
2003 Special issue

Stochastic resonance in noisy threshold neurons

Bart Koskoa,*, Sanya Mitaimb

aDepartment of Electrical Engineering, Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564, USA
bDepartment of Electrical Engineering, Faculty of Engineering, Thammasat University, Klong Luang, Pathumthani 12121, Thailand

Abstract

Stochastic resonance occurs when noise improves how a nonlinear system performs. This paper presents two general stochastic-resonance

theorems for threshold neurons that process noisy Bernoulli input sequences. The performance measure is Shannon mutual information. The

theorems show that small amounts of independent additive noise can increase the mutual information of threshold neurons if the neurons

detect subthreshold signals. The first theorem shows that this stochastic-resonance effect holds for all finite-variance noise probability density

functions that obey a simple mean constraint that the user can control. A corollary shows that this stochastic-resonance effect occurs for the

important family of (right-sided) gamma noise. The second theorem shows that this effect holds for all infinite-variance noise types in the

broad family of stable distributions. Stable bell curves can model extremely impulsive noise environments. So the second theorem shows that

this stochastic-resonance effect is robust against violent fluctuations in the additive noise process.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. The benefits of noise

Noise can sometimes help neural or other nonlinear

systems. Fig. 1 shows that small amounts of Gaussian pixel

noise improves the standard ‘baboon’ image while too much

noise degrades the image.

Small amounts of additive noise can also improve the

performance of threshold neurons or of neurons with

steep signal functions when the neurons process noisy

Bernoulli sequences. Several researchers have found

some form of this “stochastic resonance” (SR) effect

(Bulsara & Zador, 1996; Collins, Chow, Capela, &

Imhoff, 1996; Collins, Chow, & Imhoff, 1995; Douglass,

Wilkens, Pantazelou, & Moss, 1993; Gammaitoni, 1995;

Godivier & Chapeau-Blondeau, 1998; Hess & Albano,

1998; Jung, 1995; Jung & Mayer-Kress, 1995; Stocks,

2001) when either mutual information or input–output

correlation (or signal-to-noise ratio) measures a neuron’s

response to a pulse stream of noisy subthreshold signals.

But these studies have all used simple finite-variance

noise types such as Gaussian or uniform noise. They

further assume that the noise is both symmetric and two-

sided (hence zero mean). We show that SR still occurs if

the noise violates these assumptions.

The two theorems below establish that the mutual-

information form of the SR effect occurs for almost all noisy

threshold neurons. The first theorem holds for any finite-

variance noise type that obeys a simple mean condition. A

corollary shows that the SR effect still occurs for right-sided

noise from the popular family of gamma probability density

functions. Fig. 3 shows some simulation instances of this

corollary. The second theorem holds for any infinite-

variance noise type from the broad family of stable

distributions. All signals are subthreshold.

Infinite variance does not imply infinite dispersion.

Stable probability densities have finite dispersions but have

infinite variances and infinite higher-order moments. The

dispersion controls the width of the bell curve for symmetric

stable densities (see Fig. 4). Fig. 2 shows a simulation

instance of the second theorem. Infinite-variance Cauchy

noise corrupts the subthreshold signal stream but still

produces the characteristic nonmonotonic signature of SR.

The theorem on infinite-variance noise implies that the SR

effect is robust against impulsive noise: a threshold neuron

can extract some information-theoretic gain even from noise

streams that contain occasional violent spikes of noise. The

noise stream itself is a local form of free energy that neurons

can exploit.

The combined results support Linsker’s hypothesis

(Linsker, 1988, 1997) that neurons have evolved to
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maximize the information content of their local environ-

ment. The new twist to the hypothesis is that maximizing a

threshold neuron’s mutual information requires deliberate

use of environmental noise.

2. Threshold neurons and Shannon’s mutual

information

We use the standard discrete-time threshold neuron model

(Bulsara & Zador, 1996; Gammaitoni, 1995; Hopfield, 1982;

Jung, 1995; Kosko, 1991; Kosko & Mitaim, 2001)

yt ¼ sgnðst þ nt 2 uÞ ¼
1 if st þ nt $ u

0 if st þ nt , u

(
ð1Þ

where u . 0 is the neuron’s threshold, st is the bipolar input

Bernoulli signal (with arbitrary success probability p such

that 0 , p , 1) with amplitude A . 0; and nt is the additive

white noise with probability density pðnÞ:

The threshold neuronuses subthreshold binary signals. The

symbol ‘0’ denotes the input signal s ¼ 2A and output signal

Fig. 1. Gaussian pixel noise can improve the quality of an image through a stochastic-resonance or dithering process (Gaimmaitoni, 1995; Wannamaker,

Lipshitz & Vanderkooy, 2000). The noise produces a nonmonotonic response: A small level of noise sharpens the image features while too much noise

degrades them. These noisy images result when we apply a pixel threshold to the ‘baboon’ image. The system first quantizes the original gray-scale baboon

image into a binary image of black and white pixels. It gives a white pixel as output if the input gray-scale pixel equals or exceeds a threshold u: It gives a black

pixel as output if the input gray-scale pixel falls below the threshold u : y ¼ gððx þ nÞ2 uÞ where gðxÞ ¼ 1 if x $ 0 and gðxÞ ¼ 0 if x , 0 for an input pixel

valuex [ ½0; 1� and output pixel value y [ {0; 1}: The input image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold is u ¼ 0:04: Thresholding

the original baboon image gives the faint image in (a). The Gaussian noise n has zero mean for images (b)–(d). The noise variance s2
n grows from (b) to (d):

s2
n ¼ 1:00 £ 1022 in (b), s2

n ¼ 2:25 £ 1022 in (c), and s2
n ¼ 9:00 £ 1022 in (d).

Fig. 2. SR with infinite-variance Cauchy noise. (a) The graph shows the smoothed input-output mutual information of a threshold neuron as a function of the

dispersion of additive white Cauchy noise nt: The dispersion g controls the width of the Cauchy bell curve. The vertical dashed lines show the absolute

deviation between the smallest and largest outliers in each sample average of 100 outcomes. The neuron has a nonzero noise optimum at gopt < 0:438 and thus

shows the SR effect. The noisy signal-forced threshold neuron has the form of Eq. (1). The Cauchy noise nt adds to the bipolar input Bernoulli signal st : The

neuron has threshold u ¼ 1: The input Bernoulli signal has amplitude A ¼ 0:8 with success probability p ¼ 1
2
: Each trial produced 10,000 input–output

samples {st ; yt} that estimated the probability densities to obtain the mutual information. (b) Sample realizations of symmetric (bell-curve) alpha-stable random

variables with zero location ða ¼ 0Þ and unit dispersion ðg ¼ 1Þ: The plots show realizations when a ¼ 2,1.8,1.5, and 1. Note the scale differences on the y-

axes. The alpha-stable variable n becomes more impulsive as the parameter a falls. The algorithm in (Chambers, Mallows, & Stuck, 1976; Tsakalides &

Nikias, 1996) generated these realizations.
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y ¼ 0: The symbol ‘1’ denotes the input signal s ¼ A and

output signal y ¼ 1: We assume subthreshold input signals:

A , u: Then the conditional probabilities PY lSðylsÞ are

PY lSð0l0Þ ¼ Pr{s þ n , u}ls¼2A ¼ Pr{n , uþ A}

¼
ðuþA

21
pðnÞdn ð2Þ

PY lSð1l0Þ ¼ 1 2 PY lSð0l0Þ ð3Þ

PY lSð0l1Þ ¼ Pr{s þ n , u}ls¼A ¼ Pr{n , u2 A}

¼
ðu2A

21
pðnÞdn ð4Þ

PY lSð1l1Þ ¼ 1 2 PY lSð0l1Þ ð5Þ

and the marginal density is

PY ðyÞ ¼
X

s

PY lSðylsÞPSðsÞ ð6Þ

Other researchers have derived the conditional probabilities

PY lSðylsÞ of the threshold system with Gaussian noise with

bipolar inputs (Bulsara & Zador, 1996) and Gaussian inputs

(Stocks, 2001). We neither restrict the noise density to be

Gaussian nor require that the density have finite variance even

if the density has a bell-curve shape.

We use Shannon mutual information (Cover & Thomas,

1991) to measure the noise enhancement or SR effect

(Bulsara & Zador, 1996; Deco & Schürmann, 1998;

Godivier & Chapeau-Blondeau, 1998; Inchiosa, Robinson,

& Bulsara, 2000; Stocks, 2001). The discrete Shannon

mutual information of the input S and output Y is the

difference between the output unconditional entropy HðYÞ

and the output conditional entropy HðY lXÞ:

IðS;YÞ ¼HðYÞ2HðYlSÞ ð7Þ

¼2
X

y

PY ðyÞlog PY ðyÞþ
X

s

X
y

PSY ðs;yÞlog PY lSðylsÞ

ð8Þ

¼2
X

y

PY ðyÞlog PY ðyÞþ
X

s

PSðsÞ
X

y

PY lSðylsÞ

� log PY lSðylsÞ ð9Þ

¼
X
s;y

PSY ðs;yÞlog
PSY ðs;yÞ

PSðsÞPY ðyÞ
ð10Þ

So the mutual information is the expectation of the random

variable log½PSY ðs;yÞ=ðPSðsÞPY ðyÞÞ�

IðS;YÞ ¼E log
PSY ðs;yÞ

PSðsÞPY ðyÞ

� �
ð11Þ

Here PSðsÞ is the probability density of the input S; PY ðyÞ is

the probability density of the output Y ; PY lSðylsÞ is the

conditional density of the output Y given the input S; and

PSY ðs;yÞ is the joint density of the input S and the output Y :

Simple bipolar histograms of samples can estimate these

densities in practice.

Mutual information also measures the pseudo-dis-

tance between the joint probability density PSY ðs; yÞ and

the product density PSðsÞPY ðyÞ: This holds for the

Kullback (Cover & Thomas, 1991) pseudo-distance

measure

IðS;YÞ ¼
X

s

X
y

PSY ðs; yÞlog
PSY ðs; yÞ

PSðsÞPY ðyÞ
ð12Þ

Then Jensen’s inequality implies that IðS;YÞ $ 0: Ran-

dom variables S and Y are statistically independent if and

only if IðS;YÞ ¼ 0: Hence IðS;YÞ . 0 implies some

degree of dependence. We use this fact in the following

proofs.

3. Proof of stochastic resonance for threshold neurons

We now prove that almost all finite-variance noise

densities produce the SR effect in threshold neurons with

subthreshold signals. This holds for all probability distri-

butions on a two-symbol alphabet. The proof shows that if

IðS;YÞ . 0 then eventually the mutual information IðS;YÞ

tends toward zero as the noise variance tends toward zero.

So the mutual information IðS; YÞ must increase as the noise

variance increases from zero. The only limiting assumption

is that the noise mean E½n� does not lie in the signal-

threshold interval ½u2 A; uþ A�:

Theorem 1. Suppose that the threshold neuron (1) has

noise probability density function pðnÞ and that the input

signal S is subthreshold ðA , uÞ: Suppose that there is

some statistical dependence between input random

variable S and output random variable Y (so that

IðS;YÞ . 0). Suppose that the noise mean E½n� does not

lie in the signal-threshold interval ½u2 A; uþ A� if p(n)

has finite variance. Then the threshold neuron (1)

exhibits the nonmonotone SR effect in the sense that

IðS;YÞ! 0 as s! 0:

Proof. Assume 0 , PSðsÞ , 1 to avoid triviality when

PSðsÞ ¼ 0 or 1: We show that S and Y are asymptotically

independent: IðsÞ! 0 as s! 0: Recall that IðS; YÞ ¼ 0 if

and only if S and Y are statistically independent (Cover &

Thomas, 1991). So we need to show only that PSY ðs; yÞ ¼

PSðsÞPY ðyÞ or PY lSðylsÞ ¼ PY ðyÞ as s! 0 for some signal

symbols s [ S and y [ Y: The two-symbol alphabet set S
gives

PY ðyÞ ¼
X

s

PY lSðylsÞPSðsÞ ð13Þ

¼ PY lSðyl0ÞPSð0Þ þ PY lSðyl1ÞPSð1Þ ð14Þ

¼ PY lSðyl0ÞPSð0Þ þ PY lSðyl1Þð1 2 PSð0ÞÞ ð15Þ

¼ ðPY lSðyl0Þ2 PY lSðyl1ÞÞPSð0Þ þ PY lSðyl1Þ ð16Þ
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So we need to show only that PY lSðyl0Þ2 PY lSðyl1Þ ¼ 0 as

s! 0: This condition implies that PY ðyÞ ¼ PY lSðyl1Þ and

PY ðyÞ ¼ PY lSðyl0Þ: We assume for simplicity that the noise

density pðnÞ is integrable. The argument below still holds if

pðnÞ is discrete and if we replace integrals with appropriate

sums.

Consider y ¼ ‘0’: Then Eqs. (2) and (4) imply that

PY lSð0l0Þ2 PY lSð0l1Þ ¼
ðuþA

21
pðnÞdn 2

ðu2A

21
pðnÞdn ð17Þ

¼
ðuþA

u2A
pðnÞdn ð18Þ

Similarly for y ¼ ‘1’:

PY lSð1l0Þ ¼
ð1

uþA
pðnÞdn ð19Þ

PY lSð1l1Þ ¼
ð1

u2A
pðnÞdn ð20Þ

Then

PY lSð1l0Þ2 PY lSð1l1Þ ¼ 2
ðuþA

u2A
pðnÞdn ð21Þ

The result now follows if

ðuþA

u2A
pðnÞdn ! 0 as s! 0 ð22Þ

Let the mean of the noise be m ¼ E½n� and the variance

be s2 ¼ E½ðx 2 mÞ2�: Then m � ½u2 A; uþ A� by

hypothesis.

Now suppose that m , u2 A: Pick e ¼ 1
2

dðu2 A;mÞ ¼
1
2
ðu2 A 2 mÞ . 0: So u2 A 2 e ¼ u2 A 2 e þ m 2 m ¼

m þ ðu2 A 2 mÞ2 e ¼ m þ 2e 2 e ¼ m þ e : Then

PY lSð0l0Þ2 PY lSð0l1Þ ¼
ðuþA

u2A
pðnÞdn ð23Þ

#
ð1

u2A
pðnÞdn ð24Þ

#
ð1

u2A2e
pðnÞdn ð25Þ

¼
ð1

mþe
pðnÞdn ð26Þ

¼ Pr{n $ m þ e} ð27Þ

¼ Pr{n 2 m $ e} ð28Þ

# Pr{ln 2 ml $ e} ð29Þ

#
s2

e2
by Chebyshev inequality ð30Þ

!0 as s! 0 ð31Þ

A symmetric argument shows that for m . uþ A

PY lSð0l0Þ2 PY lSð0l1Þ #
s2

e2
! 0 as s! 0 A ð32Þ

Corollary. The threshold neuron Eq. (1) exhibits SR for the

additive gamma noise density

pðnÞ ¼

na21e2n=b

GðaÞba
n $ 0

0 otherwise

8><
>: ð33Þ

under the hypotheses of Theorem 1. Parameters a and b are

positive constants and G is the gamma function

GðxÞ ¼
ð1

0
yx21ey dy x . 0 ð34Þ

Gamma random variables have finite mean ab and function-

ally related finite variance ab2: Gamma family of random

variables includes the popular special cases of exponential,

Erlang, and chi-square random variables. All these random

variables are right-sided. Fig. 3 shows simulation realizations

of this corollary. This appears to be the first demonstration of

the SR effect for right-sided noise processes.

We now proceed to the more general (and more realistic)

case where infinite-variance noise interferes with the

threshold neuron. The SR effect also occurs in other systems

with impulsive infinite-variance noise (Kosko & Mitaim,

2001; Mitaim & Kosko, 1998). We can model many types of

impulsive noise with symmetric alpha-stable bell-curve

probability density functions with parameter a in the

characteristic function wðvÞ ¼ exp{ 2 glvla}: Here g is

the dispersion parameter (Breiman, 1968; Feller, 1966;

Grigoriu, 1995; Nikias & Shao, 1995). Fig. 4 shows

examples of symmetric (bell-curve) alpha-stable probability

density functions with different a tail thicknesses and

different bell-curve dispersions g:

The parameter a controls tail thickness and lies in 0 ,

a # 2: Noise grows more impulsive as a falls and the bell-

curve tails grow thicker. The (thin-tailed) Gaussian density

results when a ¼ 2 or when wðvÞ ¼ exp{ 2 gv2}: So the

standard Gaussian random variable has zero mean and

variance s2 ¼ 2 (when g ¼ 1). The parameter a gives the

thicker-tailed Cauchy bell curve when a ¼ 1 or wðvÞ ¼

exp{ 2 lvl} for a zero location ða ¼ 0Þ and unit dispersion

ðg ¼ 1Þ Cauchy random variable. The moments of stable

distributions with a , 2 are finite only up to the order k for

k , a: The Gaussian density alone has finite variance and

higher moments. Alpha-stable random variables character-

ize the class of normalized sums of independent random

variables that converge in distribution to a random variable

(Breiman, 1968) as in the famous Gaussian special case

called the “central limit theorem.”

Alpha-stable models tend to work well when the noise or

signal data contains ‘outliers’—and all do to some degree.
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Models with a , 2 can accurately describe impulsive noise

in telephone lines, underwater acoustics, low-frequency

atmospheric signals, fluctuations in gravitational fields and

financial prices, and many other processes (Kosko, 1996;

Nikias & Shao, 1995). Note that the best choice of a is an

empirical question for bell-curve phenomena. Bell-curve

behavior alone does not justify the (extreme) assumption of

the Gaussian bell curve.

Theorem 2 applies to any alpha-stable noise model. The

density need not be symmetric. A general alpha-stable

probability density function f has characteristic function w

(Akgiray & Lamoureux, 1989; Bergstrom, 1952; Grigoriu,

1995; Nikias & Shao, 1995):

wðvÞ ¼ exp iav2glvla 1þ ibsignðvÞtan
ap

2


 �� 

fora– 1

ð35Þ

Fig. 3. SR with (finite-variance) gamma noise. The noisy signal-forced threshold neuron has the form of Eq. (1). The gamma noise nt adds to the bipolar input

Bernoulli signal st: The neuron has threshold u ¼ 1: The input Bernoulli signal has amplitude A ¼ 0:8 with success probability p ¼ 1
2
: Each trial produced

10,000 input–output samples {st ; yt} that estimated the probability densities to obtain the mutual information. The algorithm in (Ahrens & Dieter, 1974, 1982)

generated realizations of the gamma random variable. (a) The graph shows the smoothed input–output mutual information of a threshold neuron as a function

of the parameters a and b of additive white gamma noise nt: The neuron’s mutual information has a nonzero noise optimum sopt . 0 for each a . 0: It also has

a nonzero noise optimum sopt . 0 for each b . 0: (b) The graph shows the cross-section of the mutual-information surface for a ¼ 2: (c) The graph shows the

cross-section for b ¼ 1: Note that the mean and variance of the gamma noise are mn ¼ ab and s2
n ¼ ab2:
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and

wðvÞ ¼ exp{iav2glvlð122ib lnlvlsignðvÞ=pÞ} fora¼ 1

ð36Þ
where

signðvÞ ¼

1 if v. 0

0 if v¼ 0

21 if v, 0

8>><
>>: ð37Þ

and i¼
ffiffiffiffi
21

p
; 0,a# 2; 21#b# 1; and g. 0: The

parameter a is the characteristic exponent. Again the

variance of an alpha-stable density does not exist if a, 2:

The location parameter a is the “mean” of the density when

a. 1: b is a skewness parameter. The density is symmetric

about a when b¼ 0: Theorem 2 still holds even when b– 0:

The dispersion parameter g acts like a variance because it

controls the width of a symmetric alpha-stable bell curve.

There are no known closed forms of the a-stable densities

for most a’s.

The proof of Theorem 2 is simpler than the proof in the

finite-variance case because all stable noise densities have a

characteristic function with the exponential form in Eqs.

(35) and (36). So zero noise dispersion gives w as a simple

complex exponential and hence gives the corresponding

density as a delta spike that can fall outside the interval

½u2 A; uþ A�:

Theorem 2. Suppose IðS;YÞ . 0 and the threshold neuron

Eq (1) uses alpha-stable noise with location parameter a �
½u2 A; uþ A�: Then the neuron (1) exhibits the nonmono-

tone SR effect if the input signal is subthreshold.

Proof. Again the result follows if

ðuþA

u2A
pðnÞdn ! 0 as g! 0 ð38Þ

The characteristic function wðvÞ of alpha-stable noise

density, pðnÞ has the exponential form Eqs. (35) and (36).

This reduces to a simple complex exponential in the zero-

dispersion limit:

lim
g!0

wðvÞ ¼ exp{iav} ð39Þ

for all a’s, skewness b’s, and location a’s. So Fourier

transformation gives the corresponding density function in

the limiting case ðg! 0Þ as a translated delta function

lim
g!0

pðnÞ ¼ dðn 2 aÞ ð40Þ

Then

PY lSð0l0Þ2 PY lSð0l1Þ ¼
ðuþA

u2A
pðnÞdn ð41Þ

¼
ðuþA

u2A
dðn 2 aÞdn ð42Þ

¼ 0 ð43Þ

because a � ½u2 A; uþ A�: A

Fig. 2 gives a typical example of the SR effect for highly

impulsive noise with infinite variance. Here the noise type is

Cauchy ða ¼ 1Þ and thus frequent and violent noise spikes

interfere with the signal.

Fig. 4. Samples of standard symmetric ðb ¼ 0Þ alpha-stable probability densities. (a) Density functions with zero location ða ¼ 0Þ and unit dispersion ðg ¼ 1Þ

for a ¼ 2;1.8,1.5, and 1. The densities are bell curves that have thicker tails as a decreases and thus that model increasingly impulsive noise as a decreases. The

case a ¼ 2 gives a Gaussian density with variance two (or unit dispersion). The parameter a ¼ 1 gives the Cauchy density with infinite variance. (b) Density

functions for a ¼ 1:5 with dispersions g ¼ 0:5;1, and 2.
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4. Conclusions

Noise affects neural systems in complex ways. The above

theorems show that almost all noise types produce SR in

threshold neurons that use subthreshold signals and small

amounts of noise. This includes right-sided finite-variance

noise such as gamma noise. The theorems do not guarantee

that the predicted increase in mutual information will be

significant. They guarantee only that some increase will

occur. Other work (Kosko & Mitaim, 2001) suggests that

the increase will decrease in significance as the impulsive-

ness of the noise process increases. All our simulations

showed a significant and visible SR effect.

These results help explain the widespread occurrence of

the SR effect in mechanical and biological threshold

systems (Braun, Wissing, Schäfer, & Hirsch, 1994;

Douglass et al., 1993; Fauve & Heslot, 1983; Melnikov,

1993; Levin & Miller, 1996; Russell, Willkens, & Moss,

1999). The broad generality of the results suggests that SR

should occur in any nonlinear system whose input–output

structure approximates a threshold system and that includes

most model neurons. The infinite-variance result further

implies that such widespread SR effects should be robust

against violent noise impulses. The combined results

support the hypothesis (Linsker, 1988, 1997) that neurons

have evolved to maximize their local information if they

process subthreshold signals in the presence of noise. This

need not hold for suprathreshold signals.
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