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Robust stochastic resonance: Signal detection and adaptation in impulsive noise
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Stochastic resonandSR) occurs when noise improves a system performance measure such as a spectral
signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has
finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the
more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more
impulsive. We study this fading effect on the family of symmeitsicstable bell curves that includes the
Gaussian bell curve as a special case. These bell curves have thicker tails as the paréalisttom 2 (the
Gaussian cageto 1 (the Cauchy cageto even lower values. Thicker tails create more frequent and more
violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR
effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure
against the dispersion of the-stable noise. Linear regression shows that an exponentialylgwa) =cA®
describes this relation between the impulsive indeand the SR-optimal noise dispersigg,;. The results
show that SR is robust against noise “outliers.” So SR may be more widespread in nature than previously
believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive
system can learn the optimal noise dispersion for two standard SR nittelguartic bistable model and the
FitzHugh-Nagumo neuron modébr the signal-to-noise ratio performance measure. This also favors practical
applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological

systems.
DOI: 10.1103/PhysRevE.64.051110 PACS nuni)er05.40—-a
I. IMPULSIVE NOISE AND STOCHASTIC RESONANCE Infinite-variance noise itself produces impulses of only finite

magnitude. Nor does infinite variance imply that a real sys-

Most noise processes have infinite variance. This mathtem must have infinite energy. This holds for the same rea-
ematical fact is almost trivial. Even most bell-curve probabil-son that the use of a Gaussian bell curve in a model does not
ity densities do not have finite variance or any finite higher-imply that axes extend to infinity in the real world. Other
order moments. Yet this fact finds scant expression in over avents can explain the presence of infinite variance. We may
century of published research in science and engineering. Aave measured the random dispersion involved with the
review of the published statistical research in any field showsvrong measure. We may have applied a good but approxi-
a common practice. Most random models assume that th@ate measure to extreme cases that lie outside the measure’s
dispersion of a random variable equals its squared-error megarticular structure. Or we may simply have used or encoun-
sure of variance. But other measures of dispersion may beered a bell curve that has thicker tails than a Gaussian bell
finite while the variance measure is infinite. The popularitycurve has.
of the finite-variance assumption may attest to its usefulness Stochastic resonan¢é—13| offers a recent and stark ex-
in many cases. But that does not lessen its severity. Thample of the finite-variance assumption. A dynamical system
assumption persists even though such a squared-error testochastically resonates or shows the stochastic resonance
seldom exists in any formal generality and even though suckSR) effect when noise increases its signal-to-noise ratio or
a squared-error term is not robust against data “outliers”other system performance measure. Almost all SR research
when it does exist. Celebrated examples of the finite-has assumed that the noise process is Gaussian and hence has
variance hypothesis range from the Heisenberg uncertaintinite variance. A few SR studies have explored uniform and
principle in quantum mechanics to the least-squares regresther non-Gaussian but finite-variance noise-tyjdes-17.
sion framework that underlies statistical curve fitting andThe SR signature of a nonmonotonic signal-to-noise graph
forecasting in fields as disparate as astronomy and sociologgives perhaps the best evidence of the universality of the

The presence of infinite variance in a random model doefinite-variance assumption in SR research. All SR studies
not itself nullify the model or count as some sort of stochasplot the dynamical system’s signal-to-noise ratio against ei-
tic reductio ad absurduminfinite variance does not imply ther the variance or the standard deviation of the driving
that we lack all statistical knowledge about the position ornoise process. So the very notation excludes the presence of
momentum of a random particle or about the value of anyinfinite variance. This practice rules out a vast set of possible
random variable if we assume only that the random variabl&R scenarios and suggests that SR is not robust against noise
has a probability density function in the shape of a belloutliers. The simulation results below show that the SR ef-
curve. Many infinite-variance bell curves are locally indistin- fect can indeed occur when infinite-variance noise drives
guishable from the thinner-tailed Gaussian bell curvenonlinear feedback and feedforward systems.
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FIG. 1. Impulsive stochastic resonance SNR measure and convergence of learned dispersion to the & €ffedraph shows the
smoothed output SNR as a function of the dispersion of additrgtable(infinite-variance noise witha=1.8. The vertical dotted lines
show the absolute deviation between the smallest and largest SNR outliers in each sample average of 100 outcomes. The vertical dashed line
shows the optimal noise level at the dispersipr0.097. The noisy signal-forced quartic bistable dynamical system has thexferm
—x3+s+n with binary outputy(t) =sgr(x(t)). The a-stable noisen(t) (with «=1.8) adds to the external forcing narrow band signal
s(t)=0.1sin 27(0.01). (b) Learning paths ofy, with the Cauchy impulse suppresspfz) = 2z/(1+ z?) for the quartic bistable system with
sinusoidal input. The Cauchy impulse suppresst?SNR, /do) replacesISNR /do in the SR learning layl16] as in Eq.(43) below. The
learning paths converged to and wander about the optimal noise dispegien0.097.

Stochastic resonance occurs in a signal-forced dynamical Figure 2 shows four-stable bell curves and the noise
system when noise improves its performance by increasingamples they produde8,29. It also shows three infinite-
its signal-to-noise ratiéSNR) [18—22 or some other perfor- variance curves forr=1.8 based on three dispersion values
mance measure such as a signal cross correlf2®n27 or  and the resulting samples of impulsive noise. The three im-
mutual entropy[25—-27. Then the noise procesyt) and pulsive SR profiles for the SNR measure in Fig. 3 show that
signal process(t) force a feedback dynamical system of the the SR mode occurs for even smaller dispersion values as the
form x=f(x) to give Xx=f(x)+s(t)+n(t). The forced sys- impulsiveness growsas « falls). Figure 4 shows that the
tem'’s signal-to-noise ratio has the form SNR/N whereS  pattern in Fig. 3 generalizes. Impulsiveness decreases sto-
measures the spectral content of the forcing sigfiglin the  chastic resonance because the exponential taw(a)
forced system andN measures the spectral content of the=cA® tends to hold for all the dynamical systems we stud-
noisen(t) [as entangled with each other and with the systenied. Figure 5 confirms this pattern for the cross-correlation
state dynamics=f(x)]. Most SR systems in the literature performance measure for a quartic bistable system. Figure 6
have assumed that the forcing signal has the simple periodghows that any SNR-based learning scheme faces Cauchy-
form of a sinusoid. Aperiodic SR23,24] is an important like impulsiveness as it approaches the first-order condition
exception that we do not consider here. for an SR optimum. This impulsiveness occurs for all noise-

The figures show the main results of this research. Figuréypes including the Gaussian. This in turn implies that both
1 shows an SR profile when the additive forcing impulsivebiological and engineering systems must find some way to
noise has infinite variance. The noise has alpha vaki@.8  suppress this second level of impulsiveness if they try to
and so the noise is only mildly impulsive compared to thelearn the SR optimum or otherwise search for it based on
noise that arises from bell curves with thicker tails. Figure 1noisy training data.
also shows the more complex result that a stochastic learning
algorithm can learn to locate the SR-optimal dispersion value || SYMMETRIC a-STABLE NOISE: THICK-TAILED
in this impulsive environment and do so based not on the BELL CURVES
functional form of the dynamical stabléhe quartic bistable
system in this cagebut based on only input-output training ~ We use a class of symmetrigstable bell-curve probabil-
samples of dispersion and SNR values. Each SNR value déy density functions with parameter in the characteristic
pends on the noise-corrupted system dynamics. This allowiinction ¢(w)=exfd — v |w|*} wherey is the dispersionpa-
the learning process to in effect slowly estimate the systeniamete{30—33. The parametew lies in 0<a<2 and gives
dynamics. The presence of system dynamics means that tilee Gaussian random variable when=2 or when ¢(w)
same dispersion value or the same noise impulse will at dif=exp{—y«?}. So the standard Gaussian random variable has
ferent times produce different SNR values. Learning basedero mean and varianeg?=2 (wheny=1). The parameter
on a correlation measure requires direct use of the state dyr gives the thicker-tailed Cauchy bell curve wher1 or
namics. ¢(w)=exp{—|w|} for a zerolocation(a=0) and unit disper-
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FIG. 2. Samples of standard symmettiestable probability densities and their realizatio®. Density functions with zero location
(a=0) and unit dispersiofyy=1) for «=2, 1.8, 1.5, and 1. The densities are bell curves that have thicker taills@sreases. The caae-2
gives a Gaussian density with variance t¢aw unit dispersion The parameterr=1 gives the Cauchy densityb) Samples ofa-stable
random variables with zero location and unit dispersion. The plots show realizationsawtrl.8, 1.5, and 1. Note the scale differences
on they axes. Then-stable variablex becomes more impulsive as the parametéalls. The algorithm if28,29 generates these realizations.
(c) Density function fore=1.8 with dispersiony=0.5, 1, and 2(d) Samples ofa-stable noisen for «=1.8 with dispersiongy=0.5, 1,
and 2.

sion (y=1) Cauchy random variable. The moments of stable Figure 2 shows realizations of four symmetriestable
distributions witha <2 are finite only up to the orddsfor ~ random variables. Am-stable probability density has the
k<a. The Gaussian density alone has finite variance andharacteristic functiofi32,33,35,36 ¢:

higher momentsa-stable random variables characterize the

class of norme_mlize_d sums of independent ra}ndom variables (p(w)=eX[{iaw Pk
that converge in distribution to a random variafd®] as in

the famous Gaussian special case called the “central limit

theorem.” a-stable models tend to work well when the noise
or signal data contains “outliers”—and all do to some de-
gree. Models witha<<2 can accurately describe impulsive and

noise in telephone lines, underwater acoustics, low- o(w)=exgdiaw—y|w|(1+2i8In|o|sgnw)/m)]
frequency atmospheric signals, fluctuations in gravitational

fields and financial prices, and many other proceg38s34. for a=1 (2
The best choice oty is always anempirical question for

bell-curve phenomena. where

aTT
1+iBsgn w)tanz] }

for a#1 (1)
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FIG. 3. The optimal dispersiof,,; becomes smaller as the tails on the noise bell curves become thicker and thus as the infinite-variance
noise becomes more impulsive. The three SR profiles showythashifts to the left asy falls. Figure 4 shows that this trend generalizes
to an exponential relationship betwearand y,,;. The dynamical system is the quartic bistaklex —x3+ s+ n modified for saturations
effects and where the signalis the sinusoids(t)=0.1 sin 27(0.01)t. The plots on the left side show the SNR-dispersion profilegdpr
a=1.9, (b) a=1.7, and(c) «=1.5. The dotted lines show the absolute deviation between the smallest and largest SNR outliers in each
sample average of 100 outcomes. The vertical dashed lines show the SR effect or mode at the optimal noise gigperst@plots on
the right side of(@)—(c) show the learning paths gfas it slowly and noisily converges tg,,; per the robustified learning law in E43).

1 if «>0
sgnw)=4 0 if w=0
-1 if w<0,

a<2 has finite moments only of order less tharAgain the
variance of am-stable density distribution does not exist if
3 a<2. The location parameteris the “mean” of the density
when a>1 and B is a skewness parameter. The density is
symmetric about when 8=0. The dispersion parameter

andi=y—1, 0<a=2, —1s=pB=<1, andy>0. Thea is the acts like a variance because it controls the width of a sym-
characteristic exponent parameter. Asstable density with  metric a-stable bell curve.
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FIG. 4. Exponential laws for optimal noise dispersipand parametes for the SNR performance measure. The optimal noise dispersion
v depends on the parametethrough the exponential relatiop,,( «) = cA“ for some constantsandA. Table I shows the constantsand
A for the dynamical systems we testdd} the Quartic bistable systefmodified, (b) the FHN model(modified, (c) the bistable neuron
model (Hopfield), (d) the duffing oscillator,(e) the feedforward threshold system, a(fil the random pulse system. The slope of the
pulse-system iff) is so close to zero as to undermine the log-linegaponential relationship. The small correlation coefficient for the pulse
system in Table | reflects this nearly flat log-linear relationship.

IIl. AN EXPONENTIAL LEARNING LAW:
IMPULSIVENESS DECREASES RESONANCE

with only a small correlation coefficient of linear regression
because its log-plot is almost flat.

This section lists the SR performance measures and state
models that we used in the simulations. Four of the six state
models are feedback or dynamical systems. The neuron and
pulse models are feedforward models. All give rise to the This section reviews the two most popular measures of
exponential lawy,,(«) =cA® but the pulse model does so SR. These performance measures depend on the forcing sig-

A. SR performance measures
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FIG. 5. The optimal dispersiof,, still becomes smaller as the infinite-variance noise becomes more impulsive for a cross-correlation
performance measure. The dynamical system is the quartic bistable- x3+ s+ n modified for the saturation effects. The sigsa$ the
sinusoids(t) =0.1 sin 27(0.01} as in Fig. 3 but with cross-correlation meas@g The plots(a)—(c) show theC,-dispersion profiles fofa)
a=1.9,(b) «=1.7, and(c) «=1.5. The dotted lines show the absolute deviation between the smallest and largest cross-correlation outliers
in each sample average of 100 outcomes. The vertical dashed lines show the SR effect or mode at the optimal noise gjgper$ien
plot (d) shows the exponential law for optimal noise dispersjoand parameted.

nal and noise and can vary from system to system. There i§he signal poweB=|Y(w)|? is the magnitude of the output
no consensus in the SR literature on how to measure the Spower spectrunY(w) at the input frequencw,. The back-
effect. ground noise spectru(wg) at input frequencyn is some
a. Signal-to-noise ratioThe most common SR measure average of|Y(w)|? at nearby frequencief21,26,3§. The
is some form of a signal-to-noise rati®NR) [18-22,31. discrete Fourier transforDFT) Y[k] for k=0,...,L—1
This seems the most intuitive measure even though there aig an exponentially weighted sum of elements of a discrete-
many ways to define a SNR. time sequencéyg,y,,...,y—1} Of output signal samples
Suppose the input signal is the sinewa{€) = & sin wgt.
Then the SNR measures how much the system ougput

=g(x) contains the input signal frequenay: Y[k]=§l yo 1K) ®
s {=0
SNR=10log;o (4)
The signal frequency, corresponds to bikk, in the DFT
—10logy, S(@o) dB. (5) for integ_erkoz_ LATfy and for wg=2mf,. Tr;is gives t_he
N(wo) output signal in terms of a DFT &8=|Y[ko]|?. The noise
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FIG. 6. Visual display of sample statistics 6BNR /do for the saturation-modified quartic bistable syst&mx—x3+s+n with
sinusoidal inpus(t) =0.1 sin 27(0.01)t anda-stable noisa(t) with «=1.8. The system has binary outpyt) =sgn(x(t)). (a) Cauchy-like
samples of’SNR /do at each iteratiort at the noise dispersiop= 0.1 (which is the optimal dispersion for this signal sysjeffihe plot
shows impulsiveness of the random varial8NR, /do. (b) Test of infinite variance. The sequence of sample variances converges to a finite
value if the underlying probability density has finite variance. Else it has infinite varidoickog-tail test of the parameter in for an
a-stable bell curve. The test plots log Préb€ u) versus loggu for largeu. If the underlying density ig-stable witha<<2 then the slope
of this plot is approximately-«. This test found thatr~1 and so the density was approximately Cauchy. The result is that we need to apply
the Cauchy impulse suppresgai] ¢(x) =2x/(1+x?) to the approximate SR gradiesSNR./Jo.

power N=N[k,] is the average power in the adjacent bins Co
ko—M,..., kg—1, kgt+1,..., kgt M for some integeiM C,= . 9)
[22.39 (SO -1 ()]
1 _ _ whereX is the time averag&= 1/T [ }x(t)dt.
N=55 2, (YTko—I1Z+ YT +i1P). ()

B. SR systems and simulation models

There is no standard definition of system-level signal and The computer simulation uses a discrete version
noise in nonlinear systems. We work with a SNR that is easy
to compute and that depends on standard spectral power Xer 1 =X+ AT[F(X) + S ]+ VAT kW, (10)
measures in signal processing. We start with a sinewave in-
put and view the output statgt) = g(x(t)) of the dynamical
system as a mixture of signal and noise. We arrange the DFT
computation so that the energy of the sine term lies in fre-

quency bink,. The squared magnitude of this energy spec with initial condition xy and outputy; . We assume that this
0 . di t I lies t t thstabl ise. Th
trum Y[ko] acts as the system-level sign&l=2|Y[k,]|?. discrete model applies to systems wistable noise ©

. . ) zero location whiten-stable random sequen¢®,} has unit
We view all else in the spectrum as noif¢=P—S=P ; ; . ;
. = dispersiony,,= 1. Son;= «w; has dispersiony= k. Note
—2|Y[ko]|? where the total energy B=X;"2|Y[k]|?. We b Yw e e P e«

. _ ) that a unit dispersion for Gaussian densityhen a=2)
ignore the factorl. that scalesS and P since the ratidS/N - gqa1s a variance of two. We tested the following six mod-
cancels its effect.

4 [ 1 S:
b. Cross-correlation measureghese “shape maichers (a) Quartic bistable systeniThe forced quartic bistable
can measure SR when inputs are not periodic signals. RFS‘ystem has the form

searchers coined the term “aperiodic stochastic resonance”

Yir1=9(Xt41), (12)

[23,40—-42 for sugh cases. They defined cross-correlat_ion K= x—x3+s(t) +n(t), (12)
measures for the input signaland the system response in
'Eig)rls(f;)t.he mean transition ratén the FHN model in Egs. y(t)=sgrix(1)), 13

for binary outputy(t). We tested the quartic bistable system
Co=maxs(t)r(t+ )}, (8)  model with the sinusoid inpus(t) =& sin 2xft for e=0.1

051110-7
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and f;=0.01. The discrete version of the quartic bistableThe sinusoid input iss(t) = e sin 2#fgt for e=0.1 andf,

follows from Eqgs.(10)—(11) as
Xes1=Xe+ AT(X— X+ 5) + VAT kW, (14
Yir1=S0M X4 1)- (15

We limit the magnitude of the system stateto 10 in the

=0.01. The discrete version has the form
Xir1=X%FAT(—=X+ 2 tanhx +s;) + VAT kw,, (27)
Yir1=SOMX¢41). (28

We test this neuron model with sinusoidal inps(t)

simulation model14) to account for physical and computer = e sin 27fgt wheree=0.1 andfy=0.01.

saturation effects. We pug, ;=10 whenx,,,>10 and put
Xtr1=

system. The optimal dispersiof,,; has the formy,p(a)
=k for the noise scal& in Eq. (14).
(b) FHN model The forced FHN model has the form

eX=—X xz—% —z+A'+5'(t)+n' (1), (16)
Z=X—12, (17
y(t)=x(t), (18

for €e=0.005 andA’'=—(5/12/3+0.07)=—-0.31056 as in
[42] and linear outputy(t). We use a sinusoidal input
s’(t) =€ sin 2xfyt wheree=0.01 andf,=0.5. We can re-
write Eqs.(16)—(18) as

1 ( , 1} 1 1A 1, 1,

X——;XX—Z —;Z‘l'; +ES(t)+Zn (t)

1 ( ) 1) 1

——;x X ~2 —;z+A+s(t)+n(t), (19
7=x—12, (20
y(t)=x(1), (21)

for A=A’/e. Then Eqs(10) and(11) give the discrete ver-
sion to simulate the FHN model as

AT Lxe-2)-t A AT
Xt+1—Xt+ _;X X _Z _;Z"_ +St + KWt,
(22
2 1=+ AT(X—2Z), (23
Yi+1=Xt+1- (24)

We also modify the recursive relatid@2) to allow for satu-
ration effects by requiring the magnitude xf, ; not to ex-
ceed 2. The optimal dispersiop,,; has the formy,,(«)
= “ for the noise scal& in Eq. (22).

(c) Bistable potential neuron modgt3]. The bistable po-
tential neuron modef44] with stable white noise has the
form

X=—x+2 tanhx+s(t) +n(t), (25

y(t)=sgnx(t)). (26)

(d) Duffing oscillator[45]. The forced duffing oscillator

—10 whenx, . ;< —10 in the discrete dynamic system has the form
(14). This gives a modified version of the quartic bistable

x=—0.15¢+ x— X3+ € sin(wgt) + n(t), (29

y(t)=x(t).

We test the duffing oscillator with sinusoidal inpagt)
=¢ sin 2xfgt for e=0.3 andf,=0.01. The discrete version
of the duffing oscillator has the form

(30)

Xip1=%+ ATz, (31
2 1=Z+ AT(— 87+ x— X2 +5) + VATkw;, (32
Yi+1=SOM X 41)- (33

(e) Threshold systefil5,46—5Q. The outputy of a simple

feedforward threshold system has the form
Yi=sgr(s;+ng—0) =sgn(s;+ kw;— 0). (34

The optimal dispersiory, has the formy,,(a) =« for «
in Eq. (34).

(f) Pulse systerfb1]. This doubly Poisson process gener-
ates a pulse train with probabilitythat depends on the input
V(t)=s(t)+n(t)

r(V(t))=r(0)exp(V(t)).

Here we let r(0)=1. The sinusoid input iss(t)
=¢ sin 27fgt for e=0.5 andfy=0.05. The system generates
an outputy(t) as a unit pulse with a ratg(t).

(39

1. Exponential law with linear least-squares fit of log data

The optimal dispersiory,,(a) of the system obeys the
exponential law

yopt(a) =CA“ (36)
for real constants andA. Then
10910 Yopi( @) = l0g;oC+ @ logpA=aa+c’ (37)

for a=log;g A and ¢’ =log;q c. The least-squares method
gives thea andc’ values as

S (e —a)w,

a=—xg—»——5 andc' =w—aaqa,
SiLiaf—N(@)?

(38)

for N data pairs &;,w;) where w;=100;0¥opa;) at the
experimeni with the parametew; . This method is the same
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TABLE I. Linear least-squares fit of the log of optimal dispersipand the parameter in an a-stable
density. The parametessandc’ relate log,y and « through a straight line: log y(a)=aa+c’.

SNR Cross correlation

2 2

Parameters r Parameters r

Quiartic bistable a=1.2444,c'=-3.3411 0.8923 a=1.2177,c’=—-3.1889 0.8463
FHN a=0.8622,c' = —2.7496 0.9098 a=0.6518,c’'=—2.4869 0.7510
Bistable neuron a=1.8552,c'=—-3.9344 0.9593 a=1.9581,c'=-4.0252 0.9641
Duffing oscillator a=0.7320,c’' = —3.3057 0.7444 a=0.8912,c’'=—3.3204 0.8175
Threshold a=—0.5020,c’=0.1638 0.9215 a=-0.5036,c’=0.1658 0.9196
Pulse a=0.0692,c' =0.2267 0.0406 a=0.2478,c’'=0.2516 0.3361

as the minimum variance method for arbitrary random vari-y,; for infinite-variance noise. This learning law has the
ables and the maximum likelihood method for normal ran-form
dom variableg52].

The correlation coefficient? indicates how good the lin- - dSNR (40)
ear model fits the data L RO LI TV
, S(W—w)?  [Z(a—a)(wi—W)]? whereu, is a decreasing sequence of learning coefficients. A
r TS(wi—wW)2 3(ga—a)’=(w—w)?’ B9 ke learning law holds for the correlation measure in ().
The spectral relation SNRS/N and the chain rule of calcu-
where O<|r|<1 and|r|=1 iff w;=W;=aa;+c’ foreveryi.  lus show that
The positive and negative signs reflect the positive and nega-
tive slopes. dSNR dSNR IS ISNR N
= —+ — (41)
dy S dy N vy
2. Test results
Table | shows the parameteasandc’ of the linear least- :i r?_S_ SNRﬁ 42
squares fit of logarithm of the optimal dispersigg,; and Ndy N oy’

the parametes. The correlation coefficients measure how
well the regressionaa+b fits the data and how much The first-order condition for an SR maximum dSNR/dy
10910 Yopt linearly depends onw. Figure 4 shows the SR- =0. This leads to the opt|mallty conditio®/N=S"/N’
optimal dispersiony,(a) versus the parametet The plots ~WhereS’=4S/dy. But the optimality error procesS=S/N
in Figs. 4a)—4(d) for feedback systems agree with the expo-—S'/N’ itself is impulsive. Indeed a converging-variance
nential law. Figures @) and 4f) show the plots for the test and log-tail test confirm that this random process obeys
threshold and feedforward pulse systems. The correlation cdhe highly impulsive Cauchy probability densityvith «
efficientsr? for the pulse system for both the SNR and cross-~1). Figure 6 shows samples of this Cauchy-like error pro-
correlation measures are small due to the small slepsd ~ cess. These impulses destabilized all attempts to lgggp
the large spread of the data lgly,pr). But their trends still ~ with Eq. (42). This Cauchy impulsiveness holds for forcing
show a linear relationship. noise with finite as well as infinite variance and for all the
Note also that the slopes of the plots can be positive 0S8R models and performance measures. It is systemic to the
negative or zero depending on the time scale factor of th@radient-learning process. But its Cauchy nature suggests an
dynamical system and on the noise when we consider thénmediate remedy. We can apply the well-known Cauchy
noise scalex that gives the dispersiop=x*. Consider, for impulse suppressap(z,)=2z,/(1+z) from the theory of
example, the two FHN modeld6)—(18) and (19—(21) are  robust statistic$53]. This gives the final robustified form of
the same system. But the noisé(t) = «'w(t) in Eq. (16)  the learning law:
differs from the optimal noise(t) = xw(t) in Eqg. (19) by
the scalee. So at SR the two optimal noise scales obey the
relation rg = €xopt- Then yool @) = kip @) *=c(AB)* if
Yopt(@) = Kop(@)“=CA®. So the factore can change the

slope of the plot from positive to negative for this FHN  The robustified learning lai43) learned the optimal dis-
model. persionsy,,, in Figs. 1 and 3. It successfully foung, ,; for

a values in the ranggl.4, 2 for both the quartic bistable and
Fitzhugh-Nagumo models but only for the SNR performance
measure. The learning law often convergedyg, for «
values in[1, 1.4 but with decreasing frequency and accuracy

We applied the stochastic SR gradient-ascent learning lafior the lower « values. The learning scheme often did not
of [15] to the problem of finding the optimal noise dispersionconverge when the forcing noise was Cauchy=(1).

ISNR
) (43)

Yi+1= 7t+/~Lt¢(W .

IV. LEARNING THE OPTIMAL NOISE DISPERSION
IN IMPULSIVE ENVIRONMENTS
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Learning with the SNR measure did not require knowledgeeters to exploit the SR affect for signal detection in noisy
of the system dynamics while learning with the correlationenvironments. No living organism can control the noise
measure did require some knowledge of the system Jacobiastructure of the environment. But gene selection over thou-
Learning is slow in any case because the system must igands of generations might act as if a gene pool slowly and
effect estimate at least part of the system dynamics based amwisily tuned its own noise parameters. Each act of reproduc-
the sampled SNR inputs to the learning process. The robusive fithess would count as only a lone noisy spike in evolu-
tified gradient schem&t3) can use other performance mea- tion’s learning process. The battle of genetic countermea-
sures or can include more information from the system dysures between predator and prey suggest that if the predator
namics to help the system more accurately estimate ther prey evolved SR-sensitive signal detectiées Moss

stochastic term¥SNR/&y. [11,54 has shown for crayfish that use SR to detect a large-
mouth bass’s periodic fin pattern or paddlefi§h] that use
V. CONCLUSION SR to detect planktorthen they would have to evolve new

) ) ~ SR parameter settings as their opponents evolved new coun-
We have shown that stochastic resonance is robust againgtmeasures.
noise impulses can overwhelm any SR system. But an Skhe Cauchy impulsiveness of gradient-ascent leartiy
effect still emerges even for the wide range of infinite- oy ejther a signal-to-noise or correlation performance mea-
variance noise-types that lie between the extremes of thgyre. Biological systems would have to further evolve a ro-
wildly impulsive Cauchy bell curve and the nonimpulsive pystifier of some sort to suppress extremely large learning
Gaussian. The approximate exponential relationshigyytliers as Eq.(43) does with the Cauchy impulse sup-

Yopt(@) =CA" shows this. This result is encouraging becausgyresser. A meta-level threshold system might suffice for that
all real noise is impulsive to some degree—the best-fit 55k

seldom the Gaussian case @fF 2. This robustness favors
engineering designs that may not conform to the ideal stan-
dards of Gaussian noise. It also suggests that SR may occur
more widely in nature than many had believed. National Science Foundation Grant Nos. ECS-9906251

The success of the dispersion-learning simulations furtheand ECS-0070284 and the Thailand Research Fund Grant
suggests that evolution could have tuned biological paramNo. PDF/29/2543 partly supported this research.
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