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second theorem gives a noise-benefit condition for more general threshold signal detection when the
signals have continuous probability densities. The third and fourth theorems reduce this noise benefit
to a weighted-derivative comparison of signal probability densities at the detection threshold when the
signal densities are continuously differentiable and when the noise is symmetric and comes from a scale
family. The fifth theorem shows how collective noise benefits can occur in a parallel array of threshold
neurons even when an individual threshold neuron does not itself produce a noise benefit. The stochastic
gradient-ascent learning algorithm can find the optimal noise value for noise probability densities that
do not have a closed form.
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1. Neural noise benefits: Total and partial SR

Stochastic resonance (SR) occurs when a small amount of
noise improves nonlinear signal processing (Amblard, Zozor,
McDonnell, & Stocks, 2007; Chapeau-Blondeau & Rousseau, 2004;
Gammaitoni, 1995; Kay, 2000; Kosko, 2006; Levy & Baxter, 2002;
McDonnell, Stocks, Pearce, & Abbott, 2006, 2008; Moss, Ward,
& Sannita, 2004; Patel & Kosko, 2009b; Rousseau & Chapeau-
Blondeau, 2005b; Saha & Anand, 2003; Stocks, 2001). SR occurs
in many types of subthreshold and suprathreshold neural signal
detection (Bulsara, Jacobs, Zhou, Moss, & Kiss, 1991; Deco &
Schiirmann, 1998; Hanggi, 2002; Hoch, Wenning, & Obermayer,
2003; Li, Hou, & Xin, 2005; Mitaim & Kosko, 1998, 2004; Moss
et al., 2004; Patel & Kosko, 2005, 2008; Sasaki et al., 2008; Stacey
& Durand, 2000; Stocks, Appligham, & Morse, 2002; Stocks &
Mannella, 2001; Wang & Wang, 1997; Wiesenfeld & Moss, 1995).
Biological noise can arise from an internal source such as thermal
noise (Faisal, Selen, & Wolpert, 2008; Manwani & Koch, 1999) or
ion channel noise (Schneidman, Freedman, & Segev, 1998; White,
Rubinstein, & Kay, 2000). Or it can arise from an external source
such as synaptic transmission (Levy & Baxter, 2002; Markram &
Tsodyks, 1996). We focus on noise-enhanced signal detection in
threshold neurons where a user can control only the noise variance
or dispersion (Lder et al., 2001; Pantazelou, Dames, Moss, Douglass,
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& Wilkens, 1995; Rao, Wolf, & Arkin, 2002). We measure detection
performance with the probability of correct decision Pcp = 1 — P,
when P, is the probability of error (Patel & Kosko, 2009a).

We classify SR noise benefits as either total SR or partial SR.
The SR effect is total if adding independent noise in the received
signal reduces the error probability. Then the plot of detection
probability versus noise intensity increases monotonically in some
noise-intensity interval starting from zero. The SR effect is partial
when the detection performance increases in some noise-intensity
interval away from zero. Total SR ensures that adding small
amounts of noise gives a better detection performance than not
adding noise. Partial SR ensures only that there exists a noise
intensity interval where the detection performance increases as
the noise intensity increases. The same system can exhibit both
total and partial SR. We derive conditions that screen for total or
partial SR noise benefits in almost all suboptimal simple threshold
detectors because the SR conditions apply to such a wide range
of signal probability density functions (pdfs) and noise pdfs.
Learnings laws can then search for the optimal noise intensity in
systems that pass the screening conditions. Section 5 presents one
such stochastic learning law.

We have already proven necessary and sufficient “forbidden
interval” conditions on the noise mean or location for total SR in
mutual-information-based threshold detection of discrete weak
binary signals (Kosko & Mitaim, 2003, 2004): SR occurs if and only
if the noise mean or location parameter y obeys u & (6 —A, 0 +A)
for threshold 6 where —A < A < 6 for bipolar subthreshold signal
+A. More general forbidden interval theorems apply to many
stochastic neuron models with Brownian or even Levy (jump)
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Fig. 1. Stochastic resonance (SR) noise benefits in binary neural signal detection for five out of six types of additive noise. The discrete signal X can take subthreshold values
so = —1ors; = 0 with equal probability (pg = P(sp) = P(s;) = p1) and & = 1.5 is the detection threshold. We decide X = s; if the observation W = X + N > 6.
Else X = sq. There is a noise benefit in (a)-(e) because the zero-mean uniform, Gaussian, Laplacian, generalized Gaussian (r = %), and zero-location Cauchy noise satisfy
condition (5) of Theorem 1. The SR effect is partial in (a) because condition (6) does not hold while the SR effect in (b)-(e) is total in each case because condition (6) holds.
The dashed vertical lines show that the maximum SR effect occurs at the theoretically predicted optimal noise intensities. There is no noise benefit in (f) for Laplacian noise
because its mean y lies in the forbidden interval in accord with Corollary 1: © = 1 € (0.5, 1.5) = (6 — 51,60 — sp).

noise (Patel & Kosko, 2005, 2008). Corollary 1 gives a forbidden-
interval necessary condition for SR in error-probability detection.
But we did find necessary and sufficient conditions for both total
and partial SR noise benefits in error-probability-based threshold
signal detection when the noise has a scale-family distribution.

Theorem 1 gives the a simple necessary and sufficient SR
condition for a noise benefit in threshold detection of discrete
binary signals. This result appears in Section 3. The condition also
determines whether the SR effect is total or partial if the noise
density belongs to a scale family. Scale-family densities include
many common densities such as the normal and uniform but
not the Poisson. The condition implies that SR occurs in simple
threshold detection of discrete binary signals only if the mean
or location of additive location-scale family noise does not fall
in an open forbidden interval. The uniform, Gaussian, Laplacian,
and generalized Gaussian (r = %) noise in Fig. 1(a)-(e) produce
a noise benefit because they satisfy condition (5) of Theorem 1.
But the Laplacian noise in Fig. 1(f) violates this forbidden-interval
condition of Corollary 1 and so there is no noise benefit. Section 4
shows that the SR condition of Theorem 1 also allows us to find the
optimal noise dispersion that maximizes the detection probability
for a given closed-form scale-family noise pdf. Section 5 shows
that an adaptive gradient-ascent learning algorithm can find this
optimal intensity from sample data even when the noise pdf does
not have a closed form as with many thick-tailed noise pdfs.

Total SR can never occur in an optimal threshold system if
we add only independent noise in the received signal. Kay and
coworkers showed that the optimal independent additive SR noise
is just a constant that minimizes the detection error probability
of a given detection scheme (Kay, Michels, Chen, & Varshney,
2006). So total SR can never occur if the detection threshold

location is optimal even when the overall detection scheme is
suboptimal. But we show that partial SR can still occur in a single-
threshold suboptimal system even if the detection threshold is
optimal. Rousseau and Chapeau-Blondeau found earlier that what
we call partial SR occurs in some special cases of optimal threshold
detection (Rousseau & Chapeau-Blondeau, 2005b). Fig. 3 shows
such a partial SR effect for the important but special case of an
optimal threshold. Our result still holds in the general case of
non-optimal thresholds. The suboptimality of the signal detection
remains only a necessary condition for total SR noise benefits based
on error probability.

Theorem 2 in Section 6 presents a related necessary and
sufficient condition for a noise benefit in a more general case of
threshold detectors when the signals have continuous pdfs and
when the additive independent noise has a pdf from a scale family.
Then Theorem 3 gives a necessary and sufficient condition for
total SR with zero-mean discrete bipolar noise. Corollary 2 gives a
necessary and sufficient condition for partial SR with zero-mean
discrete bipolar noise when there is no total SR in Theorem 3.
Theorems 3 and 4 each gives a necessary and sufficient condition
for total SR when the additive noise is zero-mean discrete bipolar
or when it comes from a finite-mean symmetric scale family. These
two theorems compare weighted derivatives of continuously
differentiable signal pdfs at the detection threshold to determine
the total SR effect. Theorem 5 shows when noise produces a
collective SR effect in parallel arrays of threshold neurons even
when an individual threshold neuron does not produce an SR
effect. The next section describes a general problem of threshold-
based neural signal detection and defines the two SR effects based
on error probability.
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2. Binary signal detection based on error-probability

We now cast the problem of threshold-based neural signal
detection as a statistical hypothesis test. So consider the binary
hypothesis test where a neuron decides between Hy : fx (x, Hy) =
fo(x) and H; : fx(x, H;) = f1(x) using a single noisy observation of
X+ N and a detection threshold 6 where noise N is independent of
X.Here X € Ris the original signal input to the threshold neuron
and f; is its pdf under the hypothesis H; fori = 0 or 1. So we use
the classical McCulloch-Pitts threshold neuron (McCulloch & Pitts,
1943) where the neuron’s output Y has the form

y = {1 (acceptH;) ifX+ N >6

0 (accept Hy) else. (1)

This simple threshold neuron model has numerous applica-
tions (Auer, Burgsteiner, & Maass, 2008; Beiu, Member, Quintana,
& Avedillo, 2003; Caticha, Palo Tejada, Lancet, & Domany, 2002;
Freund & Schapire, 1999; Minsky & Papert, 1988).

The probability of correct decision Pcp (o) = 1—P.(0) measures
detection performance. Suppose that po = P(Hp) and p; =
P(H;) = 1 — pg are the prior probabilities of the respective
hypotheses Hy and H;. Let (o) and B (o) be the respective Type-I
and Type-II error probabilities when the intensity of the additive
noise Niso:

o (o) = P(reject Hy|Hy is true at noise intensity o) (2)
B (o) = P(accept Hy|H; is true at noise intensity o). (3)

Then define the probability of error as the usual probability-
weighted sum of decision errors (Proakis & Salehi, 2008)

Pe(0) = poa (o) + p18(0). (4)

We assume that the additive noise N is a scale-family noise
with pdf fy (o, n) where o is the noise intensity (standard deviation
or dispersion): fy(o,n) = gf(g) where f is the standard pdf
for the family (Casella & Berger, 2001). Then the noise cumulative
distribution function (CDF) is Fy(o,n) = F (5) where F is the
standard CDF for the family.

We next define SR effects in neural signal detection based on
error probability. A binary signal detection or hypothesis testing
system exhibits the SR effect in the noise intensity interval (a, b)
for0 < a < b < iff Pp(o1) < Pcp(o,) for any two noise
intensities o1 and o, such that a < o7 < 03 < b. The SR effect is
total ifa = 0 and partial if a # 0. We say that the SR effect occurs at
the noise intensity o iff the SR effect occurs in some noise intensity
interval (a, b) and o € (a, b).

3. Noise benefits in threshold detection of discrete binary
signals

We first consider the binary signal detection problem where
the signal X is a binary discrete random variable with the two
values sg and s; so that s, < sy and that P(X = sp) = po and
P(X = s1) = p;. Then Theorem 1 gives a necessary and sufficient
condition for an SR effect in the threshold neuron model (1) for
discrete binary signal detection if the additive noise comes from
an absolutely continuous scale-family distribution.

Theorem 1. Suppose that the additive continuous noise N has scale-
family pdf fy(o,n) and that the threshold neuron model is (1).
Suppose that signal X is a binary discrete random variable with the
two values sy and sy so that P(X = sg) = pg and P(X = s1) = p1.
Then the SR noise benefit occurs in a given noise intensity interval
(a, b) if and only if

Po(0 — so)fn(0, 6 —so) < p1(0 —s1)fn(o,0 —s1) (5)
for almost every noise intensity o € (a, b). The SR effect is total if

E%Po(e —So)fn(o,0 —sp) < E%IH(@ —s)fn(o,0 —s1).  (6)

Proof. The signal X is a binary discrete random variable with the
two values sy and s;. So the Type-I and Type-II error probabilities
(2) and (3) become

a(c) =1—Fy(o,0 — sp) (7)
B(o) =Fyn(o,0 —s1) (8)

where Fy is the absolutely continuous CDF of the additive noise
random variable N. Then the error probability P.(0) = poa (o) +
p1B (o) is an absolutely continuous function of ¢ in any closed
interval [c, d] C R* where ¢ > 0. Then the above definition of
SR effects and the fundamental theorem of calculus (Folland, 1999)
imply that the SR effect occurs in the noise intensity interval (a, b)
if and only if % < 0 for almost all o € (a, b). So the SR effect
occurs in the noise intensity interval (a, b) if and only if

0Fy(o,0 —s1) [1 —Fn(o,0 — so)]
1 — Po

0<— 9
=P do do ©)
for almost all o € (a, b). Rewrite (9) as

aF (=2 a[1 — F(&=2
0< p, ((,)_p0 [ (=) (10)

do bled

where F is the standard scale-family CDF of the additive noise N.
Then (10) gives

6 — 0 — 6 — 6 —
0<P1( GS])f< GS])—PO( USO)f<7SO>

o
= p1(0 —s1)fn(o, 0 —s1) — po(@ — so)fn(o, 0 — sp) (11)

because the additive noise N has scale-family pdf fy(o,n) =
g f (g) and because the noise scale o is always positive. Inequality
(5) now follows from (11). The definition of a limit implies that
condition (5) holds for all ¢ € (0, b) for some b > 0 if (6) holds.
So (6) is a sufficient condition for the total SR effect in the simple
threshold detection of discrete binary random signals. O

Theorem 1 lets users screen for total or partial SR noise benefits
in discrete binary signal detection for a wide range of noise pdfs.
This screening test can prevent a fruitless search for nonexistent
noise benefits in many signal-noise contexts. The inequality (5)
leads to the simple stochastic learning law in Section 5 that can
find the optimal noise dispersion when a noise benefit exists. The
learning algorithm does not require a closed-form noise pdf.

Inequality (5) differs from similar inequalities in standard
detection theory for likelihood ratio tests. It specifically resembles
but differs from the maximum a posteriori (MAP) likelihood ratio
test in detection theory (Proakis & Salehi, 2008):

Reject Hy if pofy(0,z — s0) < pifan(o,z —51) (12)
Else accept Hp.

The MAP rule (12) minimizes the detection-error probability in
optimal signal detection. But it requires the noisy observation z
of the received signal Z = X + N whereas inequality (5) does
not. Inequality (5) also contains the differences 6-sy and 6-s;. So
Theorem 1 gives a general way to detect SR noise benefits in
suboptimal detection.

Theorem 1 implies a forbidden-interval necessary condition if
the noise pdf comes from a location-scale family.

Corollary 1. Suppose that the additive noise N has location-scale
family pdf fy(o, n). Then the SR noise benefit effect occurs only if
the noise mean or location p obeys the forbidden-interval condition

u & (O —s1,0 —sp).
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Proof. The equivalent signal detection problem is Hy: o+ u versus
Hy:s1+w in the additive scale-family noise N = N — i if we absorb
w in the signal X. Then inequality (5) becomes

Po(0 —so — /L)f,;,(o, 0 —so— )
<p1@ —s1 — wWfy(o,0 —s1 — p). (13)

So the SR noise benefit does not occurif u € (6 —s1, 0 —sp) because
then the right-hand side of inequality (13) would be negative and
the left-hand side would be positive. O

Corollary 1 differs from similar forbidden-interval conditions
based on mutual information. The corollary shows that the interval
condition u & (6 — s1, 8 — Sp) is only necessary for a noise benefit
based on error probability. It is not sufficient. But the same interval
condition is both necessary and sufficient for a noise benefit based
on mutual information (Kosko & Mitaim, 2003, 2004).

Fig. 1(a)-(e) show simulation instances of Theorem 1 for zero-
mean uniform, Gaussian, Laplacian, generalized Gaussian (r =
%), and for zero-location Cauchy noise when s, = 0,s; = 1,
Po = p1, and 8 = 1.5. There is a noise benefit in (a)-(e)
because the zero-mean uniform, Gaussian, Laplacian, generalized
Gaussian (r = %), and zero-location Cauchy noise satisfy condition
(5) of Theorem 1. Uniform noise gives the largest SR effect
but the detection performance degrades quickly as the noise
intensity increases beyond its optimal value. Laplacian, generalized
Gaussian (r = %), and Cauchy noise give a more sustained SR effect
but with less peak detection performance. The SR effect is partial
in Fig. 1(a) because condition (6) does not hold while the SR effects
in Fig. 1(b)—(e) are total because (6) holds for Gaussian, Laplacian,
generalized Gaussian (r = %), and Cauchy noise.

Fig. 1(f) shows a simulation instance of Corollary 1 for so = 0,
s; = 1,and 6 = 1.5 with additive Laplacian noise N with mean
uw = 1. N ~ L(1,02?). Noise does not benefit the detection
performance because the noise mean u = 1 lies in the forbidden
interval (8 — s, 6 — sg) = (0.5, 1.5).

4. Closed-form optimal SR noise

Theorem 1 permits the exact calculation of the optimal SR noise
in some special but important cases of closed-form noise pdfs. The
noise pdf here comes from a scale family and has zero mean or
location. The binary signals are “weak” in the sense that they are
subthreshold: sy < s; < 6. Then Theorem 1 implies that the
optimal noise intensity (standard deviation or dispersion) o, obeys

po(0 —so)fn(o, 0 —so) = p1(0 —s1)fn(o, 0 —51) (14)

if the noise density is unimodal. Eq. (14) may be nonlinear in terms
of o and so may require a root-finding algorithm to compute the
optimal noise intensity o,. But we can still directly compute the
optimal noise values for several common closed-form noise pdfs
that include generalized Gaussian pdfs.

The generalized Gaussian distribution (Nadarajah, 2005) is a
two-parameter family of symmetric continuous pdfs. The scale-
family pdf f (o, n) of a generalized Gaussian noise has the form

n) = lf[l“(B/r)]l/2 B[ "
o 2[T(1/n)]P2

where fg, is the standard pdf of the family, r is a positive shape

1
fom = —fu ( (15)

o

:
ra/m |2 ;
F<l/r)] ,and o is the

scale parameter (standard deviation). This family of pdfs includes
all normal (r = 2) and Laplace distributions (r = 1). It includes
in the limit (r — o00) all continuous uniform distributions on
bounded real intervals. This family can also model symmetric
platykurtic densities whose tails are heavier than normal (r < 2)

parameter, I' is the gamma function, B = [

or symmetric leptokurtic densities whose tails are lighter than
normal (r > 2). Applications include noise modeling in image,
speech, and multimedia processing (Bazi, Bruzzone, & Melgani,
2007; Gazor & Zhang, 2003; Krupinski & Purczyniski, 2006). Putting
(15) in (14) gives the optimal intensity of generalized Gaussian
noise as

(16)

1

o — |: B(160 — sol” — 161 — s11") }’
" Lin@o — s0) — In(61 — 51) + In(po) — In(py)

We can now state the closed-form optimal noise dispersions for

uniform, Gaussian, Laplacian, generalized Gaussian (r = %), and
Cauchy noise.

e Uniform noise: Let N be uniform noise in the interval [—v, v]
so that fy(o,n) = - ifn € [—v,v] and fy(o,n) = 0 else.

Then the noise standard deviation o = v/ V/3. S0 inequality (5)
holds if and only if either 6 —s; < v <0 —sgorf —sg < v

but g—; > Z:—j‘l’. So then the SR effect occurs if and only if o €
(‘9;%1) , (9\;%0)) when py = p;. Fig. 1(a) shows that the SR effect

is partial and the unimodal detection performance is maximal
at the optimal noise standard deviation o, = (9:/%0) = 0.866
whensy =0,s; = 1,and 6 = 1.5.

e Gaussian noise (r = 2): Eq. (16) implies that the unimodal
detection performance for Gaussian noise is maximal at the
noise standard deviation

_ 2 _ _ 2 %
o, — [(0 —s50)* — (0 —51)?] an
2[In(@ — sp) — In(@ — s1) + In(pg) — In(py)]

Fig. 1(b) shows a Monte-Carlo simulation plot (10° runs) of
detection performance when s, = 0,s; = 1, pg = p1, and
0 = 1.5. The dashed vertical line shows that the maximal
detection performance occurs at the predicted optimal noise
intensity o, = 0.954.

e Laplacian noise (r = 1): Eq. (16) gives the optimal standard
deviation o, of the Laplacian noise as

B 2(s1 — $0)°
~ [In(8 — so) — In(@ — s1) + In(po) — In(p) I’

The dashed vertical line in Fig. 1(c) shows that the maximum
detection performance occurs at the predicted optimal noise
scale o, = 1.3493 forsg = 0,s; = 1,and 6 = 1.5.

e Generalized Gaussian (r = %) noise: Eq. (16) gives the optimal

standard deviation o, of generalized Gaussian noise withr = 1

2
das

(18)

Oo

(120)1 [(9 — 57 — (0 —51)%]
0, = . (19)
In(® — so) — In(@ — s1) + In(pg) — In(py)

Fig. 1(c) shows that the maximal detection performance occurs
at the predicted optimal noise scale o, = 2.4319 when
Sso = 0,5y = 1,and & = 1.5 Fig. 1(b)-(e) also show that
the peak SR effect decreases and the related optimal noise
intensity increases as the shape parameter r of the generalized
Gaussian pdf decreases. Simulations showed that the SR effect
decayed slowly with increasing noise intensity far beyond o, as
r decreased.

e Cauchy noise: A zero-location infinite-variance Cauchy noise
with scale parameter or dispersion o has pdf fy(o,n) =

.Then (16) implies that

g
7(02+n?)

0o = V(0 —50)(0 —51) (20)
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Fig. 2. Adaptive SR. A gradient-ascent learning algorithm learns the optimal noise dispersions for infinite-variance «-stable noise. The bipolar signal X can take either the
value s = —0.4 or s; = 0.4 with equal probability (py = P(sgp) = P(s;) = p1) when & = 0.5 is the detection threshold. We decide X = s; if the noisy observation
X + N > 0 and otherwise X = s,. The additive noise is a-stable with tail-thickness parameter «: (a) @ = 1.1, (b) @ = 1.5, and (c¢) @ = 1.9. The graphs at the top show the
nonmonotonic signatures of SR where peak detection occurs at the optimal dispersion y,. The sample paths in the bottom plots show the convergence of the noise dispersion
¥« from the initial noise scale to the optimum y,. The initial noise dispersions are 0.05, 0.5, and 1 with constant learning rate ¢, = 0.1.

is the optimal Cauchy noise dispersion. The dashed vertical
line in Fig. 1(d) shows that the maximal detection performance
occurs at the predicted optimal noise scale o, 0.866 for
so=0,sy =1,and 0 = 1.5.

5. Adaptive noise optimization

Noise adaptation can find the optimal noise variance or
dispersion when a closed-form noise pdf is not available (Kosko
& Mitaim, 2004; Mitaim & Kosko, 1998, 2004). This applies
to almost all zero-location symmetric a-stable (SaS) random
variables because their bell-curve pdfs have no known closed
form. These thick-tailed bell curves often model impulsive noise in
many environments (Nikias & Shao, 1995). An SaS random variable
does have a characteristic function ¢ with a known exponential
form (Grigoriu, 1995; Nikias & Shao, 1995):

¢(@) = exp(jdw — y|w|*) (21)

where finite § is the location parameter, y = o¢% > 0 is the
dispersion that controls the width of the bell curve, and « € (0, 2]
controls the bell curve’s tail thickness. The SaS bell curve’s tail gets
thicker as « falls. The only known closed-form SaS pdfs are the
thick-tailed Cauchy with « = 1 and the thin-tailed Gaussian with
o = 2.The Gaussian pdf alone among Sa.S pdfs has a finite variance
and finite higher-order moments. The rth lower-order moments of
an «-stable pdf with @ < 2 exist if and only if r < «. The location
parameter § serves as the proxy for the mean for 1 < o < 2 and as
only the median for0 < o < 1.

An adaptive SR learning law updates the dispersion parameter
based on how the parameter increases the system performance

measure (Mitaim & Kosko, 1998). So using the probability of correct
detection Pcp gives the following gradient-ascent algorithm:

Ver1 = Yk + G- (22)
dy

Here ¢, is an appropriate learning coefficient at iteration k. The

chain rule of calculus implies that 35% = %g—‘; = P gy, 5

Here %2 = p; (6 — s1)fy (0 — s1) — po(@ — 0)fy (@ — 5o) because

Pep(0) = 1= Pe(0) and % = po(6 — 50)fiy(0 — 50) — p1 (6 —
s1)fy (@ — s1) from (11). Then the learning law (22) becomes

Ver1 = Y+ & [P1,(0 — s1)fw, (0 — s1)

—a

1

— Po, (0 — s0)fi, (0 —s0) |y, © . (23)

Fig. 2 shows how (23) can find the optimal noise dispersion for
zero-location symmetric «-stable (SaS) random variables that do
not have closed-form densities. We need to estimate the signal
probabilities p; and noise density fy, at each iteration k. So
we generated 500 signal-noise random samples {s;, n;} for [
1,...,500 at each k and then used them to estimate the signal
probabilities and noise density with their respective histograms.
Fig. 2 shows the SR profiles and noise-dispersion learning paths
for different «-stable noise types. We used a constant learning rate
¢, = 0.1 and started the noise level from several initial conditions
with different noise seeds. All the learning paths quickly converged
to the optimal noise dispersion y.



702 A. Patel, B. Kosko / Neural Networks 22 (2009) 697-706

6. Noise benefits in threshold detection of signals with contin-
uous probability densities

Consider a more general binary hypothesis test Hy : Fy versus
H; : F; where Fy and F; are the absolutely continuous signal
CDFs under the respective hypotheses Hy and H;. Assume again the
threshold neuron model of (1). Then Theorem 2 gives a necessary
and sufficient condition for an SR effect in general threshold signal
detection. The proof extends the proof of Theorem 1 and uses the
theory of generalized functions.

Theorem 2. Suppose that the signal CDFs Fy and F; are absolutely
continuous and that the additive noise N has scale-family pdf
fn(o, n). Then the SR noise benefit occurs in a given noise intensity
interval (a, b) if and only if

Po / nfo(6 — mfi(o, mydn < py / M6 — mfy(o.mdn (24)
R R

foralmost all o € (a, b). The above condition also holds if the noise is
discrete when appropriate sums replace the integrals.

Proof. Write the respective Type-I and Type-II error probabilities
(2)and (3) as

a(o) = /[1 — Fo(8@ — n)lfn(o, n)dn (25)
R

Blo) = / F1(6 — mfi(o. mydn (26)
R

where appropriate sums replace the integrals if the noise is
discrete. Then the error probability P.(c) = poa(c) + p18(o)
is an absolutely continuous function of o in any closed interval
[c,d] € RT where ¢ > 0. Then the above definition of SR effects
and the fundamental theorem of calculus (Folland, 1999) imply
that the SR effect occurs in the noise intensity interval (a, b) if and
only if % < 0 for almost all o € (a, b). So the SR effect occurs
in the noise intensity interval (a, b) if and only if

0 O [ro—mir(™)d
< _pla7A o —n);f(;) n
d 1 n
~poge [[1=RE—n1f (2)an @)
- / Fo(6 — o f)f (R)dR
do Jr

0
o f [1— Fy(0 — o) If (R)dA (28)
o Jr

for almost all o € (a, b). The last equality follows from the change
of variable from  to 7.

We next use the theory of distributions or generalized functions
to interchange the order of integration and differentiation. The
error probabilities @ (o) and (o) are locally integrable (Zemanian,
1987) in the space R of o because they are bounded. Then P, (o)
is a generalized function of o (Zemanian, 1987) and hence its
distributional derivative always exists. The terms Fo(f — of)f (i)
and F; (0 — on)f () in (28) are also generalized functions of o for
all n € R because they too are bounded. Then we can interchange
the order of integration and distributional derivative in (28) (Jones,
1982). So the SR effect occurs in the noise intensity interval (a, b)
if and only if

0 < _pl/w“ﬁ)dﬁ
R o

—po [ = o (29)
R o

_— / o6 — o R)f (R)dF — po / R0 — oR)f(di (30)
R R

for almost all ¢ € (a, b). Then inequality (24) follows if we
substitute back ot = nand fy (o, n) = (%) in(30). O

Corollary 2 gives a sufficient condition for the SR effect using a
zero-mean bipolar discrete noise N.

Corollary 2. Suppose that the signal pdfs fo and f, are continuous and
that there exist positive numbers ry and r, such that

polfo(®@ —12) — fo(0 + 1)1 < p1lfi(@ —12) — f1(0 +11)] (31)
holds. Suppose also that N is additive scale-family noise with standard
family pdf P(N' = —\/%) =r,/(r1 + rp) and

P(N' =

noise with variance o2. Then an SR effect occurs at the noise standard

deviation /T115.
Proof. N = oN’ has pdf P(N = —a\/g) = 1ry/(r + 12) and

%) =r1/(ry + 13) so that N = o N’ is zero-mean bipolar

P(N = a\/g) =r1/(rq 4+ r2). Then Theorem 2 implies that the SR

effect occurs at the noise standard deviation /rqr; if and only if
T r
Do [fo <6’ —U\/—2> —fo (9 +o liﬂ
a1 L)
) T
<p1 |:f1 (9—0‘/*) —fi <9+U\/—>:| (32)
5| r

for almost all o in some open interval that contains ,/r 5. The
inequality (32) holds for ¢ = ./ri1; from the hypothesis (31).
Then (32) holds for all & in some open interval that contains /173
because the signal pdfs fy and f; are continuous. O

The next theorem gives a necessary and sufficient condition
for the total SR effect when the signal pdfs are continuously
differentiable and when the additive discrete noise N is zero-mean
bipolar.

Theorem 3. Suppose that the signal pdfs fo and f; are continuously
differentiable at 6. Suppose also that the additive discrete noise N
is zero-mean bipolar. Then the total SR effect occurs if pofy(8) >

p1f1(©) and only if pofg(0) > p1fi(0).
Proof. Note that pofy(0) > p1f;(0) if and only if

boroD)5o-o )

Do lim
al0
: o (VE+/3)
Ao f2)-f(0-0/2)
> pq lim

o0
(3 D)
This implies inequality (32) for o € (0, b) forsomeb > 0. O

Fig. 3 shows a simulation instance of Corollary 2 and Theorem 3
when @ = 0.7379 is the optimal detection threshold in the absence
of noise. The signal pdf is equally likely to be either a trimodal

. . _ 1 o= (+3)%/2 1 on?/? 1 (=322
Gaussian mixture fo = 3 N 355 t35 5 ora
bimodal Gaussian mixture f; = 0.437%2)2/2 + 0.637(”72)2/2 . These

V2 V2

multimodal mixture densities arise in some neural systems (Min
& Appenteng, 1996; Wimmer, Hildebrandt, Hennig, & Obermayer,
2008). The optimal (minimum error-probability) detection in this
case requires four thresholds to partition the signal space into
acceptance and rejection regions. But the neurons have only one
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Fig. 3. Partial stochastic resonance (SR) in threshold detection of a binary signal X with continuous pdfm the presence of zero-mean additive discrete bipolar scale-family

n+3)2/2 —n2/2 n —(n+2)2/2 —(n-2)%/2
noise N. (a) The signal pdf is equally likely to be either Hy: fo(n) = 1 £ i% % Em ; % or Hy: fi(n) = 0.4% (E + 0.6 (Jﬂ . The thick vertical line

shows the optimal detection threshold & = 0.7379 when there is no noise. We decide H; if the noisy observation X + N > 6. Else we decide Hyp. N = o N’ is additive
- /%) =r1,/(r + 1) and P(N' = /%) =r1/(r; + 7). Thus N is zero-mean bipolar noise with variance o2. (b) fy and
f1 satisfy condition (31) of Corollary 2 forry = 4 — 0 = 3.2621and r, = 6 + 1.75 = 2.4879. Hence the additive noise N shows a partial SR effect at oy = /1112 = 2.8488

scale-family noise with standard family pdf P(N" =

(marked by the dashed vertical line and ). But the total SR effect does not occur because fy and f; do not satisfy the condition pofy(8) > p1f; (6) of Theorem 3.

threshold for signal detection. The optimal location is at 0.7379 for
such a single detection threshold 6.

Fig. 3(a) shows that fy and f; satisfy condition (31) of Corollary 2
forry =4—6 = 3.2621andr, = 6 + 1.75 = 2.4879. Then
the SR effect occurs at o = ,/rir, = 2.8488 because we choose
the discrete noise N as in Corollary 2. The signal pdfs fy and f; do
not satisfy the the condition pofy(8) > pif;(0) of Theorem 3 at
6 = 0.7379. Hence Fig. 3(b) shows that the total SR effect does not
occur but a partial SR effect does occur at o = 2.8488.

Theorem 4 extends the necessary and sufficient total-SR-effect
condition of Theorem 3 to any finite-mean symmetric scale-family
additive noise N. This noise can be SaS with infinite variance so
longas o > 1.

Theorem 4. Suppose that additive noise N has a finite mean and has a
symmetric scale-family pdf. Suppose signal pdfs fo and f; are bounded
and continuously differentiable at 6. Then the total SR effect occurs if

Pofo(0) > pafi(6) (33)
and only if pafy(©) > paf{(6).

Proof. Inequality (24) of Theorem 2 implies that the total SR effect
occurs if and only if

> 1
pO/ n(fo(0 +n) — fo(0 — n)) —f <E) dn
0 o o

o0 1 /n
>pi [ 0G0 +m =0 —m) o (2) en (34
0 o o
for almostallo € (0, b) for some b > 0 because fy (o, n) = %f(g)
is a symmetric noise pdf. Putting n = o1 in (34) gives
o [ aifa(o + o) ~ fu6 — ainf i
0
> D1 / onfi(6 + on) — f1(60 — on)f (R)dn. (35)
0

for almost all o € (0, b). Then for any positive constant L: the
definition of a limit implies that (35) holds if

L
lin})po/ oTfo(0 + of) — fo(6 — oi)f (R)dit
a—> 0

+ lin})pO/ oTfo(0 + of) — fo(0 — of)f (R)dit
o— L

L
> limop] [ onf; (0 + on) — f1(60 — on)f (N)dn
o— 0

[0.¢]
+ gimopl / onfi(6 +on) — f1(6 — on)f (n)dn. (36)
g L
where |onfi(0 + on) — fi(0 — on)f()] < |onQf(n)| for
some number Q because the pdfs f; are bounded. So Lebesgue’s
dominated convergence theorem (Folland, 1999) implies that the
limit of the second term on both sides of (36) is zero because the
additive noise has a finite mean. Then inequality (36) holds if

. o
lim po ﬁf0(9-|-0ﬂ) Jo(6 Un)f(ﬁ)dﬁ
o—0 0 o
. IR
> lim p, ﬁf1(9+"”)0f1(9 oM ¢ iy di. (37)
o— 0

The mean-value theorem (Folland, 1999) implies that forany € > 0

(0 ) — f(0 — ol
JOZoW = O gy (38)
2o0n |0—u|<e
for all |on| < €. The right-hand side of (38) is bounded for

a sufficiently small € because the pdf derivatives f; and f] are
continuous at 6. So Lebesgue’s dominated convergence theorem
applies to (37) and thus the limit passes under the integral:

L
po/ 272 lim fo(@ +on) —fo(0 — Gn)f(n)dﬁ
0 o—0 201
L
> p1/ 272 fim 1O F oW —[ 6 =0 o (39)
0 o—0 201
Then L'Hospital’s rule gives
L L
Po f 2R%f3(O)f (M) dit > ps f 20%f{(O)f ()dn. (40)
0 0
or
L L
Pofé(9)/ 27°f ()di >p1f{(9)f 27°f ()di. (41)
0 0

Thus pofy(6) > pi1f{(0) because the integrals in (41) are positive
and finite. O
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Fig. 4. Total stochastic resonance (SR) in threshold detection of a binary signal X with continuous pdf in the presence of zero-mean additive symmetric scale family noise.
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(a) The bimodal signal pdf is equally likely to be either Ho: fo(n) = 5 7503 3 7303 orHy: fi(n) = 35 NETE 3 N ETER The thick vertical

line indicates the detection threshold # = 0.5. We decide H; if the noisy observation X + N > 6. Else decide Ho. These signal pdfs satisfy the condition pofg(0) > pif; (0) of
Theorem 4 at & = 0.5. The detection performance curves in (b) and (c) show the respective predicted total SR effect for zero-mean Gaussian noise and conjectured SR effect
for zero-location Cauchy noise.

Fig. 4(a) plots the following two bimodal Gaussian-mixture where myg < my. Then 6 = w is a reasonable detection
signal pdfs threshold for individual neurons because of this symmetry.
Suppose there are K parallel arrays such that each parallel array
has M noisy threshold neurons. Suppose that the kth parallel array
receives an independent sample X, of the input signal X. The output
of the mth threshold neuron in the kth array is

(43)  Ymu(on) = sign(Xx + N — 6) (45)

1 e—(n+o.7)2/2(o.3)2 1 e—(n—o.7)2/2<043)2
fo(n) = = + = (42)
2 /2m0.3 2 v/210.3

1 ef(n70.3)2/2(0.3)2 1 ef(n71.7)2/2(0.3)2

= +
2 2703 2 2703

with detection threshold & = 0.5. This figure also shows that these
signal pdfs satisfy the inequality pof;(6) > p:f](0) of Theorem 4.
Fig. 4(b) shows the predicted total SR effect for zero-mean uniform
noise. The total SR effect in Fig. 4(c) exceeds the scope of Theorem 4
because the mean of the Cauchy noise does not exist. This suggests
the conjecture that pofg(8) > p:f{(0) is a sufficient condition for M
the total SR effect even when the symmetric scale-family noise has Wi(oy) = Z Yo k(on). (46)
no expected value. m—1

fi(n) =

where oy is the scale parameter of an additive signal independent
symmetric noise N,, in the mth threshold neuron. Assume that the
noise random variables N, are i.i.d. for each neuron and for each
array. Suppose last that the output W, of the kth array sums all M
threshold neuron outputs Yy, x:

A summing-threshold neuron combines the outputs W, from
7. Noise benefits in parallel arrays of threshold neurons each parallel array into A and then uses sign(A) for maximum-
likelihood detection:
We show last how a simple calculus argument ensures a noise

benefit for maximum likelihood detection with a large number of s t

parallel arrays or networks of threshold neurons. This SR noise Alon) = Z Wi(on) flo 0 (47)
benefit need not occur for a single neuron and so is a genuine k=1

collective noise benefit. since the pdf of A is symmetric around zero because the signal and

This total SR result for arrays applies to maximum likelihood noise pdfs are symmetric.

detection of two alternative signals. So it resembles but differs Now define u;(oy) and a,-z(aN) as the respective mean and
from the array SR result in Patel and Kosko (2009c) that applies variance of A under the hypothesis H; when oy is the neuron’s
instead to the Neyman-Pearson detection of a constant signal noise intensity. Then wo(oy) = —u1(oy) and 002 (on) = alz(oN)
in infinite-variance symmetric alpha-stable channel noise with for all oy also because all signal and noise pdfs are symmetric. The
a single array of noisy quantizers. We note that Stocks et al. pdf of A is approximately Gaussian for either hypothesis because
(2002) first showed that adding noise in an array of parallel- the central limit theorem applies to the sum (47) if the sample size

connected threshold elements improves the mutual information K is large since the summands are i.i.d. (Casella & Berger, 2001).
between the array’s input and output. Then Rousseau and Then Theorem 5 gives a necessary and sufficient condition for an
Chapeau-Blondeau (Rousseau, Anand, & Chapeau-Blondeau, 2006; SR effect (total or partial) in the parallel-array detector (45)-(47).
Rousseau & Chapeau-Blondeau, 2005a) used such a threshold

array for signal detection. They first showed an SR noise Theorem 5. Suppose that A(oy)|Ho ~ N(uo(on), O’OZ(O'N)) and

benefit for Neyman-Pearson detection and for Bayesian detection. A(on)|Hy ~ N(ui(on), o2(on)) where po(oy) = —pi(on) and
Researchers have also shown mutual-information noise benefits in o2(on) = o2(oy) for the threshold-neuron array model (45)-(47).
arrays of threshold neurons (Hoch et al., 2003; McDonnell et al., Then
2008; Stocks, 2001; Stocks & Mannella, 2001). ) ,

Suppose first that the signal pdfs f; are equally likely (po = p;)  G1(on)i1(on) > pi(on)oq(on) (48)

and symmetric around m; so that is necessary and sufficient for an SR effect at the noise intensity oy in

fi(m; +x) = fi(m; —x) forall x (44) the parallel-array maximum-likelihood detector.
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Fig. 5. SR noise benefits in neural array signal detection. (a) The smoothed plot
of o1(on)ty(on) — pi1(on)o;(on) versus the standard deviation oy of additive
Gaussian noise. The zero-crossing occurs at the noise standard deviation oy = ogp.
(b) The solid line and square markers show the respective plots of the detection
probabilities Pp. Adding small amounts of Gaussian noise N to each threshold
neuron improves the array detection probability Pp. This SR effect occurs until
inequality (48) holds. So o, maximizes the detection probability.

Proof. The detection probability obeys

1 1
Pp = EP(A(UN) < O|Hp) + EP(A(UN) > 0[H1) (49)
=¢(&EQ> (50)
oo(on)
because po(on) = —pu1(oy) and o (on) = oi(oy) as discussed

above. Here @ is the CDF of the standard normal random variable.
Then the chain and quotient rules of differential calculus give
dpp - (HI(O'N)> o1(on)pi(on) — pi(on)or’ (o)

doy o1(on) ai(on) '

So o1(on) (o) > wi(on)og(oy) is necessary and sufficient for

the SR effect (% > 0) at the noise intensity o because ¢ is the
pdf of the standard normal random variable. O

(51)

Fig. 5 shows a simulation instance of the SR condition in
Theorem 5 for the parallel-array maximum-likelihood detection of
Gaussian mixture signals in the hypothesis test of

Hp : fo(x) = %¢(—0.45, 2,x) + %¢>(0.45, 2,Xx) (52)
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Fig. 6. Collective noise benefits in parallel-array maximum-likelihood signal
detection for different values of M (the number of threshold neurons in each of
K = 36 arrays). The solid lines show that the detection probability P, improves
initially as the noise intensity oy increases. The solid lines also show that the SR
effect increases as the number M of threshold neurons increases. The dashed line
shows that the SR effect does not occur if M = 1.

1 1
versus Hy : fi(x) = 54)(1 —0.45,2,%) + 54)(1 +0.45,2,x) (53)

where ¢ (v, d, x) is the pdf of the Gaussian random variable with
mean v and variance d?>. We used K = 36 parallel arrays and so
took K = 36 i.i.d. random samples of the input signal X. Each
parallel array has M = 16 threshold neurons and each receives

the same input signal sample. The threshold 6 is w = 05
because these signal pdfs f; are symmetric around my = 0 and
my; = 1. The noise N in the neurons are i.i.d. Gaussian random

variables. Fig. 5(a) plots smoothed o1 (on) 1t (on) — 1 (on)oq(on)
versus the standard deviation oy of the additive Gaussian noise.
Adding small amounts of noise N before thresholding improves the
array’s overall detection probability Pp in Fig. 5(b). This total SR
effect occurs until the inequality (48) holds in Fig. 5(a).

Fig. 6 shows that the collective noise benefit increases as the
number M of threshold neurons increases in each of K = 36 arrays.
The dashed line shows that the SR effect does not occur for an
individual threshold neuron (M = 1) because inequality (33) of
Theorem 4 does not hold for the specific signal pdfs f; in (52)-(53).
But Fig. 6 shows that the SR effect does occur if we use more than
one threshold neuron (if M > 1) in a large number (K > 30) of
parallel arrays. And Fig. 4 shows that the two bimodal Gaussian-
mixture signal pdfs fy and f; in (42)-(43) satisfy inequality (33) of
Theorem 4. So one threshold neuron can produce the SR effect.

8. Conclusion

The above five theorems extend and depart from earlier
forbidden-interval results that characterize mutual-information
SR effects in some types of neural signal detection. These new
necessary and sufficient conditions for error-probability SR effects
can act as a type of screening procedure that predicts whether a
noise benefit will occur in a given system. The error-probability
SR learning law can then search for the best noise settings for
a predicted noise benefit when a closed-form solution is not
available. Other learning laws may arise if the user lacks sufficient
or accurate training data. More general SR theorems may also
hold when the additive noise’s probability density comes from an
asymmetric scale family or from still more general families of noise
densities.
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