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a b s t r a c t

Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional
neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation
algorithm is a special case of the generalized expectation–maximization (EM) algorithm and because
such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives
a practical way to learn and recognize images because backpropagation scales with training data. It has
only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special
separating hyperplane in the network’s noise space. The hyperplane arises from the likelihood-based
positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise
hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from
above the hyperplane speeds training on average. Noise chosen from below slows it on average. The
algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons
reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set
of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%.
Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most
pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few
iterations. This noise effect can assist random sampling from large data sets because it allows a smaller
random sample to give the same or better performance than a noiseless sample gives.

© 2015 Elsevier Ltd. All rights reserved.
1. Noise-boosted convolutional neural networks

This paper presents the Noisy Convolutional Neural Network
(NCNN) algorithm for speeding up the backpropagation (BP)
training of convolutional neural networks (CNNs). Fig. 1 shows
the architecture of a CNN with a single hidden convolutional layer
and 3 convolutional masks or retinal-like receptive fields. CNNs
are standard feedforward neural networks for large-scale image
recognition (Cireşan, Meier, Masci, Gambardella, & Schmidhuber,
2011; Krizhevsky, Sutskever, &Hinton, 2012; Lawrence, Giles, Tsoi,
& Back, 1997; LeCun et al., 1990; LeCun, Bottou, Bengio, & Haffner,
1998;Matsugu,Mori,Mitari, & Kaneda, 2003; Simard, Steinkraus, &
Platt, 2003; Szarvas, Yoshizawa, Yamamoto, & Ogata, 2005). Some
deep neural nets use on the order of 20 hidden layers of neurons
(LeCun, Bengio, & Hinton, 2015; Simonyan & Zisserman, 2014). The
NCNNalgorithmcannoise-boost a CNNwith any number of hidden
layers so long as the injected noise lies above theNCNNhyperplane
in noise space.

∗ Corresponding author.
E-mail address: kosko@sipi.usc.edu (B. Kosko).

http://dx.doi.org/10.1016/j.neunet.2015.09.014
0893-6080/© 2015 Elsevier Ltd. All rights reserved.
The NCNN algorithm exploits two recent theoretical results—a
reduction and a noise boost.

The first result is that the BP algorithm is a special case
(Audhkhasi, Osoba, & Kosko, 2013a) of the generalized expecta-
tion–maximization (EM) algorithm for iteratively maximizing a
likelihood or log-likelihood (Dempster, Laird, & Rubin, 1977). We
restate and prove this result below as Theorem 1. BP and gener-
alized EM are both iterative gradient algorithms. The proof shows
that their log-likelihood gradients are equal at each training epoch.
This embeds BP in the general framework of maximum likelihood
estimation. Fig. 2 shows this BP–EM correspondence at the sys-
tem level. BP’s forward step corresponds to the expectation or
E-step. Its backward error pass corresponds to themaximization or
M-step. The network’s hidden-layer parameters correspond to
EM’s latent variables.

BP that minimizes training-sample squared error equally max-
imizes a likelihood in the form of the exponential of the nega-
tive squared error. Maximizing the log-likelihood also minimizes
the squared error. This ‘‘classical’’ squared-error or least-squares
BP case (Rumelhart, Hinton, & Williams, 1986) occurs in the like-
lihood framework when the output neurons have conditionally
Gaussian activation functions (Bishop, 2006). We achieved better
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Fig. 1. Convolutional Neural Network (CNN): The diagram shows a CNN with
just one hidden convolutional layer. The input image X convolves with the 3
masks W1,W2 , and W3 . These masks act as receptive fields in the retina. The
resulting images pass pixel-wise through the hidden neurons with logistic sigmoid
activations. Then the CNN computes element-wise Hadamard products between
the hidden neuron activation matrices Z1, Z2, and Z3 with weight matrices Uk

j
where j = 1, 2, 3 and k = 1, 2, 3. The output neurons have softmax activations
that define a discrete Gibbs probability density function.

CNN recognition performance with BP that minimized the more
common training-set cross entropy in (6).

Using cross entropy corresponds to using output neurons that
use the softmax or Gibbs activation functions atk (Bishop, 2006) in
(5). Softmax neurons have the form of an exponential divided by a
sum of exponentials. So the activations atk lie in the unit interval
and define probabilities because they sum to one. Each softmax
activation itself defines a discrete Gibbs probability density
function. But the K output neurons or activations are independent
of one another. Independence factors the joint probability or
likelihood p(y|x, Θ) of the K output neurons where the network’s
output y depends on the input x and the network parameters
Θ . This factorization produces a categorical probability density
function at the output layer: p(y|x, Θ) =

K
k=1(a

t
k)

yk because
the exponents yk are binary and sum to one. This holds because
the output target vectors encode patterns as unit binary vectors.
The categorical density corresponds to a one-trial multinomial
density. Then taking the logarithmof p(y|x, Θ) shows that this log-
likelihood is just the cross entropy (6).

So minimizing cross entropy maximizes the log-likelihood
and leads to a BP form of multinomial regression for multiple
categories of images or other patterns. Section 3 further shows
that minimizing the cross entropy in this case minimizes the
Kullback–Liebler divergence or relative entropy.

The second theoretical result is that carefully chosen and
injected noise speeds convergence of the EM algorithm on average
as it iteratively climbs the nearest hill of likelihood (Osoba &Kosko,
2016;Osoba,Mitaim, &Kosko, 2011, 2013). Theorem2 restates this
result. Then we show that this guaranteed EM noise boost gives
rise to a noise-space hyperplane condition for training CNNs with
backpropagation: Noise chosen from above the NCNN hyperplane
speeds CNN training on average. Noise chosen from below slows it.

This NCNN-hyperplane result may help explain anecdotal
reports that randomly chosen noise sometimes gives a slight boost
in training performance. We would expect that on average such
blind noise should contain roughly the same number of noise
samples from above the NCNN hyperplane as from below it. But
some cases should also contain more samples from above the
NCNN hyperplane. These cases should enjoy at least a mild noise
boost.

The NCNN algorithm also holds promise for big data applica-
tions. There are least two main reasons for this.

The first reason is that training BP scales only linearly with
sample size. Training BP with n samples incurs only linear
O(n) time complexity. Linear time complexity holds because
the forward or predictive pass of BP has only O(1) complexity.
The more involved backward pass has O(n) complexity. BP’s
overall linear complexity contrasts with theO(n2) time complexity
of modern support-vector kernel methods (Kung, 2014). The
quadratic complexity of such kernel methods arises from the
O(n) complexity of their predictive pass. The recent Fastfood
kernel algorithm (Le, Sarlós, & Smola, 2013) reduces the O(n2)
kernel complexity to O(n log d) for n nonlinear basis functions
in d dimensions. Fastfood’s loglinear complexity appears to be
the current lower bound for kernel methods. The computational
difference between O(n) and O(n log d) time complexities in
practice can be substantial for large-scale problems of big data.
Fig. 2. Backpropagation CNN training as the EM algorithm: BP’s forward pass corresponds to the EM algorithm’s E-step. Its backward pass corresponds to the M-step. The
hidden neurons and parameters correspond to EM’s latent variables. The input image is a hand-drawn digit ‘‘3’’ from the MNIST data set. A forward pass through the CNN
computes the activations of the hidden and output neurons. The error between the output activation vector at and the true target vector (0, 0, 1) propagates back through
the CNN to compute the gradient of the cross entropy for softmax output neurons. Then gradient descent updates the weights of the CNN.
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The second reason is that noise-boosting enhances sampling
from big-data data sets. A natural way to deal with ever bigger
data sets is to randomly sample from them. Such sampling throws
away or ignores some or even much of the data. But sufficiently
large sample sizes can give adequate statistical precision in many
cases. The laws of large numbers ensure this when using sample
means and variances or covariances based on population data
with finite moments. This opens the door to an array of Monte
Carlo sampling techniques. Some big-data ‘‘sketching’’ algorithms
already use some form of sampling (Slavakis, Giannakis, & Mateos,
2014).

The NCNN algorithm allows the user to take a smaller random
sample than in the noiseless case and still achieve a given level of
performance. It also allows the user to take the same number of
samples for a better level of performance. Fig. 9 shows that NCNN
training with only 700 random image samples had on average
the same squared error that noiseless BP training of a CNN had
with 1000 such random samples. This 300-sample noise benefit
decreased to 100 samples as the noiseless training approached
2000 random image samples.

We tested the NCNN algorithm on standard MNIST test images
for image recognition. The test images were handwritten digits
from zero to nine. We found a substantial reduction in training
time when compared with ordinary or noiseless backpropagation:
NCNN reduced the average per-iteration training-set cross entropy
by 39%.

These simulations achieved this noise boost by adding noise
only to the output neurons. The general NCNN algorithm in
Section 5 allows the user to add noise to any of the neurons in
the multilayered network. Adding noise to hidden or throughput
neurons entails only slightly increased cost in terms of using a new
scaling matrix. But it further speeds up BP training (Audhkhasi,
Osoba, & Kosko, in review).

Fig. 3 shows the defining NCNN hyperplane that passes
through the origin of the network’s output-layer noise space. The
hyperplane structure implies that the NCNN hyperplane imposes
only a simple linear condition on the noise. The three dimensions
of the noise space in this example correspond to the three output
neurons in Fig. 2. Adding uniform noise to the output neurons
defines the uniform noise cube. Adding Gaussian noise defines a
Gaussian noise ball.

Noise vectors above the NCNN hyperplane speed BP training
convergence on average because just these noise samples increase
the iterative likelihood steps in the corresponding EM algorithm.
Noise below the NCNN hyperplane slows BP convergence on
average because it decreases the EM’s likelihood steps compared
with the noiseless case.

The NCNN noise benefit gradually shrinks as the sample size
increases. So the noise-benefit boxes or balls will shrink as the
noise boost becomes fainter. The NCNN noise acts as a type of
synthetic but statistically representative data. Its helpful effect
wanes as the system processes ever more actual data. So its
greatest benefit to big data may be in helping the user pick smaller
but more representative sample sets to keep.

Fig. 4 shows the training-set cross entropy of a CNN that uses
standard noiseless BP, BP with blind noise (Blind-BP), and BP with
noisy-EM noise (NEM-BP). Blind-BP ignores the NEM sufficient
condition. It simply adds all randomly drawn noise samples to the
training data. NCNN or Noisy BP reduced the average training-set
cross entropy by 39.26% compared with noiseless BP.

Fig. 5 plots the training-set classification error rates as the
system trained. The testing-set classification error rate was nearly
the same at convergence. NEM-BP gave a 47.43% reduction
in training-set error rate averaged over the first 15 iterations
compared with noiseless BP. Adding blind noise only slightly
improved cross entropy and classification accuracy.
Fig. 3. Noise-benefit region for a CNN with softmax output neurons: Noise
speeds up the maximum-likelihood parameter estimation of the CNN with
softmax output neurons if the injected noise lies above the NCNN hyperplane.
The hyperplane passes through the origin of the noise space. Independent and
identically distributed uniform noise lies inside the noise cube. The output layer’s
activation vector at controls the normal to the NCNN hyperplane. The hyperplane
changes as learning proceeds because the parameters and hidden-layer neuron
activations change. Adding noise from below the hyperplane slows convergence on
average.

Fig. 4. NEM noise-benefit in BP training of a CNN using MNIST data: NEM-BP
training reduced the average training-set cross entropy of the MNIST data set
compared with standard noiseless BP training. The NEM-BP algorithm reduced the
cross entropy by 39.26% on average compared with standard BP over the first 15
training iterations. Adding blind noise gave only aminor average reduction of 4.02%
in cross entropy. Training used 1000 images from the MNIST data for a CNN with
one convolution hidden layer. The convolutional layer used three 3 × 3 masks or
filters. Factor-2 downsampling followed the convolutional layer by removing all
even index rows and columns of the hidden neuron images. The hidden layer fully
connected to the 10 output neurons that predicted the class label of the input digit
image. We used uniform noise over [−0.5/

√
t5, 0.5/

√
t5]where t was the training

iteration number for both NEM noise and blind noise.

Fig. 6 shows a noise-benefit inverted U-curve for NCNN training
of a CNN on the MNIST data set. This inverted U-curve is the
signature of a classic nonlinear noise benefit or so-called stochastic
resonance (Bulsara & Gammaitoni, 1996; Franzke & Kosko, 2011;
Gammaitoni, 1995; Kosko, 2006; Mitaim & Kosko, 2014; Patel &
Kosko, 2007, 2008, 2009, 2010, 2011; Wilde & Kosko, 2009). The
optimal uniform noise scale occurred at 1. A NEM noise swamping
effect occurred where the noise hurt or slowed CNN training
when the noise scale increased beyond 2.6. This swamping effect
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Fig. 5. NEM noise benefit in BP training of a CNN using MNIST data: NEM-BP
training reduced the training-set classification error rate of the MNIST data set
compared with noiseless BP training. NEM-BP reduced the classification error by
47.43% on average compared with standard BP over the first 15 training iterations.
Adding blind noise gave only a minor average reduction of 4.05% in classification
error rate. Training used 1000 images from the MNIST data for a CNN with one
convolution hidden layer. The convolutional layer used three 3 × 3 masks or
filters. Factor-2 downsampling followed the convolutional layer by removing all
even index rows and columns of the hidden neuron images. The hidden layer fully
connected to the 10 output neurons that predicted the class label of the input
digit. We used uniform noise over [−0.5/

√
t5, 0.5/

√
t5] where t was the training

iteration number for both NEM noise and blind noise.

Fig. 6. NEM noise-benefit inverted U-curve for NEM-BP training of a CNN: The
figure shows themean percent reduction in per-iteration training-set cross entropy
for NEM-BP training of a CNNwith different uniform noise variances. The inverted-
U is the signature of a stochastic-resonance noise benefit. We added zero mean
uniform (−0.5


c/td, 0.5


c/td) noise where c = 0, 0.2, . . . , 2.8, 3, t was the

training epoch, and d = 5 was the noise annealing factor. The noise benefit
increased when c increased from 0 to 1 and tended to decrease for values greater
than 1. The optimal noise scale was c∗ = 1. Injecting NEM noise hurt the training-
set cross entropy when c > 2.6.

appears to arise from the iterative fixed-point structure of the EM
algorithm.

The next section presents the working details of a CNN for
image recognition. Section 3 presents the BP algorithm for CNN
training. Theorem 1 shows that the BP algorithm is a special case
of the generalized EM (GEM) algorithm. Section 4 reviews the
NEMalgorithm for speedingmaximum likelihood estimation in the
case of missing data or variables. Section 5 presents the NEM-BP
algorithm for CNN training. Section 6 summarizes the simulations
on the MNIST data set.

2. Convolutional neural networks

A CNN convolves the input data with a set of filters. This
operation is a rough analogy to the use of receptive fields in
the retina (Hubel & Wiesel, 1959) as in Fukushima’s original
neocognitron network (Fukushima, 1988).

Consider the CNN in Fig. 1 with one hidden convolutional layer
for simplicity. The notation extends directly to allow deep or
multiple hidden layers. Let X denote the input 2-dimensional data
of size MX × NX where MX and NX are positive integers. The 2D
filtersW1, . . . ,WJ are each of sizeMW×NW . Then the convolution
of Xwith the filterWj gives the matrix

Cj = X ∗Wj (1)

where ∗ denotes 2D convolution.
The 2D data matrix Cj has size (MX +MW − 1)× (NX +NY − 1)

with (m, n)th entry

Cj(m, n) =
MW
a=1

NW
b=1

X(a−m, b− n)Wj(a, b). (2)

Pad Xwith zeros to define it at all points in the above double sum.
Then pass the J matrices C1, . . . , CJ element-wise through logistic
sigmoid functions s to give the hidden-neuron activations Zj:

Zj(m, n) = s(Cj(m, n)) (3)

=
1

1+ exp(−Cj(m, n))
. (4)

Suppose the network has K output neurons. A (MX+MW−1)×
(NX + NY − 1) weight matrix Uk

j multiplies the jth hidden neuron
matrix Zj element-wise. The softmax or Gibbs activation atk of the
kth output neuron is the ratio

atk =

exp
 J
j=1

eTZj ⊙ Uk
j e


K

k1=1
exp

 J
j=1

eTZj ⊙ Uk1
j e

 (5)

where ⊙ denotes the element-wise Hadamard product between
two matrices. e is a vector of all 1s of length (MX +MW − 1)(NX +

NW − 1). The JK matrices Uk
j (j = 1, . . . , J and k = 1, . . . , K )

are the weights of the connections between the hidden neurons
and the output neurons. The next section presents the BP and EM
algorithms for training a CNN and then proves their equivalence.

3. Backpropagation and EM for training CNNs

The BP algorithm performs gradient ascent on a scalar
performance measure. We will use output cross entropy as the
performance measure because of its excellent performance in
simulations and because the CNN uses softmax output neurons.
We could also use squared error as the performance measure.
Such a least-squares approachwould correspond in themaximum-
likelihood (ML) framework to using output neurons that are
conditionally Gaussian because the gradient applies to the log-
likelihood ln p(y|x, Θ) for input x and all network parameters Θ

(Bishop, 2006). The conditional probability density function (pdf)
p(y|x, Θ) is the probability of observing the pattern y at the output
layer given the input x of a CNN with parameters Θ .

The BP algorithm performs ML estimation of the J convolution
matrices W1, . . . ,WJ and the JK hidden-output weight matrices
Uk

j . Let y denote the 1-in-K binary encoding vector of the target
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label for a given input image X. This means that yk = 1 when k
corresponds to the correct class and 0 otherwise.

BP computes the cross entropy E(Θ) between the softmax
activations at1, . . . , a

t
K of the output neurons and the binary target

vector y:

E(Θ) = −

K
k=1

yk ln(atk) (6)

where again Θ denotes all parameters of the CNN—the J convolu-
tion matricesW1, . . . ,WJ and the weight matrix U.

This BP computation holds because the K output neurons
are independent of one another. There are no between-neuron
connections at the output layer. So the output likelihood pdf
p(y|x, Θ) factors. The kth factor p(yk|x, Θ) is just the powered
softmax activation (atk)

yk because yk = 1 if k is the correct class
label for the input image and yk = 0 otherwise. Then the network’s
likelihood function L(Θ) equals the negative cross entropy−E(Θ):

L(Θ) = ln p(y|x, Θ) (7)

= ln
K

k=1

p(yk|x, Θ) (8)

= ln
K

k=1

(atk)
yk (9)

=

K
k=1

yk ln(atk) (10)

= −E(Θ) (11)

because again the exponents yk are binary and sum to one. So BP
computes the cross entropy because p(y|x, Θ) = exp(−E(Θ)).

This derivation shows more specifically that

L(Θ) = ln atk = −E(Θ) (12)

if k is the correct class label for the given input image or pattern. So
minimizing the cross entropy E(Θ)maximizes the likelihood L(Θ)
and vice versa. So the ML estimate Θ∗ of Θ is

Θ∗ = argmax
Θ

L(Θ). (13)

The above derivation also shows that the supervised neural
network computes a categorical pdf:

p(y|x, Θ) =

K
k=1

(atk)
yk (14)

for target unit-bit-vector y. A categorical pdf is just a one-sample
multinomial pdf. The BP network performsmultinomial regression
in this sense.

We show next that minimizing the cross entropy E(Θ) is the
same as minimizing the Kullback–Leibler divergence (Kullback &
Leibler, 1951) between the output softmax activations and the
target vector. This holds because the discrete Kullback–Liebler
divergence KL(y ∥ at) expands as

KL(y ∥ at) =
K

k=1

yk ln

yk
atk



=

K
k=1

yk ln yk −
K

k=1

yk ln atk

= −H(y)+ E(Θ) (15)

where E(Θ) is the cross entropy in (6) and H(y) is the entropy
of the target y. But the entropy of the target does not depend on
the CNN parameters Θ . So minimizing the Kullback–Liebler diver-
gence or the cross-entropy gives the same extremal estimate Θ∗
of the CNN parameters. So minimizing the Kullback–Liebler diver-
gence alsomaximizes the network likelihood L(Θ) = ln p(y|x, Θ).

We can summarize the above discussion as follows: BP
performs gradient ascent on the log-likelihood surface L(Θ) to
iteratively find the ML estimate Θ∗ of Θ . This also holds when
minimizing squared-error because again BP is then equivalent to
ML estimation with a conditional Gaussian pdf (Audhkhasi et al.,
2013a; Bishop, 2006). The estimate of Θ at the (n+ 1)th iteration
or training epoch is Θ(n+1):

Θ(n+1)
= Θ(n)

− η∇ΘE(Θ)


Θ=Θ(n)

(16)

where η is a positive learning rate. The above argument shows that
we could equivalentlywrite this learning law in terms of taking the
gradient of the Kullback–Liebler divergence KL(y ∥ at) or the log-
likelihood ln p(y|x, Θ).

A forward pass in BP computes the activations of all hidden and
output neurons in the CNN. Back-propagating the output neuron
activation errors through thenetwork gives the gradient of the data
log-likelihood function with respect to the CNN parameters. The
gradient ascent in (16) updates these parameters.

The hidden neuron activations in a CNN are ‘‘latent’’ or unseen
variables for the purposes of the EM algorithm. BP here performs
ML estimation of a CNN’s parameters.

The EMalgorithm itself is an iterativemethod forML estimation
in the case of missing data or latent variables Z (Dempster et al.,
1977). The algorithm iteratively maximizes the likelihood pdf
p(y|x, Θ) by exploiting the pdf identity p(y|x, Θ) =

p(z,y|x,Θ)

p(z|y,x,Θ)
.

Taking logarithms gives the crucial log-likelihood equation at the
heart of both EM and Theorem 1:

ln p(y|x, Θ) = ln p(z, y|x, Θ)− ln p(z|y, x, Θ). (17)

The key idea is that the algorithm conditions on the pdf
p(z|y, x, Θ(n)) to estimate the missing variable z. So it estimates
z both with the observed data y and x and with the current
parameter estimate Θ(n).

We can now state the EM algorithm in terms of tuning the CNN
parameters. The EM algorithm uses the lower-bound surrogate
likelihood function Q (Θ|Θ(n)) of the log-likelihood function L(Θ):

Q (Θ|Θ(n)) = Ep(Z1,...,ZJ |y,X,Θ(n)){ln p(Z1, · · · , ZJ , y|X, Θ)}. (18)

So the J matrices Z1, . . . , ZJ are the latent variables in the
algorithm’s expectation (E) step.

Note that Q (Θ|Θ(n)) is just the expectation with respect to
the pdf p(Z1, . . . , ZJ |y,X, Θ(n)) of the first term on the right
side of (17). This expectation does not affect the log-likelihood
term ln p(y|X, Θ(n)) on the left side of the log-likelihood Eq. (17)
since that term does not depend on the latent variables Zk. EM’s
hill-climbing or ‘‘ascent property’’ (Dempster et al., 1977) states
that any Θ that increases Q (Θ|Θ(n)) can only increase the log-
likelihood difference ln p(y|X, Θ) − ln p(y|X, Θ(n)). So EM can
never decrease the likelihood p(y|X, Θ(n)) at an iteration n.

EM’s maximization (M) step maximizes the Q-function to find
the next parameter estimate Θ(n+1):

Θ(n+1)
= argmax

Θ
Q (Θ|Θ(n)). (19)

The generalized EM (GEM) algorithm merely increases
Q (Θ|Θ(n)) at each iteration. GEM need not always maximize it.
GEM performs this partial optimization by stochastic gradient
ascent:

Θ(n+1)
= Θ(n)

+ η∇ΘQ (Θ|Θ(n))


Θ=Θ(n)

(20)
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where again η is a positive learning coefficient or sequence of such
coefficients.

We cannowstate Theorem1 fromAudhkhasi et al. (2013a). This
fundamental theorem shows that BP is a special case of the GEM
algorithmbecause their gradient updates coincide at each iteration
n. We restate this theorem and give it a more full proof here for
completeness since noise-boosting CNNs depends on it.

Theorem 1 (Backpropagation is a Special Case of the GEM Algo-
rithm). The backpropagation update equation for a differentiable like-
lihood function p(y|x, Θ) at epoch n

Θ(n+1)
= Θ(n)

+ η∇Θ ln p(y|x, Θ)


Θ=Θ(n)

(21)

equals the GEM update equation at epoch n

Θ(n+1)
= Θ(n)

+ η∇ΘQ (Θ|Θ(n))


Θ=Θ(n)

(22)

where GEM uses the differentiable Q-function Q (Θ|Θ(n)) in (18).
Proof. Rewrite the difference of log-likelihoods (17) as

ln p(y|x, Θ) = ln p(h, y|x, Θ)− ln p(h|x, y, Θ) (23)

so that now h denotes the hidden or latent variables. Then
take expectations on both sides by integrating against the pdf
p(h|x, y, Θn):

ln p(y|x, Θ) =


ln p(h, y|x, Θ) dp(h|x, y, Θ(n))

−


ln p(h|x, y, Θ) dp(h|x, y, Θ(n)) (24)

because the log-likelihood on the left does not depend on h. This
gives the equality (Bishop, 2006; Oakes, 1999)

ln p(y|x, Θ) = Q (Θ|Θ(n))+ H(Θ|Θ(n)) (25)

from (18). The term H(Θ|Θ(n)) is the continuous cross entropy
(Cover & Thomas, 2012):

H(Θ|Θn) = −


ln p(h|x, y, Θ) dp(h|x, y, Θ(n)). (26)

The result now follows by taking gradients if we can show that
∇ΘH(Θ|Θ(n)) = 0 at Θ = Θ(n).

Expand the continuous Kullback–Leibler divergence (Kullback
& Leibler, 1951) of the pdfs p(h|x, y, Θ(n)) and p(h|x, y, Θ):

DKL(Θ
(n)
∥ Θ) =


ln


p(h|x, y, Θ(n))

p(h|x, y, Θ)


dp(h|x, y, Θ(n)) (27)

=


ln p(h|x, y, Θ(n)) dp(h|x, y, Θ(n))

−


ln p(h|x, y, Θ) dp(h|x, y, Θ(n)) (28)

= −H(Θ(n)
|Θ(n))+ H(Θ|Θ(n)). (29)

Jensen’s inequality and the concavity of the logarithm imply
that DKL(Θ

(n)
∥ Θ) > 0 (Kullback & Leibler, 1951). So H(Θ|Θ(n))

> H(Θ(n)
|Θ(n)) for all Θ . So Θ(n) minimizes H(Θ|Θ(n)). So

∇ΘH(Θ|Θ(n)) = 0 at Θ = Θ(n). Take gradients on both sides of
(25) and apply this null-gradient result. This gives the fundamental
gradient equality

∇Θ log p(y|x, Θ)


Θ=Θ(n)

= ∇ΘQ (Θ|Θ(n))


Θ=Θ(n)

. (30)

So the backpropagation and GEM update equations are identical at
each iteration or epoch n. �

This BP–EM equivalency theorem lets us use the noisy EM
algorithm to speed up the BP training of a CNN. The next section
details the noisy EM algorithm.
4. Noisy Expectation–Maximization (NEM) algorithm

The Noisy Expectation–Maximization (NEM) algorithm (Osoba
& Kosko, 2016; Osoba et al., 2011, 2013) speeds up the EM
algorithm on average. The NEM algorithm adds noise to the data at
each EM iteration. But the noise must satisfy an average positivity
condition. Then such noise can only increase the EM algorithm’s
‘‘ascent property’’ (Dempster et al., 1977) on average as it climbs a
local hill of probability or log-likelihood.

The injected noise decays with the iteration count to ensure
convergence to the optimal parameters of the original data model.
The additive noise must also satisfy the NEM positivity condition
below. The condition ensures that the NEM parameter estimates
will climb faster up the likelihood surface on average.

4.1. NEM theorem for additive noise injection

The NEM Theorem (Osoba et al., 2011, 2013) states when
additive noise speeds up the EM algorithm’s average convergence
to a local optimum of the likelihood surface. This sufficient
condition for a noise boost is a positivity (non-negativity)
condition. This NEM noise-benefit result holds more generally for
multiplicative noise or for any other measurable combination of
signal and noise (Osoba & Kosko, 2016).

The NEM idea is that noisen increases the probability of a signal
x when p(x + n|Θ) > p(x|Θ). This pdf inequality is equivalent
to the inequality ln p(x+n|Θ)

p(x|Θ)
> 0. Then taking averages gives the

positivity condition in the NEM Theorem below.
The NEM Theorem uses the noise random variable N with

probability density function (pdf) p(n|x). So the noise N depends
on the data x in general. The vector h denotes the latent or
hidden variables in the EM model. The sequence {Θ(n)

} is a
sequence of EM estimates for Θ . Then Θ∗ is the converged
EM estimate for Θ: Θ∗ = limn→∞Θ(n). Define the random
noisy Q function QN(Θ|Θ(n)) as the expectation QN(Θ|Θ(n)) =
Eh|x,Θk [ln p(x+ N,h|θ)]. We assume that all random variables
have a finite differential entropy and that the additive noise keeps
the data in the support of the likelihood function. Thenwe can state
the general NEM theorem for additive noise injection (Osoba et al.,
2011, 2013).

Theorem 2 (Noisy Expectation–Maximization (NEM)). The EM esti-
mation noise benefit

Q (Θ∗|Θ∗)− Q (Θ(n)
|Θ∗) > Q (Θ∗|Θ∗)− QN(Θ(n)

|Θ∗) (31)

or equivalently

QN(Θ(n)
|Θ∗) > Q (Θ(n)

|Θ∗) (32)

holds on average if the following positivity condition holds:

Ex,h,N|Θ∗


ln


p(x+ N,h|Θn)

p(x,h|Θn)


> 0. (33)

Reversing the inequalities in the NEM Theorem gives a dual
theorem for noise harm on average (Osoba & Kosko, 2016).
Injecting noise from below the hyperplane in Fig. 3 only slows
convergence on average because it takes smaller steps up the
likelihood surface compared with noiseless EM. It thus reduces the
‘‘ascent property’’ of ordinary EM (Dempster et al., 1977). We state
this result as Corollary 1.

Corollary 1 (Noise Harm in Expectation–Maximization). The EM
estimation noise harm

Q (Θ∗|Θ∗)− Q (Θ(n)
|Θ∗) 6 Q (Θ∗|Θ∗)− QN(Θ(n)

|Θ∗) (34)
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or equivalently

QN(Θ(n)
|Θ∗) 6 Q (Θ(n)

|Θ∗) (35)

holds on average if the following negativity condition holds:

Ex,h,N|Θ∗


ln


p(x+ N,h|Θn)

p(x,h|Θn)


6 0. (36)

The NEM Theorem states that each iteration of a properly noisy
EM algorithm gives higher likelihood estimates on average than
do the noiseless EM estimates. So the NEM algorithm converges
faster on average than does noiseless EM for a given data model.
The faster NEM convergence occurs both because the likelihood
function has an upper bound and because the NEM algorithm takes
larger average steps up the likelihood surface. The largest gains
tend to occur in the first few steps.

NEM also speeds up the training of hidden Markov models
(Audhkhasi, Osoba, & Kosko, 2013b) and the k-means clustering
algorithm (Osoba & Kosko, 2013) used in big-data processing (Jain,
2010). The NEM positivity condition has a much simpler form in
the practical case of a Gaussian or Cauchy mixture model because
then theNEMpositivity condition reduces to a quadratic inequality
(Osoba et al., 2013). Exponential noise leads to a still simpler linear
NEM condition (Osoba & Kosko, 2016). Related noise injection
speeds up Markov chain Monte Carlo simulations and simulated
annealing (Franzke & Kosko, 2015). We show next how to apply
the NEM additive-noise boost to a CNN.

5. Noisy backpropagation for CNN training

The next theorem states theNEM-based noise-benefit sufficient
condition for softmax or Gibbs-activation output neurons used in
CNN K -class classification. Our simulations add NEM noise only
to the 1-in-K encoding vector y of the target class labels. The
end of this section shows how to add NEM noise to the hidden
neurons as well. Monte Carlo importance sampling approximated
the expectation in the Q -function.

Theorem 3 (Hyperplane Noise-Benefit Condition for CNNs).
The NEM positivity condition holds for ML training of a CNNwith soft-
max or Gibbs activation output neurons if

Ey,Z1,...,ZJ ,n|X,Θ∗


nT log(at)


> 0 (37)

where the activation of the kth output neuron is

atk =

exp
 J
j=1

eTZj ⊙ Uk
j e


K

k1=1
exp

 J
j=1

eTZj ⊙ Uk1
j e

 (38)

where ⊙ denotes the element-wise Hadamard product between two
matrices. e is a vector of all 1s of length (MX+MW−1)(NX+NW−1).

Proof. Add noise n to the target 1-in-K encoding vector y at the
output neurons. Then the likelihood ratio in the NEM sufficient
condition becomes
p(y+ n, Z1, . . . , ZJ |X, Θ)

p(y, Z1, . . . , ZJ |X, Θ)
=

p(y+ n|X, Z1, . . . , ZJ , Θ)

p(y|X, Z1, . . . , ZJ , Θ)
. (39)

The output softmax activations atk from (5) simplify the ratio on the
right-hand side of the above equation. Then (14) gives

p(y+ n|X, Z1, . . . , ZJ , Θ)

p(y|X, Z1, . . . , ZJ , Θ)
=

K
k=1

(atk)
tk+nk

(atk)tk
(40)

=

K
k=1

(atk)
nk . (41)
Fig. 7. MNIST Digits: The figure shows 20 sample images from the MNIST data set.
Each digit is a 28× 28 pixel grayscale image.

Put this activation product in the positivity condition of the NEM
Theorem to get the inequality

Ey,Z1,...,ZJ ,n|X,Θ∗


ln

 K
k=1

(atk)
nk


> 0 (42)

or

Ey,Z1,...,ZJ ,n|X,Θ∗

 K
k=1

nk ln(atk)


> 0. (43)

Then vector notation gives the desired inequality:

Ey,Z1,...,ZJ ,n|X,Θ∗


nT ln(at)


> 0. � (44)

Fig. 3 illustrates the sufficient condition in (44) for a CNN with
three output neurons. All noise n above the hyperplane {n :
nT log(at) = 0} speeds CNN training on average.

A similar noise-benefit result also holds for additive noise
injection into the hidden neurons in a CNN. The hidden neuron
activations become visible data during the forward pass of neural-
network training. They behave as output neurons for earlier layers
(Audhkhasi et al., in review). Then theNEMnoise-benefit condition
becomes the generalized hyperplane inequality

(UTn)T log(at) > (NTn)T log(1− at) (45)

where U is the synaptic weight matrix that connects the hidden
and output layers. But now at is the vector of hidden-layer
activations. The special case U = I holds in Theorem 3 when I is
the identitymatrix that corresponds to the output layer of neurons
with output activations at .

We also state Corollary 2 as a noise-harm result dual to
Corollary 1. It also follows from reversing the inequalities in
Theorem 3 and in its proof.

Corollary 2. The NEM negativity condition holds for ML training of a
CNN with Gibbs activation output neurons if

Ey,Z1,...,ZJ ,n|X,Θ∗


nT log(at)


6 0 (46)

where (38) gives the activation of the kth output neuron.

6. Noise-enhanced CNN simulation results

All simulations used the MNIST data set of handwritten digits.
The MNIST data set contains 28× 28 gray-scale pixel images with
pixel intensities between 0 and 1. Fig. 7 shows 20 sample images



22 K. Audhkhasi et al. / Neural Networks 78 (2016) 15–23
Data: T input images {X1, . . . ,XT }, T target label 1-in-K
vectors {y1, . . . , yT }, number J of convolution masks,
sizeMW × NW of each convolution mask, number of BP
epochs R

Result: Trained CNN weight matrices
while epoch r : 1→ R do

while training image number t : 1→ T do
• Compute the J hidden activation matrices Z1, . . . , ZJ
using (2) and (3);
• Downsample the J hidden activation matrices
Z1, . . . , ZJ by a factor of 2.
• Compute the K -D output softmax activation vector
a using (5);
• Generate noise vector n;
if nT log(a) ≥ 0 then
• Add NEM noise: yt ← yt + n;

else
• Do nothing

end
• Compute error yt − a;
• Back-propagate error to compute cross entropy
gradient ∇ΘE(Θ);
• Update network parameters Θ using gradient
descent in (16);
.

end
end

Algorithm 1: The NEM-BP Algorithm for a CNN: The Noisy Con-
volutional Neural Network Algorithm. A similar algorithm exists
for injecting NEM noise into the hidden layers of a CNN as the pa-
per discusses. A MATLAB implementation of the above algorithm
is available at http://sail.usc.edu/∼audhkhas/software/NCNN.zip

from this data set. Fig. 1 shows a schematic diagram of the BP
training of a CNN using images from the MNIST data set.

The simulations used at least 1000 images from the MNIST
training set. We modified an open-source Matlab toolbox (Palm,
2014) to add noise during CNN training. The CNN contained one
convolution layer with three 3× 3 pixel masks each. We followed
the convolution layer with factor-2 down-sampling to increase
system robustness and to reduce the number of CNN parameters
(LeCun et al., 1998). A full non-convolution connection matrix U
connected the neurons of the hidden layer to the output layer.

The output-layer neurons used the softmax or Gibbs activation
function for 10-way classification. All hidden neurons used
the logistic sigmoid function. We used uniform noise over
(−0.5


c/td, 0.5


c/td) where c = 0, 0.2, . . . , 3, d = 1, 2, . . . , 5,

and t was the training epoch. So the noise variance decreased to 0
as the training epochs proceeded.

Fig. 4 shows the training-set cross entropy of a CNN for three
algorithms: standard noiseless BP, BP with blind noise (Blind-BP),
and BP with NEM noise (NEM-BP or NCNN). NEM-BP reduced the
training-set cross entropy by 39.26% on average over the first 15
iterations as compared with noiseless BP.

Fig. 5 plots the training-set classification error rates as the
CNN learned. NEM-BP reduced the training-set error by 47.43%
averaged over the first 15 iterations as comparedwith noiseless BP.
This significant reduction in cross-entropy and training-set error
occurred because NEM-BP took bigger steps on average towards
the maximum likelihood CNN parameters. Adding blind noise
(Blind-BP) gave only a comparativelyminor improvement of 4.05%.

We next plotted the relative average reduction in cross entropy
for NEM-BP as the noise scale c varied from 0 to 3 in steps of
0.2. Fig. 6 shows the resulting characteristic noise-benefit inverted
U-curve of stochastic resonance. The optimal uniform noise scale
occurred at c∗ = 1 and NEM-BP gave a 39.26% improvement in
Fig. 8. The NCNN noise boost decreased as the training-set sample size increased:
The bar chart shows the relative average reduction in training-set cross entropy for
NEM-BP as the training-set size increased. The noise benefit was largest for smaller
training-data set sizes.
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Fig. 9. Random-sampling noise boost: The two curves show the relative noise-
benefit effects for different CNN training-set sample sizes using the NMIST test
images. Noise training improved the performance of the CNN at any given training
sample size. NCNN training with only 700 random image samples had on average
the same squared error that noiseless BP training of a CNN had with 1000 random
image samples. This 300-sample noise benefit decreased to 100 samples as the
noiseless training approached 2000 random image samples. The dashed line shows
the average test-set squared error for the CNN at different training set sizes. The
solid line shows the average test-set squared error for theNCNNat different training
set sizes. Each plotted error value averaged 20 error measurements. (Please see the
web version of this article for interpretation of the references to color in this figure
legend.)

average cross entropy. NEM noise hurt CNN training when the
noise scale increased beyond 2.6. A very large noise variance hurt
convergence because EM is a fixed-point algorithm. So too much
noise tends to shadow or swamp the clean data. The noise benefit
decreased to zero as the noise variance decreased because then the
NEM algorithm became the standard EM algorithm.

We also explored how the training-data set size affected
NEM performance. We varied the MNIST training-set size over
1000, 2000, . . . , 5000 and computed the relative average reduc-
tion in training cross entropy for NEM-BP using the optimal noise
variance. Fig. 8 shows the resulting decreasing bar chart: The NEM-
BP noise boost fell as the number of training data samples in-
creased. This shows that NEM-BP is especially useful when the
number of training data samples is small relative to the number
of estimated CNN parameters.

We also simulated how the NCNN algorithm favored subset
sampling with CNN image recognition. Fig. 9 summarizes the
results: BP training of CNN with 1000 randomly sampled test
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images corresponds in squared error to NCNN training with only
700 samples. So the noise benefit was roughly 300 samples.
This noise benefit fell to 100 samples as the noiseless samples
approached 2000.

The simulations first trained the CNN on a random selection of
1000 MNIST sample images from the full 60 000 sample training
set. We ran 20 separate training runs at the same sample size and
recorded the final squared error on the test set for each run. The
next step repeated the same simulation setup but with 5% fewer
samples for training. We repeated the experiment by reducing the
training set by 5% on each simulation epoch.

The simulation ended with the 500-sample training-set case.
The dashed red curve in Fig. 9 shows the average test-set squared
error at each training sample size. Each point averaged 20 test-
set squared-error values. The solid blue curve in the figure arose
from a similar experiment that usedNEMnoise in the CNN training
procedure and thus that ran the NCNN algorithm.

7. Conclusions

Careful noise injection speeds up the backpropagation training
of a convolutional neural network (CNN). This result follows
because the BP algorithm is a special case of the generalized
EM algorithm and because the recent noisy EM theorem gives a
sufficient condition for noise to speed up the average convergence
of the EM algorithm. The Noisy CNN (NCNN) algorithm uses this
noisy-EM result to produce a hyperplane in noise space that
separates helpful noise from harmful noise. NCNN noise-injection
experiments on the MNIST image data set show substantial
reduction in training-set cross entropy and in classification error
rate as compared with the noiseless BP algorithm. Blind noise
gave only a small noise benefit. Simulations showed that the
NEM noise benefit was largest for smaller data sets. This suggests
exploiting these noise benefits in random sampling from large data
sets. Future work should also explore noise injection in different
combinations of hidden layers in deep networks.
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