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Abstract—The new NoVa (nonvanishing) logistic neuron acti-
vation allows deeper neural networks because its derivative is
positive. So it helps mitigate the problem of vanishing gradients
in deep networks. Deep neural classifiers with NoVa hidden units
had better classification accuracy on the CIFAR-10, CIFAR-
100, and Caltech-256 image databases compared with threshold-
linear ReLU hidden units. Still simpler identity hidden units
also outperformed ReLU hidden units in deep classifiers but
usually had less classification accuracy than NoVa networks.
NoVa hidden neurons also outperformed ReLU hidden neurons
in deep convolutional neural networks.

I. THE SEARCH FOR A BETTER HIDDEN NEURON

What it is the best neural activation function a : R→ R to

use in the hidden layers of a deep neural network? This paper

presents the new hybrid NoVa or nonvanishing logistic neuron

as a candidate.

The current answer appears to be the threshold-linear neuron

[10] that dates from the 1960s (see Equation (2) in both

Fukushima papers [3] and [4]):

a(x) = ReLU(x) = max{0, x} =
{
0 x ≤ 0

x x > 0
(1)

now called the ReLU (rectified linear unit) neuron [5], [13].

Goodfellow [6] even states that the ReLU is the “default

recommendation” for the choice of hidden neuron in a deep

feedforward classifier. Figure 1(a) shows the ramp-shaped

graph of a ReLU neuron.

The default answer in the 1980s and 1990s was the logistic

sigmoid σ in Figure 1(b):

a(x) = σ(bx) =
1

1 + exp−bx
(2)

for some steepness constant b > 0. A large b turns the logistic’s

soft threshold into a hard threshold as in a classical on-off or

threshold neuron. So the logistic activation seemed to have it

both ways: It could easily model a threshold neuron and yet it

was smoothly differentiable as all modern learning algorithms

required. The logistic is also bounded because it lies in the unit

interval [0, 1]. So it naturally defines a probability and indeed

describes the posterior for two-class Bayesian decisions. A

bipolar logistic results from the scaled and translated binary

logistic 2σ(bx)− 1 and lies in the bipolar interval [−1, 1].

The logistic activation is differentiable. It has a simple

closed-form and nonnegative derivative a′ ≥ 0:

a′(x) =
da

dx
= bσ(bx)[1− σ(bx)] (3)

for steepness parameter b > 0.

It is just this product form (3) that has led so many neural

engineers to abandon the logistic neuron as a viable hidden

unit in deep networks. The derivative quickly approaches zero

as the neuron saturates to either its upper bound 1 or its lower

bound 0.

Steep logistic sigmoid quickly saturate because they ap-

proximate on-off thresholds so well. This saturation leads to a

“vanishing gradient” in the many learning algorithms that use

the chain rule in computing the gradient of an error function.

The learning gradient tends to vanish quickly as the number

of hidden logistic layers grows.

The ReLU neuron in (1) thresholds a linear or identity

activation and so does not saturate for large inputs x. The

neuron is unbounded to the right and has a constant derivative

for positive values. It does not have a derivative at the origin.

Users often take this missing value as zero.

The ReLU neuron thus avoids saturation at the expense

of an asymmetric threshold. Its linear portion also sacrifices

the proven function-approximation power of nonlinear logistic

hidden neurons [2]. And yet the ReLU still “dies” in large

networks [1], [14], [15]. Our large-scale simulations show not

only that it dies but that often the simpler and symmetric

identity neuron a(x) = x “lives” and gives better classification

accuracy. Yet neither hidden neuron tends to outperform

the new NoVa neuron in deep networks for large-K image

datasets.

II. A NEW ACTIVATION: THE NOVA NEURON

We now introduce the nonvanishing logistic or NoVa activa-

tion as a generalization of both the logistic and ReLU neurons.

The NoVa neuron is a family of parametrized neurons. A

simple example would be any scaled sum of a ReLU and a

logistic. We instead focus on the NoVa neuron as a sum of a

scaled linear or identity neuron and a logistic:

a(x) = cx+ σ(bx) (4)
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Fig. 1: Graphs of hidden-neuron activation functions: threshold-
linear or ReLU, logistic, and the new NoVa logistic neuron. The NoVa
neuron a(x) = 0.5x + σ(3x) performed best overall in simulations
where σ denotes a logistic sigmoid function.

for scalar input x and where σ is the logistic sigmoid in (2).

We assume that c > 0 and again that b > 0. Figure 1(c)

shows the hybrid nature of three NoVa curves. Simulations

found that the particular choice a(x) = 0.5x + σ(3x) gave

the best classification accuracy on deep multilayer classifiers

trained on a large number K of patterns.

The crucial property of the NoVa neuron is that its derivative

cannot vanish if c > 0:

a′(x) = c+ b σ(bx)[1− σ(bx)] (5)

≥ c > 0. (6)

This property justifies the name “nonvanishing.” It also shows

that the NoVa neuron is a type of perturbed logistic neuron

where the constant c > 0 controls the degree of perturbation.

An ordinary logistic σ results when there is no perturbation

and thus when c = 0.

III. SIMULATION COMPARISON OF DEEP CLASSIFIERS

We compared the three types of hidden neurons on deep

classifiers that trained on the CIFAR-10 image set and the

much larger (“big K”) image sets CIFAR-100 and Caltech-

256. The findings support using NoVa hidden neurons in at

least very deep networks.

NoVa networks tended to perform best in classification ac-

curacy while logistic networks performed worst for very deep

networks trained on large-K image sets. The logistic networks

suffered quickly from the predicted vanishing gradient [8]

for neural classifiers with only a few hidden layers. ReLU

networks did better but also died [1], [14], [15]. A surprising

finding was that hidden layers with simple identity hidden

neurons a(x) = x often performed quite well and tended to

easily outperform ReLU networks in deeper classifiers. NoVa

networks performed best in the deepest networks.

The neural classifiers consisted of several layers. All input

layers used identity neurons as data registers. All output layers

used K softmax classifier neurons. The hidden neurons were

either all ReLU (or identity) or all logistic or all NoVa. We

then reran the simulations on deep convolutional classifiers.

NoVa networks still performed best for the deeper classifiers.

The next section describes the dataset for the experiments.

A. Datasets for the Deep Classifiers

The simulations used three image datasets. The first was

the usual CIFAR-10 dataset. The second was its extension to

CIFAR-100. The third was the Caltech-256 image dataset.

1) CIFAR-10: The popular CIFAR-10 image set is a small-

K test set that consists of 60,000 color images from 10

categories (K = 10). Each image has size 32 × 32 × 3. The

10 pattern categories are airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck [12]. Each class consists of

5,000 training samples and 1,000 testing samples. Figure 2

shows 10 sample images from the CIFAR-10 dataset with one

image per pattern class.

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Fig. 2: CIFAR-10 sample images: The figure shows 10 samples
from the CIFAR-10 dataset that contains 10 image pattern classes
and a total of 60,000 sample images.

2) CIFAR-100: CIFAR-100 is a large-K set of 60,000 color

images with image size 32×32×3. The images come from 100

pattern classes (K = 100) with 600 images per class. Each

class consists of 500 training images and 100 test images.

Figure 3 shows 100 sample images from the CIFAR-100

dataset with one image per pattern class.
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Fig. 3: CIFAR-100 sample images: The figure shows 100 samples
from the CIFAR-100 dataset that contains 100 pattern classes with
600 images per class. CIFAR-100 consists of 20 super-classes with
5 classes per super-class.

Fig. 4: Caltech-256 sample images: The figure shows 256 samples
from the Caltech-256 dataset that consists of 256 pattern classes.

3) Caltech-256: This large-K dataset had 30,607 images

from 256 pattern classes. So K = 256. Each class had between

31 and 80 images. The 256 classes consisted of the two

superclasses animate and inanimate. The animate super-

class contained 69 pattern classes. The inanimate superclass

contained 187 pattern classes [7]. We removed the cluttered
images and reduced the size of the dataset to 29,780 images.

We resized each image to 100×100×3. Figure 4 shows 256

sample images from the Caltech-256 dataset with one image

per pattern class.

B. Network Description and Training Parameters

We trained the deep neural classifiers on the CIFAR and

Caltech-256 datasets. We varies the number of neurons per

hidden layer. The classifiers used 100, 500, or 1,000 neurons

per hidden layer. The convolutional neural networks used

either ReLU or identity activations in their convolutional layers

and then used either ReLU, identity, logistic, or NoVa hidden

neurons in their fully connected layers. We also varied the

number of hidden layers.

All the deep neural classifier models used softmax activa-

tions for their classifier outputs with 1-in-K coding. Here K
denotes the total number of pattern classes in the dataset that

the classifier recognizes. The trained classifier itself partitions

the input pattern space into K decision classes. This trained

K-partition further opens the door to XAI or explainable AI

proxy systems that can estimate or absorb the partition result

into a rule-based or other structured system.

The deep classifier networks trained over 100 epochs with

the ordinary unidirectional backpropagation algorithm [9],

[12] of iterative maximum likelihood [11]. So the algorithm

iteratively climbed the nearest hill of log-likelihood to find the

total network parameters Θ∗:

Θ∗ = argmax
Θ

ln p(y|x,Θ). (7)

Then the gradient

∇ΘL = ∇Θ ln p(y|x,Θ) (8)

gives the backpropagation algorithm for the total network log-

likelihood L so long as backpropagation invariance holds at

the terminal or output layer of nodes.

Backpropagation invariance does hold here for a classifier

because the K output softmax neurons define a one-shot

multinomial probability density or one roll of a K-sided die.

Then the negative log-likelihood of that multinomial gives the

error function as the usual cross-entropy. So its gradient gives

back the usual signal-times-error form of the backpropagation

algorithm as it iteratively maximizes the layer likelihood. This

is just a special case of the general Expectation-Maximization

algorithm (because at root Shannon entropy minimizes cross-

entropy) [11].

This backpropagation (maximum-likelihood) training used

stochastic gradient descent with a momentum value of 0.0 and

learning rate α = 0.001. A dropout value of 0.1 for some of

the hidden layers reduced the overfitting.
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(a) Networks trained on the CIFAR-10 dataset
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(b) Networks trained on the CIFAR-100 dataset
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(c) Networks trained on the Caltech-256 dataset

Fig. 5: The NoVa classifiers (in green) had far greater classifier
accuracy than the other classifiers as the number of hidden layers
increased.

Figure 5 shows the classification-accuracy curves for the

simulations on all three image datasets. The NoVa classifiers

markedly outperformed the ReLU and other classifiers as

the number of hidden layers increased. The benefit of NoVa

hidden units grew more pronounced on the big-K image

datasets CIFAR-100 and Caltech-256 with respective pattern

classes K = 100 and K = 256.

Tables I−V confirm this NoVa performance in greater

detail for both ordinary and convolutional deep classifiers. The

tables also reveal that the simple identity hidden unit always

outperformed the ReLU unit in the convolutional comparisons

and sometimes outperformed the NoVa neuron there as well.

So users should consider experimenting with both identity and

NoVa units in very deep large-K networks.

IV. CONCLUSIONS

The new nonvanishing logistic NoVa hidden neuron outper-

formed ReLU hidden neurons for very deep networks on the

CIFAR-10 dataset and especially on the much larger datasets

CIFAR-100 and Caltech-256. Further simulations showed that

the NoVa hidden neurons outperformed leaky-ReLU hidden

neurons as well. The ordinary identity activation also often

outperformed ReLU hidden neurons for very deep networks

although the classification accuracy was less than with NoVa

hidden units (except in some cases of convolutional classi-

fiers). The NoVa neuron itself generalizes in many directions.

Future simulations need to explore these variants on different

and still larger datasets.
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Hidden Activation 100 Neurons per Hidden Layer 500 Neurons per Hidden Layer
1 Hidden layer 7 Hidden layers 13 Hidden layers 1 Hidden Layer 7 Hidden layers 13 Hidden layers

x 35.70% 34.73% 34.53% 35.73% 34.89% 34.82%
0.5x 35.02% 28.21% 9.39% 35.08% 29.92% 9.39%
σ(x) 32.60% 10.00% 10.00% 33.86% 10.00% 10.00%
σ(3x) 39.28% 23.45% 10.00% 42.47% 33.24% 10.00%
ReLU(x) 47.54% 43.39% 32.67% 50.04% 48.87% 43.67%
x+ σ(x) 38.00% 39.27% 37.04% 40.10% 43.43% 41.02%
0.5x+ σ(x) 37.59% 34.88% 31.07% 39.89% 37.85% 34.81%
0.5x+ σ(3x) 41.83% 42.73% 40.10% 46.59% 48.90% 48.44%

TABLE I: Performance of NoVa and other hidden units on the CIFAR-10 dataset for non-convolutional deep classifiers. The classifiers
used 3,072 identity neurons at the input and 10 softmax neurons at the output layer (K = 10). We varied the number of hidden layers (1,7,
or 13) and the number of neurons per hidden layer (100 or 500). NoVa hidden neurons performed best in classification accuracy for the
deepest classifier with the most hidden neurons per layer.

Hidden Activation 100 Neurons per Hidden Layer 500 Neurons per Hidden Layer
1 Hidden layer 7 Hidden layers 13 Hidden layers 1 Hidden Layer 7 Hidden layers 13 Hidden layers

x 13.22% 13.15% 12.25% 13.58% 14.21% 13.70%
0.5x 12.44% 2.49% 1.00% 3.99% 3.97% 1.06%
σ(x) 5.47% 1.00% 1.00% 8.36% 1.00% 1.00%
σ(3x) 9.54% 10.50% 1.00% 13.48% 3.99% 1.00%
ReLU(x) 16.88% 10.79% 2.28% 20.88% 15.43% 7.10%
x+ σ(x) 13.67% 13.73% 13.58% 16.42% 16.42% 16.83%
0.5x+ σ(x) 13.61% 11.70% 6.13% 14.43% 11.19% 11.42%
0.5x+ σ(3x) 13.78% 14.80% 13.26% 17.80% 20.40% 19.97%

TABLE II: Performance of NoVa and other hidden units on the CIFAR-100 dataset for non-convolutional deep classifiers. The classifiers
used 3,072 identity neurons at the input and 100 softmax neurons at the output layer (K = 100). We varied the number of hidden layers
(1,7, or 13) and the number of neurons per hidden layer (100 or 500). Identity hidden neurons did better than ReLU neurons for the deepest
classifier with 13 hidden layers NoVa hidden neurons performed best for the deep classifiers with 7 or with 13 hidden layers.

Hidden Activation 100 Neurons per Hidden Layer 500 Neurons per Hidden Layer
1 Hidden layer 7 Hidden layers 13 Hidden layers 1 Hidden Layer 7 Hidden layers 13 Hidden layers

x 11.38% 11.30% 10.70% 11.18% 12.39% 12.19%
0.5x 10.73% 5.64% 2.72% 11.57% 5.98% 2.72%
σ(x) 6.13% 2.72% 2.72% 7.01% 2.72% 2.72%
σ(3x) 7.15% 4.13% 2.72% 10.91% 4.53% 2.72%
ReLU(x) 13.36% 8.65% 3.16% 16.37% 13.16% 6.85%
x+ σ(x) 12.21% 12.56% 11.72% 12.19% 13.38% 7.11%
0.5x+ σ(x) 12.06% 9.00% 6.23% 12.96% 12.34% 9.10%
0.5x+ σ(3x) 12.72% 11.11% 9.65% 13.94% 15.26% 14.52%

TABLE III: Performance of NoVa and other hidden units on the Caltech-256 dataset for non-convolutional deep classifiers. The classifiers
used 30,000 identity neurons at the input and 256 softmax neurons at the output layer (K = 256). We varied the number of hidden layers
(1,7, or 13) and the number of neurons per hidden layer (100 or 500). Identity hidden neurons did better than ReLU neurons for the deepest
classifier with 13 hidden layers. NoVa hidden neurons performed best for the deep classifiers with 7 or with 13 hidden layers.

Hidden Activation Dataset
CIFAR-10 CIFAR-100 Caltech-256

x 34.81% 13.52% 12.00%
0.5x 10.00% 1.00% 2.72%
σ(x) 10.00% 1.00% 2.72%
σ(3x) 10.00% 1.00% 2.72%
ReLU(x) 26.86% 1.87% 2.72%
x+ σ(x) 39.27% 15.38% 2.72%
0.5x+ σ(x) 24.21% 4.70% 5.07%
0.5x+ σ(3x) 46.53% 18.86% 13.45%

TABLE IV: Hidden activations affect very deep neural classifiers. The classifiers used 20 hidden layers with 500 identical neurons per
hidden layer for all three image datasets. The ReLU and logistic sigmoid failed as the layer depth increased. Identity and NoVa classifiers
performed better while the NoVa networks performed best for all three image datasets.

1407



Dataset Activation Accuracy
Convolutional Layer Fully Connected (FC) Layer 2 FC Layers 5 FC Layers

CIFAR-10

ReLU

ReLU 68.43% 31.12%
Sigmoid 59.12% 9.81%
Identity 68.89% 66.73%
NoVa 70.94% 43.49%

Identity

ReLU 49.34% 27.75%
Sigmoid 37.40% 10.34%
Identity 54.60% 54.00%
NoVa 55.96% 49.81%

CIFAR-100

ReLU

ReLU 38.97% 19.69%
Sigmoid 21.69% 7.65%
Identity 39.10% 32.91%
NoVa 45.63% 29.86%

Identity

ReLU 19.97% 12.85%
Sigmoid 11.60% 0.67%
Identity 24.49% 18.73%
NoVa 25.61% 19.99%

Caltech-256 ReLU

ReLU 20.99% 7.42%
Sigmoid 9.36% 2.69%
Identity 28.74% 16.36%
NoVa 34.79% 14.66%

Identity

ReLU 10.22% 7.75%
Sigmoid 9.22% 2.75%
Identity 16.28% 12.75%
NoVa 16.58% 13.29%

TABLE V: Fully connected NoVa hidden layers outperformed others in deep convolutional neural networks (CNNs). The CNNs used 3
convolutional layers (either with ReLU or with identity activations a(x) = x) and varied the number of fully connected hidden layers (2
or 5). NoVa hidden neurons at the fully connected layers gave better classification accuracy than did ReLU, identity, and ordinary logistic
neurons for both types of convolutional layers. Identity neurons also outperformed ReLU at the fully connected hidden layers.
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