Θ (i)).

The bidirectional version of the master gradient equation (9)
shows that the bidirectional log-likelihood equals the sum of

the surrogate log-likelihoods and entropies. So the forward log-
likelihood equals

log pf (y|x, Θ (i)) = Qf (Θ (i)
|Θ∗)+ H(Θ (i)

|Θ∗). (105)

The backward log-likelihood likewise equals

log pb(x|y, Θ (i)) = Qb(Θ (i)
|Θ∗)+ H(Θ (i)

|Θ∗). (106)

The unidirectional BP-as-GEM theorem (Audhkhasi et al., 2016)
states that the gradient of the network log-likelihood equals
the gradient of the EM surrogate likelihood Q (Θ|Θ (n)). Then the
gradient of the sum of the directional likelihoods equals

∇Θ log pf (y|x, Θ)+∇Θ log pb(x|y, Θ) =

∇ΘQf (Θ|Θ (i))+∇ΘQb(Θ|Θ (i)) (107)

where Qf (Θ|Θ (i)) and Qb(Θ|Θ (i)) are the surrogate log-likelihoods
for the respective forward pass and backward pass. This holds
because the above entropy inequality implies that both entropy
gradients are null. Then the gradient update rule for B-BP at the
ith iteration

Θ (i+1)
= Θ (i)

+ η∇Θ

(
log pf (y|x, Θ)+

log pb(x|y, Θ)
)⏐⏐⏐⏐

Θ=Θ(i)
(108)

equals the GEM update equation

Θ (i+1)
= Θ (i)

+ η∇Θ

(
Qf (Θ|Θ (i))+ Qb(Θ|Θ (i))

)⏐⏐⏐
Θ=Θ(i)

. (109)

So B-BP is also a special case of GEM. It then inherits GEM’s NEM
noise boost in each direction. □

5. Generative adversarial networks and bidirectional training

An adversarial network consists of two or more neural net-
works that try to trick each other. They use feedback among the
neural networks and sometimes within neural networks.

The standard generative adversarial network (GAN) consists of
two competing neural networks. One network generates patterns
to trick or fool the other network that tries to tell whether a
generated pattern is real or fake. The generator network G acts
as a type of art forger while the discriminator network D acts as
a type of art expert or detective.

GAN training helps the discriminator D get better at detecting
real data from fake or synthetic data. It trains the generator G so
that D finds it harder to distinguish the real data from G′s fake or
generated data.

Goodfellow et al. (2014) showed that some forms of this ad-
versarial process reduce to a two-person minimax game between
D and G in terms of a value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pr (x)[log D(x)] +

Ez∼pz (z)[log (1− D(G(z)))] (110)

if pr is the probability density of the real data x and if pz is the
probability density of the latent or hidden variable z.

GAN training alternates between training D and G. It trains D
for a constant G and then trains G for a constant D. The probability
pg is the probability density of the generated data G(z) that G
produces. Optimizing the value function in (110) is the same as
minimizing the Jensen–Shannon (JS) divergence between pr and
pg (Goodfellow et al., 2014). This is the same as maximizing the
product of the likelihood functions p(y = 1|x) and p(y = 0|G(z))
with respect to D and minimizing the likelihood function p(y =
0|G(z)) with respect to G. The likelihood functions are Bernoulli
probability densities.

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 23

Minimizing the JS divergence can lead to a vanishing gradient
as the discriminator D gets better at distinguishing real data
from fake data (Arjovsky & Bottou, 2017). The JS divergence can
also correlate poorly with the quality of the generated sam-
ples (Arjovsky, Chintala, & Bottou, 2017). It also often leads to
mode collapse: Training converges to the generation of a single
image (Metz, Poole, D. Pfau, & Sohl-Dickstein, 2016). We use
the term vanilla GAN to refer to a GAN trained to minimize the
JS distance. We found that bidirectionality greatly reduced the
instances and severity of mode collapse in regular vanilla GANs.

Arjovsky et al. (2017) proposed the Wasserstein GAN (WGAN)
that minimizes the Earth-Mover distance between pr and pg . The
Kantorovich–Rubinstein duality (Villani, 2009) shows that we can
define the Earth-Mover distance as

W (pr , pg) = sup
∥f ∥L⩽1

Ex∼pr [f (x)] − Ex̃∼pg [f (x̃)] (111)

where the supremum runs over the set of all 1-Lipschitz functions
f : χ → R. Then Gulrajani, Ahmed, Arjovsky, V. Dumoulin, and
Courville (2017) proposed adding a gradient penalty term that
enforces the Lipschitz constraint. This gives the modified value
function L(pg , pr) as

L(pr , pg) = Ex∼pr [D(x)] − Ez∼pz [D(G(z))] +

λ Ex̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2] (112)

where x̂ is a convex sum of x ∼ pr and G(z) with z ∼ pz . This ap-
proach performed better than using weight clipping (Arjovsky &
Bottou, 2017) to enforce the Lipschitz constraint. Salimans, Good-
fellow, Zaremba, Cheung, and Radford (2016) proposed heuristics
such as feature matching, minibatch discrimination, and batch
normalization to improve the performance and convergence of
GAN training. Algorithm 3 uses (112) for the B-BP training of a
WGAN.

5.1. Bidirectional GAN training

Bidirectional GAN training uses a new backward training pass
for the discriminator D network. The bidirectional training uses
the appropriate joint forward–backward performance measure
so that training in one direction does not overwrite training in
the reverse direction. Such training does not apply to the usual
unidirectional backpropagation training of the generator G as we
explain below. The forward pass of the discriminator D tries to
distinguish the pattern x from the generated pattern G(z). The
backward pass helps the set-inverse map DT better distinguish
the two.

We cast the backward pass as multidimensional regression.
Then the backward-pass training becomes maximum-likelihood
estimation for a conditional Gaussian probability density. This
holds because maximizing the likelihood Lb of the backward pass
minimizes the backward error Eb when Eb is squared error (Adi-
gun & Kosko, 2019; Audhkhasi et al., 2016; Osoba & Kosko,
2016).

B-BP did not train the generator G because we found that B-
BP did not outperform unidirectional BP for this task. We show
briefly that this holds because of a constraint inequality: Training
the generator G on the backward pass to maximize a likelihood
function LGb can only harm the GAN’s performance on average.

The argument for this negative result is that B-BP constrains
the training of G more than unidirectional BP does. GAN training
seeks solutions G∗ and D∗ that optimize the value function V (D,G)
that measures the similarity between the real samples and the
fake or generated samples:

min
G

max
D

V (D,G) . (113)

Consider the optimal solution D∗G for a given G:

D∗G = argmax
D

V (D,G) (114)

and define C(G) = V (D∗G, G).
The best generator G∗ for the value function obeys

G∗ = argmin
G

C(G). (115)

The definition of argmin implies that

C(G∗) ⩽ C(G) (116)

for all G. Let G∗b be that constrained G that further partially or
totally maximizes the backward-pass likelihood LGb . Then

C(G∗) ⩽ C(G∗b) (117)

since the additional B-BP constraint only shrinks the search space
for the minimum.

5.2. Bidirectional training of a vanilla GAN

Each bidirectional training iteration of a vanilla GAN involves
three steps. The first step trains the discriminator D to maximize
the backward-pass likelihood LDb . This likelihood measures the
mismatch between the real samples and the generated samples
on the backward pass. The likelihood was a multivariate Gaussian
probability density function.

The backward error ED
b measures the mismatch between M

generated samples {G(z(m))}Mm=1 and M real or authentic samples
{x(m)
}
M
m=1:

ED
b =

M∑
m=1

(⏐⏐⏐⏐G(z(m))− DT (a(m)
r)
⏐⏐⏐⏐2

+
⏐⏐⏐⏐x(m)

− DT (a(m)
g)
⏐⏐⏐⏐2) (118)

where a(m)
r = D(x(m)) and a(m)

g = D(G(z(m))). The term DT denotes
the backward pass over the discriminator network D.

The second step maximizes the forward-pass likelihood LDf for
the discriminator D. This maximization is the same as minimiz-
ing the forward-pass error ED

f because the error just equals the
negative log-likelihood:

ED
f = −

M∑
m=1

(
log D(x(m))+ log

(
1− G(D(z(m)))

))
. (119)

The forward-pass error is the cross entropy because the network
acts as binary classifier with a Bernoulli probability density since
the samples are either real or fake.

The third step trains the generator network G. The goal is
to make G(z) resemble x. So we train G to minimize the error
function EG:

EG
= −

M∑
m=1

log D(G(z(m))) . (120)

EG measures the mismatch between the real and generated sam-
ples on the forward pass. Algorithm 2 lists the steps for the B-BP
training of a vanilla GAN.

5.3. Bidirectional training of a Wasserstein GAN

We next show how B-BP can train a Wasserstein GAN. The
measure of similarity is now the earth-mover distance between
pr and pg in (112). The algorithm involves three steps for each
training iteration. The first two steps train D with B-BP. The third
step trains G with unidirectional BP. Algorithm 3 lists the steps
for the B-BP training of a Wasserstein GAN.

24 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Data: {x(i)}Ni=1 learning rate α, batch size M , starting point for
backward training n∗, number of epochs L, number of
iterations T , and other hyperparameters.

Result: Trained weights Θd for discriminator D and Θg for
generator G.

while epoch l : 1→ L do
while iteration t : 1→ T do
• Select M noise samples {z(m)

}
M
m=1 from pz(z);

• Select M real samples {x(m)
}
M
m=1 from pr (x);

if n∗ ⩽ l then
• Generate noise nx(m) for the input layer of the
discriminator:
if nT

x(m)

(
2x(m)

− 2ax(m)
+ nx(m)

)
⩽ 0 then

x(m)
n ← x(m)

+ nx(m)

else

x(m)
n ← x(m)

end
• Update Θd for the backward-pass training of D:

Θd ⇐ −∇Θd

M∑
m=1

(⏐⏐⏐⏐G(z(m))
− DT (a(m)

r

)⏐⏐⏐⏐2
+
⏐⏐⏐⏐x(m)

n − DT (a(m)
g

)⏐⏐⏐⏐2)
end
• Generate the respective noise nr(m) and ng(m) for the
real and synthetic data at the output layer of the
discriminator D:
if nT

r(m) log
D(x(m))

1−D(x(m))
⩽ 0 then

nr(m) ← 0

end
if nT

g(m) log
D(G(x(m)))

1−D(G(x(m)))
⩽ 0 then

ng(m) ← 0

end
• Update Θd for the forward-pass training of D:

Θd ⇐ −∇Θd

M∑
m=1

(
log

D(x(m))
1− D(G(z(m)))

+

nT
r(m) log

D(x(m))
1− D(x(m))

+ nT
g(m) log

D(G(z(m)))
1− D(G(z(m)))

)
• Update Θg for the training of G:

Θg ⇐ −∇Θg

M∑
m=1

(
log D

(
G(z(m))

)
+

nT
g(m) log

D(G(z(m)))
1− D(G(z(m)))

)
end

end
Algorithm 2: B-BP algorithm for training a vanilla generative ad-
versarial network (GAN) with NEM noise injection. The algorithm
injects NEM noise into both the input and output layers of the
discriminator D.

Data: {x(i)}Ni=1 learning rate α, batch size M , starting point for
backward training n∗, number of epochs L, number of
iterations T , gradient penalty coefficient λ, and other
hyperparameters for the optimization.

Result: Trained weights Θd for discriminator D and weights Θg
for generator G.

while epoch l : 1→ L do
while iteration t : 1→ T do
• Select M noise samples {z(m)

}
M
m=1 from pz(z) ;

• Select M real samples {x(m)
}
M
m=1 from pr (x) ;

• Select a random number ϵ ∼ U[0, 1];
• Compute {x̂(m)

}
M
m=1 as follows:

x̂(m)
= ϵx(m)

+ (1− ϵ)G
(
z(m))

if n∗ ⩽ l then
• Generate noise nx(m) for the input layer of the
discriminator:
if nT

x(m)

(
2x(m)

− 2ax(m)
+ nx(m)

)
⩽ 0 then

x(m)
n ← x(m)

+ nx(m)

else

x(m)
n ← x(m)

end
• Update Θd for the backward-pass training of D as
follows:

Θd ⇐ −∇Θd

M∑
m=1

(⏐⏐⏐⏐G(z(m))
− DT (a(m)

r

)⏐⏐⏐⏐2
+
⏐⏐⏐⏐x(m)

n − DT (a(m)
g

)⏐⏐⏐⏐2)
• Update Θd for the forward-pass training of D as
follows:

Θd ⇐ −∇Θd

M∑
m=1

((
D
(
x(m))
− D

(
G(z(m))

))
+ λ

(⏐⏐⏐⏐∇x̂D
(
x̂(m))⏐⏐⏐⏐

2 − 1
)2)

• Update Θg for the training of G:

Θg ⇐ −∇Θg

M∑
m=1

D
(
G(z(m))

)
end

end
Algorithm 3: B-BP algorithm for training a Wasserstein gen-
erative adversarial network (WGAN) with NEM noise injection.
Unidirectional BP updates the generator network. Bidirectional
BP updates the discriminator network. NEM noise injects into the
input layer of the discriminator.

6. Bidirectional simulation results

We simulated the performance of NEM-noise-boosted B-BP
for different bidirectional network structures on the MNIST and
CIFAR-10 image data sets. We also simulated multilayer BAMs to
test the extent to which they converged or stabilized to BAM fixed
points. Stability tended to fall off with an increased number of
hidden layers. A general finding was that bipolar coding tended
to outperform binary in most cases (Tables 2–6). This appears to

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 25

reflect the correlation-coefficient inequalities from the appendix
to the original BAM paper (Kosko, 1988).

The classifier simulations used CIFAR-10 images (Krizhevsky
& Hinton, 2009) for multilayer-perceptron (MLP) BAMs and for
convolutional neural network (CNN) BAMs. The BAM structure
of each network N : Rn

→ RK arose from using the transpose
matrices MT on the backward pass through the reverse network
NT
: RK

→ Rn. B-BP trained the BAM models. We compared
the effects of injecting NEM noise into both the input and output
neurons with noiseless unidirectional BP and noiseless B-BP. We
trained each model with 50,000 samples and tested the models
on 10,000 test samples. The dataset used the following K = 10
pattern classes Ck: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck.

The forward pass through N mapped an image pattern x ∈ Ck
to an output probability vector y = N(x). The error compared
this probability vector y with its class-label or unit bit-vector
basis ek. The BAM classifiers used 10 output neurons with softmax
activations. So the neural output vectors y always defined a
probability vector of length 10.

The B-BP trained models jointly minimized the forward and
backward error functions. The forward pass used a one-shot
multinomial probability density for its likelihood function. So the
forward error Ef was cross-entropy. The backward pass mapped
the class-label or unit basis vector ek to the pattern vector x′ =
NT (ek). Some experiments mapped the raw output y = N(x) back
through NT to produce x′ = NT (ek). We computed the error by
comparing this backward-passed vector x′ with the nearest class-
Ck vector to the sample centroid of class Ck (sample centroids
need not always lie in Ck). The K input neurons involved in the
backward pass used an I-dimensional vector normal probability
density as its likelihood function. That gave the negative log-
likelihood as the squared error. So the backward error Eb was just
this squared error.

We next describe the NEM-boosted performance of the mul-
tilayer and convolutional BAM classifiers. Then we describe the
NEM-boosted performance of B-BP applied to vanilla and Wasser-
stein GANs.

6.1. Deep bidirectional neural classifiers and NEM B-BP

Deep bidirectional classifiers N are multilayer BAMs that run
forward through the matrix-based synaptic webs and run back-
ward through the matrix transposes in NT . B-BP trains such clas-
sifiers with cross entropy in the forward direction and squared
error in the backward direction as discussed above. Let I denote
the number of neurons at the input layer. The multilayer BAMs
used 3072 input neurons for the CIFAR-10 dataset because each
sample image had dimension 32 × 32 × 3.

We tested BAM classifiers with 1, 3, 5, and 7 hidden layers
of rectified-linear unit (ReLU) activations. The BAM models used
512 neurons at each hidden layer. We used the dropout pruning
method (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-
dinov, 2014) to prune hidden neurons. A dropout value of 0.8
for the hidden layers reduced overfitting. So there was a 20%
probability of pruning a given hidden neuron.

We compared B-BP with NEM noise injection with noiseless
B-BP and with B-BP that injects only blind or dithering noise.
We injected the noise only into the output and input layers of
the classifier networks. Injecting NEM noise into hidden layers
involves a more complicated algorithm that depends on the type
of hidden neurons and the structure of the corresponding layer
likelihood as in (10) (Kosko et al., 2019). Injecting NEM noise into
hidden layers also tends to have less benefit than injecting it into
the output layer of a classifier network.

The simulation results showed that B-BP NEM noise injec-
tion outperformed noiseless B-BP and blind-noise B-BP both in

training speed-ups and classification accuracy. Table 8 shows that
NEM noise injection performed best with respect to classification
accuracy. Blind noise achieved better classification accuracy than
noiseless B-BP in some cases. It performed worse in others. NEM
noise injection outperformed blind noise injection in all cases.

Fig. 4 shows the highest and lowest benefit in classification
accuracy with NEM noise injection. Table 8 shows that NEM noise
improved classification accuracy compared with noiseless B-BP
and with noiseless unidirectional BP. A BAM classifier with 7 hid-
den layers had a B-BP NEM-noise-boosted classification accuracy
of 59.8% compared with 56.9% for noiseless B-BP.

Table 9 shows that NEM noise injection always speeded up
B-BP training on the CIFAR-10 dataset. Injected blind noise also
slowed down B-BP training. The speed-up in training measured
how many fewer epochs it took the trained network to reach
the final point when trained with noiseless B-BP. The benchmark
was the output cross entropy of noiseless B-BP after 100 train-
ing epochs. A negative speed-up meant that training took more
iterations to reach the noiseless benchmark.

NEM noise injection always produced a positive speed-up
in training compared with noiseless B-BP. The best NEM noise
speed-up was 68% in the BAM classifier with 1 hidden layer. Blind
noise produced a speed-up in some cases and a slow-down in
others. Blind-noise benefits tended to be slight. Table 9 shows
that blind noise only slowed down training.

6.2. Deep convolutional neural classifiers and NEM B-BP

We trained bidirectional convolutional neural network (CNN)
classifiers using the CIFAR-10 dataset. The CNNs used 4 convo-
lutional layers and 2 fully connected layers. B-BP trained the
convolutional masks for the bidirectional mapping. The forward
pass ran a convolution (time-reversed correlation) with masks.
The backward pass ran the transpose convolution (Dumoulin &
Visin, 2016) with masks. Figs. 5 and 6 show that the backward
passes in these deep networks estimate pattern-class centroids.

The forward pass across convolutional layers used downsam-
pling with the pooling operations. The backward pass with the
convolutional mask used upsampling. The transpose convolu-
tional operation used the stride parameter to upsample along the
backward pass. A convolutional mask was a bidirectional filter
with the B-BP algorithm.

The size of all the convolutional masks was 3 × 3. The CNN
models used 32 masks at the first convolutional layer and used
64 masks at the second convolutional layer. The third and fourth
layers used 128 convolutional masks each. The first fully con-
nected layer fc1 connected the output of the convolutional layers
to the second fully connected layer fc2. The fc1 layer used 2048
neurons and the fc2 layer used 1024 neurons. The fc2 layer used
10 neurons to connect to the output layer.

The forward pass used average pooling after the second, third,
and fourth convolutional layers to downsample the features. We
used a pooling factor of 2. The backward pass used the stride
factor of the transpose convolution operation at the second, third,
and fourth convolutional layers to upsample the features. The
stride factor was 2.

The forward-pass performance measure or error Ef was cross
entropy. The backward error Eb was squared error since these
were classification-regression bidirectional networks. Different
modes of B-BP trained the CNNs.

Table 10 shows that there was a slight boost in classifica-
tion accuracy with NEM noise injection in B-BP. B-BP with NEM
noise injection outperformed the other modes of B-BP. It also
performed better than unidirectional BP.

Fig. 6 compares the backward pass of the class-label or unit-
bit-vector basis vectors ek through the reverse network NT . The

26 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Table 8
Classification accuracy of multilayered BAM networks trained with backpropagation on the CIFAR10 dataset. The deep bidirectional
networks used 1, 3, 5, and 7 hidden layers with 512 ReLU neurons for each hidden layer. Blind or NEM noise injected into the
output and input neurons if at all.
Network configuration 1 hidden layer 3 - hidden layer 5 hidden layer 7 hidden layer

Unidirectional BP 53.89% 57.43% 57.83% 57.12%
B-BP without noise 54.26% 58.74% 58.18% 56.90%
B-BP with blind noise 53.86% 57.54% 58.09% 55.49%
B-BP with NEM noise 55.10% 59.43% 59.64% 59.80%

Table 9
Speed-ups and slow-downs in bidirectional training due to noise injection in
the output softmax neurons of multilayer classifier BAMs trained on the CIFAR-
10 dataset. The percentages are changes in the output cross entropy after 100
training epochs compared with noiseless B-BP.

B-BP with blind noise B-BP with NEM noise

1- hidden layer −6.0% 30.0%
3- hidden layers −26.0% 40.0%
5- hidden layers −8.0% 28.0%
7- hidden layers −16.0% 32.0%

Fig. 4. NEM-noise benefits in classification accuracy for multilayered BAMs and
B-BP training using the CIFAR-10 dataset. Simulations compared NEM-boosted
B-BP with noiseless B-BP and with B-BP with injected blind noise. (a) Multilayer
BAM classifier with 1 hidden layer and 1024 hidden ReLU neurons. NEM noise
and blind noise injection outperformed noiseless B-BP . (b) Multilayer BAM with
7 hidden layers with 512 ReLU neurons at each hidden layer. NEM-boosted B-BP
with NEM outperformed both noiseless B-BP and B-BP with blind noise injection.

backward-pass patterns on the B-BP trained CNNs were similar
to the targets x̃. The backward-pass patterns that arrived at the
input of the unidirectional-BP trained network did not visually
resemble the target images. Table 11 shows the speed-up in train-
ing due to noise injection. Injecting NEM noise in B-BP training
always outperformed injecting blind noise.

Fig. 5. Backward pass of the class-label unit-bit-vector output basis vectors ek
for a multilayered BAM trained on the CIFAR-10 dataset. The multilayered BAM
used 7 hidden layers and swept forward and backward through those layers.
(a) The sample class centroids of the 10 image pattern classes. (b) Backward-
pass prediction of the class-label output vectors ek with unidirectional BP:
The network failed to produce meaningful backward-pass feedback signals. (c)
Backward-pass prediction of the class-label output vectors ek with B-BP and
NEM noise injection: The feedback signals closely matched the corresponding
sample class centroids.

Table 10
Classification accuracy of convolutional neural networks trained on CIFAR-10
images.

Accuracy

Unidirectional BP 76.06%
B-BP without noise 76.44%
B-BP with blind noise 77.13%
B-BP with NEM noise 78.64%

6.3. NEM B-BP and adversarial networks

The adversarial simulations used the MNIST digit data (Le-
Cun, Bottou, Bengio, & Haffner, 1998) for both vanilla GANs and

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 27

Table 11
Speed-up in training due to noise injection in B-BP trained CNN models on the
CIFAR10 dataset. The reference is B-BP without noise injection.

Speed-Up

B-BP with blind noise 16.0%
B-BP with NEM noise 24.0%

Fig. 6. Backward pass of the class-label unit-bit-vector output basis vectors ek
for a multilayered convolutional BAM CNN trained on the CIFAR-10 dataset. (a)
The sample class centroids of the 10 image pattern classes Ck . (b) Backward-
pass prediction of the class-label output vectors ek with unidirectional BP only:
The network failed to produce meaningful backward-pass feedback signals. (c)
Backward-pass prediction of the class-label output vectors ek with B-BP and
NEM noise injection in the CNN: The feedback signals closely matched the
corresponding sample class centroids on the CIFAR-10 dataset.

Wasserstein GANs. Separate simulations used the CIFAR-10 im-
ages (Krizhevsky & Hinton, 2009) for the vanilla and Wasserstein
GANs. The image data did require that we extend the vanilla GAN
to a deep convolutional network.

6.3.1. Training a vanilla GAN with B-BP
We now describe the simulation results for the B-BP training

of vanilla GANs. The GAN’s generator G and discriminator D were
multilayered neural networks. The generator network G mapped
the space of the latent variable z to the space of generated
samples. The discriminator network D mapped these samples to
a single output logistic neuron. We trained the vanilla GANs only
on the MNIST dataset.

We modeled the latent variable z as a bipolar uniform random
variable: z ∼ U[−1, 1]. We used Goodfellow’s GAN inception score
IS(G) (Salimans et al., 2016) based on the exponentiated average

Fig. 7. Performance of the vanilla and Wasserstein GANs on the MNIST dataset.
(a) Inception scores for regular vanilla GANs trained on the MNIST dataset. Train-
ing with bidirectional BP and NEM noise injection gave the best performance
in terms of the highest inception score (the exponentiated Kullback–Leibler
entropic distance in Eq. (121)). All GANs trained with unidirectional BP suffered
from mode collapse: They often produced the same image. The B-BP trained
vanilla GANs did not suffer from mode collapse. NEM noise injection also
improved the quality of the generated images for both unidirectional BP and
bidirectional BP. (b) Inception scores for the Wasserstein GANs trained on the
MNIST dataset. Training with B-BP and NEM noise gave the best inception scores.
B-BP and NEM noise injection only slightly improved the WGAN performance
and generated images.

Kullback–Leibler divergence:

IS(G) = exp
(
Ex∼pg [DKL

(
p(y|x) ∥ p(y)

)
]
)

(121)

for the generator G. The Kullback–Leibler divergence or rela-
tive entropy DKL

(
p(y|x) ∥ p(y)

)
measures the pseudo-distance

between the conditional probability density p(y|x) and the corre-
sponding unconditional marginal density p(y). A higher inception
score IS(G) tends to describe generated images of better quality.
So a larger inception score corresponds to better GAN perfor-
mance. Table 12 shows the inception scores for the vanilla GANs
trained on the MNIST dataset. Table 13 shows the inception scores
for the Wasserstein GANs trained on the same dataset.

The generator network G used 100 input neurons with identity
activations. It had a single hidden layer with 128 logistic sigmoid
neurons. The output layer contained 784 logistic neurons.

The discriminator network D used 784 input neurons with
identity activations. It had a single hidden layer of 128 logistic
neurons. The output layer had a single logistic neuron.

28 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Fig. 8. Sample generated digit images from vanilla GANs trained with unidirectional BP and B-BP on the MNIST data set. These generated samples came from the
trained GANs after 100 training epochs. (a) Unidirectional BP. (b) Bidirectional BP without noise. (c) Unidirectional BP with NEM noise. (d) Bidirectional BP with NEM
noise.

Fig. 9. Sample generated images from deep-convolutional GANs trained with unidirectional BP and B-BP on the CIFAR-10 data set. We generated these samples after
training the GANs over 100 epochs. (a) Unidirectional BP. (b) Bidirectional BP without noise. (c) Unidirectional BP with NEM noise. (d) Bidirectional BP with NEM
noise.

NEM-boosted B-BP gave the best performance for both vanilla
and Wasserstein GANs. NEM noise gave more pronounced bene-
fits for vanilla GANs. We presume this was because the Wasser-
stein GANs involved more processing and had less room for
improvement. Fig. 7 compares the performance of the vanilla and
Wasserstein GANs trained on the MNIST dataset of handwritten
digits. Fig. 8 shows sample MNIST-like images that the vanilla
GANs generated. Fig. 11 shows sample MNIST-like images that

the Wasserstein GANs generated. Fig. 10 compares the perfor-
mance of the deep-convolutional and Wasserstein GANs trained
on the CIFAR-10 image dataset. Fig. 9 shows sample CIFAR-10-
like images that the deep-convolutional GANs generated. Fig. 12
shows sample CIFAR-10-like images that the Wasserstein GANs
generated.

We also trained a deep-convolutional GAN (DCGAN) on the
CIFAR-10 image set. The DCGAN used the same error function
as did the vanilla GAN for the MNIST dataset. The DCGAN had

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 29

Fig. 10. Performance of deep convolutional GANs (DCGANs) and Wasserstein
GANs on the CIFAR10 dataset. (a) DCGAN inception scores: NEM noise outper-
formed noiseless unidirectional BP and noiseless B-BP in the discriminator. (b)
Wasserstein GAN inception scores: NEM noise also performed best but with less
marked effects than in (a).

3 convolutional layers and no max-pooling layer (Radford, Metz,
& Chintala, 2015). The forward pass convolved the input data
with masks W ∗i . The backward pass used the transposed masks
W ∗i (in true bidirectional fashion) to convolve signals. The reverse
convolution was the transpose convolution operation (Dumoulin
& Visin, 2016). There was no pooling at the convolutional layers
for either the forward or backward pass.

The discriminator’s 3 convolutional layers used leaky rectified
linear (ReLU) activations and a fully connected layer between the

Table 12
Inception scores for vanilla GANs trained on the MNIST dataset.

Inception score

Unidirectional BP 3.96 ± 0.07
Unidirectional BP with NEM noise 5.15 ± 0.10
B-BP discriminator 6.66 ± 0.10
B-BP discriminator with NEM noise 7.04. ± 0.11

Table 13
Inception scores for Wasserstein GANs trained on the MNIST dataset.

Inception score

Unidirectional BP 7.67 ± 0.10
Unidirectional BP with NEM noise 7.71 ± 0.11
B-BP discriminator 7.75 ± 0.12
B-BP discriminator with NEM noise 7.80 ± 0.12

Table 14
Inception scores for deep-convolutional GANs trained on the CIFAR-10 dataset.

Inception score

Unidirectional BP 5.55 ± 0.20
Unidirectional BP with NEM noise 5.96 ± 0.15
B-BP discriminator 5.66 ± 0.16
B-BP discriminator with NEM noise 6.03. ± 0.17

Table 15
Inception scores for Wasserstein GANs trained on the CIFAR-10 dataset.

Inception score

Unidirectional BP 5.80 ± 0.46
Unidirectional BP with NEM noise 5.98 ± 0.29
B-BP discriminator 5.96 ± 0.23
B-BP discriminator with NEM noise 6.10. ± 0.25

input and output layers. The generator G also used 3 convolu-
tional layers with rectified linear activations and a fully connected
layer between the input and output layer. The generator G used
128 input neurons with identity activations.

Table 14 shows that NEM-boosted B-BP gave the best
inception-score performance for both the vanilla GAN trained on
the MNIST data set and the DCGAN trained on the CIFAR-10 image
set. The inception score IS(G) in (121) uses an exponentiated
Kullback–Leibler entropic distance to measure the image quality.
A higher inception score corresponds to better GAN performance.
Table 15 shows likewise that Wasserstein GANs performed best
with NEM noise and a bidirectional discriminator.

7. Conclusions

NEM noise injection improved the performance of bidirec-
tional backpropagation on classifiers both in terms of increased
accuracy and shorter training time. It often required fewer hidden

Fig. 11. Generated digit images from Wasserstein GANs trained with unidirectional BP and B-BP on the MNIST data set. These generated samples came training the
trained GANs after 100 training epochs. (a) Unidirectional BP. (b) Bidirectional BP without noise. (c) Unidirectional BP with NEM noise. (d) Bidirectional BP with NEM
noise.

30 O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31

Fig. 12. Generated images from Wasserstein GANs trained with unidirectional BP and B-BP on the CIFAR-10 image data set. We generated these samples after
training the GANs over 100 epochs. (a) Unidirectional BP. (b) Bidirectional BP without noise. (c) Unidirectional BP with NEM noise. (d) Bidirectional BP with NEM
noise.

neurons or layers to achieve the same performance as noiseless
B-BP. The NEM noise benefits were even more pronounced for
convolutional BAM classifiers. NEM noise injects just that noise
that makes the current signal more probable. It almost always
outperformed simply injecting blind noise. B-BP also outper-
formed ordinary unidirectional BP. Injecting NEM noise into a
vanilla generative adversarial network improved its inception
score and greatly reduced the problem of mode collapse. It also
improved the performance of Wasserstein GANs but the ben-
efit was less pronounced. NEM noise can also inject into the
hidden-layer neurons of these multilayer BAM networks.

References

Adigun, O., & Kosko, B. (2016). Bidirectional representation and backpropagation
learning. In International joint conference on advances in big data analytics (pp.
3–9).

Adigun, O., & Kosko, B. (2017). Using noise to speed up video classification
with recurrent backpropagation. In International joint conference on neural
networks (pp. 108–115). IEEE.

Adigun, O., & Kosko, B. (2018). Training generative adversarial networks with
bidirectional backpropagation. In 2018 17th IEEE international conference on
machine learning and applications (pp. 1178–1185). IEEE.

Adigun, O., & Kosko, B. (2019). Bidirectional backpropagation. IEEE Transactions
on Systems, Man, and Cybernetics: Systems.

Ali, M., Yogambigai, J., Saravanan, S., & Elakkia, S. (2019). Stochastic stability
of neutral-type markovian-jumping BAM neural networks with time varying
delays. Journal of Computational and Applied Mathematics, 349, 142–156.

Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training
generative adversarial networks. In International conference on learning
representations.

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint
arXiv:1701.07875.

Audhkhasi, K., Osoba, O., & Kosko, B. (2016). Noise-enhanced convolutional
neural networks. Neural Networks, 78, 15–23.

Bengio, Y., et al. (2009). Learning deep architectures for ai. Foundations and trends
in Machine Learning, 2(1), 1–127.

Bhatia, S., & Golman, R. (2019). Bidirectional constraint satisfaction in rational
strategic decision making. Journal of Mathematical Psychology, 88, 48–57.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern

formation and parallel memory storage by competitive neural networks. IEEE
Transactions on Systems, Man, and Cybernetics, (5), 815–826.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B. Statistical Methodology, 39(1), 1–22.

Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep
learning. ArXiv e-prints arXiv:1603.07285.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4), 193–202.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative adversarial nets. In Advances in neural information
processing systems (pp. 2672–2680). NIPS.

Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing (pp. 6645–6649). IEEE.

http://refhub.elsevier.com/S0893-6080(19)30277-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb2
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb3
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb4
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb5
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb5
http://arxiv.org/abs/1701.07875
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb8
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb9
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb9
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb9
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb10
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb10
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb10
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb11
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb12
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb13
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb13
http://arxiv.org/abs/1603.07285
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb15
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb16
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb17
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb17

O. Adigun and B. Kosko / Neural Networks 120 (2019) 9–31 31

Grossberg, S. (1976). Adaptive pattern classification and universal recoding:
II. Feedback, expectation, olfaction, illusions. Biological Cybernetics, 23(4),
187–202.

Grossberg, S. (1982). How does a brain build a cognitive code? In Studies of mind
and brain (pp. 1–52). Springer.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and
architectures. Neural Networks, 1(1), 17–61.

Grossberg, S. (2017). Towards solving the hard problem of consciousness:
The varieties of brain resonances and the conscious experiences that they
support. Neural Networks, 87, 38–95.

Gubner, J. A. (2006). Probability and random processes for electrical and computer
engineers. Cambridge University Press.

Gulrajani, I., Ahmed, F., Arjovsky, M., V. Dumoulin, V., & Courville, A. (2017).
Improved training of wasserstein GANs. arXiv preprint arXiv:1704.00028.

Hinton, G. E., Rumelhart, D., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(9), 533–536.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

Hogg, R., Mckean, J., & Craig, A. (2012). Introduction to mathematical statistics.
(7th ed.). Pearson Education.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8), 651–666.

Jordan, M., & Mitchell, T. (2015). Machine learning: trends, perspectives, and
prospects. Science, 349, 255–260.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9),
1464–1480.

Kosko, B. (1987). Adaptive bidirectional associative memories. Applied Optics,
26(23), 4947–4960.

Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on
Systems, Man and Cybernetics, 18(1), 49–60.

Kosko, B. (1990). Unsupervised learning in noise. Neural Networks, IEEE
Transactions on, 1(1), 44–57.

Kosko, B. (1991a). Neural networks and fuzzy systems: A dynamical systems
approach to machine intelligence. Prentice Hall.

Kosko, B. (1991b). Stochastic competitive learning. IEEE Transactions on Neural
Networks, 2(5), 522–529.

Kosko, B. (2018). Additive fuzzy systems: From generalized mixtures to rule
continua. International Journal of Intelligent Systems, 33(8), 1573–1623.

Kosko, B., Audkhasi, K., & Osoba, O. (2019). Noise Can Speed Backpropaga-
tion Learning and Deep Bidirectional Pretraining. Elsevier, submitted for
publication.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny
images. Technical report, University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097–1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech,

and time series. In The handbook of brain theory and neural networks: Vol.
3361, (10), (p. 1995).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner (1998). Gradient-based learning
applied to document recognition. In Proceedings of the IEEE: Vol. 86, (11)
(pp. 2278–2324). IEEE.

Maharajan, C., Raja, R., Cao, J., Rajchakit, G., & Alsaedi, A. (2018). Impul-
sive Cohen–Grossberg BAM neural networks with mixed time-delays: an
exponential stability analysis issue. Neurocomputing, 275, 2588–2602.

Metz, L., Poole, B., D. Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine
learning. MIT press.

Osoba, O., & Kosko, B. (2013). Noise-enhanced clustering and competitive
learning algorithms. Neural Networks, 37, 132–140.

Osoba, O., & Kosko, B. (2016). The noisy expectation-maximization algorithm for
multiplicative noise injection. Fluctuation and Noise Letters, 1650007.

Osoba, O., Mitaim, S., & Kosko, B. (2013). The noisy expectation–maximization
algorithm. Fluctuation and Noise Letters, 12(3), 1350012–1–1350012–30.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representationsby
back-propagating errors. Nature, 323–533.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., & Radford, A. (2016).
Improved techniques for training GANs. arXiv preprint arXiv:1606.0349.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research (JMLR), 15(1), 1929–1958.

Villani, C. (2009). Optimal transport: Old and new. Springer, Berlin,
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research (JMLR),
11(Dec), 3371–3408.

Wang, F., Chen, Y., & Liu, M. (2018). pth moment exponential stability of
stochastic memristor-based bidirectional associative memory (BAM) neural
networks with time delays. Neural Networks, 98, 192–202.

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis
in the behavioral sciences (Doctoral Dissertation), MA: Applied Mathematics,
Harvard University.

http://refhub.elsevier.com/S0893-6080(19)30277-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb18
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb19
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb19
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb19
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb20
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb21
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb22
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb22
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb22
http://arxiv.org/abs/1704.00028
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb24
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb24
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb24
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb25
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb26
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb26
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb26
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb27
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb28
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb29
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb29
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb29
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb30
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb31
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb31
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb31
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb32
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb32
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb32
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb33
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb34
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb35
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb35
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb35
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb36
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb38
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb39
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb40
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb42
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb42
http://arxiv.org/abs/1611.02163
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb44
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb44
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb44
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb45
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb46
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb46
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb46
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb47
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb47
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb47
http://arxiv.org/abs/1511.06434
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb49
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb49
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb49
http://arxiv.org/abs/1606.0349
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb51
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb51
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb51
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb51
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb51
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb52
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb53
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb54
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb54
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb54
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb54
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb54
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb55
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb55
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb55
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb55
http://refhub.elsevier.com/S0893-6080(19)30277-1/sb55

	Noise-boosted bidirectional backpropagation and adversarial learning
	Introduction: From adaptive resonance to noise-boosted bidirectional backpropagation and adversarial learning
	BAMs extend to multilayer networks
	The implicit bidirectionality of classifier networks
	Bidirectional backpropagation through BP invariance
	NEM noise-boosted bidirectional backpropagation

	Backpropagation and noise injection
	Backpropagation invariance and expectation–maximization
	Noisy expectation–maximization
	NEM noise benefits in backpropagation

	Bidirectional backpropagation (B-BP)
	B-BP likelihood functions
	B-BP double regression
	B-BP double classification
	B-BP double logistic networks
	Mixed case: B-BP classification and regression

	B-BP algorithm for classifier networks

	NEM noise-boosted B-BP learning
	NEM-boosted B-BP for classifier networks
	B-BP NEM theorem

	Generative adversarial networks and bidirectional training
	Bidirectional GAN training
	Bidirectional training of a vanilla GAN
	Bidirectional training of a Wasserstein GAN

	Bidirectional simulation results
	Deep bidirectional neural classifiers and NEM B-BP
	Deep convolutional neural classifiers and NEM B-BP
	NEM B-BP and adversarial networks
	Training a vanilla GAN with B-BP

	Conclusions
	References

