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Modeling Gunshot Bruises in Soft Body
Armor with an Adaptive Fuzzy System

Ian Lee, Bart Kosko, Member, IEEE, and W. French Anderson

Abstract—Gunshots produce bruise patterns on persons who
wear soft body armor when shot even though the armor stops the
bullets. An adaptive fuzzy system modeled these bruise patterns
based on the depth and width of the deformed armor given a
projectile’s mass and momentum. The fuzzy system used rules
with sinc-shaped if-part fuzzy sets and was robust against random
rule pruning: Median and mean test errors remained low even
after removing up to one fifth of the rules. Handguns shot different
caliber bullets at armor that had a 10%-ordnance gelatin backing.
The gelatin blocks were tissue simulants. The gunshot data tuned
the additive fuzzy function approximator. The fuzzy system’s
conditional variance V[Y'|X = ] described the second-order
uncertainty of the function approximation. Handguns with dif-
ferent barrel lengths shot bullets over a fixed distance at armor-clad
gelatin blocks that we made with Type 250 A Ordnance Gelatin.
The bullet-armor experiments found that a bullet’s weight and
momentum correlated with the depth of its impact on armor-clad
gelatin (R? = 0.881 and p-value < 0.001 for the null hypothesis
that the regression line had zero slope). Related experiments on
plumber’s putty showed that highspeed baseball impacts com-
pared well to bullet-armor impacts for large-caliber handguns. A
baseball’s momentum correlated with its impact depth in putty
(R%Z = 0.93 and p-value < 0.001). A bullet’s momentum simi-
larly correlated with its armor-impact in putty (R = 0.97 and
p-value < 0.001). A Gujarati-Chow test showed that the two
putty-impact regression lines had statistically indistinguishable
slopes for p-value = 0.396. Baseball impact depths were com-
parable to bullet-armor impact depths: Getting shot with a .22
caliber bullet when wearing soft body armor resembles getting hit
in the chest with a 40-mph baseball. Getting shot with a .45 caliber
bullet resembles getting hit with a 90-mph baseball.

Index Terms—Adaptive fuzzy systems, body armor, bruise
modeling, bullet backface signature, function approximation,
tissue simulant.

1. MODELING BULLET-ARMOR BRUISE IMPACTS

OW does it feel to get shot while wearing soft body

armor? One police officer described it as a sting while
another officer described it as a “hard blow” [1]. Fig. 1 shows
the bruise beneath the armor after a .44 caliber bullet struck a
police officer’s upper left chest. The armor stopped the bullet
but the impact still injured soft tissue.

Manuscript received June 2, 2004. This paper was recommended by Associate
Editor C. M. Helgason.

This paper has supplementary downloadable material available at http://iee-
explore.ieee.org35tsmcb06—lee-mm.zip, provided by the authors. This includes
12 color figures. This material is 9.6 MB in size.

I. Lee and B. Kosko are with the Department of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, CA 90089-2564 USA (e-mail:
kosko@usc.edu).

W. E Anderson is with the Gene Therapy Laboratories, Keck School of
Medicine, University of Southern California, Los Angeles, CA 90089-9176
USA.

Digital Object Identifier 10.1109/TSMCB.2005.855585

Fig. 1. (Top) Actual bruise from a police officer shot by a .44 caliber weapon
in the line of duty while wearing soft body armor. (Bottom) Close-up of the
“backface signature” bruise in the top photo. Note that the bruise includes the
discoloration around the wound. Photo reproduced with permission from the
TIACP/Du Pont Kevlar Survivors’ Club.

We examined the bruising effect with a fuzzy function ap-
proximator and a baseball analogy. Bullet-impact experiments
produced the bullet-armor bruise data that generated a quan-
titative bruise profile and a baseball-impact comparison. The
bruise profile gave the depth and width of the deformation that a
handgun bullet made on gelatin-backed armor for gelatin blocks
that we made with Type 250 A Ordnance Gelatin (from Kind &
Knox Gelatin).

Few researchers have studied the relationship between the
bruising effect and the so-called backface signature or the de-
formation in the armor’s backing material after a gunshot [2],
[3]. Our bruise profile modeled the bullet-armor bruise with the
depth and width of the deformation as a blunt object that could
injure soft tissue. We quantified the bullet-armor impacts and
baseball impacts on a common backing material—plumber’s
putty. The baseball analogy helped estimate gunshot impacts
on armor. We found that a fast baseball could hit as hard as a
large-caliber handgun bullet on armor. The baseball and bullet
impacts in putty had similar depths and statistically indistin-
guishable regression slopes.
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TABLE 1
SUMMARY OF LINEAR REGRESSION STATISTICS FOR THE GELATIN-BACKED BULLET-ARMOR IMPACT
EXPERIMENTS AND FOR THE SIMPLE LINEAR MODEL y = 3o + 51

DEPTH R? Bo B1 Hp: 81 =0
REGRESSION t (p-value)
WEIGHT | 0.880 5.385 0.280 19.892 (p < 0.001)
MOMENTUM | 0.741 9.443 13.718  12.415 (p < 0.001)
KINETIC ENERGY | 0.474  20.225 0.066 6.972 (p < 0.001)
SPEED | 0.089  79.885  —0.124  —2.298 (p = 0.025)
TARGET DISTANCE | 0.415  29.328  —1.203 —4.453 (p < 0.001)
WIDTH R? Bo B1 Hp: 81 =0
REGRESSION t (p-value)
WEIGHT | 0.865  84.816 0.421 18.580 (p < 0.001)
MOMENTUM | 0.745  90.295 20.870  12.566 (p < 0.001)
KINETIC ENERGY | 0.482  106.478 0.101 7.094 (p < 0.001)
SPEED | 0.079  194.170  —0.177 —2.153 (p = 0.036)
TARGET DISTANCE | 0.004  58.162  0.1082 0.340 (p < 0.001)

See the text below for more details.

An adaptive fuzzy system learned to model the depth and
width of bruise profiles from the bullet-armor impact exper-
iments. Two armor-impact experimental setups used gelatin
blocks to simulate human tissue. A third armor-impact exper-
imental setup used plumber’s putty to record the bullet-armor
deformation that compared with baseball impacts. The exper-
iments confirmed the expectation that a bullet made a larger
impact if it had a larger caliber or a larger momentum (see
Table I). But a larger and slower handgun bullet hit harder
than a smaller and faster one in the experiments. Impact depth
correlated better with momentum than with kinetic energy. This
corroborated the finding that kinetic energy was not a good
predictor of bullet penetration wounds [4].

Table I presents the key correlations that we found in the
experiments. Momentum mov and weight m correlated with
an impact’s depth and width while kinetic energy (1/2)muv?
correlated the least. Target distance d correlated with an im-
pact’s depth while speed v and distance d correlated little
with the impact’s width. The R? measures the strength of
the correlation between the input and output variables. The ¢
statistic tested the parameter significance of a single regression
coefficient (3; between deformation in millimeters and one of
a bullet’s mean weight (grain), momentum (kg m/s), kinetic
energy (kg m?/s?), target distance (yard), and speed (m/s). The
p-value measured the credibility of the null hypothesis Hy that
the regression line had zero slope 31 = 0 or that a dependent
variable did not vary with the independent variable. A statistical
test rejects the null hypothesis Hy at a significance level « if
the p-value is less than that significance level. So the regression
rejects the null hypothesis Hy for the customary significance
levels @ = 0.05 and o = 0.01 because p-value < 0.001.

We picked the initial rules based on our ballistic judgment and
experience. The experimental data tuned the rules of an adap-
tive standard-additive-model (SAM) fuzzy system [5]. The SAM
system used two scalar subsystems to model the depth and width
of a bullet-armor impact in parallel given the bullet’s weight and

momentum. We tested the robustness of the fuzzy system by re-
moving rules in a random rule pruning. The median, mean, and
maximal test errors resembled the initial approximation error for
pruning that randomly removed up to 20% of the rules.

The next two subsections review soft body armor and bullet-
impact bruises. Section Il reviews rule-based fuzzy function ap-
proximation. Section III reviews the standard additive model.
Section IV provides the setup and results of the bullet-armor ex-
periments. Section V provides the setup and results of the base-
ball impact experiments. Section VI provides the experimental
setup and the results of the fuzzy function approximation.

A. Soft Body Armor

Soft body armor prevents most handgun bullets from pene-
trating a user’s body [6]. Our armor experiments used a generic
armor that we made by combining many layers of fabric that
wove together Kevlar fibers. Thinner armor is softer than thicker
armor. Another type of armor material laminated together many
layers of parallel fibers. Both types of armor deform under a
bullet’s impact and spread the impact’s force over a wider area.
Bullets penetrate by crushing [7]. So soft body armor arrests
a handgun bullet by reducing its crushing force below a mate-
rial-failure threshold [7].

Failure analysis does not consider the physiological effects as
the armor stops a bullet. Some researchers define armor failure
as material failure such as broken fibers or breached fabric layers
[8]-[12]. Others require complete bullet passages [13]. Such
definitions do not address the interactions that flexible armor
permits with the underlying material.

These interactions have two effects. The first is that a bullet-
armor impact can injure soft tissue even though the bullet does
not penetrate the armor (see Fig. 1). The second effect is that soft
body armor’s performance can differ for different backing ma-
terial that supports the armor [7]. We found that a hammer strike
breached several layers of concrete-backed armor fabric. But
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Fig. 2. One of the authors holds a 14-ply Kevlar soft body armor panel (from
a Superfeatherlite vest from Second Chance) and some sample cartridges (.22,
.38, .357 magnum, .40, and .45 caliber). The right side of the image shows the
pristine and armor-deformed bullets for the five calibers.

at least one handgun bullet bounced off gelatin-backed armor
fabric.

The backface signature is the deformation in the backing
material after a bullet strikes armor [3]. Studies of backface
signatures [2] give little information about the impact as a
bruising force if the backing material differs from soft tissue.
One industry standard [3] measures the backface signature on a
clay backing material. The clay records the impact in a plastic
or permanent backface deformation but its properties differ
from soft tissue.

Gelatin tissue simulant is elastic and responds to a bullet’s
crushing force similar to how soft tissue responds in bullet-
penetration tests [14]-[16]. So testing gelatin-backed soft body
armor can help study the performance of the armor on a user’s
body. We performed the bullet-armor impact experiments on
tissue simulant and defined a simple two-parameter bruise pro-
file to describe the impact.

B. Bruising and the Bruise Profile

Bruising implies injury but need not indicate the severity of
the injury. A bruise is escaped blood in the intercellular space
after a blunt impact injures soft tissue [17]. The visible part of
a bruise is the part of the escaped blood that is close to the skin
surface. Scraping with a coin or a spoon can leave extensive
but superficial bruises or welts that resemble bruises from abuse
[18]. The visible bruise can change over time [19] at different
rates based on sex, age, body fat [17], and medication [20]. So
a bruise shows that a blunt impact occurred but need not show
that internal injuries occurred [21], [22]. This can occur in sports
injuries where soft tissue injuries can escape detection [23].

A bruise profile models the shape of the bullet-armor impact
and can help guide the examination after an armor gunshot. This
is similar to a wound profile that can help the examination of a
gunshot wound [16]. The bruise profile can indicate the affected
internal tissue beneath the visible armor bruise.
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TABLE 1I
INITIAL FUZZY RULES FOR THE FUNCTION APPROXIMATION

(a) DEPTH Xo: MOMENTUM
RULES Vs SM MS MD ML LG VL
VL MD MD MD LG LG LG VL
LG MD MD MD LG LG LG VL
X1 ML MD MD MD MD MD MD LG
WEIGHT MD SM MD MD MD MD MD LG
MS SM SM SM SM SM MD LG
SM SM SM SM SM SM MD MD
Vs Vs VS Vs SM SM MD MD

(b) WIDTH X2: MOMENTUM

RULES Vs SM MS MD ML LG VL
VL MD MD MD MD LG LG VL
LG SM SM MD SM LG LG VL

Xa ML SM SM SM SM MD LG VL
WEIGHT MD SM SM SM SM MD MD LG
MS Vs Vs Vs Vs SM MD LG
SM Vs Vs Vs VS SM MD MD
Vs Vs VS Vs Vs SM MD MD

(c) THEN-PART X3: MOMENTUM
DISPERSION Vs SM MS MD ML LG VL
VL LG LG MD MD LG MD SM
LG LG LG MD MD MD SM SM
X1 ML LG MD MD MD MD SM SM
WEIGHT MD MD MD MD SM SM SM SM
MS MD MD MD SM SM SM MD
SM SM SM MD MD MD LG LG
vs SM SM MD MD MD LG LG

See the text below for more details.

II. ADAPTIVE FuzzY SYSTEM

Bullet-impact experiments trained an adaptive fuzzy system
to model the depth and width of the bullet-armor impact given
a handgun bullet’s weight and momentum. We picked the fuzzy
system’s initial rules in Table II based on the correlations in
the experimental data (see Table I) and based on our ballistic
judgment and experience. Similar rules described the depth and
width subsystems.

Each entry in Table II represented one rule for the depth
subsystem in (a) and width subsystem in (b). We based the
49 initial fuzzy rules for the armor-deformation depth and
width on the experimenters’ ballistic judgment and experience.
Each rule had a two-dimensional if-part set function a; and
two parallel scalar then-part set functions b;. The functions
a; had parameters (X;, X2) based on a bullet’s weight and
momentum. The functions b; had center parameters c; based
on the entries in Table II (a) for the depth subsystem and
II (b) for the width subsystem and had volume parameters V;
based on the entries in II (c). Seven if-part fuzzy sets described
the bullet’s weight X; and momentum Xs: {very small (VS),
small (SM), medium small (MS), medium (MD), medium large
(ML), large (LG), very large (VL) } Five then-part fuzzy
sets described the armor deformation { VS, SM, MD, LG,
VL } Three volume or area values in (c) described the rule
uncertainty { SM, MD, LG } by fixing the dispersion or width
of the then-part sets.

A typical rule (highlighted) in Table II was “if a bullet’s
weight is Medium Small (X; = MS) and its momentum is
Medium (Xy = M D) then the armor deformation depth is
Small (C; = SM), the width is Very Small (C; = V'S), and
the rule uncertainty is Small (V; = SM).” A rule’s volume (or
dispersion) reflects its uncertainty. The gunshot data tuned the
rules in an adaptive SAM function approximation.
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We applied two scalar-valued additive fuzzy systems [5], [24]
F : R™ — RP (for p = 1) in parallel that used two-dimensional
inputs (n = 2) to model the depth and width of a bullet-armor
impact. These systems approximated some unknown function
f : R?2 — R by covering the graph of f with m fuzzy rule
patches and averaging patches that overlap. An if-then rule of
the form “If X is A then Y is B” defined a fuzzy Cartesian
patch A x B in the input-output space X X Y. The rules could
use fuzzy sets of any shape for either their if-part sets A or then-
part sets B. This held for the feedforward SAM fuzzy systems
discussed below. Their generality further permitted any scheme
for combining if-part vector components because all theorems
assumed only that the set function mapped to numbers as in
a: R" — [u,v]. Fig. 3 shows a sample two-dimensional if-part
set that used a joint factorable sinc function. The general fuzzy
approximation theorem allows any choice of if-part sets or then-
part sets for a general additive model and specifically allows any
choice of if-part sets for the SAM case (this includes most fuzzy
systems in use) [24]. These nonlinear systems can approximate
any continuous (or bounded measurable) function on a compact
domain [5].

The if-part fuzzy sets A; C R" and then-part fuzzy sets B; C
RP had set functions a; : R?* — [0,1] and b; : R — [0, 1] for
n = 2 and p = 1. An additive fuzzy system [5], [24] summed
the “fired” then-part sets B,

ey

= ijB;» = ijaj(m)B
j=1 j=1

The scaling choice B; = a;(z)B; gave an SAM.
The SAM output F was the centroid of B(z) in (1):
F(z) = Centroid (B(z)).

The shape of if-part sets A; affected how well the feedfor-
ward SAM output F’ approximates a function f and how quickly
an adaptive SAM output I approximated the function f when
learning tuned the parameters of A; and the centroids ¢; and
volumes V; of the then-part set B; based on input-output sam-
ples from f. The shape of the then-part sets B; did not affect the
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(b) SAMPLE THEN-PART SET

Sample if-part and then-part fuzzy sets. (a) Joint (product) sinc if-part set function for two-dimensional input case [24]. The joint set function has the
(2) = a;(x1,22) = aj(21) x a3(x2). The shadows show the scalar sinc set functions a}

: R — Rfori = 1,2 that generate a; : R> — R.

first-order behavior of a feedforward SAM output F' beyond the
effect of the volume V; and centroid c;. This held because the
SAM output computed a convex-weighted sum of the then-part
centroids ¢; for each vector input

5 wjay(2)Vie,

F(z) == )
> wiaj(z)V;
Jj=1
= pj(z)e; = E[Y|X = 1] A3)

for if-part joint set function a; : R™ — [0, 1] that defined the
if-part set A; C R™, rule weights w; > 0, p;(z) > 0, and
> im1pj(z) = 1foreachz € R?. Fig. 4(a) and (c) are exam-
ples of the SAM output F' based on the rules in Table II with
two-dimensional joint factorable sinc if-part set functions. The
convex coefficient

wja;(2)V;

™ “4)
> wiai(T)V;
=1

pi(r) =

depended on then-part set B; only through its volume or area
V; (and perhaps through its rule weight w).

The fuzzy output F'(z) in (2) equals the conditional expec-
tation E[Y|X = z] in (3) because the then-part set functions
b; are non-negative and have finite volume (area) and because
F(x) is the centroid of B(z). Appendix B shows that these two
conditions give a well- deﬁned conditional probability density
function p(y|z) in F(z) = [~ yp(y|z)dy [5]. So the SAM
output describes the ﬁrst order behavior of the fuzzy system and
does not depend on the shape of the then-part sets B;. But the
shape of B; did affect the second-order uncertainty or condi-
tional variance V[Y|X = z] of the SAM output F(z)[5]

ZPJ UB +ij z)[e; —

VIYV|X = 2] = F(z)]” ()
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Fig. 4. Fuzzy system initial output and conditional variance. An adaptive fuzzy system used two parallel scalar fuzzy systems to model the depth and width (mm)
of a bullet-armor deformation given the bullet’s weight (grain) and momentum (kilograms meter per second). The output gave the depth and width of the bruise
profile. Each surface plots the output against the momentum to the left and the weight to the right. The first-order outputs are the (a) depth and (c) width. The
depth and the width subsystems produced similar surfaces. Both the depth and width increased as the bullet weight and momentum increased. The second-order
uncertainties are the (b) conditional variance and (d) the depth and width outputs. We picked the initial fuzzy rules based on the correlations in the experimental
data (see Table I) and the fuzzy sets in Table II. The left and right side rules were less certain because their if-parts covered untested combinations of bullet weight
and momentum. So their then-parts had larger set variances and gave larger conditional variances.

where a%j is the then-part set variance
oo
o= [ =) e, Wy ©
—o0

where pp,(y) = b;(y)/V; is an integrable probability density
function and b; : R — [0, 1] is the integrable scalar set func-
tion of then-part set B;. Figs. 4(b) and (d) show examples of
the conditional variance V[Y'|X = z] based on the rules in
Table II with Gaussian then-parts. The first term on the right
side of (5) gave an input-weighted sum of the then-part set un-
certainties. The second term measured the interpolation penalty
that resulted from computing the SAM output F'(z) in (2) as
the weighted sum of centroids. The second-order structure of a
fuzzy system’s output depended crucially on the size and shape
of the then-part sets B;.

Learning tuned the volumes V; and centroids c; of the then-
part sets BB in our adaptive function-approximation. The adap-
tive SAM fuzzy system learned from data with learning laws
that updated the fuzzy rules so as to reduce the squared error

of the function approximation. The two-dimensional joint fac-
torable sinc if-part [see Fig. 3(a)] had learning laws that updated
the two-dimensional vector center m; and dispersion (or width)
d; parameters

mh(t+1) =mb(0) + e 2D DO (o ()

4j(@) a ()
T — mf(t) 1
x | aj(z) — cos 0 T —mi(D)
(N
B+ 1) =d(t) + u%%<  — ()
' z— mf(t) 1
x | aj(z) — cos R0) )

®)

where p; was a learning rate at iteration £ and £; was the approx-
imation error or the difference between the fuzzy output F'(z)
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and the approximand f. The Gaussian then-part parameters had
learning laws that updated the scalar centroid c; and volume V;

cj(t+1) =c;(t) + mee(z)p;(x) )
V(4 D) =)~ mee@) 2 fe; ~ F)] (0

where the volume or area of a scalar Gaussian then-part set was a
A /271'(7123], =o0p; \/ﬂ
This related the dispersion or width of a then-part set to its
volume and so related the volume parameter V; to the set vari-
ance 0123]_ that contributed to the conditional variance.

Fuzzy systems F' : R™ — RP suffer from rule explosion
in high dimensions. A fuzzy system F' needs on the order of
E™*tP—1 rules to cover the graph and thus to approximate a
vector function f : R™ — RP. Optimal rules can help deal with
the exponential rule explosion. Lone or local mean-squared
optimal rule patches cover the extrema of the approximand f:
They patch the bumps [5]. Better learning schemes move rule
patches to or near extrema and then fill in between extrema
with extra rule patches if the rule budget allows.

function of the standard deviation: V; =

III. BULLET-ARMOR IMPACT EXPERIMENTS
A. Experimental Setup

Two experimental setups measured the bullet-armor impacts’
depths and widths against a gelatin block backing in the Orange
County Indoor Shooting Range. The first setup used donated
commercial armor to produce the deformation data. It fixed the
bullet caliber (9 mm) and varied the distance between the target
and the handgun. The distances were 5, 7, and 10 yards. These
three short distances produced three measurably different bullet
impacts because air friction quickly slows a bullet after it leaves
the gun barrel.

The second setup used generic armor that we made from eight
layers of Kevlar fabric to produce the deformation data. It varied
both the bullet caliber and the handguns’ barrel lengths and fixed
the distance (5 feet) between the target and the handguns. The
setup used .22, .38, .40, and .45 caliber bullets. This choice of
bullets gave a monotonic increase in bullet diameter and weight.
We also used .357 magnum bullets that had weight similar to
.38 caliber bullets and momentum similar to .45 caliber bul-
lets due to higher speeds. A .44 magnum bullet penetrated the
eight-layer generic armor. So we had no deformation data for
the .44 magnum bullets. Hexcel Schwebel donated the Style 713
Aramid fabric that had 1000 deniers of Kevlar 29 fibers in plain
weave.

The gel-backed experiments used 10% gelatin blocks to sim-
ulate tissue that backed the armor. Fig. 5 shows a sample gelatin
block. The gelatin blocks consisted of one part Type 250 A Ord-
nance Gelatin from Kind & Knox Gelatin and nine parts water
by weight. We weighed the water-filled mold to find the 10%
weight for the gelatin powder and weighed the mold while we
added water to achieve the 1:9 ratio. Slowly stirring water into the
gelatin powder reduced bubble formation. The mixture required
refrigeration for 24 h to prevent spoilage while the powder hy-
drated. This further reduced air bubble formation. A warm water
bath of about 40° C melted the mixture and prevented denaturing
the gelatin. A cold water bath set the melted gelatin in molds
that measured about 40 cm long by 30 cm wide by 12 cm thick.
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Fig. 5. Sample 10% ordnance gelatin block. A target consisted of a generic
armor-clad gelatin block. The gel block was the tissue simulant.

TABLE III
AVERAGE BULLET SPEEDS FOR THE AVAILABLE COMBINATIONS
OF BULLET WEIGHT (CALIBER) AND BARREL LENGTH

22| 38 40 | 45 | 357mag | .44mag

WEIGHT 40 | 150 | 165 | 185 158 240

SPEED Barrel 1 977 | 722 | 937 | 808 1135 1263
Barrel 2 | 1059 | 751 | N/A | 897 N/A N/A

Refrigeration hardened the gelatin blocks in 48—72 h and en-
sured a uniform temperature of about 4°C in the blocks. The re-
frigerator ran for 24 h before use to ensure that its temperature
equilibrated in a range above freezing and below 4°C. This kept
a gelatin block’s temperature low while avoiding damage from
ice crystals. We used ice chests to transport the gelatin blocks
to and from the shooting range.

A BB shot calibrated each gelatin block before use by giving
BB penetration at known temperatures. A model 760B BB Re-
peater Air Rifle from Crossman Air Guns can shoot a 5.5-grain
BB at between 530-590 feet per second (ft/s) with ten pumps.
An outdoor thermometer measured the gelatin temperature be-
fore using the blocks.

We measured the bullet velocity at 12 feet or 3 yards and sep-
arate from the impact experiments. The ProChrono Plus optical
chronometer from Competition Electronics complicated shot
placement in the indoor shooting range. It required a separation
of at least 10-15 feet from the handguns to prevent interference
from the propellant smoke. The indoor lighting dictated a 12-ft
separation between the chronometer and the handguns and a
58-inch separation between the chronometer and the floor. This
was because the optical sensors required some minimal amount
of light to detect a bullet’s shadow as the bullet passed. The lack
of a pistol holder allowed marksmanship to further complicate
shot placement in the experiments.

The shooting range provided reloaded ammunition with full-
copper-jacketed bullets. The 9-mm bullets weighed 115 grains
on average. The mean velocity was 1216 ft/s for bullets from the
same ammunition box. Table III shows the mean bullet speeds
for each combination of bullet caliber and barrel length. The
.22 caliber bullets had one mean weight (40 grains) and two
different speeds (977 ft/s and 1059 ft/s on average). We used the
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TABLE IV
LINEAR REGRESSION STATISTICS FOR THE GELATIN-BACKED BULLET-ARMOR IMPACT EXPERIMENTS
DEPTH R? Bo B1 Hp: 53 =0 Ho: 80,1 =0
REGRESSION t (p-value) F (p-value)
WEIGHT (1) | 0.880 5.385 0.280 19.892 (p < 0.001) | 395.702 (p < 0.001)
2 | 0.893 5.424 0.283 19.210 (p < 0.001) | 369.022 (p < 0.001)
MOMENTUM (1) | 0.741 9.443 13.718 12.415 (p < 0.001) 154.135 (p < 0.001)
2 | 0.875 4.838 16.700 17.549 (p < 0.001) | 307.966 (p < 0.001)
KINETIC ENERGY (1) | 0.474 20.225 0.066 6.972 (p < 0.001) 48.606 (p < 0.001)
@2 | 0.786 7.018 0.118 12.694 (p < 0.001) 161.138 (p < 0.001)
SPEED (1) | 0.089 79.885 —0.124 —2.298 (p = 0.025) | 5.280 (p = 0.025)
@2 | 0.278 129.560 —0.314 —4.115 (p < 0.001) | 16.929 (p < 0.001)
TARGET DISTANCE | 0.415 29.328 —1.203 —4.453 (p < 0.001) | 19.826 (p < 0.001)
WIDTH R? Bo B1 Hp: 81 =0 Hp : 0,1 =10
REGRESSION t (p-value) F (p-value)
WEIGHT (1) | 0.865 84.816 0.421 18.580 (p < 0.001) | 345.214 (p < 0.001)
2 | 0.882 84.900 0.428 18.170 (p < 0.001) | 330.141 (p < 0.001)
MOMENTUM (1) | 0.745 90.295 20.870 12.566 (p < 0.001) 157.898 (p < 0.001)
) | 0.906 82.612 25.844 20.589 (p < 0.001) | 423.899 (p < 0.001)
KINETIC ENERGY (1) | 0.482 106.478 0.101 7.094 (p < 0.001) 50.328 (p < 0.001)
2 | 0.851 84.692 0.186 15.842 (p < 0.001) | 250.978 (p < 0.001)
SPEED (1) | 0.079 194.170 —0.177 —2.153 (p = 0.036) | 4.636 (p = 0.036)
2 | 0.220 258.890 —0.424 —3.521 (p = 0.001) | 12.395 (p = 0.001)
TARGET DISTANCE | 0.004 58.162 0.1082 0.340 (p < 0.001) 0.115 (p = 0.737)
DEPTH | R? Bo B1 B2 Ho : fo,1,2 =0
REGRESSION t (p-value) t (p-value) t (p-value) F (p-value)
WEIGHT AND (1) | 0.881 5.550 0.304 —1.361 F = 196.020
MOMENTUM 2.616 (p = 0.012) 7.903 (p < 0.001) —0.663 (p = 0.510) | p < 0.001
@2 | 0.896 4.913 0.207 4.625 F = 186.190
2.225 (p = 0.031) 2.988 (p = 0.005) 1.119 (p = 0.270) p < 0.001
WEIGHT AND (1) | 0.881 5.586 0.293 —0.006 F = 196.851
KINETIC ENERGY 2.638 (p = 0.011) 13.494 (p < 0.001) | —0.800 (p = 0.427) | p < 0.001
2 | 0.896 4.845 0.247 0.018 F = 185.965
2.177 (p = 0.035) 6.782 (p < 0.001) 1.096 (p = 0.279) p < 0.001
MOMENTUM AND (1) | 0.887 5.574 31.388 —0.112 F = 208.555
KINETIC ENERGY 2.704 (p = 0.009) 13.943 (p < 0.001) | —8.305 (p < 0.001) | p < 0.001
2 | 0.897 5.348 29.484 —0.097 F = 186.838
2.418 (p = 0.020) 6.810 (p < 0.001) —3.015 (p = 0.004) | p < 0.001
WIDTH |  R? Bo B B2 Ho : Bo,1,2 =0
REGRESSION t (p-value) t (p-value) t (p-value) F (p-value)
WEIGHT AND (1) | 0.865 84.846 0.425 —0.240 F = 169.430
MOMENTUM 24.742 (p < 0.001) 6.846 (p < 0.001) —0.073 (p = 0.942) | p < 0.001
2 | 0.908 82.646 0.093 20.438 F = 211.752
26.075 (p < 0.001) 0.932 (p = 0.356) —0.073 (p = 0.001) | p < 0.001
WEIGHT AND (1) | 0.865 84.967 0.431 —0.004 F = 169.917
KINETIC ENERGY 24.804 (p < 0.001) | 12.261 (p < 0.001) | —0.370 (p = 0.713) | p < 0.001
2 | 0.907 82.342 0.267 0.078 F = 209.355
25.661 (p < 0.001) 5.086 (p < 0.001) 3.361 (p = 0.002) p < 0.001
MOMENTUM AND (1) | 0.883 84.603 46.864 —0.165 F = 200.376
KINETIC ENERGY 26.588 (p < 0.001) | 13.486 (p < 0.001) | —7.914 (p < 0.001) | p < 0.001
2 | 0.908 82.866 32.226 —0.048 F = 212.991
26.139 (p < 0.001) 5.192 (p < 0.001) —1.050 (p = 0.300) | p < 0.001

See the text below for more details.

data in Table III (except the .44 magnum bullets) for the weight
and momentum that trained the fuzzy system.

B. Experimental Results

The gelatin-backed bullet-armor experiments found that a
bullet’s impact depth correlated with its distance to target d with
the first setup and found that depth correlated with bullet prop-
erties that included the mean weight m, momentum p = mu,
and kinetic energy 1/2 mw? in decreasing order with the second
setup. Depth correlation with kinetic energy was much less than

the correlations with weight or momentum. Impact depth also
correlated with combinations of weight, momentum, and kinetic
energy. The impact width similarly correlated with the bullet
properties except distance. The impact depth and width corre-
lated very little with a bullet’s mean speed v. This held because
the .45 caliber bullet-armor impacts were deeper and wider than
both the .22 and .38 caliber impacts when the .22 caliber bullets
were faster and the .38 caliber bullets were slower.

Table IV shows the regression statistics. The statistics were
based on two subsets of the experimental data: Dataset (1) was
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Impact data from the first gelatin-backed bullet-armor experiments. (a) Impact depth correlates with distance to target. The correlation was R? = 0.415

and linear regression gave y; = 29.328 — 1.203x with p-value < 0.001 where = was the distance in yards and y; was the deformation depth in mm. (b) Impact
width correlates poorly with distance: R? = 0.004. The regression equation was y» = 58.162 + 0.1082x. Note that the regression line is nearly horizontal.

complete and Dataset (2) excluded the .357 magnum data. The
key results held for both datasets. First was that deformation
depth and width correlated with a bullet’s weight, momentum,
and kinetic energy while speed correlated little. Second was that
kinetic energy had a weaker correlation with deformation than
either weight or momentum. A bullet’s weight monotonically
increased with its caliber in Dataset (2) and could represent cal-
iber by excluding the magnum data. Dataset (2) had stronger
correlations (larger R?) than Dataset (1). Deformation corre-
lated with momentum more than it correlated with weight in
Dataset (2).

Regression analysis fit the experimental data to a straight line.
The simple linear model used functions of x and had smaller
p-values than quadratic and cubic models while the quadratic
and cubic models had marginally larger R? values. The R?2
measured the strength of the correlation between the dependent
and the independent variables. The first gel-backed experiments
used a regression equation of the form

y=po+ bz (11)

where y was the deformation depth or width in millimeters (mm)
and x was the distance between the target and the handgun in
yards.

The second gel-backed experiments used the simple linear
regression (11) to model how deformation depends on the
individual bullet properties such as mean weight, speed, mo-
mentum, and kinetic energy. Multiple linear regression modeled
how deformation depends on weight, momentum, and kinetic
energy. The multiple regression equation had the form

y = Po + friz1 + Paxa

where y was the deformation depth or width in mm and z; and
x9 were the weight in grains, momentum in kilograms meter per
second (kg m/s), or kinetic energy in kilograms meter squared
per second squared (kg m?/s?).

We applied the simple linear model in (11) to test whether
bullet deformation correlated with each of a bullet’s properties.
The null hypothesis Hy : 81 = 0 stated that the slope 3; of the
regression line in (11) was zero and thus the impact deforma-
tion’s depth and width (dependent variables) did not vary with a
bullet’s weight, momentum, kinetic energy, speed, or distance to
target (independent variables). The p-value measures the credi-

12)

bility of Hy. A statistical test rejects the null hypothesis H at
a significance level « if the p-value is less than that significance
level: Reject Hy if p-value < a. The test rejected the null hy-
pothesis H at the standard significance levels a = 0.05 and
a = 0.01 because p-value < 0.001.

We applied the multiple regression in (12) for combinations
of abullet’s properties such as weight and momentum and tested
the null hypothesis Hy : §; = 0 for s = 0, 1, 2 that all the pa-
rameters were statistically insignificant. This tested whether the
deformation’s depth and width varied with the combination of a
bullet’s weight and momentum. The test found that the regres-
sion coefficient for weight was statistically more significant than
the coefficients for momentum or kinetic energy (see Table IV).
This helped guide our choice of weight and momentum as the
inputs of the fuzzy system.

Fig. 6 shows the depth and the width of the bullet-armor de-
formation after each impact in the first gelatin-backed experi-
ments. The deformation depth decreased as target distance in-
creased. Linear regression (see Table IV) gave R? = 0.415, re-
gression equation y; = 29.328 — 1.203z, and p-value < 0.001
where x was the distance in yards and y; was the deformation
depth in mm. The width y, did not appear to vary with target
distance for RZ = 0.004, yo2 = 58.162 4 0.1082z, and p-value
< 0.001. These statistics suggested a nonzero slope but almost
no correlation for R? = 0.004. The correlations between defor-
mation and target distance also held for between deformation
and momentum because bullet weight was approximately con-
stant and velocity was a monotonic function of distance. The
limited number of data points was due to the availability of the
donated armor. The shots should overlap as little as possible and
avoid the armor panel edges for consistency. Marksmanship fur-
ther decreased the number of shots as distance increased.

Fig. 7 shows the (a) complete deformation depth data and
the (b) complete width data of the bullet-armor deformation
as a function of bullet weight and momentum in the second
gelatin-backed experiments. The regression planes suggested
that depth correlated with bullet momentum more than weight
and that width correlated with weight more than momentum.
Excluding the magnum data in (c) and (d) changed the depth
regression planes: It suggested that deformation depth corre-
lated with both a bullet’s weight and momentum. The correla-
tion strengths were R? = 0.881 for the depth and R? = 0.865
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Fig. 7. Deformation data from the second gelatin-backed bullet-armor experiments. The figures show the complete set of (a) experimental depth data and (b)
width data and their fit to regression planes as functions of weight (X'y) and momentum (X). (¢) and (d) show a subset of the data that excluded the .357
magnum experiments. The regression planes consist of those points that satisfy the regression equations: y; = 5.550 4 0.304x; — 1.361x, for depth in (a),
yo = 84.846 4 0.42521 — 0.240x, for width in (b), y1 = 4.913 + 0.2072:y + 4.62525 for depth in (c), and y> = 82.646 4 0.09321 4 20.4385 for width

in (d).

for the width using the complete set of experimental data. The
depth equation was y; = 5.550 + 0.304z; — 1.361x, where
a1 was bullet weight (grain) and x5 was momentum (kg m/s).
The width equation was yo = 84.846 + 0.425z1 — 0.240x5.
The test statistics for depth correlation were F' = 196.020 and
p-value < 0.001. The test statistics for width correlation were
F = 169.430 and p-value < 0.001. The test rejected the null
hypothesis Hy at the standard significance levels « = 0.05 and
a = 0.01.

The experiments used five bullet calibers [.22, .38, .40, and
.45 caliber and .357 magnum (see Fig. 2)] and two different
speeds [such as on average 808 ft/s and 897 ft/s for the .45 (see
Table III)] per caliber to produce 56 sets of input-output data.
This gave the sparse sampling of the input space in Fig. 7.

IV. BASEBALL IMPACT EXPERIMENTS

A. Experimental Setup

Two putty-backed experimental setups compared the base-
ball impacts to bullet-armor impacts. The baseball setup mea-
sured baseball impacts on tubs of Oatey’s Plumber’s Putty at
the Homerun Park in Anaheim, California. The outdoor bat-
ting cage used pitching machines that threw baseballs at 40,
50, 60, 70, 80, and 90 mph. The chronometer used a baseball’s
passing shadow under the sun to measure the baseball’s speed.
We placed the chronometer approximately a half foot from the
putty target. The putty-filled tubs were approximately 3-5 ft

Fig. 8. Regulation baseball and a crater of its impact. Pitching machines threw
baseballs at tubs of plumber’s putty. A chronograph measured the speed of
each baseball. The baseball speeds were approximately 40, 50, 60, 70, 80, and
90 mph.

from the pitching machines. Each tub consisted of at least 15
pounds of the putty. Fig. 8 shows one sample deformation that
a baseball made in putty.

The bullet-armor setup shot bullets at putty-backed soft body
armor. The experiments shot .22, .38, .40, and .45 caliber bul-
lets and .357 magnum and .44 magnum bullets. The armor was
the Superfeatherlite model from Second Chance. The target was
5 ft from the handguns. Fig. 9 shows the depths of the putty
deformations from baseball impacts next to the depths of the
putty deformations from bullet-armor impacts. The deforma-
tions deepened as baseball speeds increased and as bullet cal-
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Fig.9. Baseball and bullet impact depth in plumber’s putty versus momentum.
The baseball impact depth correlated with baseball momentum R? = 0.93 and
p-value < 0.001 for the null hypothesis: 3; = 0. The solid line on the right is
the regression line for the baseball impacts (blue dots) y = —6.155 + 5.188a
where x is baseball momentum and y is putty deformation depth. Only two data
points fell outside of the 95% confidence bounds. Bullet-armor impact depths
correlated with bullet momentum R? = 0.97. The green dashed line on the left
is the regression line for the bullet-armor impacts (green circles) y = 2.124 4
4.766x where x is bullet momentum and y is depth. The two regression lines
have the similar slope 31 = 5. A multiple regression analysis with dummy
variables (Gujarati-Chow test) could not reject the null hypothesis Hy : 3
(baseball) = 3, (armor) for the test statistics £ = (0.855 and p-value = 0.396.
So the test retained the null hypothesis that the two types of impacts had the
same slope.

iber increased. The baseball impact experiments used regulation
baseballs (see Fig. 8) to produce at least ten data points for each
of the six different speeds. The putty deformed and recorded
each impact. We plotted the impact depth against baseball mo-
mentum in Fig. 9 to better compare with bullet-armor impact
data because the gelatin-backed bullet-armor experiments found
that momentum correlated better with deformation depth than it
correlated with weight or speed alone. Plotting the deformation
depth against baseball momentum preserved the proportion of
plotting depth against speed for constant baseball weight.

B. Experimental Results

The baseball experiments compared bullet-armor impacts to
baseball impacts in two ways: Deformation depth in putty and
the slopes of the fitted regression lines. The first way compared
how the two types of projectile-dented putty deformations dif-
fered. Baseball impacts and bullet-armor impacts had similar
depths in Oatey’s Plumber’s Putty.

Table V compared the deformation depths that baseball
impacts and bullet-armor impacts produced. For instance: The
mean impact depth was 21.6 mm for 90-mph baseballs and
the bullet-armor impact depth was 21 mm for a .357 magnum
bullet and 22 mm for a .45 caliber bullet. The .44 magnum
bullet-armor impact deformed the putty to a depth of 40 mm
that was about twice the effect of the fastest baseball available
so had no comparable highspeed baseball impact.

The similarity of impact depths suggested that handgun shots
on soft body armor would feel like baseball impacts without
armor. Fast-baseball impact depths were comparable to bullet-
armor impact depths: Getting shot with a .22 caliber bullet when
wearing soft body armor resembles getting hit in the chest with
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TABLE V
BASEBALLS DEFORMED PLUMBER’S PUTTY SIMILAR TO HANDGUN BULLETS.
Bullet Caliber 22 .38 40 | 357 | 45 | 44
Depth (mm) 5 15 19 21 22 | 40
Baseball Speed (mph) | 40 70 80 90 n/a
Depth (mm) 6.5 | 13.6 | 17.0 | 21.6 n/a

See the text below for more details.

a 40-mph baseball. Getting shot with a .45 caliber bullet resem-
bles getting hit with a 90-mph baseball.

Fast baseballs were similar to large caliber bullets (on armor)
in denting putty (see Fig. 9) except for the .44 magnum. The
.44 magnum dented the putty to a 40-mm depth or about twice
the depth of the 90-mph baseballs. The 90-mph baseballs made
21.6-mm-deep dents in putty on average. This is similar to the
depths of the dents from a .40 caliber (19 mm), a .45 caliber
(22 mm), and a .357 magnum (21 mm) bullets. A .38 caliber
bullet made a 15-mm-deep dent in armor-clad putty. This depth
is between the mean depth values of the 70-mph (13.6 mm)
and the 80-mph (17 mm) baseballs. Table V summarizes these
results.

The second way compared the correlation and regression
slopes of the two types of impacts. The experiments found
that the mean depth of a baseball’s impact and the depth of
a bullet’s armor-impact both correlated with projectile mo-
mentum (see Fig. 9). The baseball impacts had correlation
R? = 0.93, regression equation y = —6.155 + 5.188x, and
p-value < 0.001 where z was a baseball’s momentum in kg m/s
and y was the putty deformation depth in mm. The bullet-armor
impacts had similar correlation R = 0.97, regression equation
y = —2.12 4+ 4.76x, and p-value < 0.001.

The putty-impact regression lines had similar slopes 31 ~ 5
for the baseball impacts (#; = 5.188) and the bullet-armor
impacts (1 = 4.766). Fig. 9 suggests that the two lines are
parallel: Same slope with different intercepts. But the multiple-
regression-based Chow test [25], [26] gave only that the two
regression lines differed for F' = 61.826, degrees of freedom
(2,62), and p-value < 0.001. So we applied a modified Chow
test (Gujarati-Chow test [27]) to test whether the slope terms (31
differed, the intercept terms [y differed, or both.

The Gujarati-Chow test was a multiple regression analysis
with a dummy variable approach [25], [27] that compared two
groups of data. It used a binary dummy variable D (see the Ap-
pendix) to test separately whether the slope terms 3y differed
and whether the intercept terms (3, differed. The slope-term (1)
test statistics were ¢ = 0.855 and p-value = 0.396. The two
putty-impact regression lines had statistically indistinguishable
slopes because we retained the null hypothesis that the slope
terms were identical at the standard significance levels « = 0.05
and o = 0.01. This confirmed that the putty-backed baseball
impacts and the bullet-armor impacts had the same slope 7 in
their regression lines as Fig. 9 suggested.

The intercept-term (fp) test statistics were ¢ = —4.995 and
p-value < 0.001. The putty-impact regression lines had statis-
tically distinct intercepts because we rejected the null hypoth-
esis that the intercept terms were identical at the standard sig-
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Fig. 10. Tuned fuzzy system output and conditional variance. The complete set of experimental data trained the fuzzy system from the initial states in Fig. 3.

nificance levels @« = 0.05 and o« = 0.01. This confirmed the
Chow-test result that the two regression lines were distinct.

We note that the regulation baseball’s constant weight
implied that the correlation between deformation and speed
was the same as the correlation between deformation and
momentum. This corroborated the results from the first
gelatin-backed bullet-armor experiments.

V. Fuzzy EXPERT AND GUNSHOT ARMOR BRUISE
A. Fuzzy System Setup

The adaptive SAM fuzzy system used the learning laws (7),
(9), (10) to learn from the gelatin-backed bullet-armor experi-
mental data. We used the two-dimensional joint factorable sinc
function (see Fig. 3) for the if-part fuzzy sets A;. Sinc sets
often converge faster and with greater accuracy than do trian-
gles, Gaussian bell curves, Cauchy bell curves, and other fa-
miliar set shapes [24]. We used scalar Gaussian set functions for
the one- dimensional then-part fuzzy sets B;. This gave the set
variance o7 B, from the then-part set volume V o2 B, = V2 /2.

A larger then- -part rule volume V; produced more uncertamty
in the jth rule and so should result in less weight. So we
weighted each rule with the inverse of its squared volume [5]:
w; = 1/ Vj2. This gave the final form of the SAM output F
from (2)

SR

j=1

F(z) = (13)

A larger volume V; also gave a larger conditional variance.

We picked the fuzzy system’s initial rules according to the
observed correlations in Table I: Same-weight bullets hit harder
if they were faster. Same-speed bullets hit harder if they were
heavier. But heavier and slower handgun bullets can hit harder
than some lighter and faster ones. The adaptive SAM system
used 49 rules according to Table II. The if-part set functions a;
used center and width parameters to uniformly cover the input
space. The then-part set functions b; used center parameters
or centroids c; that gave an output according to Tables II(a)
and (b) and used volume or dispersion parameters in (c) that
reflected the uncertainty of the rules. The fuzzy sets in Table II
listed the initial rules that we created based on our experience
with ballistics and soft body armor. The volume V; was a
function of the then-part’s dispersion or width parameter. A
rule was less certain if its if-part covered untested combinations
of bullet weight and momentum so its then-part had a larger
set variance. Fig. 4 shows the fuzzy system’s initial first-order
output F(z) = E[Y|X = z]| and second-order uncertainty
VIY|X = z].

A random resampling scheme selected half of the sparse
experimental data as the bootstrapped training set and the
remaining half as the test set. A bootstrap scheme [28] sampled
the training data with replacement at random to generate 300
sets of input-output data to tune the fuzzy system.

B. Fuzzy System Results

We used two sets of the experimental data to train the fuzzy
system: Dataset (1) was complete and Dataset (2) excluded
the .357-magnum data. Tuning with Dataset (1) reduced the
fuzzy system’s error function SSE = Y (f(z) — F(z))?
that summed the squared approximation error f — F for
3000 epochs of learning. Fig. 10 shows the tuned system
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complete and Dataset (2) excluded the .357 magnum data. The depth subsystem in (a) reduced its SSE from 45 to 17 over 3000 epochs of learning and had test
SSE = 16. The width subsystem in (a) reduced its SSE from 126 to 44 and had test SSE = 46. The depth subsystem in (b) reduced its SSE from 43 to 15 and had
test SSE = 14. The width subsystem in (b) reduced its SSE from 45 to 31 and had test SSE = 25.

output F(z) = E[Y|X = z] and its conditional variance
VI[Y|X = z]. The tuning was effective because the depth
subsystem had an initial error of SSE = 45, final error of
SSE = 17, and low test error of SSE = 16 and because the
width subsystem had initial SSE = 126, final SSE = 44, and
low test SSE = 46 [see Fig. 11(a)].

Tuning with Dataset (2) produced system output F(z) and
conditional variance V[Y|X = z] similar to the initial state in
Fig. 4. The fuzzy system’s final SSE resembled its initial SSE
after tuning even though the low test SSE suggested that the
tuning was effective: The depth subsystem had an initial error of
SSE = 43, final error of SSE = 15, and test error of SSE = 14
and the width subsystem had initial SSE = 45, final SSE = 31,
and test SSE = 25 [see Fig. 11(b)].

We tested the robustness of the tuned fuzzy system by ran-
domly pruning its rules (see Fig. 12). The fuzzy system proved
robust both when the learning included the magnum data and
when it did not. Pruning randomly removed a fraction of the
rules over 100 trials. The depth and the width subsystems gave
similar results. The maximal test error remained low (SSE <
100) for random rule loss of up to 20% using Dataset (1) and
up to 10% using Dataset (2). The low test SSE was comparable
to the approximation errors in data tuning. Both the mean and
the median of the test error remained low for random pruning
that removed up to 30% of the rules using Dataset (1) and 20%
using Dataset (2).

VI. CONCLUSION

The adaptive SAM system modeled the bruise profile of a
bullet impact based on bullet-armor experiments. The fuzzy
system’s output conditional variance measured the inherent un-
certainty in the rules. A baseball analogy gave further insight
into armor gunshots based on baseball-impact experiments.
The bullet-armor experiments found correlations between a
bullet impact’s depth and width and the bullet’s weight and

momentum. These correlations were stronger than the corre-
lation between a bullet’s impact and its kinetic energy. The
baseball correlations corroborated the bullet-armor results.

The findings from the bruise analysis should help engineers
design lighter and thinner armor that reduces a bullet’s bruising
effect while improving the armor user’s mobility. These results
would benefit from further testing with more than one weight
per caliber and with higher speed projectiles. Measurements of
the deformed armor would also be more accurate if they came
from highspeed photographs of the bullet-armor experiments
rather than from the post-impact deformation. The post-impact
measurements tended to give smaller values because the elastic
gelatin blocks often reduced the armor deformation by springing
back after bullet impact.

The bruising effect of flexible armor will change as armor
technology evolves. New armor designs can reduce bullet-
armor deformation. One such example is the use of colloidal
shear-thickening fluid in fluid-impregnated Kevlar fabric. The
shear-thickening fluid enhances the penetration resistance of
flexible armor [30]. The United States Army is developing
armor that uses nanomaterials and nanodevices [31] such as
molecular chain mail that uses a mixture of nanoscopic mate-
rials [32]. These new materials change how armor deforms on
bullet impact and so will change the bruising effect. Test data
from the new armor designs can tune the fuzzy rules and so
adapt the fuzzy function approximator.

APPENDIX A
SAM THEOREM

This Appendix derives the basic ratio structure (2) of an SAM
fuzzy system [5], [24].

SAM Theorem: Suppose the fuzzy system F: R® — RP
is a standard additive model: F(z) = Centroid(B(z)) =
Centroid (Z;nzl w;a; (a:)Bj) for if-part joint set function
a; : R™ — [0, 1], rule weights w; > 0, and then-part fuzzy set
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Fig. 12. Rule pruning. The fuzzy system was robust against random pruning. The figure plots the system’s test error in log scale versus the percent of pruned
depth rules in (a). Similar results hold for random pruning of width rules in (b) and for pruning rules that trained without magnum data in (c) and (d). The vertical
bars show the maximal and minimal range of 100 trials. The solid polygonal line interpolates the median of those trials. The dashed line interpolates the mean.
The maximal error remained below 100 SSE for up to 20% of randomly pruned rules. Both the mean and median error remained low for rule losses of up to 35%.

B; C RP.Then F(z) is a convex sum of the m then-part set
centroids

The convex coefficients or discrete probability weights

p1(z), ..., pm(z) depend on the input - through
wja;(x)V;
pi(r) = Vi (15)
> wia;i(w)V;
i=1

where V; is the finite positive volume (or area if p = 1) and ¢;
is the centroid of then-part set B;

V= i bi (Y1,---,yp)dyr ... dy, >0 (16)
b; dyi ...d
Cj:fRP J(y17 7yp) Y1 yp‘ (17)
fRPbj(ylv"'7yp)dy1...dyp

APPENDIX B
ADDITIVE STATISTICS THEOREM [5]

Suppose F: R™
with scalar output such that F'(z) =
B(x) = 30" w;B)(x). Then

F(z)=FE[Y|X = z]

m

— R is an additive fuzzy system
Centroid(B(z)) and

= pi(@)Ep [Y|X = 1] (18)
j=1
VYIX =2]=) pi()V[Y|IX=2,B]] (19

=1

J
the convex coefficients p;(x) are weighted volume ratios of the
“fired” sets B

py(a) = V) (20)
> wiVy(x)
k=1
where
xﬂw=/www@. 1)

Proof: The proof that centroidal fuzzy systems are condi-
tional means follows from the ratio structure of the centroid and
the boundedness and non-negativity of the set values b(z,y) >
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0 of the combined set B of “fired” then-part sets ;. Each input
x gives its own B(z) and thus its own output F'(z)

F(z) =Centroid(B(z)) (22)
S vb(z,y)dy

=R T 23

S b, y)dy )

= /R yp(ylz)dy (24)

= E[Y|X = 2] (25)

for each z € R™. This holds because the ratio of the joint distri-
bution to the marginal defines a proper conditional probability
density

b(x Y)
pr z,y)dy

p(ylr) = (26)

even though b(z,y) > 1 may hold.

Then we continue the same chain of equalities to show that
F(z) is a convex sum of local conditional mean realizations or
centroids

w]f ybly(x,y)dy
F(z) = ] (27)
w]f yb’ x,y)dy
j=
> wiVy [Z yb(yle)dy
= (28)
2 wiVy
j=1
= pj(@)Ep [Y|X = 1] (29)
j=1 ’
= pj(x)d] (30)
j=1
The variance (covariance) result follows in the same way:
EY|X = d
V[Y|X:]_f_ (y — oo| 2])?b(w, y)dy
S bz, y)dy
(31)
=>on@) [ (- BYIX =2
j=1 —o00
X pp: (ylz)dy (32)
=Y pi@)V [Y|X =2, Bj]. (33)

1

J

The SAM structure Bj(z) = a;(z)B; simplifies the condi-

tional variance Vp/ [Y|X = 1x] because the conditional prob-

ability density pp (y|m) does not depend on the input x for
a3(z) > 0

0y ()b, (0)
Pey W) = ey T b )y

(34)

=pp,(y).  (5)
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Then we use these facts to simplify the first-order and second-
order conditional statistics of an SAM system. It gives the SAM
conditional variance as a convex sum of the local then-part vari-
ances plus a global dispersion term.

Corollary (SAM Statistics): The scalar-valued SAM system

F(z) = Centroid | Y wja,(z)B;

(36)
j=1
has conditional mean and variance
EY|X =a]=F(z) =) pj(x)c (37)
=1
and
VIYIX =2] =) pj(x)o, +ij ())? (38)
j=1
with convex coefficients
(2)V.
py() = s (39)
> wjia;(z)
k=1

The second term in (38) acts as a penalty term. It is positive if
and only if some jth rule fires (a;(z) > 0 and thus p;(x) > 0)
and ¢; # F(z). So it is positive iff the fuzzy system F inter-
polates to reach the output F(x). Each rule comes with its own
output uncertainty o2 B, . Interpolated outputs have more variance
than just the sum of these weighted rule variances. Combining
two uncertain structures gives a still less certain third structure.

APPENDIX C
LEARNING LAWS FOR SCALAR AND JOINT
FACTORABLE IF-PART SETS

This Appendix derives the learning laws for scalar and joint
factorable if-part sets [24]. Supervised gradient descent can tune
all the parameters in the SAM (2). A gradient descent learning
law for a SAM parameter ¢ has the form

oF

f(t+1) “ta_g

=¢(t) - (40)
where p,; is a learning rate at iteration . We seek to minimize
the squared error E(z) = (1/2)(f(z) — F(x))? of the function
approximation. The vector function f : R™ — RP has com-
ponents f(z) = (fi(z),..., fo(z))T and so does the vector
function F'(z). We consider the case when p = 1. A general
form for multiple output when p > 1 expands the error func-
tion K(z) = ||f(z) — F(z)|| for some norm || - ||. Let £} de-
note the kth parameter in the set function a;. Then the chain
rule gives the gradient of the error function with respect to the
if-part set parameter & f with respect to the then-part set cen-

. T .
troid ¢; = (c} )" and with respect to the then-part set

RS
volume V;
OB _0BOF0u, 0B _0B0F
ogl  OF dajogl”  dcj  OF dcy’
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and
oF OF OF
where
oF
ap = ~ (@) = F@)] = —e(2)
and
oF _. pj(z)

The SAM ratios (2) with inverse-squared-volume rule
weights w; = 1/V7? give

a;(x)

oF ;
5 " Fem P “
g aj;(x
1;1 Vi
oF  pj(x) o
oy = - e - P, (@)

Then the learning laws for the then-part set centroids c¢; and
volumes V; have the final form

cj(t+1) =c;(t) + pes(w)pj(w) (45)
Vit 1) =V5(0) — mer(e) 2L, - P, o

J

The learning laws for the if-part set parameters follow in like
manner for both scalar and joint sets as we show below. Chain
rule gives for scalar sinc set function

0E
8m;? N

O OF Oa;

OB OF da;  OF _ OE OF da;
OF da; om*

ods ~ OF da; od

(47)

A joint factorable set function a;(x) = aj(x) ... a}(x) leads
to a new form for the error gradient. The gradient with respect
to the parameter of the jth set function a; has the form

OB _0E OF ou, 00!
(‘3m§ OF Oa; (‘3@? am;?
where n 05(2)
T
—. (48)
;C 1;[ aj HED)

The partial derivative of the joint factorable sinc set function is

Tp — §(t) 1
&0 )) e mi
k 2y — mk
where a;(z) = Hsmc < ])
sin(z )

T

k
aaj
k
amj

and sinc(z) =

(49)
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Combining (40), (41), and (47)—-(49) gives the if-part learning
laws

. 3 i) a(@) o
mi(t+1) =mj(t) + per j(a:)a;?(a:k)(] F(x))
a:—m;?(t) 1
X (aj(a:)—cos< o) )) v —mh(D)
(50)
k pie) ()
dj(t+1) =dj(t) + peee (1) a?(iﬂk)( i — F(2))
x—m?(t) 1
X <aj( )—cos( o) )) df(t)
(51)

APPENDIX D
HYPOTHESIS TEST FOR 31 = ¢ FOR SIMPLE
LINEAR REGRESSION

This section reviews the hypothesis test whether the slope
term of a simple linear regression equation has a certain value
c:Hgy : f1 = cversus Hy : 81 # ¢ [29]. The simple linear
regression model for n observations has the form

y =00+ Pz +e

where the independent variable x, dependent variable y, and
error term € are n X 1 vector representations of the n obser-
vations. The prediction equation

(52)

y=fo+ b (53)
uses the least squares estimators
B SICEr 7r A
B=2 and By =y — (1 7. (54)
> (zi — 1)
i=1
The test statistic is
t = Bl : &
\/ Z (zi—%)?
E )2
where 52 5 and SSE = Z ). (55)

The test rejects the null hypothesis Hy if the test statistic |¢| >
to/2,n—2. We note that ¢ has a noncentral distribution Z(n — 2, §)
with noncentrality parameter § that has the form

5= E(B) __ B
Var([gl) i (zi—7)2

The hypothesis test for Hy : 1 = 0 versus H, : 81 # 0 can
use (55)-(56) forc = 0 and 6 = 0.

(56)
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APPENDIX E
MULTIPLE REGRESSION ANALYSIS AND THE DUMMY VARIABLE
APPROACH (GUJARATI-CHOW TEST)

Multiple regression [25] can compare two groups with an un-
equal numbers of samples. The dummy variable approach [27]
can compare the two groups’ linear regression coefficients to
see whether they have different intercepts, different slopes, or
both. This modifies the Chow test [26] that tests whether both
the intercepts and slopes differ between the two groups.

The Gujarati-Chow test is a multiple regression analysis that
uses a dummy variable D[25], [27] to create interaction terms.
The test concatenates the data from the two groups and uses the
binary dummy variable D to determine whether a data sample
belongs to Group A or Group B as shown in the equation at the
bottom of the page. The dummy-variable regression equation
has the form

y=ag+ a1 D + asx + a3z(Dx) (57)
where z is the independent variable and y is the dependent vari-
able for both groups of data. The dummy variable D is in both an
additive and a multiplicative form. The constants a; and a3 are
the differential intercept and differential slope coefficients. The
Gujarati—-Chow test performs a multiple linear regression and
can test two null hypothesis: Hi' : a3 = 0 and Hy® : a3 = 0.

The intercept value of Group A’s data is a; + ag if a; is
statistically significant then ag is the intercept value of Group
B’s data in this case. Else ag estimates the intercept term of both
groups of data if a; is statistically insignificant (large p-value).

The slope of Group A’s data is as + a2 if a3 is statistically
significant then a, is the slope of Group B’s data in this case.
Else as estimates the slope term of both groups of data if as is
statistically insignificant (large p-value). The additive and mul-
tiplicative dummies give whether two linear regressions differ
either in the intercept or the slope or both.

We want to test the null hypothesis Hy, that the two regression
slopes are identical for the bullet-armor impact data (Group A)
and the baseball impact data (Group B). This tests the hypoth-
esis Hy : a3 = 0 versus H, : a3 # 0. The hypothesis test
retains the null hypothesis for a high p-value: a3 is not statis-
tically significant and ao estimates the slope term of both the
bullet-armor data and the baseball data.
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