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Robust stochastic resonance: Signal detection and adaptation in impulsive noise
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Stochastic resonance~SR! occurs when noise improves a system performance measure such as a spectral
signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has
finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the
more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more
impulsive. We study this fading effect on the family of symmetrica-stable bell curves that includes the
Gaussian bell curve as a special case. These bell curves have thicker tails as the parametera falls from 2 ~the
Gaussian case! to 1 ~the Cauchy case! to even lower values. Thicker tails create more frequent and more
violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR
effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure
against the dispersion of thea-stable noise. Linear regression shows that an exponential lawgopt(a)5cAa

describes this relation between the impulsive indexa and the SR-optimal noise dispersiongopt . The results
show that SR is robust against noise ‘‘outliers.’’ So SR may be more widespread in nature than previously
believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive
system can learn the optimal noise dispersion for two standard SR models~the quartic bistable model and the
FitzHugh-Nagumo neuron model! for the signal-to-noise ratio performance measure. This also favors practical
applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological
systems.
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I. IMPULSIVE NOISE AND STOCHASTIC RESONANCE

Most noise processes have infinite variance. This ma
ematical fact is almost trivial. Even most bell-curve probab
ity densities do not have finite variance or any finite high
order moments. Yet this fact finds scant expression in ov
century of published research in science and engineerin
review of the published statistical research in any field sho
a common practice. Most random models assume that
dispersion of a random variable equals its squared-error m
sure of variance. But other measures of dispersion may
finite while the variance measure is infinite. The popular
of the finite-variance assumption may attest to its usefuln
in many cases. But that does not lessen its severity.
assumption persists even though such a squared-error
seldom exists in any formal generality and even though s
a squared-error term is not robust against data ‘‘outlie
when it does exist. Celebrated examples of the fin
variance hypothesis range from the Heisenberg uncerta
principle in quantum mechanics to the least-squares reg
sion framework that underlies statistical curve fitting a
forecasting in fields as disparate as astronomy and sociol

The presence of infinite variance in a random model d
not itself nullify the model or count as some sort of stoch
tic reductio ad absurdum. Infinite variance does not imply
that we lack all statistical knowledge about the position
momentum of a random particle or about the value of a
random variable if we assume only that the random varia
has a probability density function in the shape of a b
curve. Many infinite-variance bell curves are locally indisti
guishable from the thinner-tailed Gaussian bell cur
1063-651X/2001/64~5!/051110~11!/$20.00 64 0511
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Infinite-variance noise itself produces impulses of only fin
magnitude. Nor does infinite variance imply that a real s
tem must have infinite energy. This holds for the same r
son that the use of a Gaussian bell curve in a model does
imply that axes extend to infinity in the real world. Oth
events can explain the presence of infinite variance. We m
have measured the random dispersion involved with
wrong measure. We may have applied a good but appr
mate measure to extreme cases that lie outside the meas
particular structure. Or we may simply have used or enco
tered a bell curve that has thicker tails than a Gaussian
curve has.

Stochastic resonance@1–13# offers a recent and stark ex
ample of the finite-variance assumption. A dynamical syst
stochastically resonates or shows the stochastic reson
~SR! effect when noise increases its signal-to-noise ratio
other system performance measure. Almost all SR rese
has assumed that the noise process is Gaussian and hen
finite variance. A few SR studies have explored uniform a
other non-Gaussian but finite-variance noise-types@14–17#.
The SR signature of a nonmonotonic signal-to-noise gr
gives perhaps the best evidence of the universality of
finite-variance assumption in SR research. All SR stud
plot the dynamical system’s signal-to-noise ratio against
ther the variance or the standard deviation of the driv
noise process. So the very notation excludes the presen
infinite variance. This practice rules out a vast set of poss
SR scenarios and suggests that SR is not robust against
outliers. The simulation results below show that the SR
fect can indeed occur when infinite-variance noise driv
nonlinear feedback and feedforward systems.
©2001 The American Physical Society10-1
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FIG. 1. Impulsive stochastic resonance SNR measure and convergence of learned dispersion to the SR effect.~a! The graph shows the
smoothed output SNR as a function of the dispersion of additivea-stable~infinite-variance! noise witha51.8. The vertical dotted lines
show the absolute deviation between the smallest and largest SNR outliers in each sample average of 100 outcomes. The vertical
shows the optimal noise level at the dispersiong'0.097. The noisy signal-forced quartic bistable dynamical system has the formẋ5x
2x31s1n with binary outputy(t)5sgn„x(t)…. The a-stable noisen(t) ~with a51.8! adds to the external forcing narrow band sign
s(t)50.1 sin 2p(0.01)t. ~b! Learning paths ofg t with the Cauchy impulse suppressorf(z)52z/(11z2) for the quartic bistable system with
sinusoidal input. The Cauchy impulse suppressorf(]SNRt /]s) replaces]SNRt /]s in the SR learning law@16# as in Eq.~43! below. The
learning paths converged to and wander about the optimal noise dispersiongopt'0.097.
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Stochastic resonance occurs in a signal-forced dynam
system when noise improves its performance by increa
its signal-to-noise ratio~SNR! @18–22# or some other perfor-
mance measure such as a signal cross correlation@23–27# or
mutual entropy@25–27#. Then the noise processn(t) and
signal processs(t) force a feedback dynamical system of t
form ẋ5 f (x) to give ẋ5 f (x)1s(t)1n(t). The forced sys-
tem’s signal-to-noise ratio has the form SNR5S/N whereS
measures the spectral content of the forcing signals(t) in the
forced system andN measures the spectral content of t
noisen(t) @as entangled with each other and with the syst
state dynamicsẋ5 f (x)#. Most SR systems in the literatur
have assumed that the forcing signal has the simple peri
form of a sinusoid. Aperiodic SR@23,24# is an important
exception that we do not consider here.

The figures show the main results of this research. Fig
1 shows an SR profile when the additive forcing impuls
noise has infinite variance. The noise has alpha valuea51.8
and so the noise is only mildly impulsive compared to t
noise that arises from bell curves with thicker tails. Figure
also shows the more complex result that a stochastic lear
algorithm can learn to locate the SR-optimal dispersion va
in this impulsive environment and do so based not on
functional form of the dynamical stable~the quartic bistable
system in this case! but based on only input-output trainin
samples of dispersion and SNR values. Each SNR value
pends on the noise-corrupted system dynamics. This all
the learning process to in effect slowly estimate the sys
dynamics. The presence of system dynamics means tha
same dispersion value or the same noise impulse will at
ferent times produce different SNR values. Learning ba
on a correlation measure requires direct use of the state
namics.
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Figure 2 shows foura-stable bell curves and the nois
samples they produce@28,29#. It also shows three infinite-
variance curves fora51.8 based on three dispersion valu
and the resulting samples of impulsive noise. The three
pulsive SR profiles for the SNR measure in Fig. 3 show t
the SR mode occurs for even smaller dispersion values as
impulsiveness grows~as a falls!. Figure 4 shows that the
pattern in Fig. 3 generalizes. Impulsiveness decreases
chastic resonance because the exponential lawgopt(a)
5cAa tends to hold for all the dynamical systems we stu
ied. Figure 5 confirms this pattern for the cross-correlat
performance measure for a quartic bistable system. Figu
shows that any SNR-based learning scheme faces Cau
like impulsiveness as it approaches the first-order condi
for an SR optimum. This impulsiveness occurs for all nois
types including the Gaussian. This in turn implies that bo
biological and engineering systems must find some way
suppress this second level of impulsiveness if they try
learn the SR optimum or otherwise search for it based
noisy training data.

II. SYMMETRIC a-STABLE NOISE: THICK-TAILED
BELL CURVES

We use a class of symmetrica-stable bell-curve probabil-
ity density functions with parametera in the characteristic
function f(v)5exp@2g uvua% whereg is thedispersionpa-
rameter@30–33#. The parametera lies in 0,a<2 and gives
the Gaussian random variable whena52 or when w(v)
5exp$2gv2%. So the standard Gaussian random variable
zero mean and variances252 ~wheng51!. The parameter
a gives the thicker-tailed Cauchy bell curve whena51 or
w(v)5exp$2uvu% for a zerolocation(a50) and unit disper-
0-2
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ROBUST STOCHASTIC RESONANCE: SIGNAL . . . PHYSICAL REVIEW E 64 051110
FIG. 2. Samples of standard symmetrica-stable probability densities and their realizations.~a! Density functions with zero location
(a50) and unit dispersion~g51! for a52, 1.8, 1.5, and 1. The densities are bell curves that have thicker tails asa decreases. The casea52
gives a Gaussian density with variance two~or unit dispersion!. The parametera51 gives the Cauchy density.~b! Samples ofa-stable
random variables with zero location and unit dispersion. The plots show realizations whena52, 1.8, 1.5, and 1. Note the scale differenc
on they axes. Thea-stable variablex becomes more impulsive as the parametera falls. The algorithm in@28,29# generates these realization
~c! Density function fora51.8 with dispersiong50.5, 1, and 2.~d! Samples ofa-stable noisen for a51.8 with dispersionsg50.5, 1,
and 2.
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sion (g51) Cauchy random variable. The moments of sta
distributions witha,2 are finite only up to the orderk for
k,a. The Gaussian density alone has finite variance
higher moments.a-stable random variables characterize t
class of normalized sums of independent random varia
that converge in distribution to a random variable@30# as in
the famous Gaussian special case called the ‘‘central l
theorem.’’a-stable models tend to work well when the noi
or signal data contains ‘‘outliers’’—and all do to some d
gree. Models witha,2 can accurately describe impulsiv
noise in telephone lines, underwater acoustics, lo
frequency atmospheric signals, fluctuations in gravitatio
fields and financial prices, and many other processes@33,34#.
The best choice ofa is always anempirical question for
bell-curve phenomena.
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Figure 2 shows realizations of four symmetrica-stable
random variables. Ana-stable probability densityf has the
characteristic function@32,33,35,36# w:

w~v!5expF iav2guvuaH 11 ib sgn~v!tan
ap

2 J G
for aÞ1 ~1!

and

w~v!5exp@ iav2guvu~112ib lnuvusgn~v!/p!#

for a51 ~2!

where
0-3



ariance
es

in each

BART KOSKO AND SANYA MITAIM PHYSICAL REVIEW E 64 051110
FIG. 3. The optimal dispersiongopt becomes smaller as the tails on the noise bell curves become thicker and thus as the infinite-v
noise becomes more impulsive. The three SR profiles show thatgopt shifts to the left asa falls. Figure 4 shows that this trend generaliz
to an exponential relationship betweena andgopt . The dynamical system is the quartic bistableẋ5x2x31s1n modified for saturations
effects and where the signals is the sinusoids(t)50.1 sin 2p(0.01)t. The plots on the left side show the SNR-dispersion profiles for~a!
a51.9, ~b! a51.7, and~c! a51.5. The dotted lines show the absolute deviation between the smallest and largest SNR outliers
sample average of 100 outcomes. The vertical dashed lines show the SR effect or mode at the optimal noise dispersiongopt . The plots on
the right side of~a!–~c! show the learning paths ofg as it slowly and noisily converges togopt per the robustified learning law in Eq.~43!.
if

is

m-
sgn~v!5H 1 if v.0

0 if v50

21 if v,0,

~3!

and i 5A21, 0,a<2, 21<b<1, andg.0. Thea is the
characteristic exponent parameter. Ana-stable density with
05111
a,2 has finite moments only of order less thana. Again the
variance of ana-stable density distribution does not exist
a,2. The location parametera is the ‘‘mean’’ of the density
when a.1 andb is a skewness parameter. The density
symmetric abouta when b50. The dispersion parameterg
acts like a variance because it controls the width of a sy
metric a-stable bell curve.
0-4
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ROBUST STOCHASTIC RESONANCE: SIGNAL . . . PHYSICAL REVIEW E 64 051110
FIG. 4. Exponential laws for optimal noise dispersiong and parametera for the SNR performance measure. The optimal noise disper
g depends on the parametera through the exponential relationgopt(a)5cAa for some constantsc andA. Table I shows the constantsc and
A for the dynamical systems we tested:~a! the Quartic bistable system~modified!, ~b! the FHN model~modified!, ~c! the bistable neuron
model ~Hopfield!, ~d! the duffing oscillator,~e! the feedforward threshold system, and~f! the random pulse system. The slope of t
pulse-system in~f! is so close to zero as to undermine the log-linear~exponential! relationship. The small correlation coefficient for the pul
system in Table I reflects this nearly flat log-linear relationship.
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III. AN EXPONENTIAL LEARNING LAW:
IMPULSIVENESS DECREASES RESONANCE

This section lists the SR performance measures and
models that we used in the simulations. Four of the six s
models are feedback or dynamical systems. The neuron
pulse models are feedforward models. All give rise to
exponential lawgopt(a)5cAa but the pulse model does s
05111
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with only a small correlation coefficient of linear regressi
because its log-plot is almost flat.

A. SR performance measures

This section reviews the two most popular measures
SR. These performance measures depend on the forcing
0-5
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FIG. 5. The optimal dispersiongopt still becomes smaller as the infinite-variance noise becomes more impulsive for a cross-corr
performance measure. The dynamical system is the quartic bistableẋ5x2x31s1n modified for the saturation effects. The signals is the
sinusoids(t)50.1 sin 2p(0.01)t as in Fig. 3 but with cross-correlation measureC0 . The plots~a!–~c! show theC0-dispersion profiles for~a!
a51.9, ~b! a51.7, and~c! a51.5. The dotted lines show the absolute deviation between the smallest and largest cross-correlation
in each sample average of 100 outcomes. The vertical dashed lines show the SR effect or mode at the optimal noise dispersiongopt . The
plot ~d! shows the exponential law for optimal noise dispersiong and parametera.
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nal and noise and can vary from system to system. Ther
no consensus in the SR literature on how to measure the
effect.

a. Signal-to-noise ratio.The most common SR measu
is some form of a signal-to-noise ratio~SNR! @18–22,37#.
This seems the most intuitive measure even though there
many ways to define a SNR.

Suppose the input signal is the sinewaves(t)5« sinv0t.
Then the SNR measures how much the system outpuy
5g(x) contains the input signal frequencyv0 :

SNR510 log10

S

N
~4!

510 log10

S~v0!

N~v0!
dB. ~5!
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The signal powerS5uY(v0)u2 is the magnitude of the outpu
power spectrumY(v) at the input frequencyv0 . The back-
ground noise spectrumN(v0) at input frequencyv0 is some
average ofuY(v)u2 at nearby frequencies@21,26,38#. The
discrete Fourier transform~DFT! Y@k# for k50, . . . , L21
is an exponentially weighted sum of elements of a discre
time sequence$y0 ,y1 ,...,yL21% of output signal samples

Y@k#5 (
t50

L21

yte
2 i ~2pkt/L !. ~6!

The signal frequencyv0 corresponds to bink0 in the DFT
for integer k05LDT f0 and for v052p f 0 . This gives the
output signal in terms of a DFT asS5uY@k0#u2. The noise
0-6
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FIG. 6. Visual display of sample statistics of]SNRt /]s for the saturation-modified quartic bistable systemẋ5x2x31s1n with
sinusoidal inputs(t)50.1 sin 2p(0.01)t anda-stable noisen(t) with a51.8. The system has binary outputy(t)5sgn„x(t)…. ~a! Cauchy-like
samples of]SNRt /]s at each iterationt at the noise dispersiong50.1 ~which is the optimal dispersion for this signal system!. The plot
shows impulsiveness of the random variable]SNRt /]s. ~b! Test of infinite variance. The sequence of sample variances converges to a
value if the underlying probability density has finite variance. Else it has infinite variance.~c! Log-tail test of the parametera in for an
a-stable bell curve. The test plots log Prob(X.u) versus log10 u for largeu. If the underlying density isa-stable witha,2 then the slope
of this plot is approximately2a. This test found thata'1 and so the density was approximately Cauchy. The result is that we need to
the Cauchy impulse suppressor@53# f(x)52x/(11x2) to the approximate SR gradient]SNRt /]s.
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power N5N@k0# is the average power in the adjacent bi
k02M ,..., k021, k011, . . . , k01M for some integerM
@22,39#

N5
1

2M (
j 51

M

~ uY@k02 j #u21uY@k01 j #u2!. ~7!

There is no standard definition of system-level signal a
noise in nonlinear systems. We work with a SNR that is e
to compute and that depends on standard spectral po
measures in signal processing. We start with a sinewave
put and view the output statey(t)5g„x(t)… of the dynamical
system as a mixture of signal and noise. We arrange the D
computation so that the energy of the sine term lies in
quency bink0 . The squared magnitude of this energy sp
trum Y@k0# acts as the system-level signal:S52uY@k0#u2.
We view all else in the spectrum as noise:N5P2S5P
22uY@k0#u2 where the total energy isP5(k50

L21uY@k#u2. We
ignore the factorL that scalesS and P since the ratioS/N
cancels its effect.

b. Cross-correlation measures.These ‘‘shape matchers’
can measure SR when inputs are not periodic signals.
searchers coined the term ‘‘aperiodic stochastic resonan
@23,40–42# for such cases. They defined cross-correlat
measures for the input signals and the system response
terms of the mean transition rater in the FHN model in Eqs.
~16!–~18!:

C05max$s~ t !r ~ t1t!%, ~8!
05111
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T
-
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e’’
n

C15
C0

@s2~ t !#1/2$@~ t !2r ~ t !#2%1/2
. ~9!

wherex̄ is the time averagex̄51/T*0
Tx(t)dt.

B. SR systems and simulation models

The computer simulation uses a discrete version

xt115xt1DT@ f ~xt!1st#1ADTkwt , ~10!

yt115g~xt11!, ~11!

with initial condition x0 and outputyt . We assume that this
discrete model applies to systems witha-stable noise. The
zero location whitea-stable random sequence$wt% has unit
dispersiongw51. So nt5kwt has dispersiong5ka. Note
that a unit dispersion for Gaussian density~when a52!
equals a variance of two. We tested the following six mo
els:

(a) Quartic bistable system.The forced quartic bistable
system has the form

ẋ5x2x31s~ t !1n~ t !, ~12!

y~ t !5sgn„x~ t !…, ~13!

for binary outputy(t). We tested the quartic bistable syste
model with the sinusoid inputs(t)5« sin 2pf0t for «50.1
0-7
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BART KOSKO AND SANYA MITAIM PHYSICAL REVIEW E 64 051110
and f 050.01. The discrete version of the quartic bistab
follows from Eqs.~10!–~11! as

xt115xt1DT~xt2xt
31st!1ADTkwt , ~14!

yt115sgn~xt11!. ~15!

We limit the magnitude of the system statext to 10 in the
simulation model~14! to account for physical and compute
saturation effects. We putxt11510 whenxt11.10 and put
xt115210 whenxt11,210 in the discrete dynamic syste
~14!. This gives a modified version of the quartic bistab
system. The optimal dispersiongopt has the formgopt(a)
5ka for the noise scalek in Eq. ~14!.

(b) FHN model. The forced FHN model has the form

e ẋ52xS x22
1

4D2z1A81s8~ t !1n8~ t !, ~16!

ż5x2z, ~17!

y~ t !5x~ t !, ~18!

for e50.005 andA852(5/12)10.07)520.310 56 as in
@42# and linear outputy(t). We use a sinusoidal inpu
s8(t)5« sin 2pf0t where «50.01 andf 050.5. We can re-
write Eqs.~16!–~18! as

ẋ52
1

e
xS x22

1

4D2
1

e
z1

1

e
A1

1

e
s8~ t !1

1

e
n8~ t !

52
1

e
xS x22

1

4D2
1

e
z1A1s~ t !1n~ t !, ~19!

ż5x2z, ~20!

y~ t !5x~ t !, ~21!

for A5A8/e. Then Eqs.~10! and ~11! give the discrete ver-
sion to simulate the FHN model as

xt115xt1DTF2
1

e«
xS x22

1

4D2
1

e
z1A1stG1ADTkwt ,

~22!

zt115zt1DT~xt2zt!, ~23!

yt115xt11 . ~24!

We also modify the recursive relation~22! to allow for satu-
ration effects by requiring the magnitude ofxt11 not to ex-
ceed 2. The optimal dispersiongopt has the formgopt(a)
5ka for the noise scalek in Eq. ~22!.

(c) Bistable potential neuron model@43#. The bistable po-
tential neuron model@44# with stable white noise has th
form

ẋ52x12 tanhx1s~ t !1n~ t !, ~25!

y~ t !5sgn„x~ t !…. ~26!
05111
The sinusoid input iss(t)5« sin 2pf0t for «50.1 and f 0
50.01. The discrete version has the form

xt115xt1DT~2xt12 tanhxt1st!1ADTkwt , ~27!

yt115sgn~xt11!. ~28!

We test this neuron model with sinusoidal inputs(t)
5« sin 2pf0t where«50.1 andf 050.01.

(d) Duffing oscillator@45#. The forced duffing oscillator
has the form

ẍ520.15ẋ1x2x31e sin~v0t !1n~ t !, ~29!

y~ t !5x~ t ! . ~30!

We test the duffing oscillator with sinusoidal inputs(t)
5« sin 2pf0t for «50.3 andf 050.01. The discrete version
of the duffing oscillator has the form

xt115xt1DTzt , ~31!

zt115zt1DT~2dzt1xt2xt
31st!1ADTkwt , ~32!

yt115sgn~xt11!. ~33!

(e) Threshold system@15,46–50#. The outputy of a simple
feedforward threshold system has the form

yt5sgn~st1nt2Q!5sgn~st1kwt2Q!. ~34!

The optimal dispersiongopt has the formgopt(a)5ka for k
in Eq. ~34!.

(f) Pulse system@51#. This doubly Poisson process gene
ates a pulse train with probabilityr that depends on the inpu
V(t)5s(t)1n(t)

r „V~ t !…5r ~0!exp„V~ t !…. ~35!

Here we let r (0)51. The sinusoid input is s(t)
5« sin 2pf0t for «50.5 andf 050.05. The system generate
an outputy(t) as a unit pulse with a rater (t).

1. Exponential law with linear least-squares fit of log data

The optimal dispersiongopt(a) of the system obeys the
exponential law

gopt~a!5cAa ~36!

for real constantsc andA. Then

log10gopt~a!5 log10c1a log10A5aa1c8 ~37!

for a5 log10 A and c85 log10 c. The least-squares metho
gives thea andc8 values as

a5
( i 51

N ~a i2ā !wi

( i 51
N a i

22N~ ā !2 and c85w̄2aā, ~38!

for N data pairs (a i ,wi) where wi5 log10gopt(a i) at the
experimenti with the parametera i . This method is the same
0-8



ROBUST STOCHASTIC RESONANCE: SIGNAL . . . PHYSICAL REVIEW E 64 051110
TABLE I. Linear least-squares fit of the log of optimal dispersiong and the parametera in an a-stable
density. The parametersa andc8 relate log10 g anda through a straight line: log10 g(a)5aa1c8.

SNR Cross correlation

Parameters r 2 Parameters r 2

Quartic bistable a51.2444,c8523.3411 0.8923 a51.2177,c8523.1889 0.8463
FHN a50.8622,c8522.7496 0.9098 a50.6518,c8522.4869 0.7510

Bistable neuron a51.8552,c8523.9344 0.9593 a51.9581,c8524.0252 0.9641
Duffing oscillator a50.7320,c8523.3057 0.7444 a50.8912,c8523.3204 0.8175

Threshold a520.5020,c850.1638 0.9215 a520.5036,c850.1658 0.9196
Pulse a50.0692,c850.2267 0.0406 a50.2478,c850.2516 0.3361
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as the minimum variance method for arbitrary random va
ables and the maximum likelihood method for normal ra
dom variables@52#.

The correlation coefficientr 2 indicates how good the lin
ear model fits the data

r 25
(~ŵi2w̄!2

(~wi2w̄!2 5
@(~a i2ā !~wi2w̄!#2

(~gai2ā !2(~wi2w̄!2 , ~39!

where 0<ur u<1 andur u51 iff wi5ŵi5aa i1c8 for everyi.
The positive and negative signs reflect the positive and ne
tive slopes.

2. Test results

Table I shows the parametersa andc8 of the linear least-
squares fit of logarithm of the optimal dispersiongopt and
the parametera. The correlation coefficientsr 2 measure how
well the regressionaa1b fits the data and how muc
log10gopt linearly depends ona. Figure 4 shows the SR
optimal dispersiongopt(a) versus the parametera. The plots
in Figs. 4~a!–4~d! for feedback systems agree with the exp
nential law. Figures 4~e! and 4~f! show the plots for the
threshold and feedforward pulse systems. The correlation
efficientsr 2 for the pulse system for both the SNR and cro
correlation measures are small due to the small slopesa and
the large spread of the data log10(gopt). But their trends still
show a linear relationship.

Note also that the slopes of the plots can be positive
negative or zero depending on the time scale factor of
dynamical system and on the noise when we consider
noise scalek that gives the dispersiong5ka. Consider, for
example, the two FHN models~16!–~18! and ~19!–~21! are
the same system. But the noisen8(t)5k8w(t) in Eq. ~16!
differs from the optimal noisen(t)5kw(t) in Eq. ~19! by
the scalee. So at SR the two optimal noise scales obey
relation kopt8 5ekopt . Thengopt8 (a)5kopt8 (a)a5c(AB)a if
gopt(a)5kopt(a)a5cAa. So the factore can change the
slope of the plot from positive to negative for this FH
model.

IV. LEARNING THE OPTIMAL NOISE DISPERSION
IN IMPULSIVE ENVIRONMENTS

We applied the stochastic SR gradient-ascent learning
of @15# to the problem of finding the optimal noise dispersi
05111
i-
-

a-

-

o-
-

r
e
e

e

w

gopt for infinite-variance noise. This learning law has th
form

g t115g t1m t

]SNR

]g
, ~40!

wherem t is a decreasing sequence of learning coefficients
like learning law holds for the correlation measure in Eq.~9!.
The spectral relation SNR5S/N and the chain rule of calcu
lus show that

]SNR

]g
5

]SNR

]S

]S

]g
1

]SNR

]N

]N

]g
~41!

5
1

N

]S

]g
2

SNR

N

]N

]g
. ~42!

The first-order condition for an SR maximum is]SNR/]g
50. This leads to the optimality conditionS/N5S8/N8
whereS85]S/]g. But the optimality error processE5S/N
2S8/N8 itself is impulsive. Indeed a converging-varianc
test and log-tail test confirm that this random process ob
the highly impulsive Cauchy probability density~with a
'1!. Figure 6 shows samples of this Cauchy-like error p
cess. These impulses destabilized all attempts to learngopt
with Eq. ~42!. This Cauchy impulsiveness holds for forcin
noise with finite as well as infinite variance and for all th
SR models and performance measures. It is systemic to
gradient-learning process. But its Cauchy nature suggest
immediate remedy. We can apply the well-known Cauc
impulse suppressorf(zt)52zt /(11zt

2) from the theory of
robust statistics@53#. This gives the final robustified form o
the learning law:

g t115g t1m tfS ]SNR

]g D . ~43!

The robustified learning law~43! learned the optimal dis-
persionsgopt in Figs. 1 and 3. It successfully foundgopt for
a values in the range@1.4, 2! for both the quartic bistable an
Fitzhugh-Nagumo models but only for the SNR performan
measure. The learning law often converged togopt for a
values in@1, 1.4! but with decreasing frequency and accura
for the lowera values. The learning scheme often did n
converge when the forcing noise was Cauchy (a51).
0-9
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Learning with the SNR measure did not require knowled
of the system dynamics while learning with the correlati
measure did require some knowledge of the system Jaco
Learning is slow in any case because the system mus
effect estimate at least part of the system dynamics base
the sampled SNR inputs to the learning process. The ro
tified gradient scheme~43! can use other performance me
sures or can include more information from the system
namics to help the system more accurately estimate
stochastic term]SNR/]g.

V. CONCLUSION

We have shown that stochastic resonance is robust ag
noise outliers. Sufficiently large and sufficiently freque
noise impulses can overwhelm any SR system. But an
effect still emerges even for the wide range of infinit
variance noise-types that lie between the extremes of
wildly impulsive Cauchy bell curve and the nonimpulsiv
Gaussian. The approximate exponential relations
gopt(a)5cAa shows this. This result is encouraging becau
all real noise is impulsive to some degree—the best-fita is
seldom the Gaussian case ofa52. This robustness favor
engineering designs that may not conform to the ideal s
dards of Gaussian noise. It also suggests that SR may o
more widely in nature than many had believed.

The success of the dispersion-learning simulations fur
suggests that evolution could have tuned biological par
v.

on
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eters to exploit the SR affect for signal detection in no
environments. No living organism can control the noi
structure of the environment. But gene selection over th
sands of generations might act as if a gene pool slowly
noisily tuned its own noise parameters. Each act of reprod
tive fitness would count as only a lone noisy spike in evo
tion’s learning process. The battle of genetic counterm
sures between predator and prey suggest that if the pred
or prey evolved SR-sensitive signal detection~as Moss
@11,54# has shown for crayfish that use SR to detect a lar
mouth bass’s periodic fin pattern or paddlefish@55# that use
SR to detect plankton! then they would have to evolve new
SR parameter settings as their opponents evolved new c
termeasures.

The problem with such an SR evolutionary hypothesis
the Cauchy impulsiveness of gradient-ascent learning~40!
for either a signal-to-noise or correlation performance m
sure. Biological systems would have to further evolve a
bustifier of some sort to suppress extremely large learn
outliers as Eq.~43! does with the Cauchy impulse sup
presser. A meta-level threshold system might suffice for t
task.
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